
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: Computer Science

ISSN 1342-2812

Universal Designated-Verifier Signature
with Aggregation

Akihiro Mihara and Keisuke Tanaka

December 2004, C–203



Universal Designated-Verifier Signature with Aggregation

Akihiro Mihara Keisuke Tanaka ∗

Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology,
W8-55, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

{mihara0, keisuke}@is.titech.ac.jp
December 22, 2004

Abstract

There is a signature scheme which can aggregate two or more persons’ signatures to one, called
an aggregate signature. In this paper, we propose a scheme of an aggregate signature which has
additional functionality allowing any holder of a signature to designate the signature to any desired
designated-verifier. By this functionality, no one other than the designated-verifier can verify the
signature, so the signature passed to other persons would not appear where the signer does not
intend to send it in the form which anyone can verify.

Keywords

Aggregate Signature, Designated-Verifier Signature, Bilinear Group-Pair, Bilinear Diffie-Hellman

1 Introduction

An aggregate signature scheme was proposed by Boneh, Gentry, Lynn, and Shacham [3] which is a
signature scheme that supports aggregation: given n signatures on n distinct messages from n distinct
users, it is possible to aggregate all these signatures into a single short signature. This single signature
and the n original messages will convince the verifier that the n users did indeed sign the n original
messages (i.e., user i signed message mi for i = 1, · · · , n).

Suppose each of n users has a public-private key pair (PKi, SKi). User Ui signs message mi to
obtain a signature σi. Then there is a public aggregation algorithm that takes as input all of σ1, · · · , σn

and outputs a short compressed signature σ. Anyone can aggregate the n signatures. Moreover, the
aggregation can be performed incrementally. That is, signatures σ1, σ2 can be aggregated into σ12

which can then be further aggregated with σ3 to obtain σ123.
Incidentally, the transfer problem exists in signature schemes besides the forge problem. Consider

the case when a verifier transfers the signature given by the signer to the third-party. Obviously the
third-party as well as the verifier can verify using the signer’s public key. In other words, there is the
risk that the signature passed to other persons appear where the signer does not intend to send it in the
form which anyone can verify. In order to solve this transfer problem, signature schemes are proposed,
in which any designated verifier can verify. In undeniable signature schemes [7, 6, 5], the interaction
with the signer is required at the verification. Therefore a signer can allow only designated verifier
to verify. In universal designated-verifier signature schemes, proposed by Steinfeld, Bull, Wang, and
Piperzyk [11], any holder of a signature (not necessarily the signer) allows to designate the signature to
any desired designated-verifier using the verifier’s public key. Given the designated-verifier signature,
the designated-verifier can verify that the message was signed by the signer, but is unable to convince
anyone else of this fact. This was proposed by Jakobsson, Sako, and Impagliazzo [8]. However, the
scheme in [8] allows designation of signatures only by the signer (since designation requires the signer’s
secret key), whereas [11] allows anyone who obtains a signature to designate it; this means “universal.”

∗Supported in part by NTT Information Sharing Platform Laboratories and Grant-in-Aid for Scientific Research,
Ministry of Education, Culture, Sports, Science, and Technology, 14780190, 16092206.

1



In this paper, we propose a scheme of an aggregate signature which has additional functionality
allowing any holder of a signature to designate the signature to any desired designated-verifier. There-
fore, the transfer problem can be solved in our aggregate signature scheme. Our scheme uses a bilinear
group-pair, and its security depends on the bilinear Diffie-Hellman problem.

The rest of this paper is organized as follows: in Section 2, we introduce the bilinear group-pair
and the bilinear Diffie-Hellman problem. In Section 3, we present our scheme model. In Section 4, we
propose our scheme and investigate the security properties of our scheme. We conclude in Section 5.

2 The Bilinear Group-Pair

Our scheme is built using a powerful cryptographic tool called a bilinear group-pair. In this section
we review the definition of the bilinear group-pair, proposed by [3]. We refer the reader to [9, 10, 2, 4]
for a discussion of how to build a concrete instance of such a group-pair using supersingular elliptic
curves, and to [1] for efficient algorithms on computing the bilinear map over these group-pairs.

Definition 2.1 (The Bilinear Group-Pair [3]) Let (G1, G2) denote a pair of groups of prime order
|G1| = |G2|. We call the group-pair (G1, G2) a bilinear group-pair if the pair (G1, G2) has the following
properties:

1. Efficient Group Operations: The group operations in G1 and G2 are efficiently computable (in
some representation).

2. Existence of Efficient Bilinear Map: There exists an efficiently computable bilinear map e :
G1 × G2 → GT (for some image group GT of order |GT | = |G1| = |G2|) having the following
properties:

(a) Bilinearity: e(ua1
1 , ua2

2 ) = e(u1, u2)a1·a2 , ∀(u1, u2) ∈ G1 ×G2, ∀(a1, a2) ∈ Z2.

(b) Non-Degeneracy: e(u1, u2) 6= 1, ∀(u1, u2) ∈ G1/{1} ×G2/{1}.

3. Existence of Efficient Isomorphism: There exists an efficiently computable group isomorphism
ψ : G1 → G2. (When g1 is a generator of G1 and g2 is a generator of G2, ψ(g1) = g2.)

The security of our scheme relies on the computational hardness of the bilinear Diffie-Hellman
problem associated with the bilinear group-pair used in our scheme. It is generally believed that this
problem is hard, although it is easier than the computational Diffie-Hellman problem. We review the
bilinear Diffie-Hellman problem.

Definition 2.2 (The Bilinear Diffie-Hellman (BDH) Problem) Given (G1, G2, g1, g
a
1 , gb

1, g
c
2) for

uniformly random a, b, c ∈ Z|G1|, compute e(g1, g2)a·b·c.
We say that a bilinear group-pair (G1, G2) is a (t, ε)-bilinear group-pair for bilinear Diffie-Hellman,

if no t-time algorithm has advantage at least ε in solving the bilinear Diffie-Hellman problem in
(G1, G2).

3 The Model of Universal Designated-Verifier Signature with
Aggregation

First, we introduce an aggregate signature. Consider a set U of users. Each user Ui ∈ U has a signing
key pair (ski, pki). We wish to aggregate the signatures of U. Each user Ui produces a signature σi

on a message mi of her choice. These signatures are then combined into a single aggregate σ by an
aggregating party. The aggregating party, who can be different from and untrusted by the users in U,
has access to the users’ public keys, to the messages, and to the signatures on them, but not to any
private keys. The result of this aggregation is an aggregate signature σ whose length is the same as
that of any of the individual signatures. This aggregate has the property that a verifier given σ along

2



with the identities of the parties involved and their respective messages is convinced that each user
signed her respective message.

Second, we show our scheme. We propose how to change an aggregate signature into a designated-
verifier signature. Consider the case where the signers want the only designated-verifier to verify their
signature σ. The designated-verifier has a designate key pair (skdv, pkdv). Anyone, who can be different
from the signers, can change σ into a designated-verifier signature σ̂ using pkdv. The designated-verifier
can verify that σ̂ is the signers’ signature. But the designated-verifier cannot mention the verification
to a third-party.

Our scheme consists of the following procedures:

- Setup: The secret and public keys are generated for the signers and the designated-verifier,
respectively.

- Sign: The signers sign their messages using their secret keys, respectively.

- Aggregate: The holder of the signers’ signatures aggregates all these signatures into a single
short signature.

- Designate: The holder of the aggregate signature designates it into a designated-verifier signa-
ture using the designated-verifier’s public key.

- Verify: The holder of the designated-verifier signature decides the validity of the signature.

Our scheme satisfies the following properties:

- Non-Transferability: The holder of the designated-verifier signature is not able to convince
anyone else of the validity of the signature.

- Unforgeability: Only the signers can sign the messages.

4 Our Scheme

4.1 Description

Our scheme is defined as follows:

- common parameter generation

(G1, G2): the bilinear group-pair

e : G1 ×G2 → GT , (|G1| = |G2| = |GT | = p: prime)

ψ : G1 → G2, the isomorphism

cp = (G1, G2, g1), the common parameter

H: {0, 1}∗ → G2

- signing key generation

input: cp

xi ∈R Zp: the secret key of Ui

yi ← gxi
1 : the public key of Ui

- designated-verifier key generation

input: cp

xdv ∈R Zp: the secret key of the designated-verifier

ydv ← gxdv
1 : the public key of the designated-verifier

3



- signing of Ui

input: xi, the message mi of Ui

hi ← H(mi)

σi ← hxi
i : the signature of Ui

- verification of Ui

input: mi, yi, σi

hi ← H(mi)

e(g1, σi)
?= e(yi, hi)

- aggregation

input: σ1, · · · , σk

σ =
∏k

i=1 σi: the aggregate signature

- aggregate verification

input: m1, · · · ,mk, y1, · · · , yk, σ

e(g1, σ) ?=
∏k

i=1 e(yi, hi)

- designation

input: σ, ydv

σ̂ = e(ydv, σ)

- designated verification

input: xdv, m1, · · · ,mk, y1, · · · , yk, σ̂

σ̂
?=

∏k
i=1 e(yxdv

i , hi)

4.2 Efficiency

The signature σi and the aggregate signature σ are the elements of G2, and the designated-verifier
signature σ̂ is the element of GT . Therefore, all the sizes of σi, σ, and σ̂ are at most p for |G1| =
|G2| = |GT | = p.

Creating σ̂ requires k hash computations, k exponentiations in G2, k − 1 multiplications in G2,
and one e(·, ·) computation. Verifying σ̂ requires the same number of times about hash computation,
exponentiation, and multiplication, and k e(·, ·) computations.

4.3 Security

We will prove two properties, non-transferability and unforgeability.

4.3.1 Non-Transability

The purpose of the non-transferability property is to prevent a designated-verifier from using the
designated-verifier signature σ̂ on a message m to produce evidence which convinces a third-party that
the message m was signed by the signer. It is easy to prove this property.

Since the designated-verifier can compute σ̂ =
∏k

i=1 e(yxdv
i , hi) using y1, · · · , yk, m1, · · · ,mk, he

can forge a designated-verifier signature to himself. When the third-party received a pair (σ̂,m), she
cannot distinguish whether it was made by the real signer, or was forged by the designated-verifier. In
other words, since both the signer and the designated-verifier can make a designated-verifier signature,
although the third-party can understand that it was made by either the signer or the designated-verifier,
she cannot understand which made.

On the other hand, since only the signer and the designated-verifier can make a designated-verifier
signature, the designated-verifier can verify it when he received it from the signer.

From the above, it is turned out that our scheme is satisfied with the non-transferability property.

4



4.3.2 Unforgeability

In the case of a our scheme there are two types of unforgeability properties, σ and σ̂, to consider.
It is easy to see that, since anyone can get σ̂ corresponding to σ calculating σ̂ = e(ydv, σ), the σ̂-
unforgeability property implies the σ-unforgeability property. Then we prove only σ̂-unforgeability.

We formalize this property. The adversary A is given a single user’s public key and a designated-
verifier’s public key. His goal is the existential forgery of σ̂. We give the adversary power to choose all
public keys except the challenge public key. The adversary is also given access to a signing oracle on
the challenge key. His advantage is defined to be his probability of success in the following game.

Setup. The forger A is provided with a user’s public key y1 and a designated-verifier’s public key ydv,
generated at random.

Queries. Proceeding adaptively, A requests signatures with y1 on messages of his choice.

Response. Finally, A outputs k − 1 additional public keys y2, · · · , yk. Here k is at most N , a game
parameter. A also outputs messages m1, · · · ,mk, and a forged signature σ̂ by the k users, each
on his corresponding message.

The forger wins if the signature σ̂ is a valid signature on messages m1, · · · , mk under keys y1, · · · , yk,
and σ̂ is nontrivial, i.e., A did not request a signature on m1 under y1.

Definition 4.1 (σ̂-unforgeability) A forger A (t, qH , qS , N, ε)-breaks an N -user signature scheme
if: A runs in time at most t; A makes at most qH queries to the hash function and at most qS queries
to the signing oracle; A’s advantage is at least ε; and the forged signature is by at most N users. A
signature scheme is (t, qH , qS , N, ε)-secure against existential forgery if no forger (t, qH , qS , N, ε)-breaks
it.

Theorem 4.2 Let (G1, G2) be a (t′, ε′)-bilinear group pair for bilinear Diffie–Hellman, with each group
of order p, with respective generators g1 and g2, with an isomorphism ψ computable from G1 to G2,
and with a bilinear map e : G1 × G2 → GT . Then the scheme on (G1, G2) is (t, qH , qS , N, ε)-secure
against existential forgery in the chosen-key model for all t and ε satisfying

ε ≥ e(qS + N) · ε′ and t ≤ t′ − (qH + 2qS + N + 4)TG − 3Te − (N + 2)Tψ,

where e is the base of natural logarithms, and TG, Te, and Tψ are the running time bounds for perform-
ing a group operation in G1, G2, or GT , evaluating the bilinear map e, and evaluating the isomorphism
ψ, respectively.

proof. In the random oracle model for H(·), we can prove the unforgeability of the scheme assuming
the BDH assumption.

Suppose A is a forger algorithm that (t, qS , qH , N, ε)-breaks the signature scheme. We show how
to construct a t′-time algorithm B that solves BDH in (G1, G2) with probability at least ε′. This will
contradict the fact that (G1, G2) are a (t′, ε′)-BDH group pair.

Let g1 be a generator of G1. Algorithm B is given g1, u, v ∈ G1 and w ∈ G2, where u = ga
1 , v = gb

1,
and w = gc

2. Its goal is to output e(g1, g2)abc. Algorithm B simulates the challenger and interacts with
forger A as follows.

Setup. Algorithm B starts by giving A the generator g1, the public key y1 = u · gr1
1 ∈ G1, and the

designated-verifier public key ydv = v · gr2
1 ∈ G1, where r1 and r2 are random in Zp.

Hash Queries. At any time algorithm A can query the random oracle H. To respond to these queries,
B maintains a list of tuples 〈M,h, d, z〉 as explained below. We refer to this list as the H-list.
The list is initially empty. When A queries the oracle H at a point m ∈ {0, 1}∗, algorithm B
responds as follows:

1. If the query m already appears on the H-list in some tuple 〈M,h, d, z〉 then algorithm B
responds with H(m) = h ∈ G2.

5



2. Otherwise, B generates a random coin z ∈ {0, 1} so that Pr[z = 0] = 1/(qS + N).

3. Algorithm B picks a random d ∈ Zp. If z = 0 holds, B computes h ← w · ψ(g1)d ∈ G2. If
z = 1 holds, B computes h ← ψ(g1)d ∈ G2.

4. Algorithm B adds the tuple 〈M, h, d, z〉 to the H-list and responds to A as H(m) = h.

Note that, either way, h is uniform in G2 and is independent of A’s current view as required.

Signature queries. Algorithm A requests a signature on some message m under the challenge key
y1. Algorithm B responds to this query as follows:

1. Algorithm B runs the above algorithm for responding to H-queries on m, obtaining the
corresponding tuple 〈M, h, d, z〉 on the H-list. If z = 0 holds then B reports failure and
terminates.

2. We know that z = 1 holds and hence h ← ψ(g1)d ∈ G2. Let σ = ψ(u)d · ψ(g1)r1b ∈ G2.
Observe that σ = ha+r1 and therefore σ is a valid signature on m under the public key
y1 = ga+r1

1 . Algorithm B gives σ to algorithm A.

Output. Finally, A halts. Algorithm B concedes failure, or A returns a value k (where k ≤ N),
k − 1 public keys y2, · · · , yk ∈ G1, k messages m1, · · · ,mk, and a forged designated signature
σ̂ ∈ G2. The messages mi must all be distinct, and A must not have requested a signature on
m1. Algorithm B runs its hash algorithm at each mi, 1 ≤ i ≤ k, obtaining the k corresponding
tuples 〈Mi, hi, di, zi〉 on the H-list.

Algorithm B now proceeds only if z1 = 0 and, for 2 ≤ i ≤ k, zi = 1; otherwise B declares failure
and halts. Algorithm B calculates and outputs the required e(g1, g2)abc as

σ̂ · {(
k∏

i=2

e(ydv, ψ(yi)di)) · e(yr2
1 · vr1 , h1) · e(u, ψ(v)d1)}−1.

Since z1 = 0, it follows that h1 = w · ψ(g1)
d1 . For 2 ≤ i ≤ k, since zi = 1, it follows

that hi = ψ(g1)
di . The signature σ̂ must satisfy the designated verification equation that

σ̂ =
∏k

i=1 e(yxdv
i , hi). Then,

σ̂ = e(yxdv
1 , h1) ·

k∏

i=2

e(yxdv
i , hi)

= e(yxdv
1 , w · ψ(g1)d1) ·

k∏

i=2

e(yxi

dv, ψ(g1)di)

= e(y1, w · gd1
2 )xdv ·

k∏

i=2

e(ydv, ψ(yi)di),

and when I = {(∏k
i=2 e(ydv, ψ(yi)di)) · e(yr2

1 · vr1 , h1) · e(u, ψ(v)d1)}−1,

σ̂ · I = e(y1, w · gd1
2 )xdv · {e(yr2

1 · vr1 , h1) · e(u, ψ(v)d1)}−1

= e(ga+r1
1 , gc+d1

2 )b+r2 · e(gar2+br1+r1r2
1 , g−c−d1

2 ) · e(ga
1 , g−bd1

2 )

= e(g1, g2)(a+r1)(c+d1)(b+r2)−(ar2+br1+r1r2)(c+d1)−abd1

= e(g1, g2)abc.

This completes the description of algorithm B. It remains to show that B solves the given instance
of the BDH problem in (G1, G2) with probability at least ε′. To do so, consider the three events needed
for B to succeed:

E1: B does not abort as a result of any of A’s signature queries.

E2: A generates a valid and nontrivial aggregate signature forgery (k, y2, · · · , yk,m1, · · · ,mk, σ̂).

6



E3: Event E2 occurs, and, in addition, z1 = 0, and, for 2 ≤ i ≤ k, zi = 1, where for each i, zi is
the z-component of the tuple containing mi on the H-list.

Algorithm B succeeds if all of these events happen. The probability Pr[E1 ∧ E3] decomposes as

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2|E1] · Pr[E3|E1 ∧ E2]. (∗)
The following claims give a lower bound for each of these terms.

Claim1. The probability that algorithm B does not abort as a result of A’s aggregate signature queries
is at least (1− 1/(qS + N))qS . Hence, Pr[E1] ≥ (1− 1/(qS + N))qS .

proof. Without loss of generality it is assumed that A does not ask for the signature of the same
message twice. It is proved by induction that after A makes l signature queries the probability that
B does not abort is at least (1 − 1/(qS + N))l. The claim is trivially true for l = 0. Let m(l) be A’s
l’th signature query and let 〈m(l), h(l), d(l), z(l)〉 be the corresponding tuple on the H-list. Then, prior
to A’s issuing the query, the bit z(l) is independent of A’s view; the only value that could be given
to A that depends on z(l) is H(m(l)), but the distribution of H(m(l)) is the same whether z(l) = 0 or
z(l) = 1. Therefore, the probability that this query causes B to abort is at most 1/(qS + N). Using
the inductive hypothesis and the independence of z(l), the probability that B does not abort after
this query is at least (1 − 1/(qS + N))l. This proves the inductive claim. Since A makes at most qS

signature queries the probability that B does not abort as a result of all signature queries is at least
(1− 1/(qS + N))qS .

Claim2. If algorithm does not abort as a result of A’s queries then algorithm A’s view is identical to
its view in the real attack. Hence, Pr[E2|E1] ≥ ε.

proof. The public key given to A is from the same distribution as public keys produced by algorithm
KeyGen. Responses to hash queries are as in the real attack since each response is uniformly and
independently distributed in G2. Since B did not abort as a result of A’s signature queries, all
its responses to those queries are valid. Therefore A will produce a valid and nontrivial aggregate
signature forgery with probability at least ε. Hence Pr[E2|E1] ≥ ε.

Claim3. The probability that algorithm B does not abort afterA outputs a valid and nontrivial forgery
is at least (1−1/(qS +N))N−1 ·1/(qS +N). Hence, Pr[E3|E1∧E2] ≥ (1−1/(qS +N))N−1 ·1/(qS +N).

proof. Events E1 and E2 have occurred, and A has generated some valid and nontrivial forgery
(k, y2, · · · , yk,m1, · · · ,mk, σ̂). For each i, 1 ≤ i ≤ k, let 〈mi, hi, di, zi〉 be the tuple corresponding to
mi on the H-list. Algorithm B will abort unless A generates a forgery such that z1 = 0 and, for i > 1,
zi = 1.

Since all the messages m1,m2, · · · ,mk are distinct, the values z1, z2, · · · , zk are all independent of
each other; as before, H(mi) = hi is independent of zi for each i.

Since its forgery is nontrivial, A cannot have asked for a signature on m1 under the key y1. It can
thus have no information about the value of z1; in the forged signature, z1 = 0 occurs with probability
1/(qS + N). For each i > 1, A either asked for a signature under the key y1 on mi, in which case
zi = 1 with probability 1, or it didn’t, and zi = 1 with probability 1 − 1/(qS + N). Regardless, the
probability that zi = 1 for all i, 2 ≤ i ≤ k, is at least (1− 1/(qS + N))k−1 ≥ (1− 1/(qS + N))N−1.

Therefore Pr[E3|E1 ∧ E2] ≥ (1− 1/(qS + N))N−1 · 1/(qS + N), as required.

To complete the proof of Theorem 4.2, we use the bounds from the claims above in equation (∗).
Algorithm B produces the correct answer with probability at least

(
1− 1

qS + N

)qS+N−1

· 1
qS + N

· ε ≥ ε/e

qS + N
≥ ε′,

as required.

Algorithm B’s running time is the same as A’s running time plus the time is takes to respond to
(qH + qS) hash queries and qS signature queries, and the time to transform A’s final forgery into the
BDH solution. Each query requires an exponentiation in G2. The output phase requires at most N hash

7



computations, one inversions, three exponentiations, three e computations, and N +2 ψ computations.
We assume that TG, Te, and Tψ are the running time bounds for performing a group operation in G1,
G2, or GT , evaluating the bilinear map e, and evaluating the isomorphism ψ, respectively. Hence, the
total running time is at most t+(qH +2qS +N +4)TG +3Te +(N +2)Tψ as required. This completes
the proof of Theorem 4.2.

5 Conclusion

We have introduced a scheme of an aggregate signature which has additional functionality allowing any
holder of a signature to designate the signature to any desired designated-verifier. By this functionality,
no one other than the designated-verifier can verify the signature, so the signature passed to other
persons would not appear where the signer does not intend to send it in the form which anyone can
verify.

References

[1] Barreto, P., Kim, H., Lynn, B., and Scott, M. Efficient Algorithms for Pairing-based
Cryptosystems. In Advances in Cryptology – CRYPTO 2002 (Santa Barbara, California, USA,
August 2002), M. Yung, Ed., vol. 2442 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 354–368.

[2] Boneh, D., and Franklin, M. Identity-Based Encryption from the Weil Pairing. In Advances
in Cryptology – CRYPTO 2001 (Santa Barbara, California, USA, August 2001), J. Kilian, Ed.,
vol. 2139 of Lecture Notes in Computer Science, Springer-Verlag, pp. 213–229.

[3] Boneh, D., Gentry, C., Lynn, B., and Shacham, H. Aggregate and Verifiably Encrypted Sig-
natures from Bilinear Maps. In Advances in Cryptology – EUROCRYPT 2003 (Warsaw, Poland,
May 2003), E. Biham, Ed., vol. 2656 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 416–432.

[4] Boneh, D., Lynn, B., and Shacham, H. Short Signatures from the Weil Pairing. In Advances in
Cryptology – ASIACRYPT 2001 (Gold Coast, Australia, December 2001), C. Boyd, Ed., vol. 2248
of Lecture Notes in Computer Science, Springer-Verlag, pp. 514–532.

[5] Chaum, D. Zero-Knowledge Undeniable Signatures. In Advances in Cryptology – EUROCRYPT
’90 (Aarhus, Denmark, May 1990), I. Damg̊ard, Ed., vol. 473 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 458–464.

[6] Chaum, D., and van Antwerpen, H. Undeniable Signatures. In Advances in Cryptology
– CRYPTO ’89 (Santa Barbara, California, USA, August 1989), G. Brassard, Ed., vol. 435 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 212–216.

[7] Gennaro, R., Krawczyk, H., and Rabin, T. RSA-based Undeniable Signatures. In Advances
in Cryptology – CRYPTO ’97 (Santa Barbara, California, USA, August 1997), B. S. Kaliski, Jr.,
Ed., vol. 1294 of Lecture Notes in Computer Science, Springer-Verlag, pp. 132–149.

[8] Jakobsson, M., Sako, K., and Impagliazzo, R. Designated Verifier Proofs and Their Appli-
cations. In Advances in Cryptology – EUROCRYPT ’96 (Saragossa, Spain, May 1996), U. Maurer,
Ed., vol. 1070 of Lecture Notes in Computer Science, Springer-Verlag, pp. 143–154.

[9] Joux, A. A one round protocol for tripartite Diffie Hellman. In Fourth Algorithmic Number
Theory Symposium (ANTS IV) (Berlin, 2000), vol. 1838 of Lecture Notes in Conputer Science,
Springer-Verlag, pp. 385–394.

[10] Joux, A. The Weil and Tate Pairings as Building Blocks for Public Key Cryptosystems. In Fifth
Algorithmic Number Theory Symposium (ANTS V) (Berlin, 2002), vol. 2369 of Lecture Notes in
Conputer Science, Springer-Verlag, pp. 20–32.

8



[11] Steinfeld, R., Bull, L., Wang, H., and Piperzyk, J. Universal Designated-Verifier Signa-
tures. In Advances in Cryptology – ASIACRYPT 2003 (Taipei, Taiwan, November 2003), C. S.
Laih, Ed., vol. 2894 of Lecture Notes in Computer Science, Springer-Verlag, pp. 523–542.

9


