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Abstract

We say that an encryption scheme or a signature scheme provides anonymity when it is in-
feasible to determine which user generated a ciphertext or a signature. To construct the schemes
with anonymity, it is necessary that the space of ciphertexts or signatures is common to each user.
In this paper, we focus on the techniques which can be used to obtain this anonymity property,
and propose a new technique for obtaining the anonymity property on RSA-based cryptosystem,
which we call “sampling twice.” It generates the uniform distribution over [0, 2k) by sampling
the two elements from ZN where |N | = k. Then, by applying the sampling twice technique, we
construct the schemes for encryption, undeniable and confirmer signature, and ring signature,
which have some advantages to the previous schemes.
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1 Introduction

1.1 Background

We say that an encryption scheme or a signature scheme provides anonymity when it is infeasible to
determine which user generated a ciphertext or a signature. A simple observation that seems to be
folklore is that standard RSA encryption, namely, a ciphertext is xe mod N where x is a plaintext
and (N, e) is a public key, does not provide anonymity, even when all moduli in the system have the
same length. Suppose an adversary knows that the ciphertext y is created under one of two keys
(N0, e0) or (N1, e1), and suppose N0 ≤ N1. If y ≥ N0 then the adversary bets it was created under
(N1, e1), else the adversary bets it was created under (N0, e0). It is not hard to see that this attack
has non-negligible advantage. To construct the schemes with anonymity, it is necessary that the
space of ciphertexts is common to each user. We can say the same thing about RSA-based signature
schemes.

Bellare, Boldyreva, Desai, and Pointcheval [2] proposed a new security requirement of the encryp-
tion schemes called “key-privacy” or “anonymity.” It asks that the encryption provide (in addition
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to privacy of the data being encrypted) privacy of the key under which the encryption was per-
formed. In [2], they provided the key-privacy encryption scheme, RSA-RAEP, which is a variant of
RSA-OAEP, (Bellare and Rogaway [3], Fujisaki, Okamoto, Pointcheval, and Stern [16]), and made
the space of ciphertexts common to each user by repeating the evaluation of the RSA-OAEP per-
mutation f(x, r) with plaintext x and random r, each time using different r until the value is in the
safe range. For deriving a value in the safe range, the number of the repetition would be very large
(the value of the security parameter). In fact, their algorithm can fail to give a desired output with
some (small) probability.

The anonymous encryption scheme has various applications. For example, anonymous authen-
ticated key exchange protocol such as SKEME (Krawczyk [22]), anonymous credential system (Ca-
menisch and Lysyanskaya [7]), and auction protocols (Sako [26]).

Chaum and Antwerpen provided undeniable signature which cannot be verified without the
signer’s cooperation [11, 9]. The validity or invalidity of an undeniable signature can be ascer-
tained by conducting a protocol with the signer, assuming the signer participates. Chaum provided
confirmer signature [10] which is undeniable signature where signatures may also be verified by inter-
acting with an entity called the confirmer who has been designated by the signer. Galbraith and Mao
proposed a new security notion for undeniable and confirmer signature named “anonymity” in [17].
We say that an undeniable or confirmer signature scheme provides anonymity when it is infeasible
to determine which user generated the message-signature pair. In [17], Galbraith and Mao provided
the undeniable and confirmer signature scheme with anonymity. They made the space of signatures
common to each user by applying a standard RSA permutation to the signature and expanding it to
the common domain [0, 22k) where N is a public key for each user and |N | = k. This technique was
proposed by Desmedt [14].

Rivest, Shamir, and Tauman [25] proposed the notion of ring signature, which allows a member
of an ad hoc collection of users S to prove that a message is authenticated by a member of S without
revealing which member actually produced the signature. Unlike group signature, ring signature has
no group managers, no setup procedures, no revocation procedures, and no coordination. The signer
does not need the knowledge, consent, or assistance of the other ring members to put them in the
ring. All the signer needs is knowledge of their regular public keys. They also proposed the efficient
schemes based on RSA and Rabin. In their RSA-based scheme, the trap-door RSA permutations
of the various ring members will have ranges of different sizes. This makes it awkward to combine
the individual signatures, so one should construct some trap-door one-way permutation which has a
common range for each user. Intuitively, in the ring signature scheme, Rivest, Shamir, and Tauman
solved this problem by encoding the message to an Ni-ary representation and applying a standard
RSA permutation f to the low-order digits where Ni is a public key for each user. This technique is
considered to be essentially the same as that by Desmedt. As mentioned in [25], for deriving a secure
permutation g with a common range, the range of g would be 160 bits larger than that of f .

Hayashi, Okamoto, and Tanaka [20] recently proposed the RSA family of trap-door permutations
with a common domain denoted by RSACD. They showed that the θ-partial one-wayness of RSACD is
equivalent to the one-wayness of RSACD for θ > 0.5, and that the one-wayness of RSACD is equivalent
to the one-wayness of RSA which is the standard RSA family of trap-door permutations. They also
proposed the applications of RSACD to encryption and ring signature schemes. Their schemes have
some advantages to the previous schemes.

1.2 Our Contribution

In this paper, we focus on the techniques which can be used to obtain the anonymity property.
From the previous results mentioned above, we can find three techniques, repeating, expanding,

and using RSACD, for anonymity of cryptosystems based on RSA.
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Sampling Twice Repeating Expanding RSACD
Encryption this paper Bellare et al. - Hayashi et al.

Undeniable and Confirmer Signature this paper - Galbraith et al. -
Ring Signature this paper - Rivest et al. Hayashi et al.

Figure 1: The previous and our proposed schemes

Repeating Repeating the evaluation of the encryption (respectively the signing) with plaintext x
(resp. message m), random r, and the RSA function, each time using different r until the value
is smaller than any public key N of each user.
In [2], Bellare, Boldyreva, Desai, and Pointcheval used this technique for the encryption scheme.

Expanding Doing the evaluation of the encryption (respectively the signing) with plaintext x (resp.
message m), random r, and the RSA function, and expanding it to the common domain.
This technique was proposed by Desmedt [14]. In [17], Galbraith and Mao used this technique
for the undeniable signature scheme. In [25], Rivest, Shamir, and Tauman also used this
technique for the ring signature scheme.

RSACD Doing the evaluation of the encryption (respectively the signing) with plaintext x (resp.
message m), random r, and the RSACD function. This function was proposed by Hayashi,
Okamoto, and Tanaka [20].

In this paper, we propose a new technique for obtaining the anonymity property of RSA-based
cryptosystems. We call this technique “sampling twice.” In our technique, we employ an algorithm
ChooseAndShift. It takes two numbers x1, x2 ∈ ZN as input and returns a value y ∈ [0, 2k) where
|N | = k, and if x1 and x2 are independently and uniformly chosen from ZN then y is uniformly
distributed over [0, 2k).

Sampling Twice Doing the evaluation of the encryption (respectively the signing) twice with plain-
text x (resp. message m), random r1 and r2, and the RSA function, and applying our proposed
algorithm ChooseAndShift for the two resulting values.

Then, by applying the sampling twice technique, we construct the schemes for encryption, unde-
niable and confirmer signature, and ring signature (See Figure 1.).

We summarize the (dis)advantage of our proposed schemes.
Our proposed encryption scheme with sampling twice is efficient with respect to the size of

ciphertexts and the decryption cost. It is also efficient with respect to the encryption cost in the
worst case. On the other hand, that in the average case is larger than those of the previous schemes.
More precisely, in our encryption scheme, the number of modular exponentiations to encrypt in the
average case is 2, while those in the previous schemes are 1 or 1.5.

Our proposed undeniable and confirmer signature scheme with sampling twice is efficient with
respect to the size of signatures. On the other hand, the number of modular exponentiations for
signing and that of computation of square roots are always 2, while those of the other schemes are 1
or 1.5 in the average case.

Our proposed ring signature scheme with sampling twice is efficient with respect to the size of
signatures and the verification cost. On the other hand, the signing cost of our scheme is larger than
those of the previous schemes in the average case.

If we use the RSACD function, the resulting value is calculated by applying the RSA function
either once or twice. Fortunately, since applying the RSA function twice does not reduce security, we
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can prove that the RSACD function is one-way if the RSA function is one-way. Generally speaking,
a one-way function does not always have this property, and we cannot construct a one-way function
with a common domain.

On the other hand, in the sampling twice, repeating, and expanding techniques, the resulting
value is calculated by applying the RSA function once. Therefore, it might be possible to apply these
techniques to other one-way functions and prove the security of the resulting schemes.

The organization of this paper is as follows. In Section 2, we review the definitions concerning
families of functions. We also describe the definitions of RSA and RSACD. In Section 3, we construct
the algorithm ChooseAndShift and propose the sampling twice technique. We propose the encryption
schemes with anonymity in Section 4, the undeniable and confirmer signature schemes with anonymity
in Section 5, and the ring signature schemes with anonymity in Section 6. We conclude in Section 7.

2 Preliminaries

We describe the definitions of families of functions, families of trap-door permutations, and θ-partial
one-way.

Definition 1 (families of functions, families of trap-door permutations). A family of functions F =
(K, S, E) is specified by three algorithms. The randomized key-generation algorithm K takes as input
a security parameter k and returns a pair (pk, sk) where pk is a public key and sk is an associated
secret key (In cases where the family is not trap-door, the secret key is simply the empty string.).
The randomized sampling algorithm S takes pk and returns a random point in a set that we call the
domain of the function and denote by DomF (pk). The deterministic evaluation algorithm E takes
pk and x ∈ DomF (pk) and returns an output we denote by Epk(x). We let RngF (pk) = {Epk(x) |x ∈
DomF (pk)} denote the range of the function.
We say that F is a family of trap-door permutations if DomF (pk) = RngF (pk), Epk is a bijection on
this set, and there exists a deterministic inversion algorithm I that takes sk and y ∈ RngF (pk) and
returns x ∈ DomF (pk) such that Epk(x) = y.

Definition 2 (θ-partial one-way). Let F = (K,S, E) be a family of functions. Let b ∈ {0, 1} and
k ∈ N. Let 0 < θ ≤ 1 be a constant. Let A be an adversary. We consider the following experiments:

Experiment Expθ-pow-fnc
F,A (k)

(pk, sk) ← K(k); x
R← DomF (pk)

y ← Epk(x)
x1 ← A(pk, y) where |x1| = dθ · |x|e
if (Epk(x1||x2) = y for some x2) return 1 else return 0

Here “ ||” denotes concatenation and “ x
R← DomF (pk)” is the operation of picking an element x

uniformly from DomF (pk). We define the advantages of the adversary via

Advθ-pow-fnc
F,A (k) = Pr[Expθ-pow-fnc

F,A (k) = 1]

where the probability is taken over K, x
R← DomF (pk), E, and A. We say that the family F is θ-

partial one-way if the function Advθ-pow-fnc
F,A (·) is negligible for any adversary A whose time complexity

is polynomial in k.

The “time-complexity” is the worst case execution time of the experiment plus the size of the code
of the adversary, in some fixed RAM model of computation.
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Figure 2: Functions fRSACD
N,e,k and gRSACD

N,d,k

Note that when θ = 1 the notion of θ-partial one-wayness coincides with the standard notion of
one-wayness. We say that the family F is one-way when F is 1-partial one-way.

We describe the standard RSA family of trap-door permutations denoted by RSA.

Definition 3 (the standard RSA family of trap-door permutations). The standard RSA family of
trap-door permutations RSA = (K,S,E) is as follows. The key generation algorithm takes as input
a security parameter k and picks random, distinct primes p, q in the range 2dk/2e−1 < p, q < 2dk/2e

and 2k−1 < pq < 2k. It sets N = pq and picks e, d ∈ Z∗φ(N) such that ed = 1 (mod φ(N)). The
public key is N, e, k and the secret key is N, d, k. The sets DomRSA(N, e, k) and RngRSA(N, e, k)
are both equal to Z∗N . The evaluation algorithm EN,e,k(x) = xe mod N and the inversion algorithm
IN,d,k(y) = yd mod N . The sampling algorithm returns a random point in Z∗N .

Fujisaki, Okamoto, Pointcheval, and Stern [16] showed that the θ-partial one-wayness of RSA is
equivalent to the one-wayness of RSA for θ > 0.5.

Hayashi, Okamoto, and Tanaka [20] proposed the RSA family of trap-door permutations with
a common domain denoted by RSACD. We describe their family of trap-door permutations with a
common domain. They showed that the θ-partial one-wayness of RSACD is equivalent to the one-
wayness of RSACD for θ > 0.5, and that the one-wayness of RSACD is equivalent to the one-wayness
of RSA which is the standard RSA family of trap-door permutations.

Definition 4 (the RSA family of trap-door permutations with a common domain [20]). The specifi-
cations of the RSA family of trap-door permutations with a common domain RSACD= (K,S, E) are
as follows. The key generation algorithm is the same as that for RSA. The sets DomRSACD(N, e, k)
and RngRSACD(N, e, k) are both {x |x ∈ [0, 2k) ∧ x mod N ∈ Z∗N}. The sampling algorithm returns
a random point in DomRSACD(N, e, k). The evaluation algorithm EN,e,k(x) = fRSACD

N,e,k (x) and the
inversion algorithm IN,d,k(y) = gRSACD

N,d,k (y) are as follows (See Figure 2.).

Function fRSACD
N,e,k (x)

u ← fRSACD-1
N,e,k (x); v ← fRSACD-2

N,e,k (u); y ← fRSACD-3
N,e,k (v)

return y

Function fRSACD-1
N,e,k (x) Function fRSACD-2

N,e,k (u) Function fRSACD-3
N,e,k (v)

if (x < N) u ← xe mod N if (u < 2k −N) v ← u + N if (v < N) y ← ve mod N
else u ← x elseif (2k −N ≤ u < N) v ← u else y ← v
return u else v ← u−N return y

return v
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Function gRSACD
N,d,k (y)

v ← gRSACD-1
N,d,k (y); u ← gRSACD-2

N,d,k (v); x ← gRSACD-3
N,d,k (u)

return x

Function gRSACD-1
N,d,k (y) Function gRSACD-2

N,d,k (v) Function gRSACD-3
N,d,k (u)

if (y < N) v ← yd mod N if (v < 2k −N) u ← v + N if (u < N) x ← ud mod N
else v ← y elseif (2k −N ≤ v < N) u ← v else x ← u
return v else u ← v −N return x

return u

The choice of N from (2k−1, 2k) ensures that all elements in DomRSACD(N, e, k) are permuted by the
RSA function at least once. They showed that the θ-partial one-wayness of RSACD is equivalent
to the one-wayness of RSACD for θ > 0.5, and that the one-wayness of RSACD is equivalent to the
one-wayness of RSA which is the standard RSA family of trap-door permutations.

3 The Sampling Twice Technique

In this section, we propose a new technique for obtaining the anonymity property of RSA-based
cryptosystems. We call this technique “sampling twice.” In our technique, we employ the following
algorithm ChooseAndShift. It takes two numbers x1, x2 ∈ ZN as input and returns a value y ∈ [0, 2k)
where |N | = k.

Algorithm ChooseAndShiftN,k(x1, x2)

if (0 ≤ x1, x2 < 2k −N)

return

{
x1 with probability 1

2

x1 + N with probability 1
2

elseif (2k −N ≤ x1, x2 < N)
return x1

else
y1 ← min{x1, x2}; y2 ← max{x1, x2}
%%% Note that 0 ≤ y1 < 2k −N and 2k −N ≤ y2 < N. %%%

return





y1 with probability (1
2 + N

2k+1 )× 1
2

y1 + N with probability (1
2 + N

2k+1 )× 1
2

y2 with probability 1
2 − N

2k+1

Note that 2k−1 < N < 2k ensures 2k −N < N , 0 < 1
2 − N

2k+1 < 1, and 0 < 1
2 + N

2k+1 < 1. In order to
run this algorithm, it is sufficient to prepare only k + 3 random bits.

We prove the following theorem on the property of ChooseAndShift.

Theorem 1. If x1 and x2 are independently and uniformly chosen from ZN then the output of the
above algorithm is uniformly distributed over [0, 2k).

Proof. To prove this theorem, we show that if x1 and x2 are independently and uniformly chosen
from ZN then Pr[ChooseAndShiftN,k(x1, x2) = z] = 1/2k for any z ∈ [0, 2k). For any z ∈ [0, 2k−N),
we have

Pr[ChooseAndShift(x1, x2) = z]
= Pr[x1 = z ∧ 0 ≤ x2 < 2k −N ]× 1

2

+Pr[(x1 = z ∧ 2k −N ≤ x2 < N) ∨ (x2 = z ∧ 2k −N ≤ x1 < N)]× (1
2 + N

2k+1 )× 1
2

= 1
N × 2k−N

N × 1
2 + ( 1

N × 2N−2k

N )× 2× (1
2 + N

2k+1 )× 1
2 = 1

2k .
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It is clear that Pr[ChooseAndShiftN,k(x1, x2) = z′] = Pr[ChooseAndShiftN,k(x1, x2) = z′ + N ] for
any z′ ∈ [0, 2k −N). Therefore, for any z ∈ [N, 2k), we have Pr[ChooseAndShiftN,k(x1, x2) = z] =
1/2k.

Furthermore, for any z ∈ [2k −N, N), we have

Pr[ChooseAndShift(x1, x2) = z]
= Pr[x1 = z ∧ 2k −N ≤ x2 < N ]

+Pr[(x1 = z ∧ 0 ≤ x2 < 2k −N) ∨ (x2 = z ∧ 0 ≤ x1 < 2k −N)]× (1
2 − N

2k+1 )
= 1

N × 2N−2k

N + ( 1
N × 2k−N

N )× 2× (1
2 − N

2k+1 ) = 1
2k .

By using the algorithm ChooseAndShift, we propose a new technique for obtaining the anonymity
property. We call this technique “sampling twice.”

Sampling Twice Doing the evaluation of the encryption (respectively the signing) twice with plain-
text x (resp. message m), random r1 and r2, and the RSA function, and applying our proposed
algorithm ChooseAndShift for the two resulting values.

In the following sections, by applying the sampling twice technique, we construct the schemes for
encryption, undeniable and confirmer signature, and ring signature.

4 Encryption

4.1 Definitions

The classical security requirements of public-key encryption schemes, for example indistinguishabil-
ity or non-malleability under the chosen-ciphertext attack, provide privacy of the encryption data.
In [2], Bellare, Boldyreva, Desai, and Pointcheval proposed a new security requirement of encryption
schemes called “key-privacy” or “anonymity.” It asks that the encryption provide (in addition to
privacy of the data being encrypted) privacy of the key under which the encryption was performed.
In a heterogeneous public-key environment, encryption will probably fail to be anonymous for trivial
reasons. For example, different users might be using different cryptosystems, or, if the same cryp-
tosystem, have keys of different lengths. In [2], a public-key encryption scheme with common-key
generation is described as follows.

Definition 5. A public-key encryption scheme with common-key generation PE = (G,K, E ,D) con-
sists of four algorithms.

• The common-key generation algorithm G takes as input a security parameter k and returns
some common key I.

• The key generation algorithm K is a randomized algorithm that takes as input a common key
I and returns a pair (pk, sk) of keys, a public key and a matching secret key.

• The encryption algorithm E is a randomized algorithm that takes the public key pk and a
plaintext x to return a ciphertext y.

• The decryption algorithm D is a deterministic algorithm that takes the secret key sk and a
ciphertext y to return the corresponding plaintext x or a special symbol ⊥ to indicate that the
ciphertext was invalid.

7



In [2], they formalized the property of “key-privacy.” Similar notions had been proposed Abadi
and Rogaway [1], Fischlin [15], Camenisch and Lysyanskaya [7], Sako [26], and Desai [13], however,
chosen-ciphertext attacks do not seem to have been considered before in the context of key-privacy.
The definition by Bellare, Boldyreva, Desai, and Pointcheval [2] can be considered under either the
chosen-plaintext attack or the chosen-ciphertext attack, yielding two notions of security, IK-CPA and
IK-CCA. (IK means “indistinguishability of keys.”)

Definition 6 (IK-CPA, IK-CCA [2]). Let PE = (G, K, E ,D) be an encryption scheme. Let b ∈ {0, 1}
and k ∈ N. Let Acpa = (A1

cpa, A
2
cpa), Acca = (A1

cca, A
2
cca) be adversaries that run in two stages and

where Acca has access to the oracles Dsk0(·) and Dsk1(·). Note that si is the state information. It
contains pk0, pk1, and so on. For atk ∈ {cpa, cca}, we consider the following experiments:

Experiment Expik-atk-b
PE,Aatk

(k)
I ← G(k); (pk0, sk0) ← K(I); (pk1, sk1) ← K(I)
(x, si) ← A1

atk(pk0, pk1); y ← Epkb
(x); d ← A2

atk(y, si)
return d

Above it is mandated that A2
cca never queries the challenge ciphertext y to either Dsk0(·) or Dsk1(·).

For atk ∈ {cpa, cca}, we define the advantages via

Advik-atk
PE,Aatk

(k) =
∣∣∣Pr[Expik-atk-1

PE,Aatk
(k) = 1]− Pr[Expik-atk-0

PE,Aatk
(k) = 1]

∣∣∣.

The scheme PE is said to be IK-CPA secure (respectively IK-CCA secure) if the function Advik-cpa
PE,Acpa

(·)
(resp. Advik-cca

PE,Acca
(·)) is negligible for any adversary A whose time complexity is polynomial in k.

Bellare, Boldyreva, Desai, and Pointcheval [2] proposed the key-privacy encryption scheme with
repeating called “RSA-RAEP,” and Hayashi, Okamoto, and Tanaka [20] also provided that with
RSACD. See Appendix A for details.

4.2 Encryption with Sampling Twice

In this section, we propose the encryption scheme with the sampling twice technique.

Definition 7. The common-key generation algorithm G takes a security parameter k and returns
parameters k, k0, and k1 such that k0(k) + k1(k) < k for all k > 1. This defines an associated
plaintext-length function n(k) = k − k0(k) − k1(k). The key generation algorithm K takes k, k0, k1,
runs the key-generation algorithm of RSA with security parameter k, and gets N, e, d. The public
key pk is (N, e), k, k0, k1 and the secret key sk is (N, d), k, k0, k1. The other algorithms are depicted
below. Let G : {0, 1}k0 → {0, 1}n+k1 and H : {0, 1}n+k1 → {0, 1}k0 be hash functions. Note that
[x]n denotes the n most significant bits of x and [x]m denotes the m least significant bits of x. Note
that the valid ciphertext y satisfies y ∈ [0, 2k) and (y mod N) ∈ Z∗N .

Algorithm EG,H
pk (x)

r1, r2
R← {0, 1}k0

s1 ← (x||0k1)⊕G(r1); t1 ← r1 ⊕H(s1)
v1 ← (s1||t1)e mod N
s2 ← (x||0k1)⊕G(r2); t2 ← r2 ⊕H(s2)
v2 ← (s2||t2)e mod N
y ← ChooseAndShift(v1, v2)
return y

Algorithm DG,H
sk (y)

v ← y mod N
s ← [vd mod N ]n+k1 ; t ← [vd mod N ]k0

r ← t⊕H(s)
x ← [s⊕G(r)]n; p ← [s⊕G(r)]k1

if (p = 0k1) z ← x else z ←⊥
return z
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4.3 Analysis

We compare the four schemes with sampling twice, repeating, RSACD, and expanding.
Security. Bellare, Boldyreva, Desai, and Pointcheval [2] proved that the scheme with repeating
(RSA-RAEP) is secure in the sense of IND-CCA2 and IK-CCA in the random oracle model assuming
RSA is θ-partial one-way for θ > 0.5. Hayashi, Okamoto, and Tanaka [20] proved that the encryption
scheme with RSACD is also secure in the sense of IND-CCA2 and IK-CCA in the random oracle
model assuming RSACD is θ-partial one-way for θ > 0.5.

In order to prove that the scheme with sampling twice is secure in the sense of IK-CCA, we need
the restriction as follows.

Since if c is a ciphertext of m for pk = (N, e, k) and c < 2k −N then c + N is also a ciphertext
of m, the adversary can ask c + N0 to decryption oracle Dsk0 where c is a challenge ciphertext such
that c < 2k −N0 and pk0 = (N0, e0, k), and if the answer of Dsk0 is m, then the adversary can know
that c was encrypted by pk0.

To prevent this attack, we add some natural restriction to the adversaries in the definitions
of IK-CCA. That is, it is mandated that the adversary never queries either c′ ∈ [0, 2k) such that
c′ = c (mod N0) to Dsk0 or c′′ ∈ [0, 2k) such that c′′ = c (mod N1) to Dsk1 .

Similarly, in order to prove that the scheme with sampling twice is secure in the sense of IND-
CCA2, we need the same restriction. That is, in the definition of IND-CCA2, it is mandated that
the adversary never queries c′ ∈ [0, 2k) such that c′ = c (mod N) to Dsk.

We think these restrictions are natural and reasonable. Actually, in the case of undeniable and
confirmer signature schemes, Galbraith and Mao [17] defined the anonymity on undeniable signature
schemes with the above restriction.

If we add these restrictions then we can prove that the scheme with sampling twice is secure in
the sense of IK-CCA in the random oracle model assuming RSA is θ-partial one-way for θ > 0.5.
More precisely, we can prove the following theorem.

Theorem 2. For any adversary A attacking the anonymity of our scheme Π under an adaptive
chosen-ciphertext attack, and making at most qdec decryption oracle queries, qgen G-oracle queries,
and qhash H-oracle queries, there exists a θ-partial inverting adversary B for the RSA family, such
that for any k, k0(k), k1(k), and θ = k−k0(k)

k ,

Advik-cca
Π,A (k) ≤ 8qhash((1− ε1) · (1− ε2) · (1− ε3))−1 ·Advθ-pow-fnc

RSA,B (k)
+qgen · qhash · (1− ε3)−1 · 2−k+2

where
ε1 =

1
2
; ε2 =

2
2k/2−3 − 1

; ε3 =
2qgen + qdec + 2qgenqdec

2k0
+

2qgen

2k1
+

2qhash

2k−k0
,

and the running time of B is that of A plus qgen · qhash ·O(k3).

The proof of the above theorem is in Appendix B.
We can also prove that the scheme with sampling twice is secure in the sense of IND-CCA2 in the

random oracle model assuming RSA is θ-partial one-way for θ > 0.5. More precisely, we can prove
that if there exists a CCA2-adversary A = (A1, A2) attacking indistinguishability of our scheme
with advantage ε, then there exists a CCA2-adversary B = (B1, B2) attacking indistinguishability of
RSA-OAEP with advantage ε/2. We construct B as follows.

1. B1 gets pk and passes it to A1. B1 gets (m0,m1, si) which is an output of A1, and B1 outputs
it.
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Sampling Twice Repeating [2] RSACD [20] Expanding
# of mod. exp. to encrypt

(average / worst)
2 / 2 1.5 / k1 1.5 / 2 1 / 1

# of mod. exp. to decrypt
(average / worst)

1 / 1 1 / 1 1.5 / 2 1 / 1

size of ciphertexts k k k k + 160
# of random bits to encrypt

(average / worst)
2k0 + k + 3 / 2k0 + k + 3 1.5k0 / k1k0 1.5k0 / 1.5k0 k0 + 160 / k0 + 160

Figure 3: The comparison of the encryption schemes

2. B2 gets a challenge ciphertext y and sets y′ ← y + tN where t
R← {0, 1}. If y′ ≥ 2k then B2

outputs Fail and halts; otherwise B2 passes (y′, si) to A2. B2 gets d ∈ {0, 1} which is an output
of A2, and B2 outputs it.

If B does not output Fail, A outputs correctly with advantage ε. Since Pr[B outputs Fail] < 1/2, the
advantage of B is greater than ε/2.
Efficiency. We show the number of modular exponentiations to encrypt, the number of modular
exponentiations to decrypt, the size of ciphertexts, and the number of random bits to encrypt in
Figure 3. We assume that N is uniformly distributed in (2k−1, 2k).

5 Undeniable and Confirmer Signature

5.1 Definitions

Digital signatures are easily verified as authentic by anyone using the corresponding public key. This
property can be advantageous for many users, but it is unsuitable for many other users. Chaum
and Antwerpen provided undeniable signature which cannot be verified without the signer’s coopera-
tion [11, 9]. The validity or invalidity of an undeniable signature can be ascertained by conducting a
protocol with the signer, assuming the signer participates. Chaum provided confirmer signature [10]
which is undeniable signature where signatures may also be verified by interacting with an entity
called the confirmer who has been designated by the signer, and many undeniable and confirmer sig-
nature schemes were proposed [19, 24, 8, 18]. We describe the definition of undeniable and confirmer
signature.

Definition 8. An undeniable signature scheme SIG = (Cgen, Kgen, Sign, Conf, Deny) consists
of three algorithms and two protocols.

• Cgen is a (randomized) common-key generation algorithm that takes as input some security
parameter k and returns a common key I.

• Kgen is a (randomized) key generation algorithm that takes as input the common key I and
returns a pair (pk, sk) of keys, the public key and a matching secret key.

• Sign is a (randomized) signing algorithm that takes as input a secret key sk and a message m
and outputs a signature s.

• Conf is a confirmation protocol between a signer and a verifier which takes as input a message
m, a signature s, and signer’s public key pk and allows the signer to prove to a verifier that
the signature s is valid for the message m and the key pk.

10



• Deny is a denial protocol between a signer and a verifier which takes as input a message m,
a signature s, and signer’s public key pk and allows the signer to prove to a verifier that the
signature s is invalid for the message m and the key pk.

A confirmer signature scheme is essentially the same as above, except the role of confirmation and
denial can also be performed by a third party called a confirmer. The significant modification is that
the key generation algorithm produces a confirmation key ck which is needed for the confirmation or
denial protocol.

The literature on confirmer signature is inconsistent on whether the original signer has the ability
to confirm and/or deny signatures. Camenisch and Michels [8] claim that it is undesirable for signers
to be able to confirm or deny their signatures and the schemes in [8, 10, 24] do not allow signers to
deny signatures. On the other hand, Galbraith and Mao claim that it is important for signers to be
able to confirm and/or deny signatures and the schemes in [11, 9, 18, 19] do allow signers to deny
signatures. In any case, these distinctions have no bearing on the discussion of the anonymity of the
schemes.

Galbraith and Mao proposed a new security notion of undeniable and confirmer signatures named
“anonymity” in [17]. We say that an undeniable or confirmer signature scheme provides anonymity
when it is infeasible to determine which user generated the message-signature pair. Informally, this
security property is as follows. Imagine a system with n users and suppose an adversary is given
a valid message-signature pair and is asked to determine which user generated the signature. By
running signature confirmation or denial protocols with a given user (or their designated confirmer)
one can determine whether or not the user generated the signature. An undeniable or confirmer
signature scheme has the anonymity property if it is infeasible to determine whether a user is or is
not the signer of the message without interacting with that user or with the n− 1 other users with
given message-signature pair.

We slightly modify the definition of anonymity in [17] in order to put a common key generation
into it explicitly.

Definition 9 ([17]). Let SIG = (Cgen, Kgen, Sign, Conf, Deny) be an undeniable or confirmer
signature scheme. Let b ∈ {0, 1} and k ∈ N (security parameter). Let A = (A1, A2) be adversaries that
run in two stages. A has access to the oracles Signsk0 , Signsk1 and A can execute confirmation and
denial protocols Confsk0 , Confsk1 , Denysk0 , Denysk1 on any message-signature pair. However, A2

cannot execute any one of Confsk0 , Confsk1 , Denysk0, and Denysk1 on (m′, σ′) ∈ EC(m, σ, pk0) ∪
EC(m, σ, pk1) (EC means “equivalence class.” If we get a message-signature pair (m,σ) under the
key pk, then we can easily compute all elements in EC(m,σ, pk).). Note that si be a state information.
It contains common keys, public keys, and so on. Now we consider the following experiments:

Experiment ExpAnonym-b
SIG,A (k)

I ← Cgen(1k); (pk0, sk0) ← Kgen(I); (pk1, sk1) ← Kgen(I)
(m, si) ← A1(pk0, pk1); σ ← Signskb

(m); d ← A2(m,σ, si)
return d

We define the advantages of the adversaries via:

AdvAnonym
SIG,A (k) =

∣∣∣Pr[ExpAnonym-1
SIG,A (k) = 1]− Pr[ExpAnonym-0

SIG,A (k) = 1]
∣∣∣.

The scheme SIG provides anonymity if the function AdvAnonym
SIG,A (·) is negligible for any adversary A

whose time complexity is polynomial in k.

In [17], Galbraith and Mao pointed out that the RSA-based scheme by Gennaro, Krawczyk and
Rabin [19] does not provide anonymity, and proposed the scheme with expanding which provides
anonymity. See Appendix C for details.
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5.2 Undeniable and Confirmer Signature with Sampling Twice

In this section, we propose the undeniable and confirmer signature schemes with the sampling twice
technique.

Definition 10. The common-key generation algorithm Cgen takes a security parameter k and re-
turns parameters k, k0 and k1 such that k0(k) + k1(k) < k for all k > 1. The key generation
algorithm Kgen takes k, k0, k1, runs the key-generation algorithm of RSA, and gets N, e, d, p, q where
p, q are safe prime (i.e. (p − 1)/2 and (q − 1)/2 are also prime) 1. It picks g from Z∗N and sets
h ← gd mod N . The public key pk is (N, g, h), k, k0, k1 and the secret key sk is (N, e, d, p, q), k, k0, k1.
Let G0 : {0, 1}∗ → {0, 1}k1, G1 : {0, 1}k1 → {0, 1}k0, G2 : {0, 1}k1 → {0, 1}k−k0−k1−1, and F :
{0, 1}k → {0, 1}k be hash functions. The signing algorithm is as follows:

Sign(m)

r1, r2
R← {0, 1}k0

m̄1 ← Sign2(m, r1); t1
R← {c ∈ ZN | c2 = ±m̄1 (mod N)}; s1 ← (t1)d mod N

m̄2 ← Sign2(m, r2); t2
R← {c ∈ ZN | c2 = ±m̄2 (mod N)}; s2 ← (t2)d mod N

s ← ChooseAndShift(s1, s2)
if (s mod N = s1) r ← r1 else r ← r2

return (s, r)

where
Sign2(m, r)

w ← G0(m||r); r∗ ← G1(w)⊕ r; M ← 0||w||r∗||G2(w); m̄ ← M
while

((
m̄
N

) 6= 1
)
repeat m̄ ← F (m̄)

return m̄

Conf (respectively Deny) is a non-interactive designated verifier proof which proves the knowledge
of an integer e such that g = he (mod N) and s2e = ±Sign2(m, r) (mod N) (resp. g = he (mod N)
and s2e 6= ±Sign2(m, r) (mod N)). To construct such proofs, we first employ protocols similar to
those in [18] by Galbraith, Mao, and Paterson. Then, we transform them to corresponding non-
interactive designated verifier proofs by the method of Jakobsson, Sako, and Impagliazzo [21] 2. The
equivalence class of this scheme is EC(m, (s, r), pk) = {(m, (±s′ ± uN, r)) | s′ = s mod N ∧ u ∈
{0, 1, 2, . . . , b(2k − s′)/Nc}}.

In our scheme (and also the scheme by Galbraith and Mao), we have to use RSA moduli which
are the products of safe primes for obtaining the anonymity property. Gennaro, Krawczyk, and
Rabin [19] proposed the RSA-based undeniable signature schemes where RSA moduli are restricted
to the products of safe primes, and the confirmation and denial protocols in [19] is more efficient than
those by Galbraith, Mao, and Paterson [18]. Therefore, it seems better to use the protocols in [19].
However, if we use the protocols in [19], the prover will have to prove that her RSA modulo has the
proper form (i.e. a product of safe primes) during the protocols, and it needs a costly proof. To avoid
this, Galbraith, Mao, and Paterson [18] constructed different scheme where there is no restriction for
the RSA moduli.

To obtain the security result it is necessary that executions of the confirm and deny protocol can
be simulated in the random oracle model. This is not possible with interactive proofs so we must use
non-interactive proofs. To maintain the security of the system, it is necessary to use non-interactive
designated verifier proofs [21].

1We need this restriction for proving anonymity.
2These proof transcripts must be encrypted when sent to the verifier if anonymity is to be preserved.
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Sampling Twice Expanding [17] Repeating
# of mod. exp. to sign

(average / worst)
2 / 2 1 / 1 1.5 / k1

# of computation of square roots
(average / worst)

2 / 2 1 / 1 1.5 / k1

size of signatures k + k0 2k + k0 (k − 1) + k0

# of random bits to sign
(average / worst)

k0 + k + 5 / k0 + k + 5 k0 + k + 2 / k0 + k + 2 1.5(k0 + 2) / k1(k0 + 2)

Figure 4: The comparison of the undeniable and confirmer signature schemes

5.3 Analysis

We compare the four schemes with sampling twice, expanding, and repeating.
Security. Galbraith and Mao [17] proved that their scheme provides anonymity in the random
oracle model under the assumption that the composite decision Diffie-Hellman problem is hard.

Definition 11 (the composite decision Diffie-Hellman problem). Let N be a product of two safe
primes (i.e. N = pq where p, q, p′ = (p− 1)/2, q′ = (q − 1)/2 are prime). Consider the two sets

T = {(g, h, u, v) ∈ (Z∗N )4|ord(g) = ord(h) = 2p′q′, h ∈ 〈g〉, 〈g, v〉 = Z∗N}

and
TCDDH = {(g, h, u, v) ∈ T |h = gd (mod N) for some d coprime to φ(N),

v = αud (mod N) for some α ∈ Z∗N of order 2}
with the uniform distribution on each. We say that the composite decision Diffie-Hellman problem is
hard if it is infeasible to distinguish these two distributions.

They also proved that their scheme is existential unforgeable in the random oracle model under
the assumption that factoring integers which are products of safe primes is hard. We can prove
that the scheme with sampling twice provides anonymity in the random oracle model under the
assumption that the composite decision Diffie-Hellman problem is hard, and is existential unforgeable
in the random oracle model under the assumption that factoring integers which are products of safe
primes is hard. Noticing that the signature space changes, the proofs are similar to those for the
Galbraith–Mao scheme (See Appendices B and C in [17].).
Efficiency. We show the number of modular exponentiations to sign, the number of computation
of square root, the size of signatures, and the number of random bits to sign in Figure 4. We assume
that N is uniformly distributed in (2k−1, 2k).

6 Ring Signature

6.1 Definitions

In [25], Rivest, Shamir, and Tauman proposed the notion of ring signature, which allows a member
of an ad hoc collection of users S to prove that a message is authenticated by a member of S without
revealing which member actually produced the signature. Unlike group signature, ring signature has
no group managers, no setup procedures, no revocation procedures, and no coordination.

Definition 12 (Ring Signature [25]). One assumes that each user Ui (called a ring member) has
received (via a PKI or a certificate) a public key Pi, for which the corresponding secret key is denoted
by Si. A ring signature scheme consists of the following algorithms.
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• ring-sign(m,P1, P2, . . . , Pr, s, Ss) which produces a ring signature σ for the message m, given
the public keys P1, P2, . . . , Pr of the r ring members, together with the secret key Ss of the s-th
member (who is the actual signer).

• ring-verify(m,σ) which accepts a message m and a signature σ (which includes the public key
of all the possible signers), and outputs either valid or invalid.

The signer does not need the knowledge, consent, or assistance of the other ring members to put
them in the ring. All he needs is knowledge of their regular public keys. Verification must satisfy
the usual soundness and completeness conditions, but in addition the signature scheme must satisfy
“signer-ambiguity,” which is the property that the verifier is unable to determine the identity of the
actual signer with probability greater than 1/r + ε, where r is the size of the ring and ε is negligible.
Furthermore, the signature scheme must satisfy “existential unforgeability under adaptive chosen
message attack.”

The formal concept of ring signature can be related to an abstract concept called combining
functions. In [25], Rivest, Shamir, and Tauman proposed a combining function based on a symmetric
encryption scheme E modeled by a (keyed) random permutation

Ck,v(y1, . . . , yr) = Ek(yr ⊕Ek(yr−1 ⊕ · · ·Ek(y2 ⊕Ek(y1 ⊕ v)) · · ·)).
For any k, v, z, any index s, and any fixed values of {yi}i6=s, we can easily find ys such that
Ck,v(y1, . . . , yr) = z by using the following equation:

ys = E−1
k (ys+1 ⊕ · · ·E−1

k (yr ⊕E−1
k (z)) · · ·)⊕ Ek(ys−1 ⊕ · · ·Ek(y1 ⊕ v) · · ·).

By using this function, Rivest, Shamir, and Tauman [25] proposed the scheme with expanding, and
Hayashi, Okamoto, and Tanaka [20] also provided the scheme with RSACD. See Appendix D for
details.

6.2 Ring Signature with Sampling Twice

In this section, we propose a ring signature scheme with the sampling twice technique. To verify the
signatures deterministically, we add some information ci to the signature.

Definition 13. Let `, k be security parameters. Let E be a symmetric encryption scheme over
{0, 1}k using `-bit keys, and let h be a hash function which maps strings of arbitrary length to `-bit
strings. Each user Ui has public key Pi = (Ni, ei, k) and secret key Si = (Ni, di, k) by running the
key generation algorithm of RSA with security parameter k (i.e. the size of Ni is k). Let r be the
number of ring members. The signing algorithm is as follows.

ring-sign(m,P1, P2, . . . , Pr, s, Ss)
for each i ∈ {1, . . . , s− 1, s + 1, . . . , r} do

xi,1, xi,2
R← Z∗Ni

yi,1 ← (xi,1)ei mod Ni; yi,2 ← (xi,2)ei mod Ni

yi ← ChooseAndShift(yi,1, yi,2)
if (yi mod Ni = yi,1) xi ← xi,1 else xi ← xi,2

if (yi ≥ Ni) ci ← 1 else ci ← 0

v
R← {0, 1}k

find ys s.t. Ch(m),v(y1, . . . , yr) = v

if (ys ≥ Ns) cs ← 1 else cs ← 0
xs ← (ys)ds mod Ns

return σ = (P1, P2, . . . , Pr, v, (x1, c1), (x2, c2), . . . , (xr, cr))
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Sampling Twice Expanding [25] RSACD [20] Repeating
# of mod. exp. to sign

(average / worst)
2r / 2r r / r 1.5r / 2r 1.5r / kr

# of mod. exp. to verify
(average / worst)

r / r r / r 1.5r / 2r r / r

size of signatures (3r + 1)k + r (3r + 1)k + 160(r + 1) (3r + 1)k (3r + 1)k − 1
# of random bits to sign

(average / worst)
3(k + 1)(r − 1) + k
/ 3(k + 1)(r − 1) + k

(k + 160)r
/ (k + 160)r

kr / kr
1.5k(r − 1) + k − 1
/ k2(r − 1) + k − 1

Figure 5: The comparison of the ring signature schemes (|Ni| = k)

The verification algorithm ring-verify(m,σ) computes yi ← ((xi)ei mod Ni)+ ci ·Ni for each (xi, ci)
and z ← Ch(m),v(y1, . . . , yr). It returns valid if and only if z = v.

6.3 Analysis

We compare the four schemes with sampling twice, expanding, RSACD, and repeating.
Security. Rivest, Shamir, and Tauman [25] proved that their scheme is unconditionally signer-
ambiguous and provably secure in the ideal cipher model assuming RSA is one-way. Hayashi,
Okamoto, and Tanaka [20] proved that their scheme is unconditionally signer-ambiguous and provably
secure in the ideal cipher model assuming RSACD is one-way.

We can prove that our scheme is unconditionally signer-ambiguous, since for each k and v the
equation Ch(m),v(y1, . . . , yr) = v has exactly (2k−1)r−1 solutions, and all of them are chosen by the
signature generation procedure with equal probability, regardless of the signer’s identity.

We can also prove that our scheme is existential unforgeable under adaptive chosen message
attack in the ideal cipher model assuming RSA is one-way. The proof is almost the same as that for
the Rivest–Shamir–Tauman scheme. The difference is as follows.

In the proof of unforgeability for the Rivest–Shamir–Tauman scheme, given y ∈ Z∗N , one slips y
as a “gap” between two consecutive E functions along the ring. Then, the forger has to compute the
e-th root of y, and this leads one to obtain the e-th root of y.

In the proof for our scheme, given y ∈ Z∗N , we pick a random bit t ∈ {0, 1}, set y′ ← y + tN . If
y′ < 2k then one slips y′ as a “gap” between two consecutive E functions along the ring. The rest of
the proof is the same as that for the Rivest–Shamir–Tauman scheme (See Section 3.5 in [25].).

Recently, Bresson, Stern, and Szydlo [6] improved the Rivest–Shamir–Tauman scheme. They
showed that its security can be based on the random oracle model, which is strictly weaker than the
ideal cipher model. Furthermore, this greatly simplified the security proof provided in [25]. We can
apply their construction to the schemes with sampling twice and RSACD.
Efficiency. We show the number of modular exponentiations to sign and to verify, the size of
signatures, and the number of random bits to sign in Figure 5. We assume that each Ni is uniformly
distributed in (2k−1, 2k).

In the schemes with sampling twice and RSACD, it is necessary for each ring member to choose
her RSA modulo with the same length, and in the scheme with repeating, it is necessary for each ring
member to choose her RSA modulo with almost the same length. In contrast to these schemes, in
the scheme with expanding, there is no restriction on the lengths of users’ moduli. However, if there
is one ring member whose RSA modulo is much larger than the other member’s moduli, then the
size of the signature and the number of random bits depends on the largest modulo. For example, if
there is a user whose RSA modulo has length k + ` and the other users’ moduli have lengths k, then
the size of signature is (3r + 1)k + 160(r + 1) + `(r + 4) and the number of random bits to sign is
r(k + 160) + r`.
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7 Concluding Remarks

In this paper, we have proposed a new technique for obtaining the anonymity property of RSA-based
cryptosystems, which we call “sampling twice.” By applying the sampling twice technique, we have
constructed the schemes for encryption, undeniable and confirmer signature, and ring signature.

In our analysis, we have observed that the scheme with sampling twice is efficient with respect to
the sizes of ciphertexts and signatures, the computational costs to decrypt ciphertexts and to verify
signatures in the average and worst cases, and the computational costs to encrypt messages and to
sign messages in the worst case.
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A The Schemes Previously Proposed for Encryption

A.1 Encryption with Repeating by Bellare, Boldyreva, Desai, and Pointcheval

In [2], Bellare, Boldyreva, Desai, and Pointcheval proposed an RSA-based encryption scheme which
is secure in the sense of IK-CCA. It is RSA-RAEP which is a variant of RSA-OAEP. Since their
variant chooses N from (2k−1, 2k), it simply repeats the ciphertext computation, each time using
new coins, until the ciphertext y satisfies y < 2k−1.

Definition 14 (RSA-RAEP [2]). RSA-RAEP = (G,K, E ,D) is as follows. The common-key gen-
eration algorithm G takes a security parameter k and returns parameters k, k0 and k1 such that
k0(k) + k1(k) < k for all k > 1. This defines an associated plaintext-length function n(k) =
k− k0(k)− k1(k). The key generation algorithm K takes k, k0, k1, runs the key-generation algorithm
of RSA with security parameter k, and gets N, e, d. The public key pk is (N, e), k, k0, k1 and the secret
key sk is (N, d), k, k0, k1. The other algorithms are depicted below. Let G : {0, 1}k0 → {0, 1}n+k1

and H : {0, 1}n+k1 → {0, 1}k0 be hash functions. Note that [x]n denotes the n most significant bits
of x and [x]m denotes the m least significant bits of x.

Algorithm EG,H
pk (x) Algorithm DG,H

sk (y)
ctr = −1 b ← [y]1; v ← [y]k0+k1+n

repeat if (b = 1)
ctr ← ctr + 1 w ← [v]k0+k1 ; x ← [v]n
r

R← {0, 1}k0 if (w = 0k0+k1) z ← x else z ←⊥
s ← (x||0k1)⊕G(r); t ← r ⊕H(s) else
v ← (s||t)e mod N s ← [vd mod N ]n+k1 ; t ← [vd mod N ]k0

until ((v < 2k−1) ∨ (ctr = k1)) r ← t⊕H(s)
if (ctr = k1) y ← 1||0k0+k1 ||x x ← [s⊕G(r)]n; p ← [s⊕G(r)]k1

else y ← 0||v if (p = 0k1) z ← x else z ←⊥
return y return z

Bellare, Boldyreva, Desai, and Pointcheval proved that RSA-RAEP is secure in the sense of
IK-CCA and IND-CCA2 in the random oracle model assuming RSA is one-way.

A.2 Encryption with RSACD by Hayashi, Okamoto, and Tanaka

In [20], Hayashi, Okamoto, and Tanaka proposed an RSA-based encryption scheme. It uses RSACD
instead of RSA. We describe their scheme.

Definition 15. The common-key generation algorithm G, the key generation algorithm K, and the
oracles G and H are the same as those for RSA-RAEP. The other algorithms are described as follows.
Note that the valid ciphertext y satisfies y ∈ [0, 2k) and (y mod N) ∈ Z∗N .

Algorithm EG,H
pk (x) Algorithm DG,H

sk (y)

r
R← {0, 1}k0 s ← [gRSACD

N,d,k (y)]n+k1 ; t ← [gRSACD
N,d,k (y)]k0

s ← (x||0k1)⊕G(r); t ← r ⊕H(s) r ← t⊕H(s)
v ← fRSACD

N,e,k (s||t) x ← [s⊕G(r)]n; p ← [s⊕G(r)]k1

return y if (p = 0k1) z ← x else z ←⊥
return z
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Hayashi, Okamoto, and Tanaka proved that their scheme is secure in the sense of IK-CCA and
IND-CCA2 in the random oracle model assuming RSACD is one-way.

B Proof of Theorem 2

We first describe the RSA partial inverting algorithm M using a CCA-adversary A attacking anonymity
of our encryption scheme. M is given pk = (N, e, k) and a point y ∈ Z∗N where |y| = k = n+ k0 + k1.
Let sk = (N, d, k) be the corresponding secret key. The algorithm is trying to find the n + k1 most
significant bits of the e-th root of y modulo N .

1) M picks a bit µ
R← {0, 1} and sets Y ← y + µN . If Y ≥ 2k then outputs Fail and halts; else it

continues.

2) M runs the key generation algorithm of RSA with security parameter k to obtain pk′ =
(N ′, e′, k) and sk′ = (N ′, d′, k). Then it picks a bit b

R← {0, 1}, sets pkb ← (N, e) and
pk1−b ← (N ′, e′). If the above y does not satisfy y ∈ (Z∗N0

∩ Z∗N1
) then M outputs Fail

and halts; else it continues.

3) M initializes for lists, called G-list, H-list, Y0-list, and Y1-list to empty. It then runs A as
follows. Note that M simulates A’s oracles G, H, Dsk0 , and Dsk1 as described below.

3-1) M runs A1(pk0, pk1) and gets (x, si) which is the output of A1.

3-2) M runs A2(Y, si) and gets a bit d ∈ {0, 1} which is the output of A2.

4) M chooses a random element on the H-list and outputs it as its guess for the n + k1 most
significant bits of the e-th root of y modulo N .

M simulates the random oracles G and H, and the decryption oracle as follows:

• When A makes an oracle query g to G, then for each (h,Hh) on the H-list, M builds z =
h||(g ⊕ Hh), and computes yh,g,0 = ze0 mod N0 and yh,g,1 = ze1 mod N1. For i ∈ {0, 1}, M
checks whether y = yh,g,i. If for some h and i such a relation holds, then we have inverted y
under pki, and we can still correctly simulate G by answering Gg = h ⊕ (x||0k1). Otherwise,
M outputs a random value Gg of length n + k1. In both cases, M adds (g, Gg) to the G-list.
Then, for all h, M checks if the k1 least significant bits of h⊕Gg are all 0. If they are, then it
adds yh,g,0 and yh,g,1 to the Y0-list and the Y1-list respectively.

• When A makes an oracle query h to H, M provides A with a random string Hh of length k0

and adds (h,Hh) to the H-list. Then for each (g, Gg) on the G-list, M builds z = h||(g ⊕Hh),
and computes yh,g,0 = ze0 mod N0 and yh,g,1 = ze1 mod N1. M checks if the k1 least significant
bits of h⊕Gg are all 0. If they are, then it adds yh,g,0 and yh,g,1 to the Y0-list and the Y1-list
respectively.

• When for i ∈ {0, 1}, A makes an oracle query y′ ∈ {0, 1}k to Dski , M checks if there exists some
yh,g,i in the Yi-list such that y′ mod Ni = yh,g,i. If there is, then it returns the n most significant
bits of h⊕Gg to A. Otherwise it returns ⊥ (indicating that y′ is an invalid ciphertext).

Now, we analyze the advantage of M . In the following, we consider the experiment where M
does not output Fail in the first step. In this experiment, we can consider the distributions of N , e,
and Y as ((N, e, k), (N, d, k)) ← K(k); Y

R← S[N ] where K is the key generation algorithm of RSA
and S[N ] = {Y ′ |Y ′ ∈ [0, 2k) ∧ (Y ′ mod N) ∈ Z∗N}.
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For i ∈ {0, 1}, let wi = ydi mod Ni, si = [wi]n+k1 , and ti = [wi]k0 . Let ri be the random variable
ti ⊕H(si). We consider the following events.

• FBad denotes the event that

– A G-oracle query r0 was made by A1 in step 3-1, and Gr0 6= s0 ⊕ (x||0k1), or

– A G-oracle query r1 was made by A1 in step 3-1, and Gr1 6= s1 ⊕ (x||0k1).

• GBad denotes the event that

– A G-oracle query r0 was made by A2 in step 3-2, and at the point in time that it was
made, the H-oracle query s0 was not on the H-list, and Gr0 6= s0 ⊕ (x||0k1), or

– A G-oracle query r1 was made by A2 in step 3-2, and at the point in time that it was
made, the H-oracle query s1 was not on the H-list, and Gr1 6= s1 ⊕ (x||0k1).

• DBad denotes the event that

– A Dsk0 query is not correctly answered, or

– A Dsk1 query is not correctly answered.

• G = ¬FBad ∧ ¬GBad ∧ ¬DBad.

We let Pr[·] denote the probability distribution in the game defining advantage, and Pr0[·] denote
the probability distribution in the simulated game where M does not output Fail in the first step.
We introduce the following additional events:

• YBad denotes the event that y ∈ (Z∗N0
∩ Z∗N1

).

• FAskS denotes the event that H-oracle query s0 or s1 was made by A1 in step 3-1.

• AskR denotes the event that (r0, Gr0) or (r1, Gr1) is on the G-list at the end of step 3-2.

• AskS denotes the event that (s0,Hs0) or (s1,Hs1) is on the H-list at the end of step 3-2.

Let Pr1[·] denote the probability distribution in the simulated game where M does not output
Fail in the first step and ¬YBad occurs.

We can bound Pr1[AskS] in a similar way as in the proof of anonymity for RSA-RAEP [2], and
we have

Pr1[AskS] ≥ 1
2
· Pr1[AskR ∧ AskS|¬DBad] · Pr1[¬DBad|¬AskS].

We next bound Pr1[AskR∧AskS|¬DBad] and Pr1[¬DBad|¬AskS]. Let Pr2[·] denote the probability
distribution in the simulated game where M does not output Fail in the first step and ¬DBad∧¬YBad
occurs.

The proofs of the following lemmas are similar to those for RSA-RAEP.

Lemma 1.

Pr2[AskR ∧ AskS] ≥ ε

2
·
(
1− 2qgen · 2−k0 − 2qhash · 2−n−k1

)
− 2qgen · 2−k.

Lemma 2.

Pr1[DBad|¬AskS] ≤ qdec ·
(
2 · 2−k1 + (2qgen + 1) · 2−k0

)
.
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By applying Lemmas 1 and 2, we have

Pr1[AskS] ≥ 1
2
·
(

ε

2
·
(

1− 2qgen

2k0
− 2qhash

2n+k1

)
− 2qgen

2k

)
·
(

1− qdec ·
(

2
2k1

+
2qgen + 1

2k0

))

≥ ε

4
·
(

2qgen + qdec + 2qgenqdec

2k0
+

2qgen

2k1
+

2qhash

2k−k0

)
− qgen

2k
.

Assuming that Y < 2k and ¬YBad, we have by the random choice of b and symmetry, that the
probability of M outputting s is at least 1

2qhash
· Pr1[AskS].

We next bound the probabilities that Y is in the good range and that ¬YBad occurs.

Lemma 3.

Pr[Y > 2k] ≤ 1
2

and Pr0[YBad] ≤ 2
2k/2−3 − 1

.

Proof of Lemma 3. We first bound Pr[Y > 2k]. Since Y = y +µN , y ∈ Z∗N , and µ
R← {0, 1}, we have

Pr[Y > 2k] ≤ Pr[µ = 1] =
1
2
.

We next bound Pr0[YBad]. Let N = pq and N ′ = p′q′. Note that 2dk/2e−1 < p, q, p′, q′ < 2dk/2e

and 2k−1 < N, N ′ < 2k. Since φ(N) ≤ |S[N ]| ≤ 2k, we have

Pr0[YBad] = Pr[Y R← S[N ] : Y 6∈ S[N ′]] ≤ |S[N ]| − |S[N ′]|
|S[N ]| ≤ 2k − |S[N ′]|

φ(N)
.

Furthermore, we have

2k − |S[N ′]| =
∣∣{Y ′|Y ′ ∈ [0, 2k) ∧ (Y ′ mod N ′) 6∈ Z∗N ′}

∣∣
≤ ∣∣{Y ′|Y ′ ∈ [0, 2N ′) ∧ (Y ′ mod N ′) 6∈ Z∗N ′}

∣∣
= 2× ∣∣{Y ′|Y ′ ∈ [0, N ′) ∧ Y ′ 6∈ Z∗N ′}

∣∣
= 2(N ′ − φ(N ′)).

Therefore, we can bound Pr0[YBad] as

Pr0[YBad] ≤ 2k − |S[N ′]|
φ(N)

≤ 2(N ′ − φ(N ′))
φ(N)

=
2(p′ + q′ − 1)
N − p− q + 1

≤ 2(p′ + q′)
N − p− q

≤ 2(2dk/2e + 2dk/2e)
2k−1 − 2dk/2e − 2dk/2e =

2(1 + 1)
2k−1−dk/2e − 1− 1

≤ 4
2k/2−2 − 2

=
2

2k/2−3 − 1
.

We have that

Advθ-pow-fnc
RSA,B (k) ≥ (1− Pr[Y > 2k]) · (1− Pr0[YBad]) ·

(
Pr1[AskS]

2qhash

)
.

Substituting the bounds for the above probabilities and re-arranging the terms, we get the claimed
result.

Finally, we estimate the time complexity of M . It is the time complexity of A plus the time for
simulating the random oracles. In the random oracle simulation, for each pair ((g,Gg), (h,Hh)), it is
sufficient to compute yh,g,0 = ze0 mod N0 and yh,g,1 = ze1 mod N1. Therefore, the time complexity
of M is that of A plus qgen · qhash ·O(k3).

21



C The Scheme Previously Proposed for Undeniable and Confirmer
Signature

C.1 Attacks on Anonymity

In [19], Gennaro, Krawczyk and Rabin described an undeniable/confirmer signature scheme based
on RSA. In their case the signature for a message m is s where s = m̄d mod N and m̄ is a one-way
encoding. The signature may be verified by proving that se = m̄ (mod N) where the verification
exponent e is known to the signer/confirmer. This scheme requires that the moduli be products of
safe primes. Later the scheme was generalized to use arbitrary RSA moduli [18]. To handle adaptive
attacks on anonymity it is clear that the one-way encoding must also be randomized. Hence, a
signature becomes a pair (r, s) where r is random and s = H(m, r)d (mod N) where H(m, r) is the
randomized one-way encoding (such as PSS [4]).

In [17], Galbraith and Mao pointed out the Gennaro–Krawczyk–Rabin scheme does not provide
anonymity. They showed the following attacks:

Jacobi Symbols Attack Since d is odd it follows that the Jacobi symbols
(

s
N

)
and

(
H(m,r)

N

)
are

equal. Hence, given a pair (H(m, r), s) and a user’s public key N , if
(

s
N

) 6=
(

H(m,r)
N

)
then the

signature is not valid for that user. This shows that the scheme does not have anonymity.

Signature Length Attack A simple observation that seems to be folklore is that standard RSA
signature does not provide anonymity, even when all moduli in the system have the same length.
Suppose an adversary knows that the signature s is created under one of two keys (N0, d0) or
(N1, d1) (length of N0 and N1 are k), and suppose N0 ≤ N1. If s ≥ N0 then the adversary
knows it was created under (N1, d1).

C.2 Undeniable and Confirmer Signature with Expanding by Galbraith and Mao

In [17], Galbraith and Mao proposed a new RSA-based scheme. We describe their scheme.

Definition 16 ([17]). The common-key generation algorithm Cgen takes a security parameter k
and returns parameters k, k0 and k1 such that k0(k) + k1(k) < k for all k > 1. The key generation
algorithm Kgen takes k, k0, k1, runs the key-generation algorithm of RSA, and gets N, e, d, p, q where
p, q the safe prime (i.e. (p − 1)/2 and (q − 1)/2 are also prime). It picks g from Z∗N and sets
h ← gd mod N . The public key pk is (N, g, h), k, k0, k1 and the secret key sk is (N, e, d, p, q), k, k0, k1.
Let G0 : {0, 1}∗ → {0, 1}k1, G1 : {0, 1}k1 → {0, 1}k0, G2 : {0, 1}k1 → {0, 1}k−k0−k1−1, and F :
{0, 1}k → {0, 1}k be hash functions.

Sign(m) Sign2(m, r)

1 r
R← {0, 1}k0 w ← G0(m||r)

2 m̄ ← Sign2(m, r) r∗ ← G1(w)⊕ r

3 t
R← {c ∈ ZN | c2 = ±m̄ (mod N)} M ← 0||w||r∗||G2(w)

4 s ← td mod N m̄ ← M

5 u
R← {0, 1, . . . , b(22k − s)/Nc} while

((
m̄
N

) 6= 1
)
repeat m̄ ← F (m̄)

6 ŝ ← s + uN return m̄
7 return (ŝ, r)

Conf (respectively Deny) is a non-interactive designated verifier proof which proves the knowledge
of an integer e such that g = he (mod N) and ŝ2e = ±Sign2(m, r) (mod N) (resp. g = he (mod N)
and ŝ2e 6= ±Sign2(m, r) (mod N)). Note that ŝ = s + uN = s (mod N) and all users can
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compute Sign2(m, r) given m, r, and N . The equivalence class of this scheme is EC(m, (ŝ, r), pk) =
{(m, (±s± uN, r))|s = ŝ mod N, u ∈ {0, 1, 2, . . . , b(22k − s)/Nc}}.
Since using a Blum integer N , for every m̄ ∈ Z∗N with

(
m̄
N

)
= 1, it follows that either m̄ or −m̄ is

a square. One can compute square-root and randomly chooses t from four possibilities in step 3.
Since

(
t
N

)
is not fixed, their scheme prevents the Jacobi symbols attack. In step 5 and 6, it extends

signatures of length k to be bit-strings of length 2k. Since 0 ≤ ŝ < 22k and ŝ is indistinguishable
from a random 2k-bit string for any N whose length is k, their scheme prevents the signature length
attack (See also [14].).

It is clear that if a message-signature pair (m, (ŝ, r)) is valid for pk = (N, g, h) then (m, (±s ±
uN, r)) is also valid where s = ŝ mod N and u ∈ {0, 1, . . . , b(22k − s)/Nc}. Thus, Galbraith and
Mao defined the equivalence class for their scheme as EC(m, (ŝ, r), pk) = {(m, (±s ± uN, r))|s =
ŝ mod N, u ∈ {0, 1, . . . , b(22k − s)/Nc}}.

Galbraith and Mao proved that their scheme provides anonymity in the random oracle model
under the assumption that the composite decision Diffie-Hellman problem is hard. They also proved
that their scheme is existential unforgeable in the random oracle model under the assumption that
factoring integers which are products of safe primes is hard.

D The Schemes Previously Proposed for Ring Signature

D.1 Ring Signature with Expanding by Rivest, Shamir, and Tauman

In [25], Rivest, Shamir, and Tauman constructed ring signature schemes in which all the ring member
use RSA as their individual signature schemes. Each user can uses the RSA moduli whose lengths
are different from other users.

Definition 17 ([25]). Let `, k, and b be security parameters. Let E be a symmetric encryption scheme
over {0, 1}b using `-bit keys and h be a hash function which maps arbitrary strings to `-bit strings.
They use h to make a key for E. Each user has an RSA public key Pi = (Ni, ei, ki) and secret key
Si = (Ni, di, ki) where ki ≥ k by running the key generation algorithm of RSA. Let r be a number of
ring member. We define the extended trap-door permutation gi over {0, 1}b as follows: for any b-bit
input xi define nonnegative integers qi and ri so that xi = qiNi + ri and 0 ≤ ri < Ni. Then

gi(xi) =
{

qiNi + (rei
i mod Ni) if (qi + 1)Ni ≤ 2b

xi otherwise.

The signing algorithm is as follows:

ring-sign(m,P1, P2, . . . , Pr, s, Ss)
for each i ∈ {1, . . . , s− 1, s + 1, . . . , r} do

xi
R← {0, 1}b; yi ← gi(xi)

v
R← {0, 1}b

find ys s.t. Ch(m),v(y1, . . . , yr) = v

xs ← g−1
s (ys)

return σ = (P1, P2, . . . , Pr, v, x1, x2, . . . , xr)

ring-verify(m,σ) computes yi ← gi(xi) for each xi and z ← Ch(m),v(y1, . . . , yr). It returns valid if
and only if z = v.

If b is sufficiently large (e.g. 160 bits larger than any of the Ni), gi is a one-way trap-door per-
mutation, and Rivest, Shamir, and Tauman proved this scheme is unconditionally signer-ambiguous
and existential unforgeable under adaptive chosen message attack in the ideal cipher model assuming
RSA is one-way.
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D.2 Ring Signature with RSACD by Hayashi, Okamoto, and Tanaka

We describe the scheme with RSACD by Hayashi, Okamoto, and Tanaka [20]. Their scheme is almost
the same as the Rivest–Shamir–Tauman scheme. They used fRSACD

Ni,e,k
(·) instead of gi(·).

Definition 18. The values `, k, E, h, r are the same as those of the Rivest–Shamir–Tauman scheme.
Each user has a public key Pi = (Ni, ei, k) and secret key Si = (Ni, di, k) by running the key generation
algorithm of RSACD with security parameter k (i.e. the size of Ni is k). The signing algorithm is as
follows:

ring-sign(m,P1, P2, . . . , Pr, s, Ss)
for each i ∈ {1, . . . , s− 1, s + 1, . . . , r} do

xi
R← {0, 1}k; yi ← fRSACD

Ni,ei,k
(xi)

v
R← {0, 1}k

find ys s.t. Ch(m),v(y1, . . . , yr) = v

xs ← gRSACD
Ns,ds,k(ys)

return σ = (P1, P2, . . . , Pr, v, x1, x2, . . . , xr)

ring-verify(m,σ) computes yi ← fRSACD
Ni,ei,k

(xi) for each xi and z ← Ch(m),v(y1, . . . , yr). It returns
valid if and only if z = v.

Hayashi, Okamoto, and Tanaka proved this scheme is unconditionally signer-ambiguous and exis-
tential unforgeable under adaptive chosen message attack in the ideal cipher model assuming RSACD
is one-way.
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