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Abstract

Moderately-hard functions are useful for many applications and there are quite many papers con-
cerning on moderately-hard functions. However, the formal model for moderately-hard functions have
not been proposed. In this paper, first, we propose the formal model for moderately-hard functions.
For this purpose, we construct the computational model and investigate the properties required for
moderately-hard functions. Then, we propose that some particular functions can be used as moderately-
hard functions. These functions are based on two ideas: the difficulty of factoring prq and sequential
computation of primitive functions.
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1 Introduction

One of key ideas in cryptography is using intractable problems, i.e. problems that cannot be solved
efficiently by any feasible machine, in order to construct secure protocols. There are tight connections
between complexity theory and cryptography.

However, the concept of hard functions, e.g. the one-way functions, is sometimes considered to be too
strong. As we will see later, many tasks, ranging from ones such as combating spam mails to ones such as
few-round zero-knowledge, require another notion of intractability called moderately hardness. While there
are many applications, where the moderately intractability is needed, the study of moderately hardness
has not been much done, compared with the strict intractability.

Dwork and Naor [7] suggested moderately-hard functions for “pricing via processing” in order to deter
abuse of resources, such as spam. Bellare and Goldwasser [4, 3] suggested “time capsules” for key escrowing
in order to deter widespread wiretapping. A major issue there is to verify at escrow-time that the right
key is escrowed. Rivest, Shamir, and Wagner [12] suggested “time-locks” for encrypting data so that it is
released only in the future. This is the first scheme that takes into account the parallel power of attackers.
They suggested using the “power function,” i.e. computing f(x) = g22x

mod n, where n is a product of two
large primes. Without knowing the factorization of n, the best way that is known is repeated squaring—a
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very sequential computation in nature. However, in their setting no measures are taken to verify that
the puzzle can be unlocked in the desired time. Baneh and Naor [2] introduced and constructed “timed
commitment” schemes. Timed commitment is commitment in which there is an optional forced opening
phase enabling the receiver to recover with effort the committed value without the help of the committer.
They suggested that moderately-hard functions can be used to various applications, e.g. fair contract
signing schemes, collective coin flipping schemes, and zero-knowledge protocols.

These proposed functions are all CPU-bound. The CPU-bound approach might suffer from a possible
mismatch in processing among different types of machines, e.g. PDAs versus servers. In order to remedy
these disparities, Adadi, Burrows, Manasse, and Wobber [1] proposed an alternative computational ap-
proach based on memory latency. Their suggestion is to design pricing functions requiring a moderately
large number of scattered memory accesses. Since memory latencies vary much less across machines than
do clock speeds, memory-bound functions are more equitable than CPU-bound functions.

As we have seen above, moderately-hard functions are useful for many applications and there are
quite many papers concerning on moderately-hard functions. However, the formal model for moderately-
hard functions have not been proposed. In the first half of this paper, we propose the formal model for
moderately-hard functions. For this purpose, we construct the computational model and investigate the
properties required for moderately-hard functions. In the second half of this paper, we propose that some
particular functions can be used as moderately-hard functions. These functions are based on two ideas:
the difficulty of factoring prq and sequential computation of primitive functions.

This paper is organized as follows. In Section 2, we provide the model of moderately-hard functions.
We construct the computational model and investigate the required properties for moderately-hard func-
tions. In Section 3, we suggest to use some particular functions based on the difficulty of factoring prq
as moderately-hard functions. In Section 4, we propose moderately-hard functions based on the idea of
sequential computing. We conclude in Section 5.

2 The Model of Moderately-Hard Functions

Moderately-hard functions have many applications, e.g. timed commitment schemes, fair contract signing
schemes, collective coin flipping schemes, and zero-knowledge protocols. As above, moderately-hard func-
tions are useful tools. However, there seems no formal model for moderately-hard functions. In this section,
we provide this formal model. We should model the required properties for moderately-hard functions re-
flecting the real world. For example, in real contemporary hardware, there are (at least) two kinds of space:
ordinary memory (the vast majority) and cache—a small amount of storage on the same integrated circuit
chip as the central processing unit. Cache can be accessed roughly 100 times more quickly than ordinary
memory, so the computational model needs to differentiate them. In addition, when a desired value is not
in cache (cache miss) and an access to memory is made, a small block of adjacent words (a cache line) is
brought into cache simultaneously “for free”.

2.1 The Model of Computation

Before we specifying the required properties of moderately-hard functions, we provide the the model of
computation. We consider the machines with memory. The random-access machine (RAM) models the
essential features of traditional computers. The random-access machine has a central processing unit
(CPU) and a random access memory unit. The CPU has a small number of storage locations called
registers whereas the random-access memory has a large number. All operations performed by the CPU
are performed on data stored in its registers.

The CPU implements a fetch and execute cycle in which it alternately reads an instruction from a
program stored in the random-access memory and executes it. This memory is called random-access
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because the time to access a stored word is the same for all words1. The random-access memory has
m = 2µ storage locations each containing a b-bit word, where µ and b are integers. The combination of
this memory and the CPU described above is the bounded-memory RAM. When no limit is placed on the
number of memory words, this combination defines the unbounded-memory RAM.

A parallel computer can perform more than one operation at a time. Parallelism is common in computer
science today.

The parallel random-access machine (PRAM), the canonical structured parallel machine, consists of
a bounded set of processors and a common memory containing a potentially unlimited number of words.
Each processor is similar to the random-access machine (RAM) except that its CPU can access locations
in both its local random-access memory and the common memory. During each PRAM step, the RAMs
execute the following steps synchronously: they (a) read from the common memory, (b) perform a local
computation, and (c) write to the common memory. Each RAM has its own program and program counter
as well as a unique identifying number that it can access to make processor-dependent decisions.

If access by more than one RAM to the same location is disallowed, access is exclusive. If this restriction
does not apply, access is concurrent. Four combinations of these classifications apply to reading and
writing. The strongest restriction is placed on the Exclusive Read/Exclusive Write (EREW) PRAM, with
successively weaker restrictions placed on the Concurrent Read/Exclusive Write (CREW) PRAM, the
Exclusive Read/Concurrent Write (ERCW) PRAM, and the Concurrent Read/Concurrent Write (CRCW)
PRAM.

In performing a computation on a PRAM, it is typically assumed that the input is written in the lowest
numbered locations of the common memory. PRAM computations are characterized by the number of
RAMs in use, and that of PRAM steps taken. Both measures are usually stated as a function of the size
of a problem instance, i.e. the number of input words and their total length in bits.

In this paper, we consider a restricted version of the random-access machine for our purpose. A
restricted PRAM consists of several restricted RAMs and a common memory. Each restricted RAM has
a local random-access memory and several counters. We take into consideration plural restricted RAMs
for our restricted PRAM setting. We describe the restricted PRAM model in Figure 1. These restricted
RAMs run according to each own algorithm. However, these cannot compute even basic calculation, e.g.
additions, by themselves. Instead, several oracles are prepared. There exists the addition oracle, the
multiplication oracle, the comparison oracle, the exponentiation oracle, and the random oracles (if exist)
for computations. The restricted RAMs run and access to these oracles simultaneously according to the
descriptions in their algorithms. Let the restricted RAMs be RAM1, · · · , RAMn. Each restricted RAM
has the local counters which count the number of access to the oracles. The counters are prepared to each
oracle. For example, if the RAM1 accesses the addition oracle once, the counter of RAM1 for the addition
oracle is increased by one. Except these counters for the oracles, each restricted RAM has the counter for
access to the common memory, and that for the number of steps of the restricted RAM’s algorithm. Each
restricted RAM computes the intended function by accessing the oracles according to its own description
of the algorithm. We estimate the computational complexity as the function of the values of the counters.
We call the restricted RAM and PRAM described above RAM and PRAM, respectively, in the rest of this
paper.

In our PRAM model, we restrict the access of RAMs to the common memory as done in the standard
PRAM model. The strongest restriction is the Exclusive Read/Exclusive Write (EREW) PRAM, with
successively weaker restrictions is the Concurrent Read/Exclusive Write (CREW) PRAM, the Exclusive
Read/Concurrent Write (ERCW) PRAM, and the Concurrent Read/Concurrent Write (CRCW) PRAM.

For example, in order to estimate the costs in the memory-bound function, we can use the above general
model with the following setting. In our PRAM model, the common memory corresponds to the ordinary

1The Turing machine has a tape memory in which the time to access a word increases with its distance from the tape
head.
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Figure 1: The restricted PRAM.

memory and the local memory of each RAM corresponds to the cache. If there is not desired elements
in the local memory, the RAM accesses to the common memory and fetches the elements. In contrast to
accessing to the common memory with a cost, we assume each RAM can access to the own local memory
as many times as needed for free.

2.2 Properties of Moderately-Hard Functions

We define moderately hardness by dividing the definition into two parts. Let an input of a function f be
x and an output be y. We say a function f is moderately hard if,

1. there is no algorithm which can computes y given x in a small amount of time and

2. f can be computed in a certain amount of time.

We also consider the second property, which we name easy verifiability. We say a function has the
property of easy verifiability if anyone given x and y, can verify that f(x) = y in a small amount of time.
The easy verifiability is useful in various applications, e.g. timed commitment schemes.

The third property we require is that f has a shortcut. Shortcuts of moderately-hard functions share
a similar idea of trapdoors of one-way functions. A moderately-hard function with a shortcut is easy to
compute. For example, we consider the situation that the person who wants to send an electronic mails
has to compute a moderately-hard function in order to preventing junk mails. If we use a moderately-
hard function which has a shortcut, the shortcut permits the post office to grant bulk mails, such as an
announcement of a new product, at a price chosen by the post office, circumventing the cost of directly
computing the moderately-hard function for each recipient. The sender pays a fee and prepares a set of
letters and one of the trusted agents computes the moderately-hard function as needed for all the letters,
using the shortcut. Since the fee is levied to deter junk mail and not to cover the actual costs of the mail,
it can simply be turned over to the recipients of the message.

We formally define the moderately hardness, the easy verifiability, and the shortcuts as follows.
The difficulty of functions is decided by the computational complexity in the PRAM model proposed

in Section 2. Assume the PRAM has n RAMs, RAM1, . . . , RAMn. Define a moderately-hard function f
as X 7→ Y .
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Definition 1 (Moderately Hardness). A function f is called moderately hard if the following two
conditions hold:

1. Consider an algorithms A in the PRAM model. For all i, let the numbers of RAMi access to the
addition oracle, the multiplication oracle, the comparison oracle, the exponentiation oracle, the ran-
dom oracles, and the common memory, and that of steps of A, be ai, bi, ci, di, ei, fi, and gi,
respectively. For every algorithm A, every positive polynomial p(·), and all sufficiently large s,
Pr[A(x, 1s) ∈ Y ] < 1

p(s) , where x is chosen from X at random and s is the size of a element of
Y , in time

F (a1. . . . , an, b1, . . . , bn, . . . , g1, . . . , gn) < C,

where F is a cost function and C is a predetermined number which determines the difficulty of
computing f .

2. Consider an algorithm B in the PRAM model. For all i, let the numbers of RAMi access to the
addition oracle, the multiplication oracle, the comparison oracle, the exponentiation oracle, the ran-
dom oracles, and the common memory, and that of steps of B, be a∗i , b∗i , c∗i , d∗i , e∗i , f∗i , and g∗i ,
respectively. There exists a probabilistic algorithm B, which on input x ∈ X, outputs y ∈ Y , where
f(x) = y, in time

F (a∗1. . . . , a
∗
n, b∗1, . . . , b

∗
n, . . . , g∗1 , . . . , g∗n) < C∗,

where C∗ is a predetermined number.

Definition 2 (Easy Verifiability). Consider an algorithms A in the PRAM model. For all i, let the
numbers of RAMi access to the addition oracle, the multiplication oracle, the comparison oracle, the expo-
nentiation oracle, the random oracles, and the common memory, and that of steps of A be a′i, b′i, c′i, d′i,
e′i, f ′i , and g′i, respectively. There exists a probabilistic algorithm A, which on input x ∈ X, y ∈ Y , decides
whether f(x) = y or not, in time

F (a′1, . . . , a
′
n, b′1, . . . , b

′
n, . . . , g′1, . . . , g

′
n) < C ′,

where F is a cost function and C ′ is a predetermined number.

Let S be the set of shortcuts, which let computing f be easy, of f .

Definition 3 (Shortcuts). Consider an algorithms A in the PRAM model. For all i, let the numbers of
which RAMi access to the addition oracle, the multiplication oracle, the comparison oracle, the exponenti-
ation oracle, the random oracles, and the common memory, and that of steps of A, be a′′i , b′′i , c′′i , d′′i , e′′i ,
f ′′i , and g′′i , respectively. The function f has a shortcut if there exists a probabilistic algorithm A, which
on input x ∈ X and s ∈ S, computes y ∈ Y , where f(x) = y, in time

F (a′′1 , . . . , a′′n, b′′1 , . . . , b′′n, . . . , g′′1 , . . . , g′′n) < C ′′,

where F is a cost function and C ′′ is a predetermined number.

3 Candidates of Moderately-Hard Functions: Idea 1

In this paper, we propose that some particular functions based on two ideas can be used as moderately-
hard functions. In this section, we adopt several functions which are based on the difficulty of factoring
composite n = prq, which both p and q are the same size primes.

The security of many cryptographic techniques depends on the intractability of the integer factorization
problem. The moduli of the form n = prq have found many applications in cryptography. For example,

5



Fujioka, Okamoto, and Miyaguchi [8] used a modulus n = p2q in an electronic cash scheme. Okamoto and
Uchiyama [9] used n = p2q for a public key system. Takagi [13] observed that the RSA decryption can be
performed significantly faster by using a modulus of form n = prq. In all these applications, the factors p
and q are approximately the same size. The security of systems relies on the difficulty of factoring n.

Boneh, Durfee, and Howgrave-Graham [5] showed that factoring n = prq becomes easier as r gets
bigger. For example, when r is on the order of log p, their algorithm factors n in a polynomial time. When
n = prq with r on the order of

√
log p, their algorithm is the fastest one for factoring n among the current

methods.
We use a non-standard notation and write exp(n) = 2n. Then, we can recover the factor p from n and

r by an algorithm with a running time of:

exp (
log p

r
) ·O(r12(log2 n)2).

The larger r is, the easier the factoring problem becomes.
The moderately-hard functions that we employ are based on the difficulty of the factorization of com-

posite n = prq. Set p and q are roughly the same size and n = prq. As above description, if we deal
with a large number as r, we can extract the prime factors p and q of n modestly quickly. We regard the
functions in this section as moderately-hard ones by using a composite number n which can be represented
as n = prq. The difficulty of computing our functions is based on the size of r. The reason why we employ
n which is not an abstract composite number represented by pe1

1 · · · pek

k for primes p1, . . . , pk, but a product
of two primes is to change the difficulty of our functions easily. In our setting, we can change the difficulty
of functions by only changing the size of r.

Here, we describe some notations that we use in this section. Let a ∈ Z∗n. If there exists an x ∈ Z∗n
such that x2 ≡ a (mod n), a is said to be a quadratic residue modulo n. If no such x exists, then a is
called a quadratic non-residue modulo n. The set of all quadratic residues modulo n is denoted by Qn and
the set of all quadratic non-residues is denoted by Q̃n. Let Jn be set of the elements a ∈ Z∗n with Jacobi
symbol

(
a
n

)
= 1, where n ≥ 3 is an odd integer.

We consider the following five functions are moderately hard.

f(x) =
√

x mod n (1)

f(x) =
{

1 x ∈ Qn

0 x ∈ Q̃n
(2)

f(x) = logg x mod n (3)

f(x) = n
√

x mod n2 (4)

f(x) = e
√

x mod n. (5)

In the rest of this section, we observe these functions.

3.1 Computing Square Roots

Dwork and Naor [7] suggested a moderately-hard function based on the difficulty of computing square roots
modulo p. The checking step for verification of computing requires only one multiplication. However, there
is no shortcut for their function, i.e. no one can compute the function easily.

We describe their function as follows.

Preparation: A prime p of length depending on difference parameter.
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Definition of f : The domain of f is Zp. f(x) =
√

x mod p.

Verification: Given x and y = f(x), check that y2 = x mod p.

The checking step for verification of computing requires only one multiplication. In contrast, no method
of computing square roots mod p is known that requires fewer than about log p multiplications. Thus, the
larger we take the length of p, the larger the difference between the time needed to evaluate f and the
time needed for verification.

Let p and q both primes of the same size, and r a positive integer. The first implementation of our
idea is based on the difficulty of computing square roots modulo a composite number n, where n = prq.
We describe the moderately-hard function as follows.

Preparation: Let n = prq, where p and q are both primes of the same size where p ≡ q ≡ 3 (mod 4),
and r is a positive integer.

Definition of f : The domain of f is Qn. f(x) =
√

x mod n.

Verification: Given x and y = f(x), check that y2 = x mod n.

Shortcut: The factors p and q of n and the integer r.

Computing f without Shortcut Information: Compute f according to the algorithm ComputeSquare-
Root.

Computing f with Shortcut Information: Compute f according to the algorithm ComputeSquare-
Root except for step 1.

Algorithm ComputeSquareRoot.
Input: a composite number n (n = prq, where p ≡ q ≡ 3 (mod 4)) and an element x ∈ Qn.
Output: a square root y of x mod n.

1. Find the prime factors of n.
2. Do the following:

2.1. Compute rq = x(p+1)/4 mod q by using the Square-and-Multiply algorithm.
3. Compute rp such that x ≡ r2

p (mod pr) as follows, where pr is represented by
∑l

i=0 ki2i:
3.1. Compute rp = x(p+1)/4 mod p.
3.2. For i from 1 to l do the following:

3.2.1. Compute rp = rp + x−r2
p

2rp
mod p2i

.

3.2.2. Compute rp = rp + x−r2
p

2rp
mod pr.

4. Do the following:
4.1. Set a0 ← pr, b0 ← q, t0 ← 0, t ← 1, s0 ← 1, and s ← 0.
4.2. Compute u = ba0

b0
c and b = a0 − ub0.

4.3. While b > 0, do the following:
4.3.1. Compute v = t0 − ut and set t0 ← t and t ← v.
4.3.2. Compute v = s0 − us and set s0 ← s, s ← v, a0 ← b0 and b0 ← b.
4.3.3. Compute u = ba0

b0
c and b = a0 − ub0.

5. Compute y = rptq + rqsp
r mod n.

6. Return y.

The square roots of an element x modulo n can be extracted by the Chinese Remainder theorem
quickly, if we know the prime factors p and q of n. In order to see that the output of the algorithm
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ComputeSquareRoot is correct, we observe step 3. If p is a prime and p ≡ 3 (mod 4), the square roots
of x modulo p are ±xp+1/4.

Theorem 4. Let s, t be integers where s ≤ t ≤ 2s, p be a prime, and x be an element such that x =
a2 mod ps for an element a ∈ Z∗n. If we know a, we can compute the square roots c of x modulo pt as
c = ±a± (x− a2)/2a mod pt, which holds x = c2 mod pt

Proof: We set c = ±a + yps mod pt.
We have

x = a2 ± 2ayps + y2p2s mod pt

x = a2 ± 2ayps mod pt.

Therefore,

y = ±x− a2

2aps
mod pt.

Consequently, c = ±a± (x− a2)/2a mod pt. tu

Theorem 4 means if we know the square roots of x modulo ps, we also know those modulo pt. Here, t,
s are integers, where s ≤ t ≤ 2s. Therefore, if we compute a square root of x modulo p, we can compute
a square root of x modulo pr quickly. More precisely, if we know a square root modulo p then we first
compute that modulo p2, and we next compute that modulo p4 in a similar way. Finally, we can obtain
that modulo pr.

The function computing a square root modulo n has shortcuts. When we want to change the difficulty
of the function, the only thing we have to do is changing the size of r. We do not need to change the size
of outputs of the function. Therefore, even if we want to change the difficulty of the functions, we can use
the same size moduli. On the other hand, the function computing a square root modulo p seems not to
have shortcuts, and in order to change the difficulty of the function, we have to change the size of modulo.

3.2 Deciding Quadratic Residuosity

We can also use the decisional version of square roots problem for moderately-hard functions. In this
section, we describe the function which is based on the difficulty of distinguishing x ∈ Jn is a quadratic
residue or not. Unfortunately, this function seems not to be able to check the validity of the solution
directly. To solve this problem, we use prime factors of a composite number n as a shortcut and give it to
the verifier. Then, the verifier can compute f quickly and verify the value by using the shortcut.

Preparation: Let n = prq, where p and q are both primes of the same size and r is a positive integer.

Definition of f : The domain of f is Jn.

f(x) =
{

1 x ∈ Qn

0 x ∈ Q̃n
(6)

Verification: Given x, y = f(x), p, and q, check by using the algorithm DistinguishQuadraticResidue
except for step 1.

Shortcut: The factors p and q of n and the integer r.

Computing f without Shortcut Information: Compute f according to the algorithm DistinguishQuadrati-
cResidue.

8



Computing f with Shortcut Information: Compute f according to the algorithm DistinguishQuadrati-
cResidue except for step 1.

Algorithm DistinguishQuadraticResidue.
Input: a composite number n (n = prq) and an element x ∈ Jn.
Output: y = 1 if x ∈ Qn and y = 0 if x ∈ Q̃n

1. Find the prime factors of n.
2. Compute the Legendre symbol

(
x
p

)
of x mod p by the equation

(
x
p

)
= x(p−1)/2 mod p.

3. In a similar way, compute the Legendre symbol
(
x
q

)
of x mod q.

4. Return y = 1 if
(
x
p

)
=

(
x
q

)
= 1 and y = 0 otherwise.

3.3 Computing Discrete Logarithms

The security of many cryptographic techniques depends on the intractability of the discrete logarithm
problem. Let P be a prime. We consider a group Z∗P of order P − 1 with generator α. Let P − 1 = 2prq,
where p and q are both primes of the same size and r is a positive integer. In cryptographic settings, we
assume that there is no algorithm for solving the discrete logarithm problem in practical time. However,
if we take a large number for r to factorize P − 1, the discrete logarithm problem modulo a large prime
is reduced to that modulo a small prime. This means that the discrete logarithm problem of this type is
a modestly difficult (not infeasible) one. In this way, a function for computing discrete logarithms can be
used for a moderately-hard function.

We describe the moderately-hard function based on the difficulty of the discrete logarithm problem.

Preparation: Let n = 2prq, where p and q are both primes of the same size, n + 1 is also a prime, and
r is a positive integer. Let α be a generator of Z∗n+1.

Definition of f : The domain of f is Z∗n+1. f(x) = logα x.

Verification: Given α, x, and y = f(x), check that x = αy mod n + 1.

Shortcut: The factors p and q of n and the integer r.

Computing f without Shortcut Information: Compute f according to the algorithm Comput-
ingDiscreteLogarithm.

Computing f with Shortcut Information: Compute f according to the algorithm ComputingDis-
creteLogarithm except for step 1.
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Algorithm ComputingDiscreteLogarithm.
Input: a composite number n (n = 2prq), where n + 1 is a prime, a generator α of Z∗n+1, and an element x ∈ Z∗n+1.
Output: the discrete logarithm y = logα x.

1. Find the prime factors of n.
2. Do the following:

(Compute y2 = y mod 2.)
2.1. Compute ᾱ = αprq mod n + 1 and x̄ = xprq mod n + 1.
2.2. Compute y2 = logᾱ x̄.

3. Do the following:
(Compute yp = l0 + l1p + · · ·+ lr−1p

r−1, where yp = y mod pr.)
3.1. Set γ ← 1 and l−1 ← 0.
3.2. Compute ᾱ = αn/p.
3.3. For i from 0 to r − 1 do the following:

3.3.1. Compute γ = γαli−1pi−1
and x̄ = (xγ−1)n/pi+1

.
3.3.2. Compute li = logᾱ x̄.

3.4. Compute yp = l0 + l1p + · · ·+ lr−1p
r−1.

4. Do the following:
(Compute yq = y mod q.)
4.1. Compute ᾱ = α2pr

mod n + 1 and x̄ = x2pr

mod n + 1.
4.2. Compute yq = logᾱ x̄.

5. Compute the integer y which satisfies, y = y2 mod 2 y = yp mod pr, and y = yq mod q
by using the Chinese Remainder theorem.

6. Return y.

The domain Z∗P of this function is dense, and this property is useful for many applications. For example,
if we use this function for combatting spam mail, we make the sender compute f(m), where m is a message,
to charge some computational cost to the sender. Here, the message space is restricted to the domain of
the functions. Therefore, this dense property is useful. Note that the other functions we employ in this
section do not have this property.

3.4 Computing n-th Roots

Paillier [10] proposed an encryption scheme whose one-wayness is based on the problem of finding an
integer x ∈ Z∗n2 , where n is a product of two primes, which is represented as x = an mod n2 for an integer
a ∈ Z∗n2 . Paillier assumed that there is no efficient algorithm for this problem. However, this problem
can be solved in a small amount of time if we know the prime factors of n. This means if we take a large
number for r to factorize n, a function for computing an n-th residue can be used for a moderately-hard
function.

We describe the moderately-hard function as follows.

Preparation: Let n = prq, where p and q are both primes of the same size and r is a positive integer.

Definition of f : The domain of f is Z∗n. f(x) = n
√

x mod n2.

Verification: Given x and y = f(x), check that yn = x mod n2.

Shortcut: The factors p and q of n and the integer r.

Computing f without Shortcut Information: Compute f according to the algorithm Compute n-
thRoot.
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Computing f with Shortcut Information: Compute f according to the algorithm Compute n-
thRoot except for step 1.

Algorithm Compute n-thRoot.
Input: a composite number n (n = prq) and an element x ∈ Z∗n.
Output: an n-th root y of x.

1. Find the prime factors of n.
2. Do the following:

2.1. Compute a0 = p2r−1q(p− 1)(q − 1) and set b0 ← n, t0 ← 0, and t ← 1.
2.2. Compute l = ba0

b0
c and r = a0 − lb0.

3. While r > 0, do the following:
3.1. Compute s = (t0 − lt) mod p2r−1q(p− 1)(q − 1) and set t0 ← t and t ← s.
3.2. Set a0 ← b0 and b0 ← r and compute l = ba0

b0
c, and r ← a0 − lb0.

4. Compute y = xt mod n2.
5. Return y.

3.5 Computing e-th Roots

Rivest, Shamir, and Adleman [11] found the most widely used public-key cryptosystem, which is called RSA
cryptosystem. Takagi [13], Okamoto and Uchiyama [9], and Catalano, Gennaro, and Howgrave-Graham [6]
also proposed new cryptosystems. The RSA scheme and these variants employ different composite moduli.
As a part of the public key, each scheme employs e relatively prime to the modulus used in the scheme.
These cryptosystems are based on the difficulty of the factorization of a composite number. We employ a
modulus n = prq, where p and q are both primes of the same size and r is a positive integer. We define a
function as a moderately-hard one as follows.

Preparation: Let n = prq, where p and q are both primes of the same size and r is a positive integer.
Select a random number e such that 1 < e < pr−1(p− 1)(q − 1) and gcd(e, pr−1(p− 1)(q − 1)) = 1.

Definition of f : The domain of f is Z∗n. f(x) = e
√

x mod n.

Verification: Given x and y = f(x), check that ye = x mod n.

Shortcut: The factors p and q of n and the integer r.

Computing f without Shortcut Information: Compute f according to the algorithm Compute e-
thRoot.

Computing f with Shortcut Information: Compute f according to the algorithm Compute e-
thRoot except for step 1.

If we set e small, say e = 3, the verification step require an only small operation.
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Algorithm Compute e-thRoot.
Input: a composite number n (n = prq) and an element x ∈ Z∗n.
Output: an e-th root y of x.

1. Find the prime factors of n.
2. Do the following:

2.1. Compute a0 = pr−1(p− 1)(q − 1) and set b0 ← e, t0 ← 0, and t ← 1.
2.2. Compute l = ba0

b0
c and r = a0 − lb0.

3. While r > 0, do the following:
3.1. Compute s = (t0 − lt) mod pr−1(p− 1)(q − 1) and set t0 ← t and t ← s.
3.2. Set a0 ← b0 and b0 ← r and compute l = ba0

b0
c, and r ← a0 − lb0.

4. Compute y = xt mod n.
5. Return y.

3.6 Observation

We briefly mention the distinguished properties of the functions mentioned above. The function 2, which
distinguishes an element is a quadratic residue or not, is only a function whose way of computation for the
verification step and the computing step with shortcut information are the same. For the other functions,
the verification steps require only one exponentiation. In particular, the function 1 computing a square
root requires one multiplication and the function 5 computing an e-th root requires two multiplication
when e = 3.

The domains of the functions 1-5 are Qn, Qn, Z∗p , Z∗n, and Z∗n, respectively. The function 3 is especially
useful when we choose input elements randomly from the domain.

4 New Moderately-Hard Functions: Idea 2

The functions in the Section 3 are not immune to the parallel power of the attacker. The first scheme taking
into account such attackers is one by Rivest, Shamir, and Wagner [12]. They suggested using the “power
function,” i.e. computing f(x) = g22x

mod n, where n is a product of two large primes. Without knowing
the factorization of n, the best way that is known is repeated squaring—a sequential computation in nature.
The power function was also employed by Boneh and Naor [2]. In their paper, several applications which
are immune to parallel exhaustive search attack were proposed by using the power function. As far as
we know, the proposed functions which are immune to the parallel attackers seem to be only the power
function.

In this section, we propose another functions which are immune to parallel attackers. First, we define
moderately-hard functions by using an abstract function. Then, we apply the random oracles to this
construction.

4.1 The Moderately-Hard Functions with Abstract Functions

Our suggested functions are based on the idea of the sequential computation. We use the cut and choose
technique for verification, which reduces the communication cost to verify.

We define the functions by using an abstract function F whose domain and range are exactly the same.
We let the domain and range of our function be the same as those for F . Since our proposed function is
defined in a general way, we can construct multiple functions depending on the choice of F . For example,
if we set a function F as F (x) = x2, the resulting function is the same as the power function.

We describe our proposed function f as follows.
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Preparation: Let the domain and range of F be G.

Definition of f : The domain of f is G. f(x1) = {x1, . . . , xk}, where xi = F (xi−1) for i = 2, . . . , k. We
can change the difficulty by choice of k.

Verification: Choose s numbers a1, . . . , as at random, where s ≤ k, and check whether xai
= F (xai−1)

or not for a1, . . . , as. Here, s is a number which is large enough not to deceive the verifier.

Shortcut: F ’s shortcut.

Computing f without Shortcut Information: Compute xi = F (xi−1) for i = 2, . . . , k without F ’s
shortcut.

Computing f with Shortcut Information: Compute xi = F (xi−1) for i = 2, . . . , k by using F ’s
shortcut at computation of F for each i (i = 1, . . . , k).

The existence of the shortcut for F implies that for f .

4.2 The Moderately-Hard Functions with the Random Oracles

We observe an example of F . As far as we know, there exists no memory-bound function which is immune
to the parallel power of the attacker. In this section, by using the random oracles, we can construct a
function which has both properties.

We employ the random oracles for constructing a function. We describe the computing algorithm for
the function. Assume A is the person who wants to compute the function and B is the verifier of the
validity of the function. Our function involves a large fixed forever table T of truly random integers. Both
A and B have the table T . We consider A and B as PRAM algorithms. Before we present the algorithm,
we introduce hash functions H0, H1, H2, H3, and H4 for changing the sizes of inputs. We model them as
idealized random functions, which we call the random oracle. The function H0 is used during initialization.
It takes as input an element x and a trial number k and returns an array A. The function H1 takes an
array A as input and returns an index c into the table T . The function H2 takes as input an array A and
an element of T and returns a new array, which obtains assigned to A. The function H3 takes as input an
array A and returns a string of s bits. The function H4 takes as input a string of e bits and returns a new
trial number k. We described our function as the algorithm Computing f .

Algorithm Computing f .
Input: a table T , an element x, and a trial number k.
Output: {(ci, T [ci])} for i = 1, . . . , t if A computes H1 t times.

1. Set j ← 0
2. Compute A = H0(x, k).
3. For i from 0 to l do the following:

3.1. Compute cj = H1(A) and A = H2(A, T [cj ]).
3.2. Compute j = j + 1.

4. If all bits of H3(A) are zero, do the following:
4.1. Set k = H4(H3(A)).
4.2. Go to Step 1.

5. Return ((c1, T1), . . . , (cj , T [cj ])).

The part except step 4 in this algorithm is F represented in Section 4.1. We now estimate the expected
running time of A and B. Since A obtains an array such that H3(A) = 0s with probability 1/2s in step 3,
the expected number of evaluating H3 is 2s. Furthermore, we require and l times computation of H1 and
H2 before evaluating H3(A). Therefore, the expected number of evaluating H1 for A is l2e.
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On the other hand, B can verify the value in parallel. If the size of T is twice as the number of A’s
local memory, A has to access the table T (l2e)/2 times on average. If B stores A’s outputs {(ci, T [ci])}
for i = 1, . . . , l and each RAM of s RAMs in B accesses to T and checks the validity of l/s (ci, T [ci])
separately, B can verify efficiently with respect to the number of table access.

5 Concluding Remarks

In this paper, we have proposed the formal model for moderately-hard functions. For this purpose, we have
constructed the computational model and investigated the properties required for moderately-hard func-
tions. Then, we have proposed that some particular functions can be used as moderately-hard functions.
These functions are based on two ideas: the difficulty of factoring prq and the sequential computation of
the primitive functions.
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