
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: Computer Science

ISSN 1342-2812

ElGamal and Cramer-Shoup Variants with Anonymity
Using Different Groups
(Extended Abstract)

Ryotaro Hayashi and Keisuke Tanaka

November 2004, C–200

ElGamal and Cramer-Shoup Variants with Anonymity
Using Different Groups

(Extended Abstract)

Ryotaro Hayashi and Keisuke Tanaka∗

Dept. of Mathematical and Computing Sciences
Tokyo Institute of Technology

W8-55, 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552, Japan
{hayashi9, keisuke}@is.titech.ac.jp

November 17, 2004

Abstract

In this paper, we have proposed new variants of the El-Gamal and the Cramer-Shoup
encryption schemes. In our schemes, the anonymity property holds even if each user chooses
an arbitrary prime q where |q| = k and p = 2q + 1 is also prime. More precisely, our El-Gamal
variants provide anonymity against the chosen-plaintext attack, and our Cramer-Shoup variants
provide anonymity against the adaptive chosen-ciphertext attack. These anonymity properties
are proved under a slightly weaker assumption than the DDH assumption. Furthermore, our
El-Gamal variants are secure in the sense of IND-CPA, and our Cramer-Shoup variants are
secure in the sense of IND-CCA2.

Keywords: encryption, key-privacy, anonymity, ElGamal, Cramer-Shoup

1 Introduction

Bellare, Boldyreva, Desai, and Pointcheval [1] proposed a new security requirement of the en-
cryption schemes called “key-privacy” or “anonymity.” It asks that the encryption provide (in
addition to privacy of the data being encrypted) privacy of the key under which the encryption
was performed.

The anonymous encryption scheme has various applications. For example, anonymous au-
thenticated key exchange protocol such as SKEME (Krawczyk [8]), anonymous credential system
(Camenisch and Lysyanskaya [3]), and auction protocols (Sako [10]).

A simple observation that seems to be folklore is that standard RSA encryption, namely, a
ciphertext is xe mod N where x is a plaintext and (N, e) is a public key, does not provide anonymity,
even when all moduli in the system have the same length. Suppose an adversary knows that the
ciphertext y is created under one of two keys (N0, e0) or (N1, e1), and suppose N0 ≤ N1. If y ≥ N0

then the adversary bets it was created under (N1, e1), else the adversary bets it was created under
(N0, e0). It is not hard to see that this attack has non-negligible advantage. To construct the
schemes with anonymity, it is necessary that the space of ciphertexts is common to each user.

Recently, three techniques, expanding, repeating, and RSACD, were proposed for RSA-based
cryptosystems for obtaining anonymity. With the expanding technique, computing the ciphertext

∗Supported in part by NTT Information Sharing Platform Laboratories and Grant-in-Aid for Scientific Research,
Ministry of Education, Culture, Sports, Science, and Technology, 14780190, 16092206.

1

and expanding it to the common domain. This technique was proposed by Desmedt [5]. In [6],
Galbraith and Mao used this technique for the undeniable signature scheme. In [9], Rivest, Shamir,
and Tauman also used this technique for the ring signature scheme. With the repeating technique,
repeating the evaluation of the encryption function each time using different randomness until the
ciphertext is into the common domain. In [1], Bellare, Boldyreva, Desai, and Pointcheval used this
technique for the encryption scheme. The RSACD function was constructed by Hayashi, Okamoto,
and Tanaka [7], which has a common domain whose structure is specialized to the RSA function.

In [1], they also proved that the El-Gamal and the Cramer-Shoup encryption schemes provide
anonymity when all of the users use a common group. This setting can be considered to be
reasonable because the space of the private keys is large when a common group is fixed.

However, it is more flexible that we do not fix a common group but a security parameter for
groups. In this paper, we propose new variants of the El-Gamal and the Cramer-Shoup encryption
schemes, using the techniques of expanding and repeating used in RSA-based cryptosystems.

In our schemes, the anonymity property holds even if each user chooses an arbitrary prime q
where |q| = k and p = 2q+1 is also prime. More precisely, our El-Gamal variants provide anonymity
against the chosen-plaintext attack, and our Cramer-Shoup variants provide anonymity against
the adaptive chosen-ciphertext attack. These anonymity properties are proved under a slightly
weaker assumption than the DDH assumption. Furthermore, our El-Gamal variants are secure in
the sense of IND-CPA, and our Cramer-Shoup variants are secure in the sense of IND-CCA2.

We show the anonymity property of our schemes by a similar argument as in [1]. The argument
in [1] depends heavily on the situation where all of the users employ a common group. Therefore,
we cannot straightforwardly apply their argument to our schemes. To prove the anonymity of our
schemes, we employ the idea described in [4] by Cramer and Shoup, where we encode the element
of QRp where p = 2q + 1 and p, q are prime to that of Zq. This encoding is applied between the
primitive encryption scheme and the expanding / repeating technique, and plays an important
role in our schemes.

We also introduce a slightly weaker assumption than the DDH assumption which we call
“the paired DDH assumption.” It says that it is hard to decide whether (g1, g

x1
1 , gy1

1 , gz1
1) and

(g2, g
x1
2 , gy2

2 , gz2
2) are both valid DDH-tuples (i.e. z1 = x1y1 and z2 = x2y2) or not.

The organization of this paper is as follows. In Section 2, we describe the definitions of the
DDH problem and the paired DDH problem. We also review the definitions concerning families of
hash functions. In Section 3, we describe the definitions of anonymity for public-key encryption
schemes. In Section 4, we show the techniques for obtaining encryption schemes with the anonymity
property. We propose the variants of the ElGamal encryption scheme with anonymity in Section 5,
and those of the Cramer-Shoup encryption scheme with anonymity in Section 6. We conclude in
Section 7.

2 Preliminaries

In this paper, we use the following notations. If A is a probabilistic algorithm, then A(x1, x2, · · · ; r)
is the result of running A on inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · ·) denote the
experiment of picking r at random and letting y be A(x1, x2, · · · ; r). If S is a finite set then x

R← S
is the operation of picking an element uniformly from S. If α is not an algorithm then x ← α is a
simple assignment statement.

We say the function ε : N→ R+ is negligible (in k) if for every constant c > 0 there exists an
integer k′ such that ε(k) < 1/kc for all k ≥ k′.

2.1 The Decisional Diffie-Hellman Problem

In this section, we describe the definitions of the DDH problem and the paired DDH problem.

2

Definition 1 (DDH). Let Ḡ be a prime-order-group generator which takes as input a security
parameter k and returns (q, g) where q is a k-bit prime and g is a generator of a cyclic group Gq

of order q. Let D be an adversary. We consider the following experiments:

Experiment Expddh-real
Ḡ,D

(k) Experiment Expddh-rand
Ḡ,D

(k)
(q, g) ← Ḡ(k) (q, g) ← Ḡ(k)

x, y
R← Zq x, y,

R← Zq

X ← gx; Y ← gy; T ← gxy X ← gx; Y ← gy; T
R← Gq

d ← D(q, g, X, Y, T) d ← D(q, g, X, Y, T)
return d return d

The advantage of D in solving the Decisional Diffie-Hellman (DDH) problem for Ḡ is defined by

Advddh
Ḡ,D(k) = |Pr[Expddh-real

Ḡ,D (k) = 1]− Pr[Expddh-rand
Ḡ,D (k) = 1]|.

We say that the DDH problem for Ḡ is hard if the function Advddh
Ḡ,D(k) is negligible for every

algorithm D whose time-complexity is polynomial in k.

The “time-complexity” is the worst case execution time of the experiment plus the size of the code
of the adversary, in some fixed RAM model of computation.

We now define the paired DDH problem.

Definition 2 (paired DDH). Let Ḡ be a prime-order-group generator. Let D be an adversary. We
consider the following experiments:

Experiment Exppddh-real
Ḡ,D

(k) Experiment Exppddh-rand
Ḡ,D

(k)

(q0, g0) ← Ḡ(k); x0, y0
R← Zq0 (q0, g0) ← Ḡ(k); x0, y0

R← Zq0

X0 ← gx0
0 ; Y0 ← gy0

0 ; T0 ← gx0y0
0 X0 ← gx0

0 ; Y0 ← gy0
0 ; T0

R← Gq0

(q1, g1) ← Ḡ(k); x1, y1
R← Zq1 (q1, g1) ← Ḡ(k); x1, y1

R← Zq1

X1 ← gx1
1 ; Y1 ← gy1

1 ; T1 ← gx1y1
1 X1 ← gx1

1 ; Y1 ← gy1
1 ; T1

R← Gq1

d ← D((q0, g0, X0, Y0, T0), d ← D((q0, g0, X0, Y0, T0),
(q1, g1, X1, Y1, T1)) (q1, g1, X1, Y1, T1))

return d return d

The advantage of D in solving the paired Decisional Diffie-Hellman problem for Ḡ is defined by

Advpddh
Ḡ,D

(k) = |Pr[Exppddh-real
Ḡ,D

(k) = 1]− Pr[Exppddh-rand
Ḡ,D

(k) = 1]|.

We say that the paired DDH problem for Ḡ is hard if the function Advpddh
Ḡ,D

(k) is negligible for
every algorithm D whose time-complexity is polynomial in k.

2.2 Families of Hash Functions

In this section, we describe the definitions of families of hash functions, universal one-way, and
collision resistant.

Definition 3. A family of hash functions H = (GH, EH) is defined by two algorithms. A proba-
bilistic generator algorithm GH takes the security parameter k as input and returns a key K. A
deterministic evaluation algorithm EH takes the key K and a string M ∈ {0, 1}∗ and returns a
string EHK(M) ∈ {0, 1}k−1.

3

Definition 4. Let H = (GH, EH) be a family of hash functions and let C = (C1, C2) be an adver-
sary. We consider the following experiment:

Experiment Expuow
H,C(k)

(x0, si) ← C1(k); K ← GH(k); x1 ← C2(K,x0, si)
if ((x0 6= x1) ∧ (EHK(x0) = EHK(x1))) then return 1 else return 0

Note that si is the state information. We define the advantage of C via

Advuow
H,C(k) = Pr[Expuow

H,C(k) = 1].

We say that the family of hash functions H is universal one-way if Advuow
H,C(k) is negligible for

every algorithm C whose time-complexity is polynomial in k.

Definition 5. Let H = (GH, EH) be a family of hash functions and let C be an adversary. We
consider the following experiment:

Experiment Expcr
H,C(k)

K ← GH(k); (x0, x1) ← C(K)
if ((x0 6= x1) ∧ (EHK(x0) = EHK(x1))) then return 1 else return 0

We define the advantage of C via

Advcr
H,C(k) = Pr[Expcr

H,C(k) = 1].

We say that the family of hash functions H is collision-resistant if Advcr
H,C(k) is negligible for

every algorithm C whose time-complexity is polynomial in k.

Note that if H is collision resistant then H is universal one-way.

3 Anonymity for Encryption Schemes

3.1 Definitions

The classical security requirements of public-key encryption schemes, for example indistinguisha-
bility or non-malleability under the chosen-ciphertext attack, provide privacy of the encryption
data. In [1], Bellare, Boldyreva, Desai, and Pointcheval proposed a new security requirement of
encryption schemes called “key-privacy” or “anonymity.” It asks that the encryption provide (in
addition to privacy of the data being encrypted) privacy of the key under which the encryption
was performed. In a heterogeneous public-key environment, encryption will probably fail to be
anonymous for trivial reasons. For example, different users might be using different cryptosystems,
or, if the same cryptosystem, have keys of different lengths. In [1], a public-key encryption scheme
with common-key generation is described as follows.

Definition 6. A public-key encryption scheme with common-key generation PE = (G,K, E ,D)
consists of four algorithms. The common-key generation algorithm G takes as input some security
parameter k and returns some common key I. The key generation algorithm K is a randomized
algorithm that takes as input the common key I and returns a pair (pk, sk) of keys, the public
key and a matching secret key. The encryption algorithm E is a randomized algorithm that takes
the public key pk and a plaintext x to return a ciphertext y. The decryption algorithm D is a
deterministic algorithm that takes the secret key sk and a ciphertext y to return the corresponding
plaintext x or a special symbol ⊥ to indicate that the ciphertext was invalid.

In [1], they formalized the property of “key-privacy.” This can be considered under either the
chosen-plaintext attack or the chosen-ciphertext attack, yielding two notions of security, IK-CPA
and IK-CCA. (IK means “indistinguishability of keys.”)

4

Definition 7 (IK-CPA, IK-CCA [1]). Let PE = (G, K, E ,D) be an encryption scheme. Let b ∈
{0, 1} and k ∈ N. Let Acpa = (A1

cpa, A
2
cpa), Acca = (A1

cca, A
2
cca) be adversaries that run in two stages

and where Acca has access to the oracles Dsk0(·) and Dsk1(·). Note that si is the state information.
It contains pk0, pk1, and so on. For atk ∈ {cpa, cca}, we consider the following experiment:

Experiment Expik-atk-b
PE,Aatk

(k)

I
R← G(k); (pk0, sk0)

R← K(I); (pk1, sk1)
R← K(I)

(x, si) ← A1
atk(pk0, pk1); y ← Epkb

(x); d ← A2
atk(y, si)

return d

Above it is mandated that A2
cca never queries the challenge ciphertext y to either Dsk0(·) or Dsk1(·).

For atk ∈ {cpa, cca}, we define the advantage via

Advik-atk
PE,Aatk

(k) =
∣∣∣Pr[Expik-atk-1

PE,Aatk
(k) = 1]− Pr[Expik-atk-0

PE,Aatk
(k) = 1]

∣∣∣.

The scheme PE is said to be IK-CPA secure (respectively IK-CCA secure) if the function Advik-cpa
PE,Acpa

(·)
(resp. Advik-cca

PE,Acca
(·)) is negligible for any adversary A whose time complexity is polynomial in k.

The encryption schemes which provide key-privacy are useful for anonymous authenticated key
exchange protocol such as SKEME (Krawczyk [8]), anonymous credential system (Camenisch and
Lysyanskaya [3]), auction protocols (Sako [10]), and so on.

4 Techniques for Anonymity

In this section, we describe the techniques for obtaining encryption schemes with the anonymity
property.

Consider the encryption function f : G → G. If each user Ui uses a different groups Gi for
her encryption scheme and publishes the ciphertext directly, then the scheme does not provide
anonymity. The adversary simply checks whether the ciphertext y is in the group Gi, and if
y 6∈ Gi then y was not encrypted by Ui. Hence, to construct the schemes with anonymity, it is
necessary that the space of ciphertexts is common to each user.

In this paper, we mainly construct the variants of the Cramer-Shoup schemes which provides
anonymity with prime-order groups. In the following, we will concentrate on the case that uses use
prime-order groups. In order to construct our scheme, it is necessary that the space of ciphertexts
is common to each user who can use a different prime-order group. To archive this, we consider
the following two strategies. We assume that each user chooses a prime-order group of order q
where |q| = k, which is a security parameter.

Strategy 1.

1. Compute a ciphertext c over each user’s prime-order group.

2. Encode c to an element c̄ ∈ Zq (encoding function).

3. Expand c̄ to the common domain (expanding technique).

Strategy 2.

1. Compute a ciphertext c over each user’s prime-order group.

2. Encode c to an element c̄ ∈ Zq (encoding function).

3. If it is not in the common domain, go back to step 1 (repeating technique).

In the following, we describe the encoding function, and the expanding and repeating tech-
niques.

5

4.1 The Encoding Function

Generally speaking, it is not easy to encode the elements of a prime-order group of order q to that
of Zq. We employ the idea described in [4] by Cramer and Shoup. We can encode the element of
QRp where p = 2q + 1 and p, q are prime to that of Zq.

Let p be safe prime (i.e. q = (p − 1)/2 is also prime) and QRp ⊂ Z∗p be a group of quadratic
residues modulo p. Then we have |QRp| = q and

QRp = {12 mod p, 22 mod p, · · · , q2 mod p}.

It is easy to see that QRp is a cyclic group of order q, and each g ∈ QRp\{1} is a generator of
QRp.

We now define a function Fq : QRp → Zq as

Fq(x) = min
{
±x

p−1
4 mod p

}
.

Noticing that ±x
p−1
4 mod p are the square roots of x modulo p, the function Fq is bijective and

we have
F−1

q (y) = y2 mod p.

We call the function Fq an encoding function. We also define a t-encoding function F̄q,t : (QRp)t →
(Zq)t. F̄q,t takes as input (x1, · · · , xt) ∈ (QRp)t and returns (y1, · · · , yt) ∈ (Zq)t where yi = Fq(xi)
for each i ∈ {1, · · · , t}. It is easy to see that F̄q,t is bijective and we can define F̄−1

q,t .
In the following, we define Q as a QR-group generator with safe prime which takes as input

a security parameter k and returns (q, g) where q is k-bit prime, p = 2q + 1 is prime, and g is a
generator of a cyclic group QRp of order q.

4.2 Expanding Technique

In the expanding technique, we expand c̄ ∈ Zq to the common domain {0, 1}k+kb . In particular,

we choose t
R← {0, 1, 2, · · · , b(2k+kb − c̄)/qc} and set c′ ← c̄ + tq.

We assume that c̄ is uniformly chosen from Zq where |q| = k. Then, for any c′ ∈ {0, 1}k+kb ,
the probability of observing c′ (which we denote as Prexp[c′]) is

1
2k+kb

≤ Prexp[c′] ≤ 1
2k+kb − 2q

.

Therefore ∑

c′∈{0,1}k+kb

∣∣∣Prexp[c′]− 1
2k+kb

∣∣∣ ≤ 1
2kb−1

.

Hence, for any q where where |q| = k, if c is uniformly chosen from Zq, then the distribution of the
outputs by the expanding technique is statistically indistinguishable from the uniform distribution
over {0, 1}k+kb . In the following, we set kb = 160.

4.3 Repeating Technique

In the repeating technique, we repeat the evaluation of the encryption until the value is smaller
than the smallest prime q of users. If we assume |q| = k, the common domain is {0, 1}k−1.

It is easy to see that for any q where |q| = k, if c̄ is uniformly chosen from Zq, then the
distribution of the outputs by the repeating technique is statistically indistinguishable from the
uniform distribution over {0, 1}k−1.

6

5 Variants of the El-Gamal Encryption Scheme

5.1 The El-Gamal Encryption Scheme

Definition 8. The El-Gamal encryption scheme PEEG = (GEG,KEG, EEG,DEG) is as follows.
The common-key generation algorithm GEG is a prime-order-group generator which takes as

input a security parameter k and returns (q, g) where q is a k-bit prime and g is a generator of a
cyclic group Gq of order q. The rest of algorithms are described as follows:

Algorithm KEG(q, g) Algorithm EEG
pk (m) Algorithm DEG

sk (c1, c2)

x
R← Zq r

R← Zq m ← c2 · c−x
1

y ← gx c1 ← gr return m
return pk = (q, g, y) and c2 ← m · yr

sk = (q, g, x) return (c1, c2)

The El-Gamal encryption scheme is secure in the sense of IND-CPA if the DDH problem is
hard for GEG. Bellare, Boldyreva, Desai, and Pointcheval [1] proved that the El-Gamal encryption
scheme is secure in the sense of IK-CPA if the DDH problem is hard.

We note that in this scheme, each user uses a common k-bit prime q and a corresponding group
Gq for obtaining the anonymity property.

In the following, we propose two variants of El-Gamal encryption schemes. In our schemes,
the anonymity property holds even if each user chooses an arbitrary prime q where |q| = k and
p = 2q + 1 is also prime, and uses a group of quadratic residues modulo p.

Note that in the our schemes we employ the techniques for anonymity in Section 4.

5.2 Our ElGamal Variant with Expanding

Definition 9. Our ElGamal variant with expanding PEMEG = (GEGE,KEGE, EEGE, DEGE) is as
follows. The common-key generation algorithm GEGE takes a security parameter k and returns k.
The rest of the algorithms are described as follows:

Algorithm KEGE(k)
(q, g) ← Q(k); ((q, g, y), (q, g, x)) ← KEG(q, g)
return pk = (q, g, y) and sk = (q, g, x)

Algorithm EEGE
pk (m) Algorithm DEGE

sk (c′1, c
′
2)

(c1, c2) ← EEG
pk (m) c̄1 ← c′1 mod p; c̄2 ← c′2 mod p

(c̄1, c̄2) ← F̄q,2(c1, c2) (c1, c2) ← F̄−1
q,2 (c̄1, c̄2)

t1
R← {0, 1, 2, · · · , b(2k+160 − c̄1)/qc} m ← DEG

sk (c1, c2)

t2
R← {0, 1, 2, · · · , b(2k+160 − c̄2)/qc} return m

c′1 ← c̄1 + t1q; c′2 ← c̄2 + t2q
return (c′1, c

′
2)

In order to prove that our ElGamal variant with expanding is secure in the sense of IK-CPA
and IND-CPA, we need the restriction as follows.

We define the set of ciphertexts EC((c′1, c
′
2), pk) called “equivalence class” as

EC((c′1, c
′
2), pk) = {(č1, č2) ∈ ({0, 1}k+160)2|č1 mod q = c′1 ∧ č2 mod q = c′2}.

If (c′1, c
′
2) is a ciphertext of m under pk = (q, g, y), then any element (c′′1, c

′′
2) ∈ EC((c′1, c

′
2), pk) is

also a ciphertext of m under pk. Therefore, if (c′1, c
′
2) is a challenge ciphertext and the adversary

7

makes a query (c′′1, c
′′
2) ∈ EC((c′1, c

′
2), pk) to the decryption oracle Dsk, the adversary can get the

plaintext of the challenge.
To prevent this attack, we add some natural restriction to the adversaries in the definitions of

IK-CCA. That is, it is mandated that the adversary never queries either (c′′1, c
′′
2) ∈ EC((c′1, c

′
2), pk0)

to Dsk0 or (c′′1, c
′′
2) ∈ EC((c′1, c

′
2), pk1) to Dsk1 .

Similarly, in order to prove that our ElGamal variant with expanding is secure in the sense of
IND-CPA, we need the same restriction. That is, in the definition of IND-CPA, it is mandated
that the adversary never queries (c′′1, c

′′
2) ∈ EC((c′1, c

′
2), pk) to Dsk.

We think these restrictions are natural and reasonable. Actually, in the case of undeniable
and confirmer signature schemes, Galbraith and Mao [6] defined the anonymity on undeniable
signature schemes with the equivalence class.

Noticing the equivalence class, we can prove that our ElGamal variant with expanding is
secure in the sense of IND-CPA if the DDH problem for Q is hard. More precisely, we can
prove that if there exists a CPA-adversary A = (A1, A2) attacking the indistinguishability of our
ElGamal variant with expanding with advantage ε, then there exists a CPA-adversary B = (B1, B2)
attacking indistinguishability of the original ElGamal encryption scheme with the same advantage
ε.

The proof of the following theorem is in Appendix A.

Theorem 1. Our ElGamal variant with expanding is secure in the sense of IK-CPA if the paired
DDH problem for Q is hard.

5.3 Our ElGamal Variant with Repeating

Definition 10. Our ElGamal variant with repeating PEEGR = (GEGR,KEGR, EEGR, DEGR) is as
follows. The common-key generation algorithm GEGR, and the key generation algorithm KEGR are
the same as those for our ElGamal variant with expanding. The rest of the algorithms are described
as follows:

Algorithm EEGR
pk (m) Algorithm DEGR

sk (c̄1, c̄2)
ctr = −1 (c1, c2) ← F̄−1

q,2 (c̄1, c̄2)
repeat m ← DEG

sk (c1, c2)
ctr ← ctr + 1 return m
(c1, c2) ← EEG

pk (m)
(c̄1, c̄2) ← F̄q,2(c1, c2)

until ((c̄1, c̄2 < 2k−1) ∨ (ctr = k))
return (c̄1, c̄2)

We can easily prove that our ElGamal variant with repeating is secure in the sense of IND-CPA
if the DDH problem forQ is hard. More precisely, we can prove that if there exists a CPA-adversary
A = (A1, A2) attacking the indistinguishability of our ElGamal variant with repeating with ad-
vantage ε, then there exists a CPA-adversary B = (B1, B2) attacking the indistinguishability of
the original ElGamal encryption scheme with advantage greater than ε/4.

Noticing that the space of valid ciphertext changes, the proof of the following theorem is similar
to that for our ElGamal variant with expanding.

Theorem 2. Our ElGamal variant with repeating is secure in the sense of IK-CPA if the paired
DDH problem for Q is hard.

5.4 The Comparison

We show the number of modular exponentiations to encrypt and decrypt, the size of ciphertexts,
and the number of random bits to encrypt in Figure 1. For fairness, we assume that the orig-

8

Expanding Repeating Original
of mod. exp. to encrypt

(average / worst)
2 / 2 3 / 2k 2 / 2

of mod. exp. to decrypt 1 1 1
size of ciphertexts 2(k + 160) 2(k − 1) 2(k + 1)

of random bits to encrypt
(average / worst)

k + 320 / k + 320 1.5k / k2 k / k

Figure 1: The comparison of the ElGamal encryption scheme and its variants

inal ElGamal scheme employs Q as the prime-order-group generator. We also assume that q is
uniformly distributed over (2k−1, 2k).

6 Variants of the Cramer-Shoup Encryption Scheme

6.1 The Cramer-Shoup Encryption Scheme

Definition 11. The Cramer-Shoup Encryption Scheme CS = (GCS,KCS, ECS, DCS) is defined as
follows. Note that Ḡ is a prime-order-group generator and H = (GH, EH) is a family of hash
functions.

Algorithm GCS(k)

(q, g) ← Ḡ(k); g1 ← g; g2
R← Gq; K ← GH(k); return (q, g1, g2, K)

Algorithm KCS(q, g1, g2,K) Algorithm ECS
pk (M) Algorithm DCS

sk (u1, u2, e, v)

x1, x2, y1, y2, z
R← Zq r

R← Zq α ← EHK(u1, u2, e)
c ← gx1

1 gx2
2 ; d ← gy1

1 gy2
2 u1 ← gr

1; u2 ← gr
2 if (ux1+y1α

1 ux2+y2α
2 = v)

h ← gz
1 e ← hrM then M ← e/uz

1

pk ← (g1, g2, c, d, h, K) α ← EHK(u1, u2, e) else M ←⊥
sk ← (x1, x2, y1, y2, z) v ← crdrα return M
return (pk, sk) return (u1, u2, e, v)

Cramer and Shoup [4] proved that the Cramer-Shoup encryption scheme is secure in the sense
of IND-CCA2 assuming that H is universal one-way and the DDH problem for Ḡ is hard. Bellare,
Boldyreva, Desai, and Pointcheval [1] proved that the Cramer-Shoup encryption scheme is secure
in the sense of IK-CCA assuming that H is collision resistant and the DDH problem is hard for Ḡ.

We note that in this scheme, each user uses a common k-bit prime q and a corresponding group
Gq for obtaining the anonymity property.

In the following, we propose two variants of the Cramer-Shoup encryption scheme. In our
schemes, the anonymity property holds even if each user chooses an arbitrary prime q where
|q| = k and p = 2q + 1 is also prime, and uses a group of quadratic residues modulo p.

Note that in the our schemes we employ the techniques for anonymity in Section 4.

6.2 Our Cramer-Shoup Variant with Expanding

Definition 12. Our Cramer-Shoup Variant PECSE = (GCSE,KCSE, ECSE,DCSE) is as follows. The
common-key generation algorithm GCSE takes a security parameter k and returns k. The rest of

9

the algorithms are described as follows. Note that Q is a QR-group generator with safe prime.

Algorithm KCSE(k)

(q, g) ← Q(k); g1 ← g; g2
R← Gq; K ← GH(k)

((q, g1, g2, c, d, h, K), (x1, x2, y1, y2, z)) ← KCS(q, g1, g2,K)
return pk = (q, g1, g2, c, d, h,K) and sk = (x1, x2, y1, y2, z)

Algorithm ECSE
pk (m) Algorithm DCSE

sk (u′1, u
′
2, e

′, v′)
(u1, u2, e, v) ← ECS

pk (m) ū1 ← u′1 mod p; ū2 ← u′2 mod p

(ū1, ū2, ē, v̄) ← F̄q,4(u1, u2, e, v) ē ← e′ mod p; v̄ ← v′ mod p

t1
R← {0, 1, 2, · · · , b(2k+160 − ū1)/qc} (u1, u2, e, v) ← F̄−1

q,4 (ū1, ū2, ē, v̄)

t2
R← {0, 1, 2, · · · , b(2k+160 − ū2)/qc} m ← DCS

sk (u1, u2, e, v)

t3
R← {0, 1, 2, · · · , b(2k+160 − ē)/qc} return m

t4
R← {0, 1, 2, · · · , b(2k+160 − v̄)/qc}

c′1 ← c̄1 + t1q; c′2 ← c̄2 + t2q
e′ ← ē + t3q; v′ ← v̄ + t4q
return (u′1, u

′
2, e

′, v′)

In order to prove that our Cramer-Shoup variant with expanding is secure in the sense of
IK-CCA and IND-CCA2, we need to add restrictions similar to those for our ElGamal variant
with expanding. We define the equivalence class for our Cramer-Shoup variant with expanding as
follows:

EC((u′1, u
′
2, e

′, v′), pk) = {(ǔ′1, ǔ′2, ě′, v̌′) ∈ ({0, 1}k+160)4|
ǔ′1 mod q = u′1 ∧ ǔ′2 mod q = u′2 ∧ ě′ mod q = e′ ∧ v̌′1 mod q = v′}

Noticing the equivalence class, we can prove that our Cramer-Shoup variant with expanding is
secure in the sense of IND-CCA2 if the DDH problem for Q is hard and H is universal one-way.
More precisely, we can prove that if there exists a CCA2-adversary A = (A1, A2) attacking the
indistinguishability of our Cramer-Shoup variant with expanding with advantage ε, then there
exists a CCA2-adversary B = (B1, B2) attacking the indistinguishability of the original Cramer-
Shoup encryption scheme with the same advantage ε.

The proof of the following theorem is in Appendix B.

Theorem 3. Our Cramer-Shoup variant with expanding is secure in the sense of IK-CCA if the
paired DDH problem for Q is hard and H is collision resistant.

6.3 Our Cramer-Shoup Variant with Repeating

Definition 13. Our Cramer-Shoup variant with repeating PECSR = (GCSR,KCSR, ECSR,DCSR) is
as follows. The common-key generation algorithm GCSR, and the key generation algorithm KCSR

are the same as those for our Cramer-Shoup variant with expanding. The rest of the algorithms
are described as follows:

Algorithm ECSR
pk (m) Algorithm DCSR

sk (ū1, ū2, ē, v̄)
ctr = −1 (u1, u2, e, v) ← F̄−1

q,4 (ū1, ū2, ē, v̄)
repeat m ← DCS

sk (u1, u2, e, v)
ctr ← ctr + 1 return m
(u1, u2, e, v) ← ECS

pk (m)
(ū1, ū2, ē, v̄) ← F̄q,4(u1, u2, e, v)

until ((ū1, ū2, ē, v̄ < 2k−1) ∨ (ctr = k))
return (ū1, ū2, ē, v̄)

10

Expanding Repeating Original [4]
of mod. exp. to encrypt

(average / worst)
5 / 5 7.5 / 5k 5 / 5

of mod. exp. to decrypt 3 3 3
size of ciphertexts 4(k + 160) 4(k − 1) 4(k + 1)

of random bits to encrypt
(average / worst)

k + 640 / k + 640 1.5k / k2 k / k

Figure 2: The comparison of the Cramer-Shoup encryption scheme and its variants

We can prove that our Cramer-Shoup variant with repeating is secure in the sense of IND-
CCA2 if the DDH problem for Q is hard and H is universal one-way. More precisely, we can
prove that if there exists a CCA2-adversary A = (A1, A2) attacking the indistinguishability of
our Cramer-Shoup variant with repeating with advantage ε, then there exists a CCA2-adversary
B = (B1, B2) attacking the indistinguishability of the original Cramer-Shoup encryption scheme
with advantage greater than ε/16.

Noticing that the space of valid ciphertexts changes, the proof of the following theorem is
similar to that for our Cramer-Shoup variant with expanding.

Theorem 4. Our Cramer-Shoup variant with repeating is secure in the sense of IK-CCA if the
paired DDH problem for Q is hard and H is collision resistant.

6.4 The Comparison

We show the number of modular exponentiations to encrypt and decrypt, the size of ciphertexts,
and the number of random bits to encrypt in Figure 2. For fairness, we assume that the original
Cramer-Shoup scheme employs Q as the prime-order-group generator. We also assume that q is
uniformly distributed over (2k−1, 2k).

7 Concluding Remarks

In this paper, we have proposed new variants of the El-Gamal and the Cramer-Shoup encryption
schemes. In our schemes, the anonymity property holds even if each user chooses an arbitrary
prime q where |q| = k and p = 2q +1 is also prime. More precisely, our El-Gamal variants provide
anonymity against the chosen-plaintext attack, and our Cramer-Shoup variants provide anonymity
against the adaptive chosen-ciphertext attack. These anonymity properties are proved under a
slightly weaker assumption than the DDH assumption. Furthermore, our El-Gamal variants are
secure in the sense of IND-CPA, and our Cramer-Shoup variants are secure in the sense of IND-
CCA2.

In the scheme with expanding, we can prove anonymity even if each user’s q has the different
size. In this situation, the security level of anonymity depends on the shortest size of q among the
users, and the proof of anonymity is similar to that in the case of the size of q is fixed.

References

[1] Bellare, M., Boldyreva, A., Desai, A., and Pointcheval, D. Key-Privacy in
Public-Key Encryption. In Boyd [2], pp. 566–582. Full version of this paper, available via
http://www-cse.ucsd.edu/users/mihir/.

11

[2] Boyd, C., Ed. Advances in Cryptology – ASIACRYPT 2001 (Gold Coast, Australia, Decem-
ber 2001), vol. 2248 of Lecture Notes in Computer Science, Springer-Verlag.

[3] Camenisch, J., and Lysyanskaya, A. Efficient Non-Transferable Anonymous Multi-Show
Credential System with Optional Anonymity Revocation. In Advances in Cryptology – EU-
ROCRYPT 2001 (Innsbruck, Austria, May 2001), B. Pfitzmann, Ed., vol. 2045 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 93–118.

[4] Cramer, R., and Shoup, V. A Practical Public Key Cryptosystem Provably Secure against
Adaptive Chosen Ciphertext Attack. In Advances in Cryptology – CRYPTO ’98 (Santa
Barbara, California, USA, August 1998), H. Krawczyk, Ed., vol. 1462 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 13–25.

[5] Desmedt, Y. Securing traceability of ciphertexts: Towards a secure software escrow scheme.
In Advances in Cryptology – EUROCRYPT ’95 (Saint-Malo, France, May 1995), L. C. Guillou
and J.-J. Quisquater, Eds., vol. 921 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 147–157.

[6] Galbraith, S. D., and Mao, W. Invisibility and Anonymity of Undeniable and Confirmer
Signatures. In Topics in Cryptology – CT-RSA 2003 (San Francisco, CA, USA, April 2003),
M. Joye, Ed., vol. 2612 of Lecture Notes in Computer Science, Springer-Verlag, pp. 80–97.

[7] Hayashi, R., Okamoto, T., and Tanaka, K. An RSA Family of Trap-door Permutations
with a Common Domain and its Applications. In Public Key Cryptography – PKC 2004
(Singapore, March 2004), F. Bao, R. H. Deng, and J. Zhou, Eds., vol. 2947 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 291–304.

[8] Krawczyk, H. SKEME: A Versatile Secure Key Exchange Mechanism for Internet. In Pro-
ceedings of the 1996 Internet Society Symposium on Network and Distributed System Security
(San Diego, CA, USA, February 1996), pp. 114–127.

[9] Rivest, R. L., Shamir, A., and Tauman, Y. How to Leak a Secret. In Boyd [2], pp. 552–
565.

[10] Sako, K. An Auction Protocol Which Hides Bids of Losers. In Public Key Cryptography
– PKC 2000 (Melbourne, Victoria, Australia, January 2000), H. Imai and Y. Zheng, Eds.,
vol. 1751 of Lecture Notes in Computer Science, Springer-Verlag, pp. 422–432.

A Proof of Theorem 1

We construct a distinguisher D for the paired DDH problem for Q in Figure 3. In this algorithm,
we employ an adversary A attacking the anonymity of our El-Gamal variant with expanding.

Now we analyze D. First we consider Exppddh-real
Q,D (k). In this case, for i ∈ {0, 1}, the inputs

Xi, Yi, Ti to D satisfy Ti = gxiyi
i where Xi = gxi

i and Yi = gyi
i for some xi, yi ∈ Zqi . Thus Xi

has the proper distribution of public keys for our El-Gamal variant. Furthermore, the challenge
ciphertext has the right form under the public key pkb. Hence,

Pr[Exppddh-real
Q,D (k) = 1] =

1
2

+
1
2
Advik-cpa

PEEGE,A
(k).

Now we consider Exppddh-rand
Q,D (k). In this case, for i ∈ {0, 1}, the inputs Xi, Yi, Ti to D

are all independently and uniformly distributed over QRpi . We have proper distribution public
keys for our El-Gamal variant with expanding. However, Yb, Tb are random elements in QRpb

,
and the distribution of (c′1, c

′
2) is statistically indistinguishable from the uniform distribution over

12

Algorithm D((q0, g0, X0, Y0, T0), (q1, g1, X1, Y1, T1))

pk0 ← (q0, g0, X0); pk1 ← (q1, g1, X1)

(m, si) ← A1
cpa(pk0, pk1)

b
R← {0, 1}

(c̄1, c̄2) ← F̄qb,2(Yb, Tb ·m)
t1 ← {0, 1, 2, · · · , b(2k+160 − c̄1)/qbc}; t2 ← {0, 1, 2, · · · , b(2k+160 − c̄2)/qbc}
c′1 ← c̄1 + t1qb; c′2 ← c̄2 + t2qb

d ← A2
cpa((c

′
1, c

′
2), si)

if (b = d) then return 1 else return 0

Figure 3: Distinguisher for Theorem 1

({0, 1}k+160)2. This means that the challenge ciphertext gives A no information about b. Therefore,
we have

Pr[Exppddh-rand
Q,D (k) = 1] ≤ 1

2
+

1
22(k−2)

+
(

1
2159

)2

.

Above, the second term accounts for the maximum probability that the random inputs to D
happen to have the distribution of the valid paired-DDH tuple, The last term is the advantage of
the decision problem between the distribution of the output by the expanding technique and that
of the uniform distribution.

In conclusion, we have

Advddh
Ḡ,D(k) ≥ 1

2
Advik-cpa

PEEGE,A
(k)− 1

22(k−2)
−

(
1

2159

)2

.

The time-complexity of D is bounded by TA + O(k3) where TA is the time-complexity of A.

B Proof of Theorem 3

We construct a distinguisher D for the paired DDH problem for Q in Figure 4. In this algorithm,
we employ an adversary A attacking the anonymity of our Cramer-Shoup variant with expanding.
First of all, the time-complexity of D is bounded by TA + O(k3) where TA is the time-complexity
of A.

Note that if A makes a decryption query (ũ′1, ũ
′
2, ẽ

′, ṽ′) to Dski (i ∈ {0, 1}), D makes its answer
m̃ as follows:

(ũ1, ũ2, ẽ, ṽ) ← F̄−1
qi,4

(ũ′1 mod qi, ũ
′
2 mod qi, ẽ

′ mod qi, ṽ
′ mod qi)

α̃ ← EHKi(ũ1, ũ2, ẽ)
if (ṽ = (ũ1)x1,i+y1,iα̃ + (ũ2)x2,i+y2,iα̃) then m̃ ← ẽ/(ũz1,i

1 ũ
z2,i

2) else m̃ ← ⊥

Lemma 1.

Pr[Exppddh-real
Q,D (k) = 1] =

1
2

+
1
2
Advik-cca

PECSE,A
(k)

Lemma 2. There exists an adversary C attacking the collision-resistance of H such that

Pr[Exppddh-rand
Q,D (k) = 1] ≤ 1

2
+

qd(k) + 2
2k−4

+ 2Advcr
H,C(k),

13

Algorithm D((q0, g0, X0, Y0, T0), (q1, g1, X1, Y1, T1))

for each j ∈ {0, 1} do
g1,j ← gj ; g2,j ← Xj ; u1,j ← Yj ; u2,j ← Tj

x1,j , x2,j , y1,j , y2,j , z1,j , z2,j
R← Zqj

cj ← (g1,j)x1,j (g2,j)x2,j ; dj ← (g1,j)y1,j (g2,j)y2,j ; hj ← (g1,j)z1,j (g2,j)z2,j

Kj ← GH(k)
pkj ← (g1,j , g2,j , cj , dj , hj ,Kj)
skj ← (x1,j , x2,j , y1,j , y2,j , z1,j , z2,j)

(m, si) ← A1
cca(pk0, pk1)

b
R← {0, 1}

e ← (u1,b)z1,b(u2,b)z2,bm
α ← EHKb

(u1,b, u2,b, e)
v ← (u1,b)x1,b+αy1,b(u2,b)x2,b+αy2,b

(ū1, ū2, ē, v̄) ← F̄qb,4(u1,b, u2,b, e, v)

t1
R← {0, 1, 2, · · · , b(2k+160 − ū1)/qbc}; t2

R← {0, 1, 2, · · · , b(2k+160 − ū2)/qbc}
t3

R← {0, 1, 2, · · · , b(2k+160 − ē)/qbc}; t4
R← {0, 1, 2, · · · , b(2k+160 − v̄)/qbc}

u′1 ← ū1 + t1qb; u′2 ← ū2 + t2qb; e′ ← ē + t3qb; v′ ← v̄ + t4qb

d ← A2
cca(u

′
1, u

′
2, e

′, v′), si)

if (b = d) then return 1 else return 0

Figure 4: Distinguisher for Theorem 3

and whose time-complexity is bounded by that of A plus O(k3).

Proof of Theorem 3. The statement follows from the above two lemmas. More concretely, we have

Advddh
Q̄,D(k) ≥ 1

2
Advik-cca

PECSE,A
(k)− qd(k) + 2

2k−4
− 2Advcr

H,C(k).

B.1 Proof of Lemma 1

To prove this lemma, we show that the view of the adversary A in the experiment Exppddh-real
Q,D (k)

is the same as that in the actual experiment.
It is easy to see that ci, di have the right distribution. Furthermore, we can rewrite hi as

hi = g
z1,i+ωiz2,i

1,i where ωi = logg1,i
g2,i, and z̄i = z1,i + ωiz2,i is uniformly distributed over Zqi .

Therefore, the public-key in the simulation has the right distribution.
We can rewrite the challenge ciphertext (u1,b, u2,b, e, v) which D computes as e = g

r1,bz̄b

1,b M

and v = c
r1,b

b d
r1,bαb

b where r1,b = logg1,b
u1,b and αb = EHKb

(u1,b, u2,b, e). Hence, the challenge
ciphertext has the right distribution since r1,b is randomly distributed over Zqb

.
Finally, since we can rewrite the response M of the decryption query in the simulation as

M = e/g
r1,iz̄i

1,i = e/h
r1,i

i , the output of decryption oracle in the simulation demonstrates that of the
actual decryption oracle.

14

B.2 Proof of Lemma 2

In the experiment Exppddh-rand
Q,D (k), for i ∈ {0, 1}, we can see the input (qi, gi, Xi, Yi, Ti) as

(qi, g1,i, g2,i, u1,i, u2,i) where u1,i = (g1,i)r1,i , u2,i = (g2,i)r2,i = (g1,i)ωir1,i , ωi = logg1,i
g2,i, where

r1,i, r2,i are random element in Zqi . When the adversary A makes a decryption query (ũ1, ũ2, ẽ, ṽ)
for Dski

, we say the ciphertext is invalid when logg1,i
ũ1 6= logg2,i

ũ2. We define the following events
associated to D:

• NR is true if r1,0 = r2,0 or r1,1 = r2,1 or g2,0 = 1 or g2,1 = 1,

• Inv is true if during the execution of D the adversary A submits an invalid ciphertext to a
decryption oracle Dsk0 or Dsk1 and does not get ⊥.

Lemma 3. Pr[NR] ≤ 1/2k−3.

Lemma 4. We have

Pr[Exppddh-rand
Q,D (k) = 1|b = 0 ∧ ¬NR ∧ ¬Inv] =

1
2
,

Pr[Exppddh-rand
Q,D (k) = 1|b = 1 ∧ ¬NR ∧ ¬Inv] =

1
2
.

Lemma 5. There exists a polynomial-time adversary C such that

Pr[Inv|¬NR] ≤ 2Advcr
H,C(k) +

qd(k)
2k−3

.

Proof of Lemma 2.

Pr[Exppddh-rand
Q,D (k) = 1]

=
1
2

Pr[Exppddh-rand
Q,D (k) = 1|b = 0] +

1
2

Pr[Exppddh-rand
Q,D (k) = 1|b = 1]

≤ Pr[Exppddh-rand
Q,D (k) = 1|b = 0 ∧ ¬NR ∧ ¬Inv]

+Pr[Exppddh-rand
Q,D (k) = 1|b = 1 ∧ ¬NR ∧ ¬Inv] + Pr[NR] + Pr[Inv]

≤ Pr[Exppddh-rand
Q,D (k) = 1|b = 0 ∧ ¬NR ∧ ¬Inv]

+Pr[Exppddh-rand
Q,D (k) = 1|b = 1 ∧ ¬NR ∧ ¬Inv] + 2Pr[NR] + Pr[Inv|¬NR]

≤ 1
2

+
1

2k−4
+ 2Advcr

H,C(k) +
qd(k)
2k−3

=
1
2

+
qd(k) + 2

2k−4
+ 2Advcr

H,C(k).

B.2.1 Proof of Lemma 3

We have Pr[r1,0 = r2,0], Pr[g2,0 = 1] ≤ 1/q0 and Pr[r1,1 = r2,1], Pr[g2,1 = 1] ≤ 1/q1. Since
2k−1 < q0, q1 < 2k, we have Pr[NR] ≤ 2/q0 + 2/q1 ≤ 1/2k−3.

B.2.2 Proof of Lemma 4

We consider a sample space S from which the random choice is uniformly chosen in the experiment
Exppddh-rand

Q,D (k). It consists of the values chosen at random in Exppddh-rand
Q,D (k). We will denote

an element of S as

~s = (x1,0, x2,0, y1,0, y2,0, z1,0, z2,0, x1,1, x2,1, y1,1, y2,1, z1,1, z2,1,
g1,0, g2,0, u1,0, u2,0, g1,1, g2,1, u1,1, u2,1, t1, t2, t3, t4, b).

and S is a subset of
Z6

q0
× Z6

q1
×G4

q0
×G4

q1
× ({0, 1}160)4 × {0, 1}.

15

To evaluate the space S, we consider two spaces S0 = {~s ∈ S|b = 0} and S1 = {~s ∈ S|b = 1}.
When b = 0 (respectively b = 1), the random choice is uniformly chosen from S0 (resp. S1) in the
Experiment Exppddh-rand

Q,D (k). It is clear that S = S0 ∪ S1 and |S| = |S0|+ |S1| since S0 ∩ S1 = ∅.
We evaluate S0, S1, and S later on.

We let View be the function which has the domain S and associates to any ~s ∈ S the view of
the adversary A in the experiment Exppddh-rand

Q,D (k) when the random choice in that experiment
is chosen from S. For simplicity, we assume the adversary is deterministic. The argument can
simply be made for each choice of its coins. The view then includes the inputs that the adversary
receives in its two stages, and the answers to all its oracle queries. The adversary’s output is a
deterministic function of its view.

Lemma 6. Fix a specific view V̂ of the adversary A simulated by D. Assume that the event
¬NR ∧ ¬Inv occurs for this view. Then

Pr[View = V̂ | b = 0] = Pr[View = V̂ | b = 1].

Proof of Lemma 4. Lemma 6 means that, if ¬NR ∧ ¬Inv occurs then A’s view is independent of
the hidden bit b. Therefore A can output its guess of b correctly only with the probability 1/2.

Proof of Lemma 6. For simplicity of the analysis, we will exclude the keys K̂0 and K̂1, because
they are clearly independent of the bit b. We do not consider the answers of the decryption oracles
to the valid ciphertext queries as a part of the view of the adversary since we show below that this
does not give the adversary any information about the hidden bit b. We have

V̂ = (ĝ1,0, ĝ2,0, ĉ0, d̂0, ĥ0, ĝ1,1, ĝ2,1, ĉ1, d̂1, ĥ1, û
′
1, û

′
2, ê

′, v̂′).

We evaluate Pr[View = V̂ ∧ b = 0]. We first compute |S0|. Note that we now consider the
situation that ¬NR. We let b = 0 and fix four values (u′1, u

′
2, e

′, v′) ∈ ({0, 1}k+160)4. Then
t1 ∈ {0, 1, 2, · · · , b(2k+160 − ū1)/q0c} and ū1 ∈ Zq0 are fixed uniquely since u′1 = ū1 + t1q0.

Similarly, t2, t3, t4, ū2, ē, v̄ are also fixed uniquely. Furthermore, u1 = F−1
q0

(ū1) is fixed uniquely
since F is bijective. Similarly, u2, e, v are fixed uniquely.

We now consider the following equations:

e = u
z1,0

1,0 u
z2,0

2,0 m (mod p0)
v = u

x1,0+αy2,0

1,0 u
x2,0+αy2,0

2,0 (mod p0)

where α = EH(u1, u2, e). For any (u1, u2, e, v) ∈ G4
q0

, the number of vectors (x1,0, x2,0, y1,0,
y2,0, z1,0, z2,0) which satisfy the above two equations is q4

0. Furthermore, the other values of ~s, that
is, g1,0, g1,1, x1,0, x2,0, y1,0, y2,0, z1,0, z2,0, g1,0, g1,1, u1,1, u2,1, are not restricted in S0. Therefore,

|S0| = (2k+160)4 · q4
0 · q2

0 · q6
1 · q4

1 = (2k+160)4 · q6
0 · q10

1 .

We next define E0 ⊆ S0 as the set of all ~s ∈ S0 such that ~s gives rise to b = 0 and View(~s) = V̂
and ¬NR is true when the random choice in the experiment is ~s. Then

Pr[View = V̂ |b = 0] =
|E0|
|S0| .

We next compute |E0|. This is the number of solutions to the following system of 16 equations in
24 unknowns – x1,0, x2,0, y1,0, y2,0, z1,0, z2,0, x1,1, x2,1, y1,1, y2,1, z1,1, z2,1, g1,0, g2,0, u1,0, u2,0, g1,1, g2,1,
u1,1, u2,1, t1, t2, t3, t4 (Note that b is fixed to 0 since we now consider E0 ⊆ S0.):

16

g1,0 = ĝ1,0 (mod p0) (1)

g2,0 = ĝ2,0 (mod p0) (2)

x1,0 + ω̂0x2,0 = logĝ1,0
ĉ0 (mod q0) (3)

y1,0 + ω̂0y2,0 = logĝ1,0
d̂0 (mod q0) (4)

z1,0 + ω̂0z2,0 = logĝ1,0
ĥ0 (mod q0) (5)

g1,1 = ĝ1,1 (mod p1) (6)

g2,1 = ĝ2,1 (mod p1) (7)

x1,1 + ω̂1x2,1 = logĝ1,1
ĉ1 (mod q1) (8)

y1,1 + ω̂1y2,1 = logĝ1,1
d̂1 (mod q1) (9)

z1,1 + ω̂1z2,1 = logĝ1,1
ĥ1 (mod q1) (10)

Fq0(u1,0) + t1q0 = û′1,0 (11)

Fq0(u2,0) + t2q0 = û′2,0 (12)

Fq0(e) + t3q0 = ê′ (13)

Fq0(v) + t4q0 = v̂′ (14)

r1,0z1,0 + r2,0ω̂0z2,0 = logĝ1,0

e
M (mod q0) (15)

r1,0x1,0 + r1,0α0x2,0 + r2,0ω̂0x2,0 + r2,0ω̂0α0y2,0 = logĝ1,0
v (mod q0) (16)

In the above equations, ω̂0 = logĝ1,0
ĝ2,0, ω̂1 = logĝ1,1

ĝ2,1 r1,0 = logĝ1,0
u1,0, r2,0 = logĝ1,0

u2,0,
and α0 = EHK̂0

(u1,0, u2,0, e). The variables with hats, and p0, p1, q0, q1, M denote the known
constants whereas the variables without hats except p0, p1, q0, q1, M denote unknowns.

In the following, we evaluate the number of solutions of the above 16 equations. Note that we
consider the situation that ¬NR.

From equations 1, 2, 6, and 7, the values g1,0, g2,0, g1,1, g2,1 are fixed uniquely. Noticing that
Fq0 : Gq0 → Zq0 is bijective, from equations 11, 12, 13, and 14, the values t1, t2, t3, t4 ∈ N and
u1,0, u2,0, e, v ∈ QRp0 are fixed uniquely.

Since the values u1,0, u2,0, e are fixed, r1,0, r2,0, α0 are also fixed. In the following, we consider
the situation such that g1,0, g2,0, g1,1, g2,1, t1, t2, t3, t4, u1,0, u2,0, e, v, r1,0, r2,0, α0 are fixed.

From equations 5 and 15, the values z1,0, z2,0 are fixed uniquely.
The values x1,0, x2,0, y1,0, y2,0 are restricted only by equations 3, 4, and 16, and the number of

vectors (x1,0, x2,0, y1,0, y2,0) which satisfy these three equations is q0.
The values x1,1, x2,1, y1,1, y2,1, z1,1, z2,1 are restricted only by equations 8, 9, and 10, and the

number of vectors (x1,1, x2,1, y1,1, y2,1, z1,1, z2,1) which satisfy these three equations is q3
1.

Finally, u1,1, u2,1 are not restricted by the above 16 equations, therefore the number of vectors
(u1,1, u2,1) which satisfy these above equations is q2

1.
Hence, the number of solutions is q0 · q5

1, which is |E0|, and

Pr[View = V̂ |b = 0] =
|E0|
|S0| =

q0 · q5
1

(2k+160)4 · q6
0 · q10

1

=
1

(2k+160)4 · q5
0 · q5

1

.

In the case of b = 1, the equations 11–16 are replaced by the following equations 11′–16′

respectively.

17

Fq1(u1,1) + t1q1 = û′1,1 (11′)

Fq1(u2,1) + t2q1 = û′2,1 (12′)

Fq1(e) + t3q1 = ê′ (13′)

Fq1(v) + t4q1 = v̂′ (14′)

r1,1z1,0 + r2,1ω̂1z2,0 = logĝ1,1

e
M (mod q1) (15′)

r1,1x1,1 + r1,1α1x2,1 + r2,1ω̂1x2,1 + r2,1ω̂1α1y2,1 = logĝ1,1
v (mod q1) (16′)

where r1,1 = logĝ1,1
u1,1, r2,1 = logĝ1,1

u2,1, and α1 = EHK̂1
(u1,1, u2,1, e).

By a similar observation as that in the case of b = 0, we have |S1| = (2k+160)4 · q6
1 · q10

0 and
|E1| = q1 · q5

0. Therefore,

Pr[View = V̂ |b = 1] =
|E1|
|S1| =

q1 · q5
0

(2k+160)4 · q6
1 · q10

0

=
1

(2k+160)4 · q5
1 · q5

0

.

In conclusion, we have Pr[View = V̂ |b = 0] = Pr[View = V̂ |b = 1].

B.2.3 Proof of Lemma 5

We first define the events Inv0 and Inv1. The event Inv0 (respectively Inv1) is true if during the
execution of D the adversary A submits an invalid ciphertext to its decryption oracle Dsk0 (resp.
Dsk1) and does not get ⊥. It is clear that

Pr[Inv|¬NR] ≤ Pr[Inv0|¬NR] + Pr[Inv1|¬NR].

We now evaluate Pr[Inv0|¬NR]. Assume the adversary A submits an invalid ciphertext (ũ′1, ũ
′
2, ẽ

′, ṽ′)
to its decryption oracle Dsk0 . Let (u′1,b, u

′
2,b, e

′, v′) denote the challenge ciphertext.
Then, we have

(u1,b, u2,b, e, v) = F−1
q0,4(u

′
1,b mod q0, u

′
2,b mod q0, e

′ mod q0, v
′ mod q0)

and
(ũ1, ũ2, ẽ, ṽ) = F−1

q0,4(ũ
′
1 mod q0, ũ

′
2 mod q0, ẽ

′ mod q0, ṽ
′ mod q0).

Note that F−1
q0,4 is bijective. Furthermore, we have α̃0 = EHK0(ũ1, ũ2, ẽ) and α0,b = EHK0(u1,b, u2,b, e).

We consider the following three cases.

• Case 1 : (ũ1, ũ2, ẽ) = (u1,b, u2,b, e)

• Case 2 : (ũ1, ũ2, ẽ) 6= (u1,b, u2,b, e) and α̃0 = α0,b

• Case 3 : (ũ1, ũ2, ẽ) 6= (u1,b, u2,b, e) and α̃0 6= α0,b

In Case 1, noticing that (ũ′1, ũ
′
2, ẽ

′, ṽ′) 6∈ EC((u′1,b, u
′
2,b, e′, v′), pk0), ṽ 6= v and the decryption

oracle will reject. If Case 2 occurs, it implies that the adversary A can find a collision for EHK0 .
Therefore, there exists an adversary C attacking the collision-resistance of H such that

Pr[Inv0|¬NR] = Pr[Inv0|Case 1 ∧ ¬NR] · Pr[Case 1]
+ Pr[Inv0|Case 2 ∧ ¬NR] · Pr[Case 2] + Pr[Inv0|Case 3 ∧ ¬NR] · Pr[Case 3]
≤ 0 + Pr[Case 2] + Pr[Inv0|Case 3 ∧ ¬NR]
≤ 0 + Advcr

H,C(k) + Pr[Inv0|Case 3 ∧ ¬NR].

Note that the time-complexity of C is bounded by that of A plus O(k3).

18

We now bound Pr[Inv0|Case 3 ∧ ¬NR].
A ciphertext (ũ′1, ũ

′
2, ẽ

′, ṽ′) submitted to the Dsk0 is accepted when

(ũ1)x1,0+y1,0α̃0(ũ2)x2,0+y2,0α̃0 = ṽ.

Let ũ1 = gr̃1
1,0, ũ2 = gr̃2

2,0 = gω0r̃2
1,0 . We can rewrite the above equation as

r̃1x1,0 + r̃1α̃x2,0 + r̃2ω̂0x2,0 + r̃2ω̂0α̃y2,0 = logĝ1,0
ṽ (mod q0). (17)

Let us define the following events:

• Invi,0 is true if the adversary A during its i-th query submits an invalid ciphertext (ũ′1, ũ
′
2, ẽ

′, ṽ′)
subject to Case 3 to the decryption oracle Dsk0 for i ∈ {1, 2, · · · , qd} and does not get ⊥.

• Einv
0 is a set {~s ∈ S|~s gives rise to equation 17 and ¬NR} and Case 3.

We now consider the simulation of Dsk0 . To submit a ciphertext which will not be rejected,
the adversary should find the coefficients for Equation 17 which is consistent with its view, which
with equal probability can contain a hidden bit b = 0 and b = 1. Therefore,

Pr[Inv1,0|¬NR]

=
1
2

Pr[Einv
0 |E0] +

1
2

Pr[Einv
0 |E1] ≤ Pr[Einv

0 ∧ E0]
Pr[E0]

+
Pr[Einv

0 ∧ E1]
Pr[E1]

≤ |Einv
0 ∧ E0| · |S|
2|S||E0| +

|Einv
0 ∧ E1| · |S|
2|S||E1| =

|Einv
0 ∧ E0|
2q0q5

1

+
|Einv

0 ∧ E1|
2q1q5

0

.

where |Einv
0 ∧ E0| is the number of solutions to the system of equations 1–16 and 17 assuming

¬NR, and |Einv
0 ∧ E1| is that of equations 1–10, 11′–16′, and 17 assuming ¬NR.

In the case of |Einv
0 ∧E0|, adding equation 17 to the system of equations 1–16, (x1,0, x2,0, y1,0, y2,0)

are fixed uniquely. The other values are not restricted by equation 17. Then, we have |Einv
0 ∧E0| =

q5
1.

In the case of |Einv
0 ∧ E1|, adding equation 17 to the system of equations 1–10 and 11′–16′,

the number of vectors (x1,0, x2,0, y1,0, y2,0) which satisfy the system of equations 1–10, 11′–16′, and
17 is reduced from q2

0 to q1
0. The other values are not restricted by equation 17. Hence, we have

|Einv
0 ∧ E1| = q1q

4
0.

Therefore,

Pr[Inv1,0|¬NR] ≤ q5
1

2q0q5
1

+
q1q

4
0

2q1q5
0

=
1
q0

.

Each time the adversary submits an invalid ciphertext and it gets rejected, this reduces the set
of the next possible decryption oracle queries at most by one. Hence, we have

Pr[Inv0|¬NR ∧ Case 3] ≤
qd(k)∑

i=1

Pr[Invi,0|¬NR] ≤
qd(k)∑

i=1

1
q0 − i + 1

≤ 2qd(k)
q0

≤ qd(k)
2k−2

.

Therefore, we have

Pr[Inv0|¬NR] ≤ Advcr
H,C(k) +

qd(k)
2k−2

.

Similarly, we can evaluate Pr[Inv1,1|¬NR ∧ Case 3] ≤ 1/q1 and

Pr[Inv1|¬NR] ≤ Advcr
H,C(k) +

qd(k)
2k−2

.

In conclusion, we have

Pr[Inv|¬NR ∧ Case 3] ≤ 2Advcr
H,C(k) +

qd(k)
2k−3

.

19

