
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: Computer Science

ISSN 1342-2812

A Criterion and Schemes on the Random Oracle
Model

Manabu Suzuki and Keisuke Tanaka

December 2004, C–205

A Criterion and Schemes on the Random Oracle Model

Manabu Suzuki Keisuke Tanaka ∗

Dept. of Mathematical and Computing Sciences
Tokyo Institute of Technology

W8-55, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
{suzuki1, keisuke}@is.titech.ac.jp

December 24, 2004

Abstract

A study of the random oracle model seems to be concentrated to showing the gap between
the schemes in the random oracle model and the schemes whose random oracles are replaced with
functions chosen at random from some function ensembles. We consider a different direction on
the study of the schemes in the random oracle model. We focus on the size of the tables necessary
to describe all of the entries to be potentially queried in the random oracle model. We show how
to reduce the table sizes of the schemes for encryption and signature in the random oracle model.
In particular, we apply this idea to PSS-R and OAEP and show the security of our schemes.

Keywords: Random oracle, PSS-R, OAEP

1 Introduction

The random oracle model is an idealization of cryptographic hash functions, which assumes that all
parties including the adversary have oracle access to truly random functions. Bellare and Rogaway [1]
introduced the random oracle methodology. They argued that the random oracle model provides a
bridge between theory and practice. It consists of two steps. First, design a secure scheme in the
random oracle model. Then, replace the random oracles with functions chosen at random from some
function ensemble and provide all parties including the adversary with a succinct description of the
function. This gives an implementation of the idealized scheme in the real world.

Canetti, Goldreich, and Halevi [4] showed that there exist signature and encryption schemes that
are secure in the random oracle model, but for which any implementation of the random oracle results
in insecure schemes. Each of their schemes has an adversary that when given as input the description
of an implementation of the oracle breaks the scheme that uses this implementation.

Pointcheval and Stern [8] proved that for every 3-round public-coin identification protocol, the
signature scheme obtained by applying the Fiat-Shamir transformation is secure in the random oracle
model. However, Goldwasser and Taumann [6] proved that the Fiat-Shamir paradigm for designing
signature schemes does not always lead to those of security. In particular, they demonstrated the
existence of a secure 3-round public-coin identification scheme for which the corresponding signature
scheme obtained by applying the Fiat-Shamir paradigm is not secure with respect to any function
ensemble implementing the public function.

∗Supported in part by NTT Information Sharing Platform Laboratories and Grant-in-Aid for Scientific Research,
Ministry of Education, Culture, Sports, Science, and Technology, 14780190, 16092206.

1

Our contribution

A study of the random oracle model seems to be concentrated to showing the gap between the schemes
in the random oracle model and the schemes whose random oracles are replaced with functions chosen
at random from some function ensembles. We consider a different direction on the study of the
schemes in the random oracle model. We focus on the size of the tables necessary to describe all of
the entries to be potentially queried in the random oracle model. We show how to reduce the table
sizes of the schemes for encryption and signature in the random oracle model.

Let us consider the function f whose input size is n and output size is m. In order to describe
the function for a random oracle, we have to prepare a random table whose size is 2n ×m.

Our idea to reduce the table size of a random oracle is to replace one random oracle f with new
two random oracles f1, f2 such as f1 : {0, 1}n → {0, 1}(log m)c

and f2 : {0, 1}(log m)c → {0, 1}m. This
reduces the table size from 2n × m to 2n × (log m)c + 2(log m)c × m. Note that the security of the
scheme is no longer preserved by applying our idea.

In particular, we apply this idea to PSS-R and OAEP and show the security of our schemes. PSS-
R is an RSA-based signature scheme proposed by Bellare and Rogaway [3]. This signature scheme
uses two random oracles and provides unforgeability against the adaptive chosen message attack.
OAEP was introduced by Bellare and Rogaway [2]. This scheme uses two random oracles. Fujisaki,
Okamoto, Pointcheval and Stern [5] proved that OAEP provides IND-CCA2.

Organization

The rest of this paper is organized as follows. In Section 2, we provide some definitions. We also
review PSS-R and OAEP. We apply our idea described above to PSS-R in Section 3, and to OAEP
in Section 4. We conclude in Section 5.

2 Preliminaries

In this section, we provide some definitions.

2.1 RSA

Definition 1 (The RSA family). RSA is a family of trapdoor permutations. It is specified by
the RSA generator RSA, which on input 1k, picks a pair of random distinct (k/2) bit primes and
multiplies them to produce a modulus N . It also picks at random an encryption exponent e ∈ Z∗ϕ(N)
and computes the corresponding decryption exponent d so that ed ≡ 1 mod N . The generator returns
N, e, d. These specify f : Z∗N → Z∗N and f−1 : Z∗N → Z∗N , which are defined by f(x) = xe mod N and
f−1(y) = yd mod N .

An inverting algorithm for RSA named I, gets an input N, e, y and tries to find f−1(y). Its success
probability is defined by the probability it outputs f−1(y) when N, e, d are obtained by running RSA
and y is set to f(x) for an x chosen at random from Z∗N . The standard definition of security asks that
the success probability of any PPT algorithm is a negligible function of k. However, in this paper, we
are interested in how much time an inverting algorithm uses and how much probability it achieves.

Definition 2 (Exact security of the RSA family). An inverting algorithm is said to be a t
inverter, where t : N → N , if its running time plus the size of its description is bounded by t(k), in
some fixed standard model of computation. We say that I (t, ε)-breaks RSA, where ε ∈ [0, 1], if I is
a t inverter and for each k the success probability of I is at least ε(k). Finally, we say that RSA is
(t, ε)-secure if there is no inverting algorithm which (t, ε)-breaks RSA.

2

2.2 Signature schemes with message recovery

In this paper, we discuss PSS-R proposed by Bellare and Rogaway [3], which is the signature scheme
with message recovery. We describe the definitions of signature schemes with message recovery and
the security of signature schemes.

Definition 3 (Signature schemes with message recovery). A signature scheme Π[k0, k1]=(Gen,
Sign, Rec) is specified by a key generation algorithm Gen, a signing algorithm Sign, and a recovering
algorithm Rec. The first two should be probabilistic, and all three run in expected polynomial time.
Given 1k, where k is the security parameter, the key generation algorithm outputs a pair of matching
public and secret keys (pk, sk). The signing algorithm takes the message M and the secret key sk and
returns a signature x = Signsk(M) of M . The recovering algorithm takes a candidate signature x′ and
the public key pk and returns Recpk(x′) ∈ {0, 1}∗ ∪ {REJECT}. The distinguished point REJECT is
used to indicate that the recipient rejected the signature. A returned value of M ∈ {0, 1}∗ indicates
that the verifier accepts the message M as an authentic one. We demand that if x is produced as
x ← Signsk(M) then Recpk(x) = M .

Definition 4 (Security of signature schemes). A forger takes as input a public key pk, where
(pk, sk) ← Gen(1k), and tries to forge signatures with respect to pk. The forger is allowed a chosen
message attack in which it can request and obtain signatures of messages of its choice. This is modeled
by allowing the forger oracle access to the signing algorithm. The forger is deemed successful if it
outputs a valid forgery, namely a message/signature pair (M, x) such that Recpk(x) = M where M
has never been requested to the signing oracle. The forger is said to be a (t, qsig, qhash)-forger if its
running time plus description size is bounded by t(k), and it makes at most qsig(k) and qhash(k)
queries of its signing oracle and hash oracles, respectively. Such a forger F is said to (t, qsig, qhash, ε)-
break the signature scheme if for every k, the probability that F outputs a valid forgery is at least
ε(k). Finally we say that the signature scheme (Gen, Sign, Rec) is (t, qsig, qhash, ε)-secure if there is
no forger who (t, qsig, qhash, ε)-breaks the scheme.

2.3 Encryption schemes

We describe the definitions of public key encryption schemes and indistinguishability of encryption
schemes.

Definition 5 (Public key encryption schemes). A encryption scheme Π = (K, E ,D) is defined
by the three following algorithms. Given 1k, where k is the security parameter, the key generation
algorithm K outputs a pair of (pk, sk) of matching public and secret keys. This algorithm is proba-
bilistic. Given a message m and a public key pk, the encryption algorithm E produces a ciphertext c
of m. This algorithm may be probabilistic. Given a ciphertext c and the secret key sk, the decryption
algorithm D returns the plaintext m. This algorithm is deterministic.

Definition 6 (Indistinguishability of encryption schemes). This security notion requires com-
putational impossibility to distinguish between two messages, chosen by the adversary, one of which
has been encrypted, with a probability significantly better than one half. Her advantage Advind(A),
where the adversary A is seen as a 2-stage Turing machine (A1,A2), should be negligible, where
Advind(A) is formally defined as.

Advind(A) = 2×Prb,r[(pk, sk) ← K(1k), (m0,m1, s) ← A1(pk), c = Epk(mb; r) : A2(m0, m1, s, c) = b]−1.

2.4 PSS-R

In this section, we describe PSS-R. PSS-R is an RSA-based signature scheme proposed by Bellare
and Rogaway [3].

3

The signature scheme Π[k0, k1] =(Gen, Sign, Rec) is parameterized by k0 and k1, which are
numbers between 1 and k satisfying k0 + k1 ≤ k − 1.

The key generation algorithm Gen, on input 1k, runs RSA(1k) to obtain (N, e, d) and output
(pk, sk), where pk = (N, e) and sk = (N, d).

The signing and recovering algorithms make use of two hash functions. The first H called the
compressor maps as H : {0, 1}k−k1−1 → {0, 1}k1 and G called the generator maps as G : {0, 1}k1 →
{0, 1}k−k1−1. For simplicity of explication, we assume that the length of messages to be signed is
n = k − k0 − k1 − 1.

We now describe how to sign and verify. In the description, [M]n denote the n least significant
bits of M , while [M]n denotes the n most significant bits of M .

Sign(M)

1. r
R← {0, 1}k0 ; w ← H(M ‖ r)

2. r∗ ← [G(w)]k0 ⊕ r ; M∗ ← [G(w)]k−k0−k1−1 ⊕M

3. y ← 0 ‖ w ‖ r∗ ‖ M∗

4. x ← yd mod N

5. Return x.

Rec(x)

1. y ← xe mod N

2. Break up y as b ‖ w ‖ r∗ ‖ M∗.
3. r ← r∗ ⊕ [G(w)]k0

4. M ← M∗ ⊕ [G(w)]k−k0−k1−1

5. If H(M ‖ r) = w and b = 0, then return M , else return REJECT.

The step r
R← {0, 1}k0 indicates that the signer picks at random a seed r of k0 bits. The reason

we add 0 to y is to guarantee that y is in Z∗N .
In this scheme, the algorithm Sign is probabilistic. Therefore, a given message has many possible

signatures, depending on the value of r chosen by the signer.
The following proposition describes the security of PSS-R. The proof of the proposition is in

Appendix A.

Proposition 1. Suppose that RSA is (t′, ε′)-secure. Then for any qsig, qhash, the above signature
scheme Π[k0, k1] =(Gen, Sign, Rec) is (t, qsig, qhash, ε)-secure, where t(k) = t′(k)− [qsig(k)+qhash(k)+
1] · k0 ·O(k3) and ε(k) = ε′(k) + [2(qsig(k) + qhash(k))2](2−k0 + 2−k1) + 2−k0.

2.5 OAEP

In this section, we describe OAEP. OAEP was introduced by Bellare and Rogaway [2]. Fujisaki,
Okamoto, Pointcheval and Stern [5] proved that OAEP provides IND-CCA2 under the partial-domain
one-wayness of the underlying trapdoor permutation. They also uses two random oracles in the
scheme.

We define the partial-domain one-wayness and the set partial-domain one-wayness of permuta-
tion f .

Definition 7 ((τ, ε)-partial-domain one-wayness of f). We say a function f is (τ, ε)-partial-
domain one-wayness if for any adversary A whose running time is bounded by τ , the success proba-
bility Succpd-ow(A) is upper bounded by ε, where

Succpd-ow(A) = Prs,t[A(f(s, t)) = s].

4

Definition 8 ((τ, ε)-set partial-domain one-wayness of f). We say a function f is (τ, ε)-set
partial-domain one-wayness if for any adversary A that outputs a set of ` elements within time bound
τ the success probability Succs-pd-ow(A) = Prs,t[A(f(s, t)) = s] is upper bounded by ε, where

Succs-pd-ow(A) = Prs,t[A(f(s, t)) = s].

We briefly describe OAEP cryptosystem (K, E ,D) obtained from any trapdoor permutation gen-
erator f : {0, 1}k → {0, 1}k whose inverse is denoted by g.

We need two hash functions G and H. We assume both G and H are the random oracles such as
G : {0, 1}k0 → {0, 1}n+k1 and H : {0, 1}n+k1 → {0, 1}k0 , respectively.

We now describe how to generate keys. We also describe how to encrypt and decrypt. The size
of the plaintext m is n. In the description below, [M]n denote the n least significant bits of M , while
[M]n denotes the n most significant bits of M .

K(1k)

It specifies an instance of the function f , and of its inverse g. The public key pk is therefore f
and the secret key sk is g.

EG,H(pk, m; r)

1. s ← (m ‖ 0k1)⊕G(r)

2. t ← r ⊕H(s)

3. w ← s ‖ t

4. c ← f(w)

5. Return c.

DG,H(sk, c)

1. w ← g(c)

2. s ← [w]n+k1 , t ← [w]k0

3. r ← t⊕H(s)

4. m ← [s⊕G(r)]n, z ← [s⊕G(r)]k1

5. If z = 0k1 , then return m else return REJECT.

Fujisaki, Okamoto, Pointcheval and Stern [5] proved that OAEP provides IND-CCA2 under the
partial-domain one-wayness of the underlying trapdoor permutation. They also uses two random
oracles in the scheme. More precisely, the following security result holds. The proof of the theorem
is in Appendix B.

Proposition 2. Let A be a CCA2-adversary against the semantic security of OAEP conversion
(K, E ,D), with advantage ε and running time t, making qD, qG and qH queries to the decryption
oracle, and the hash functions G and H, respectively. Then, there exists an algorithm B such that
Succpd−ow(B) is greater than

1
qH

(ε− 10qDqG + 5qD + qG

2k0
− 10qD

2k1
),

and whose running time t′ ≤ t+qGqH(Tf +O(1)) where Tf denotes the time complexity of function f .

5

3 Our variant of PSS-R

In this section, we apply our idea to PSS-R. We describe our variant of PSS-R and prove the security.
Then we compare our variant and PSS-R with respect to the security and the table size of the random
oracle.

3.1 The scheme

We describe our variant of PSS-R. We describe Π[k0, k1] =(Gen, Sign, Rec).
The key generation algorithm Gen, on input 1k, runs RSA(1k) to obtain (N, e, d) and output

(pk, sk), where pk = (N, e) and sk = (N, d).
We use two random oracles H1 and H2 instead of H in PSS-R. We also use two random oracles

G1 and G2 instead of G in PSS-R. Let H1 : {0, 1}k−k1−1 → {0, 1}c1 , H2 : {0, 1}c1 → {0, 1}k1 , G1 :
{0, 1}k1 → {0, 1}c2 , and G2 : {0, 1}c2 → {0, 1}k−k1−1. In the above description, let c1 = O((log k1)c)
and c2 = O((log(k − k1))c), where c is a constant number.

We now describe how to sign and recover. We assume that the length of the message to be signed
is n = k − k0 − k1 − 1.

Sign(M)

1. r
R← {0, 1}k0 ; w1 ← H1(M ‖ r) ; w2 ← H2(w1) ; w3 ← G1(w2)

2. r∗ ← [G2(w3)]k0 ⊕ r ; M∗ ← [G2(w3)]k−k1−k0−1 ⊕M

3. y ← 0 ‖ w2 ‖ r∗ ‖ M∗

4. x ← yd mod N

5. Return x.

Rec(x)

1. y ← xe mod N

2. Break up y as b ‖ w2 ‖ r∗ ‖ M∗.

3. w3 ← G1(w2) ; r ← r∗ ⊕ [G2(w3)]k0

4. M ← M∗ ⊕ [G2(w3)]k−k1−k0−1

5. If H2(H1(M ‖ r)) = w2 and b = 0, then return M else return REJECT.

3.2 Security

We show the security of our variant of PSS-R.

Theorem 1. Suppose that RSA is (t′, ε′)-secure. Then for any qsig, qhash the signature scheme
Π[k0, k1] =(Gen, Sign, Rec) is (t, qsig, qhash, ε)-secure, where t(k) = t′(k)− [qsig(k)+ qhash(k)+ 1] · k0 ·
O(k3), ε(k) = ε′(k) + [2(qsig(k) + qhash(k))2](2−k0 + 2−c1 + 2−k1 + 2−c2) + 2−k0.

Proof. Let F be a forger which (t, qsig, qhash, ε)-breaks our variant. We present an inverter I which
(t′, ε′)-breaks the trapdoor permutation family RSA.

The simulation

The input to I is N, e and η, where η is chosen at random from Z∗N , and N, e, d are chosen by
running the generator RSA. We let f : Z∗N → Z∗N be f(x) = xe mod N . The inverter I wants to
compute f−1(η) = ηd mod N . It forms the public key N, e, and starts running F on input this key.
The forger F will make oracle queries. The inverter I must answer itself. We let Q1, . . . , Qqsig+qhash

6

denote the sequence of oracle queries that F makes. In the process of answering these queries, the
inverter I will build or define the function H1,H2, G1, G2. The inverter I maintain a counter i,
initially 0, which is incremented for each query and prepare empty lists named List G1, List G2,
List H1 and List H2.

Answering signing queries

1. Increment i and let Mi = Qi.

2. Pick r
R← {0, 1}k0 .

3. If rj = ri for some j ≤ i, then abort.

4. Pick w1
i

R← {0, 1}c1 .

5. If w1
j = w1

i for some j ≤ i, then abort.

6. Set H1(Mi ‖ ri) = w1
i into the List H1.

7. Repeat xi
R← Z∗N ; yi ← f(xi) until the first bit of yi is 0.

8. Break up yi to write it as 0 ‖ w2
i ‖ ri

∗ ‖ Mi
∗.

9. Set H2(w1
i) = w2

i into the List H2.

10. If w2
j = w2

i for some j ≤ i, then abort.

11. Pick w3
i

R← {0, 1}c2 .

12. If w3
j = w3

i for some j ≤ i, then abort.

13. Set G1(w2
i) = w3

i into the List G1.

14. Set G2(w3
i) = ri

∗ ⊕ ri ‖ Mi ⊕Mi
∗ into the List G2.

15. Return xi to F as the answer to signing query Qi = Mi.

Answering H1 oracle queries

1. Increment i and break up Qi as Mi ‖ ri.

2. Say Qi is old if Mj ‖ rj = Mi ‖ ri for some j ≤ i and new otherwise. Now if Qi is old then
set (w1

i , ri
∗,Mi

∗) = (w1
j , rj

∗,Mj
∗) and return w1

j . Else go to next step.

3. Repeat xi
R← Z∗N ; zi ← f(xi) ; yi ← ηzi mod N until the first bit of yi is 0.

4. Break up yi to write it as 0 ‖ w2
i ‖ ri

∗ ‖ Mi
∗.

5. Pick w1
i

R← {0, 1}c1 .

6. If w1
j = w1

i for some j ≤ i, then abort.

7. Set H1(Mi ‖ ri) = w1
i into the List H1.

8. Set H2(w1
i) = w2

i into the List H1.

9. Pick w3
i

R← {0, 1}c2 .

10. If w1
j = w1

i for some j ≤ i, then abort.

11. Set G1(w2
i) = w3

i into the List G1.

12. Set G2(w3
i) = ri

∗ ⊕ ri ‖ Mi ⊕Mi
∗ into the List G2.

13. Return w1
i to F as the answer to the H1 oracle query Qi = Mi ‖ ri.

Answering H2 oracle queries

1. Increment i and let w1
i = Qi.

7

2. If w1
i = w1

j for some j ≤ i,then return w2
i = H2(w1

j). Else pick a string α
R← {0, 1}k1 , set

w2
i = H2(w1

i) into the List H2 and return α to F as the answer to the H2 oracle query
Qi.

Answering G1 oracle queries

1. Increment i and let w2
i = Qi.

2. If w2
i = w2

j for some j ≤ i, then return w3
i = G1(w2

j). Else pick a string α
R← {0, 1}c2 , set

w3
i = G1(w2

i) into the List G1 and return α to F as the answer to the G1 oracle query Qi.

Answering G2 oracle queries

1. Increment i and let w3
i = Qi.

2. If w3
i = w3

j for some j ≤ i, then return G1(w3
j). Else pick a string α

R← {0, 1}k−k1−1, set
G1(w3

i) into the List G2 and return α to F as the answer to the G oracle query Qi.

Analysis

We first show that the validity of the simulation. We insist that the forger must use the random
oracles G1, G2,H1,H2 in order to output the signature.

We define some events to show the validity of the simulation. We denote (M+, x+) as a correct
pair of the message and the signature.

E1 : Forger outputs (M+, x+) without asking corresponding M+ ‖ r+ to the H1 oracle queries, but
asking corresponding w1+

, w2+
, w3+ to the H2, G1, G2 oracle queries.

E2 : Forger outputs (M+, x+) without asking corresponding w1+ to the H2 oracle queries but asking
corresponding M+ ‖ r+, w2+

, w3+ to the H1, G1, G2 oracle queries.

E3 : Forger outputs (M+, x+) without asking corresponding w2+ to the G1 oracle queries but asking
corresponding M+ ‖ r+, w1+

, w3+ to the H1,H2, G2 oracle queries.

E4 : Forger outputs (M+, x+) without asking corresponding w3+ to the G2 oracle queries but asking
corresponding M+ ‖ r+, w1+

, w2+ to the H1,H2, G1 oracle queries.

E5 : Forger uses the random oracle H1,H2, G1, G2 and the signing oracle in order to output (M+, x+)
asking any oracle.

Our goal is to estimate the probability that E5 occurs. It is not so hard to figure out Pr[E1],
Pr[E2], Pr[E3] and Pr[E4]. Since H1(M ‖ r) is unpredictable, the probability that E1 occurs is at
most 2−c1 . Similarly we can figure out that Pr[E2] ≤ 2−k1 , Pr[E3] ≤ 2−c2 , and Pr[E4] ≤ 2−(k−k1−1).

We can estimate that Pr[E5] ≥ 1− (Pr[E1] + Pr[E2] + Pr[E3] + Pr[E4]).
It shows that the forger must use the random oracle to forge a signature.
We now prove the theorem. We define the following events to analyze the security probability.

E6 : The inverter I never abort in step 3, 5, 10, and 12 in answering signing queries and step 6 and
10 in answering H1 oracle queries.

E7 : The inverter I cannot stop in step 7 in answering signing queries and step 3 in answering H1

oracle queries within 1 + k0 repetition.

8

Table size Security : (t, qsig, qhash, ε)-secure

PSS-R 2k−k1−1×k1 +2k1 × (k−k1− 1)
ε′(k) + [2(qsig(k) + qhash(k))2](2−k0 + 2−k1) + 2−k0

t′(k)− [qsig(k) + qhash(k) + 1] · k0 ·O(k3)

Our variant
2k−k1−1 × c1 + 2c1 × k1 + 2k1 ×
c2 + 2c2 × (k − k1 − 1)

ε′(k) + [2(qsig(k) + qhash(k))2](2−k0 + 2−c1 + 2−k1 + 2−c2) + 2−k0

t′(k)− [qsig(k) + qhash(k) + 1] · k0 ·O(k3)

Figure 1: The comparison of PSS-R and our variant

We can estimate that Pr[E6] ≤ 2(qsig + qhash)2(2−k0 + 2−c1 + 2−k1 + 2−c2).
Let us consider E7. The time for step 7 in answering signing queries and step 3 in answering H1

oracle queries can not be bounded. However, the expected time is two execution of the loop. Then
we make it a rule to stop the loop after 1 + k0 steps. Then, we can estimate that Pr[E7] ≤ 2−k0 .

Now we can figure out that ε(k) = ε′(k)+[2(qsig(k)+qhash(k))2](2−k0 +2−c1 +2−k1 +2−c2)+2−k0 .
The running time of I is that of F plus the time to choose the yi’s. The main thing here is

one RSA computation for each yi, which is cubic time (or better). We can say that t(k) = t′(k) −
[qsig(k) + qhash(k) + 1] · k0 ·O(k3).

3.3 Comparison

We now compare our variant and PSS-R with respect to the table size of the random oracle.
In PSS-R, the signing and verifying algorithms make use of two random oracles H and G. H :

{0, 1}k−k1−1 → {0, 1}k1 and G : {0, 1}k1 → {0, 1}k−k1−1. We need 2k−k1−1 × k1 table size to realize
the random oracle H, and 2k1 × (k− k1− 1) to random oracle G. Therefore, we need 2k−k1−1× k1 +
2k1 × (k − k1 − 1) table size in order to realize PSS-R.

In our variant, we use two random oracles H1 and H2 instead of H in PSS-R. We also use two
random oracles G1 and G2 instead of G in PSS-R. Let H1 : {0, 1}k−k1−1 → {0, 1}c1 , H2 : {0, 1}c1 →
{0, 1}k1 , G1 : {0, 1}k1 → {0, 1}c2 , and G2 : {0, 1}c2 → {0, 1}k−k1−1. In the above description, let
c1 = O((log k1)c) and c2 = O((log(k − k1))c), where c is a constant number. We need 2k−k1−1 × c1

table size to realize the random oracle H1, 2c1 × k1 to H2, 2k1 × c2 to G1 and 2c2 × (k − k1 − 1) to
G2. Thus, we need 2k−k1−1× c1 + 2c1 × k1 + 2k1 × c2 + 2c2 × (k− k1− 1) table size in order to realize
our variant.

We show the table sizes and the security of PSS-R and our variant in Figure 1. We can certainly
reduce the table size of PSS-R by applying our idea.

4 Our variant of OAEP

In this section, we apply our idea described to OAEP. We describe our variant of OAEP and prove
the security. Then we compare our variant and OAEP with respect to the security and the table size
of the random oracle.

4.1 The scheme

We describe our variant of OAEP.
We use two random oracles H1 and H2 instead of H in OAEP. We also use two random oracles

G1 and G2 instead of G in OAEP. Let G1 : {0, 1}k0 → {0, 1}c1 , G2 : {0, 1}c1 → {0, 1}k−k0 , H1 :
{0, 1}k−k0 → {0, 1}c2 , and H2 : {0, 1}c2 → {0, 1}k0 .

In the above description, let c1 = O((log(k − k0))c) and c2 = O((log k0)c), where c is a constant
number.

We now describe how to generate keys. We also describe how to encrypt and decrypt. The size
of the plaintext m is n.

9

K(1k)

It specifies an instance of the function f , and of its inverse g. The public key pk is therefore f
and the secret key sk is g.

EG1,G2,H1,H2
(pk, m; r1)

1. r2 ← G1(r1)
2. s1 ← (m ‖ 0k1)⊕G2(r2)
3. s2 ← H1(s1)
4. t ← r1 ⊕H2(s2)
5. w ← s1 ‖ t

6. c ← f(w)
7. Return c.

DG1,G2,H1,H2
(sk, c)

1. w ← g(c)
2. s1 ← [w]n+k1 , t ← [w]k0

3. s2 ← H1(s1)
4. r1 ← t⊕H2(s2)
5. r2 ← G1(r1)
6. m ← [s1 ⊕G2(r2)]n, z ← [s1 ⊕G2(r2)]k1

7. If z = 0k1 , then return m else return REJECT.

4.2 The security result

In the following, we prove that the scheme is IND-CCA2 in the random oracle model, relative to the
partial-domain one-wayness of function f . More precisely, the following exact security result holds.

Theorem 2. Let A be a CCA2-adversary against the semantic security of our variant scheme of
OAEP conversion (K, E ,D), with advantage ε and running time t, making qD, q′G and q′H queries to
the decryption oracle, and the hash functions G1, G2, H1,and H2, respectively. Then, there exist an
algorithm B such that Succpd−ow(B) is greater than

1
qH′

(ε− 10qDq′G + 5qD + q′G
2k0

− 5qDq′G + q′G
2c2

− 10qD

2k1
− 9qDqG + 7qD

2c1
),

and whose running time t′ ≤ t + q′G · q′H · (Tf + O(1)), where Tf denotes the time complexity of
function f .

In the above description, q′G = q1
G + q2

G and q′H = q1
H + q2

H .
In order to prove this thorem relative to the partial-domain one-wayness of the permutation, we

prove the following lemma.

Lemma 1. Let A be a CCA2-adversary against the semantic security of our variant of OAEP
conversion DG1,G2,H1,H2

(sk, c), with advantage ε and running time t, making qD, q′G and q′H queries
to the decryption oracle, and the hash functions G1, G2, H1,and H2, respectively. Then, there exists
an algorithm B such that Succs−pd−ow(B) is greater than

ε− 10qDq′G + 5qD + q′G
2k0

− 5qDq′G + q′G
2c2

− 10qD

2k1
− 9qDqG + 7qD

2c1
,

and whose running time t′ ≤ t+qG′qH′(Tf +O(1)), where Tf denotes the time complexity of function f .

In the above description, q′G = q1
G + q2

G and q′H = q1
H + q2

H .

10

4.3 The proof of the theorem

We prove lemma in three stages.
The first we present the reduction of the CCA2-adversary A attacking indistinguishability to the

algorithm B for breaking the partial-domain one-wayness of f . Note that, in the present proof, we
are interested in the security under the partial-domain one-wayness of f .

The second we present the simulation of the algorithm B. We present how B simulates the random
oracles G,H and the decryption oracle.

Finally, we analyze the success probability of our reduction in total. We analyze the decryption
oracle simulation employed in this reduction works correctly with overwhelming probability under
the partial-domain one-wayness of f and insist the lemma and the theorem.

4.3.1 The top level description of the reduction

In this first part, we recall how the reduction operates. Let A = (A1,A2) be an adversary against the
semantic security of (K, E ,D), under the chosen ciphertext attack. Within time bound t, A asks qD,
q′G, q′H queries to the decryption oracle and the random oracles G1, G2, H1 and H2, and distinguishes
the right plaintext with an advantage greater that ε. Let us describe the reduction of B.

1. Algorithm B is given a function f which is defined by the public key and c∗ ← f(s∗1, t
∗), for

(s∗1, t
∗) R← {0, 1}k−k0 × {0, 1}k0 . The aim of B is to recover the partial pre-image s∗1 to c∗.

2. Algorithm B runs A1 on the public data, and gets a pair of messages {m0,m1} as well as states
information st. It chooses a random bit b, and then gives c∗ to A1, as the cipher text of mb.
Algorithm B simulates the answers to the queries of A1 to the decryption oracle and the random
oracles G1, G2, H1 and H2, respectively. See the description of these simulations below.

3. Algorithm B runs A2(c∗, st) and finally gets answer b′. Algorithm B simulates the answers to
the queries of A2 to the random oracles G1, G2,H1,H2 and the decryption oracle, respectively.
See the description of these simulations below. Algorithm B then outputs the partial pre-image
s∗1 of c∗, if one has been found among the queries asked to H1, or the list of queries asked to
H1.

4.3.2 The simulation

In this section, we explain how the algorithm B simulates the random oracle G1, G2,H1,H2 and the
decryption oracle.

The random oracles

On the simulation of the random oracles, B has to simulate the random oracle answers, managing
query answer lists List H1, List H2, List G1 and List G2 for the oracles G1, G2, H1, and H2

respectively, they are initially set to empty lists;

Answering G1 oracle queries

• If γ1 is asked before, return corresponding γ2 that B answered before.

• For a fresh query γ1 to G1, look at the List H1 and List H2 and for any query δ1, δ2 asked
to H1, H2 with answer H1(δ1), H2(δ2) one build z = γ1 ⊕ H2(δ2), and check whether
c∗ = f(δ1, z).

– If for some δ1, δ2 that relation holds, choose γ2 at random and we can still correctly
simulate G1, by answering G2(γ2) = δ1⊕(mb ‖ 0k1). Then put (γ1, γ2) into the List G1

and put (γ2, G
2(γ2)) into the List G2.

11

– If there is no such δ1, δ2, choose γ2 at random and put (γ1, γ2) into the List-G1.

Answering G2 oracle queries

• If γ2 is asked before, return corresponding G2(γ2) that B answered before.

• For a fresh query γ2 to G2, output a random value G2(γ2) and the pair (γ2, G
2(γ2)) is put

to the List G2.

Answering H1 oracle queries

• If δ1 is asked before, return corresponding H1(δ1) that B answered before.

• For a fresh query δ1 to H1, output a random value δ2 = H1(δ1) and the pair (δ1, δ2) is put
to the List H1.

Answering H2 oracle queries

• If δ2 is asked before, returns corresponding H2(δ2) that B answered before.

• For a fresh query δ2 to H2, one outputs a random value H2(δ2) and the pair (δ2,H
2(δ2))

is put to the List H2.

The decryption oracle

On query c = f(s1, t) to the decryption oracle, decryption oracle simulation DS looks at each query-
answer (γ1, G

1(γ1)) ∈ List G1, (γ2, G
2(γ2)) ∈ List G2, (δ1,H

1(δ1)) ∈ List H1, and (δ2,H
2(δ2)) ∈ List

H2.
For each pair taken from these lists, check whether G1(γ1) = γ2, H1(δ1) = δ2, c = f(δ1, γ1 ⊕

H2(δ2)) and [δ1 ⊕G2(γ2)]k1 = 0k1 .
As soon as both equalities hold, DS outputs [δ1 ⊕G2(γ2)]n. If no such pair is found, REJECT is

returned.

4.3.3 Analysis

In this section, we analyze the success probability of the reduction.

Notation

When we have found the pre-image of c∗ and thus inverted f , we could output the expected results
s∗1 and stop the reduction. However, for this analysis, we assume the reduction goes on and that B
only outputs it or the list of queries asked to H1 once A2 has answered b′.

In order to proceed to the analysis of the success probability of the above-mentioned reduction,
one needs to set up notations. First, we still denote with a star ∗ all variables related to the challenge
ciphertext c∗, obtained from the encryption oracle. Indeed this ciphertext of either m0 or m1 implicitly
defined hash values, but the corresponding pairs may not appear in the G1, G2,H1,H2 lists. All other
variables refer to the decryption query c, asked by the adversary to the decryption oracle, and thus
to be decrypted by this simulation. We consider several further events about a ciphertext queried to
the decryption oracle.

• AskH’ = AskH1 ∧ AskH2

– AskH1 : the events that query s∗1 has been asked to H1.

– AskH2 : the events that query s∗2 has been asked to H2.

12

• AskG’ = AskG1 ∧ AskG2

– AskG1 : the event that r∗1 has been asked to G1.

– AskG2 : the event that r∗2 has been asked to G2.

• Bad= G1Bad ∨ DBad

– G1Bad : the event that r∗1 has been asked to G1, but the answer is something other than
s∗1 ⊕ (mb ‖ 0k1). Note that the event G1Bad implies AskG1.

– DBad : the event that decryption simulator fails.

• CBad = R’Bad ∨ S’Bad

– S’Bad = S1Bad ∨ S2Bad

∗ S1Bad : the event that s1 = s∗1
∗ S2Bad : the event that s2 = s∗2

– R’Bad = R1Bad ∨ R2Bad

∗ R1Bad : the event that r1 = r∗1
∗ R2Bad : the event that r2 = r∗2

• AskR’S’ = AskR’ ∨ AskS’

– AskR’ = AskR1 ∧ AskR2

∗ AskR1 : the event that r1 = t⊕H2(s2) has been asked to G1.
∗ AskR2 : the event that r2 = G1(r1) has been asked to G2.

– AskS’ = AskS1 ∧ AskS2

∗ AskS1 : the event that s1 has been asked to H1.
∗ AskS2 : the event that s2 has been asked to H2.

• Fail : the event that the above decryption oracle simulator outputs a wrong decryption answer
to query c. Therefore in the global reduction, the event DBad will be set to true as soon as one
decryption simulation fails.

Analysis of the decryption oracle

We analyze the success probability of the decryption oracle simulator DS. We claim the following
computational assumption.

Lemma 2. When at most one ciphertext c∗ = f(s∗1, t
∗) has been directly obtained from the encryption

oracle, but s∗1 has not been asked to H1, the decryption oracle simulation DS can correctly produce
the decryption oracle’s output on query c(6= c∗) with probability greater than ε′, within time bound t′,
where

ε′ ≥ 1− (
2

2k1
+

2
2c1

+
2q′G + 1

2k0
+

2q′G + 1
2c2

) and t′ ≤ q′G · q′H · (Tf + O(1)).

Since our goal is to prove the security relative to partial domain one-wayness of f , we are only
interested in the probability of the event Fail while ¬AskH1 occured which may be split according to
other events. Granted ¬CBad ∧ AskR’S’, the simulation is perfect and cannot fail. Thus we have to
consider the complementary events,

13

Pr[Fail|¬AskH1] = Pr[Fail ∧ CBad|¬AskH1] + Pr[Fail ∧ ¬CBad|¬AskH1]
= Pr[Fail ∧ CBad|¬AskH1] + Pr[Fail ∧ ¬CBad ∧ ¬AskR′S′|¬AskH1].

Concerning the latter contribution to the right hand side, we first note that

¬AskR′S′ = ¬AskR′ ∨ ¬AskS′ = (¬AskR′) ∨ (¬AskS′ ∧ AskR′).

Forgetting ¬AskH1 for a while, one gets that

Pr[Fail ∧ ¬CBad ∧ ¬AskR′S′] = Pr[Fail ∧ ¬CBad ∧ ((¬AskR′) ∨ (¬AskS′ ∧ AskR′))]
= Pr[Fail ∧ ¬CBad ∧ ¬AskR′] + Pr[Fail ∧ ¬CBad ∧ ¬AskS′ ∧ AskR′]
≤ Pr[Fail ∧ ¬R′Bad ∧ ¬AskR′] + Pr[Fail ∧ ¬S′Bad ∧ ¬AskS′ ∧ AskR′]
≤ Pr[Fail|¬AskR′ ∧ ¬R′Bad] + Pr[AskR′|¬AskS′ ∧ ¬S′Bad].

Let consider the Pr[Fail|¬AskR′ ∧ ¬R′Bad]. Taking into account the events ¬R’Bad, G2(r2) is
unpredictable, and thus the probability that [s1 ⊕G2(r2)]k1 = 0k1 is less than 2−k1 . We should also
consider the probability that one does not ask r1 to G1 but asks r2 to G2 by chance. This probability
is less than 2−c1 . We can estimate that Pr[Fail|¬AskR′ ∧ ¬R′Bad] ≤ 2−k1 + 2c1 .

On the other hand, the probability of having asked r1, r2 to G1, G2, without any information
about H1(s1) or H2(s2) and thus Pr[AskR′|¬AskS′ ∧ ¬S′Bad] ≤ q′G · (2−k0 + 2−c2).

Furthermore, this event is independent of AskH1, which yield

Pr[Fail ∧ ¬CBad ∧ ¬AskR′S′|¬AskH1] ≤ 2−k1 + 2−c1 + q′G · (2−k0 + 2−c2).

We now focus on the former term, Fail ∧ CBad while ¬AskH1. It can be split according to the
disjoint sub-cases of CBad, which are S’Bad and ¬S′Bad ∧ R′Bad. Then

Pr[Fail ∧ CBad|¬AskH1] = Pr[Fail ∧ (S′Bad ∨ (R′Bad ∧ ¬S′Bad))|¬AskH1]
≤ Pr[Fail|S′Bad ∧ ¬AskH1] + Pr[R′Bad|¬S′Bad ∧ ¬AskH1].

The latter event means that R’Bad occurs provided s1 6= s∗1 and s2 6= s∗2 and the adversary has
not queried s∗1 from H1. When s∗1 has not been asked to H1 and s1 6= s∗1 and s2 6= s∗2, H1(s∗1) and
H2(s∗2) is unpredictable. Then event R’Bad occurs with probability at most 2−c1 + 2−k0 .

The former event can be further split according to AskR’, it is upper-bounded by

Pr[Fail|S′Bad ∧ ¬AskH1] ≤ Pr[AskR′|S′Bad ∧ ¬AskH1] + Pr[Fail|¬AskR′ ∧ S′Bad ∧ ¬AskH1].

The former event means that r1, r2 are asked to G1, G2, respectively, whereas H2(s2) is unpre-
dictable. Since r1, r2 is unpredictable, the probability of this event is at most q′G · (2−k0 + 2−c1). On
the other hand, the latter event cannot hold with probability greater than 2−c1 + 2−k1 . To sum up,

Pr[Fail|S′Bad ∧ ¬AskH1] ≤ 2−c1 + 2−k1 + q′G · (2−k0 + 2−c1),
Pr[Fail ∧ C′Bad|¬AskH1] ≤ 2−c1 + 2−k1 + (q′G + 1) · (2−k0 + 2−c1),

Pr[Fail|¬AskH1] ≤ 2
2k1

+
q′G + 3

2c1
+

2q′G + 1
2k0

+
q′G
2c2

.

The running time of this simulator includes just the computation of c = f(δ1, γ1 ⊕H2(δ2)) and
[δ1 ⊕G2(γ2)]k1 = 0k1 for all possible pairs and is thus bounded by q′G · q′H · (Tf + O(1)).

14

Analysis of the success probability

This section analyzes the success probability of our reduction with respect to the advantage of the
CCA2 adversary. The goal of the reduction is given c∗ = f(s∗1, t

∗) to obtain s∗1. Therefore, the success
probability is obtained by the probability that event AskH1 occurs during the reduction.

We thus evaluate Pr[AskH1] by splitting event AskH1 according to event Bad.

Pr[AskH1] = Pr[AskH1 ∧ Bad] + Pr[AskH1 ∧ ¬Bad].

First let us evaluate the first term.

Pr[AskH1 ∧ Bad] = Pr[Bad]− Pr[¬AskH1 ∧ Bad]
≥ Pr[Bad]− Pr[¬AskH1 ∧ G1Bad]− Pr[¬AskH1 ∧ DBad]
≥ Pr[Bad]− Pr[G1Bad|¬AskH1]− Pr[DBad|¬AskH1]
≥ Pr[Bad]− Pr[AskG1|¬AskH1]− Pr[DBad|¬AskH1]

≥ Pr[Bad]− q′G
2k0

− q′G
2c2

− qD

(
2

2k1
+

q′G + 3
2c1

+
2q′G + 1

2k0
+

q′G
2c2

)

= Pr[Bad]− 2qDq′G + qD + q′G
2k0

+
qDq′G + q′G

2c2
− 2qD

2k1
− 2qDq′G + 3qD

2c1
.

Here Pr[DBad|¬AskH] is directly obtained from lemma, and Pr[AskG1|¬AskH1] ≤ q′G ·(2−k0+2−c2).
We then evaluate the second term.

Pr[AskH1 ∧ ¬Bad] ≥ Pr[A = b ∧ AskH1 ∧ ¬Bad]
= Pr[A = b ∧ ¬Bad]− Pr[A = b ∧ ¬AskH1 ∧ ¬Bad].

The first term can be evaluated

Pr[A = b ∧ ¬Bad] = Pr[A = b]− Pr[A = b ∧ Bad]
≥ Pr[A = b]− Pr[Bad]

≥ ε

2
+

1
2
− 2Pr[DBad]− Pr[Bad]

≥ ε

2
+

1
2
− 2qD

(
2

2k1
+

q′G + 3
2c1

+
2q′G + 1

2k0
+

q′G
2c2

)
− Pr[Bad].

Then we evaluate the second term. Here when ¬AskH1 occurs, H1(s∗1) is unpredictable, thus
r∗1 = t∗ ⊕ H2(s∗2) is unpredictable and so is b as well. This fact is independent from event ¬Bad.
Hence Pr[A = b|¬AskH1 ∧ ¬Bad] = 1/2. We can also estimate that

Pr[Bad] + (Pr[AskH1 ∧ ¬Bad] + Pr[¬AskH1 ∧ ¬Bad]) = 1.

We have

Pr[AskH1 ∧ ¬Bad] ≥ ε

2
+

1
2
− 2qD

(
2

2k1
+

q′G + 3
2c1

+
2q′G + 1

2k0
+

q′G
2c2

)
− Pr[Bad]

−(1− Pr[AskH1 ∧ ¬Bad]− Pr[Bad]) · 1
2

=
ε + Pr[AskH1 ∧ ¬Bad]− Pr[Bad]

2
− 2qD

(
2

2k1
+

q′G + 3
2c1

+
2q′G + 1

2k0
+

q′G
2c2

)
.

15

Table size Security

OAEP 2k−k0 × k0 + 2k0 × (k − k0)
ε− (10qDq′G + 5qD + q′G) · 2−k0 − (10qD) · 2−k1

t′ ≤ t + q′G · q′H · (Tf + O(1))

Our variant
2k−k0 × c2 + 2c2 × k0 + 2k0 ×
c1 + 2c1 × (k − k0)

ε− (10qDq′G + 5qD + q′G) · 2−k0 − (5qDq′G + q′G) · 2−c2 − (10qD) · 2−k1 − (9qDqG + 7qD) · 2−c1

t′ ≤ t + q′G · q′H · (Tf + O(1))

Figure 2: The comparison of OAEP and our variant

and we can figure out Pr[AskH1 ∧ ¬Bad] as

Pr[AskH1 ∧ ¬Bad] = Pr[AskH1 ∧ ¬Bad] ≥ ε− Pr[Bad]− 4qD

(
2

2k1
+

q′G + 3
2c1

+
2q′G + 1

2k0
+

q′G
2c2

)
.

In the conclusion, we have

Pr[AskH1] ≥ ε− 10qDq′G + 5qD + q′G
2k0

− 5qDq′G + q′G
2c2

− 10qD

2k1
− 9qDqG + 7qD

2c1
.

Analysis of the complexity

Note that during the execution of B for any new G1 query γ1, one has to look at all query answers
and checks whether they satisfy c = f(δ1, γ1⊕H2(δ2)) and [δ1⊕G2(γ2)]k1 = 0k1 . Proper bookkeeping
allows the computation to be done once for each pair, when the query is asked to the hash function.
Thus, the time complexity of the overall reduction is t′ ≤ t + q′G · q′H · (Tf + O(1)).

4.4 Comparison

We now compare our variant and OAEP with respect to the table size of the random oracle.
In OAEP, the encryption and decryption algorithms make use of two random oracles H and G.

Let H : {0, 1}k−k0 → {0, 1}k0 and G : {0, 1}k0 → {0, 1}k−k0 . We need 2k−k0 × k0 table size to realize
the random oracle H and 2k0 × (k − k0) to G. Therefore, we need 2k−k0 × k0 + 2k0 × (k − k0) table
size in order to realize OAEP.

In our variant, we use two random oracles H1 and H2 instead of H in OAEP. We also use two
random oracles G1 and G2 instead of G in OAEP. Let G1 : {0, 1}k0 → {0, 1}c1 , G2 : {0, 1}c1 →
{0, 1}k−k0 , H1 : {0, 1}k−k0 → {0, 1}c2 , and H2 : {0, 1}c2 → {0, 1}k1 . In the above description, let
c1 = O((log(k−k0))c) and c2 = O((log k1)c), where c is a constant number. We need 2k−k0 × c2 table
size to realize the random oracle H1, 2c2 × k0 to H2, 2k0 × c1 to G1 and 2c1 × (k − k0) to G2. Thus,
we need 2k−k0 × c2 + 2c2 × k0 + 2k0 × c1 + 2c1 × (k − k0) table size in order to realize our variant.

We show the table sizes and the security of OAEP and our variant in Figure 2. We can certainly
reduce the table size of OAEP by applying our idea.

5 Concluding remarks

We have considered a different direction on the study of the schemes in the random oracle model.
We have focused on the size of the tables necessary to describe all of the entries to be potentially
queried in the random oracle model. We have shown how to reduce the table sizes of the schemes
for encryption and signature in the random oracle model. In particular, we have applied this idea to
PSS-R and OAEP and shown the security of our schemes.

16

References

[1] Bellare, M., and Rogaway, P. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In 1st ACM Conference on Computer and Communications Security (Fairfax,
Virginia, USA, 1993), ACM, pp. 62–73.

[2] Bellare, M., and Rogaway, P. Optimal Asymmetric Encryption - How to Encrypt with RSA.
In Advances in Cryptology – EUROCRYPT ’94 (Perugia, Italy, May 1994), A. De Santis, Ed.,
vol. 950 of Lecture Notes in Computer Science, Springer-Verlag, pp. 92–111.

[3] Bellare, M., and Rogaway, P. The Exact Security of Digital Signatures - How to Sign with
RSA and Rabin. In Maurer [7], pp. 399–416.

[4] Canetti, R., Goldreich, O., and Halevi, S. The Random Oracle Methodology, Revisited.
In 32nd Annual ACM Wymposium on Theory of Computing (Dalllas, USA, 1998), ACM, pp. 209–
218.

[5] Fujisaki, E., Okamoto, T., Pointcheval, D., and Stern, J. RSA–OAEP Is Secure under
the RSA Assumption. In Advances in Cryptology – CRYPTO 2001 (Santa Barbara, California,
USA, August 2001), J. Kilian, Ed., vol. 2139 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 260–274.

[6] Goldwasser, S., and Taumann, Y. On the (In)security of the Fiat-Shamir Paradigm. In
Advances in Cryptology – EUROCRYPT 2003 (Warsaw, Poland, May 2003), E. Biham, Ed.,
vol. 2656 of Lecture Notes in Computer Science, Springer-Verlag, pp. 102–114.

[7] Maurer, U., Ed. Advances in Cryptology – EUROCRYPT ’96 (Saragossa, Spain, May 1996),
vol. 1070 of Lecture Notes in Computer Science, Springer-Verlag.

[8] Pointcheval, D., and Stern, J. Security Proofs for Signature Schemes. In Maurer [7],
pp. 387–398.

A PSS-R

A.1 Security

The following theorem proves the security of PSS-R based on the security of RSA.

Proposition 3. Suppose that RSA is (t′, ε′)-secure. Then for any qsig, qhash the signature scheme
PSS-R[k0, k1] is (t, qsig, qhash, ε)-secure, where t(k) = t′(k) − [qsig(k) + qhash(k) + 1] · k0 · O(k3) and
ε(k) = ε′(k) + [2(qsig(k) + qhash(k))2](2−k0 + 2−k1) + 2−k0.

Proof. Let F be a forger which (t, qsig, qhash, ε)-breaks PSS-R. We present an inverter I which (t′, ε′)-
breaks the RSA family.

The simulation

The input to I is N, e and η, where η is chosen at random from Z∗N , and N, e, d are chosen by running
the generator RSA(1k). We let f : Z∗N → Z∗N be f(x) = xe mod N . The inverter I want to compute
f−1(η) = ηd mod N . It forms the public key N, e, and starts running F on input this key. The forger
F will make oracle queries. The inverter I must answer itself. We let Q1, ..., Qqsig+qhash

denote the
sequence of oracle queries that F makes. In the process of answering these queries, the inverter I will
build or define the function H, G. The inverter I prepare two empty lists named List G and List H.

I maintain a counter i, initially 0, which is incremented for each query.

17

Answering signing queries

1. Increment i and let Mi = Qi.

2. Pick r
R← {0, 1}k0 .

3. If rj = ri for some j ≤ i, then abort.

4. Repeat xi
R← Z∗N ; yi ← f(xi) until the first bit of yi is 0.

5. Break up yi to write it as 0 ‖ wi ‖ ri
∗ ‖ Mi

∗.

6. Set H(Mi ‖ ri) = wi in the List H.

7. If wj = wi for some j ≤ i, then abort.

8. Set G(wi) = ri
∗ ⊕ ri ‖ Mi ⊕Mi

∗ into the List G.

9. Return xi to F as the answer to the signing query Qi = Mi.

Answering H oracle queries

1. Increment i and break up Qi as Mi ‖ ri.

2. Say Qi is old if Mj ‖ rj = Mi ‖ ri for some j ≤ i and new otherwise. Now if Qi is old then
set (wi, ri

∗,Mi
∗) = (wj , rj

∗,Mj
∗) and return wj . Else go to next step.

3. Repeat xi
R← Z∗N ; zi ← f(xi) ; yi ← ηzi mod N until the first bit of yi is 0.

4. Break up yi to write it as 0 ‖ wi ‖ ri
∗ ‖ Mi

∗.

5. Set H(Mi ‖ ri) = wi into the List H.

6. If wj = wi for some j ≤ i, then abort.

7. Set G(wi) = ri
∗ ⊕ ri ‖ Mi ⊕Mi

∗ into the List G.

8. Return wi to F as the answer to the H oracle query Qi = Mi ‖ ri.

Answering G oracle queries

1. Increment i and let wi = Qi.

2. If wi = wj for some j ≤ i, then return G(wj). Else pick a string α
R← {0, 1}k−k1−1, set

G(wi) = α into the List G and return α to F as the answer to the G oracle query Qi.

We want to arrange that, if F later forges a signature of M using a seed r then we invert f at
η. To arrange this, we will associate to query M ‖ r an image of the form ηxi

e, where xi is random.
Thus if F later comes up with f−1(ηxi

e) = xiη
d, then I can divide out xi and recover ηd = f−1(η).

Analysis

We first show that the validity of the simulation. We insist that the forger must use the random
oracles G,H in order to output the correct signature.

We define some events to show the validity of the simulation. We denote (M+, x+) as a correct
pair of the message and the signature.

E1 : Forger outputs (M+, x+) without asking corresponding M+ ‖ r+ to the H oracle queries, but
asking corresponding w+ to the G oracle queries.

E2 : Forger outputs (M+, x+) without asking corresponding w+ to the G oracle queries but asking
corresponding M+ ‖ r+ to the H oracle queries.

E3 : Forger uses the random oracles G, H in order to output (M+, x+) asking any oracle.

18

Our goal is to estimate the probability that E3 occurs. It is not so hard to figure out Pr[E1],
Pr[E2], and Pr[E3]. Since H(M ‖ r) is unpredictable, the probability that E1 occurs is at most
2−k1 .Similarly, we can figure out that Pr[E2] ≤ 2−(k−k1−1).

We can estimate that Pr[E3] ≥ 1− (Pr[E1] + Pr[E2]).
It shows that the forger must use the random oracle G,H to forge a signature.
We now prove the theorem. We define the following events to analyze the security probability.

E4 : The inverter I never abort in step 3 and 7 in answering signing queries and step 6 in answering
H oracle queries.

E5 : The inverter I cannot stop in step 4 in answering signing queries and step 3 in answering H
oracle queries within 1 + k0 repetition.

We can estimate that Pr[E4] ≤ 2(qsig + qhash)2(2−k0 + 2−k1).
Let us consider E5. The time for step 4 in answering signing queries and step 3 in answering H

oracle queries can not be bounded. However, the expected time is two execution of the loop. Then
we make it a rule to stop the loop after 1 + k0 steps. Then, we can estimate that Pr[E5] ≤ 2−k0 .

We now claim that with propability at least ε− Pr[E4]− Pr[E5], we can break the RSA.
Now we can figure out that
ε(k) = ε′(k) + [2(qsig(k) + qhash(k))2](2−k0 + 2−k1) + 2−k0 .
The running time of I is that of F plus the time to choose the yi’s. The main thing here is one

RSA computation for each yi, which is cubic time (or better). We can say that
t(k) = t′(k)− [qsig(k) + qhash(k) + 1] · k0 ·O(k3).

B OAEP

B.1 The security result

In the following, we prove that the scheme is IND-CCA2 in the random oracle model, relative to the
partial-domain one-wayness of function f . More precisely, the following exact security result holds.

Proposition 4. Let A be a CCA2-adversary against the semantic security of OAEP conversion
(K, E ,D), with advatage ε and running time t, making qD, qG and qH queries to the decryption
oracle, and the hash function G and H respectively. Then, there exist an algorithm B such that
Succpd−ow(B) is greater than

1
qH

(ε− 10qDqG + 5qD + qG

2k0
− 10qD

2k1
),

and whose running time t′ ≤ t+qGqH(Tf +O(1)), where Tf denotes the time complexity of function f .

In order to prove this proposition relative to the partial-domain one-wayness of the permutation,
we prove the following lemma.

Lemma 3. Let A be a CCA2-adversary against the semantic security of OAEP conversion DG,H(sk, c),
with advantage ε and running time t, making qD, qG and qH queries to the decryption oracle, and
the hash function G and H respectively. Then, there exist an algorithm B such that Succs−pd−ow(B)
is greater than

ε− 10qDqG + 5qD + qG

2k0
− 10qD

2k1
,

and whose running time t′ ≤ t+qGqH(Tf +O(1)), where Tf denotes the time complexity of function f .

19

B.2 The proof of the proposition

We prove lemma in three stages.
The first we present the reduction of the CCA2-adversary A attacking indistinguishability to

algorithm B for breaking the partial-domain one-wayness of f . Note that, in the present proof, we
are interested in the security under the partial-domain one-wayness of f .

The second we present the simulation of the algorithm B. We present how B simulates the random
oracles G,H and the decryption oracle.

Finally, we analyze the success probability of our reduction in total. We analyze the decryption
oracle simulation employed in this reduction works correctly with overwhelming probability under
the partial-domain one-wayness of f and insist the lemma and the proposition.

B.2.1 The top level description of the reduction

In this first part, we recall how the reduction operates. Let A = (A1,A2) be an adversary against
the semantic security of (K, E ,D), under the chosen ciphertext attack. Within time bound t, A
asks qD, qG, qH queries to the decryption oracle and the random oracles G and H respectively, and
distinguishes the right plaintext with an advantage greater that ε. Let us describe the reduction of
B.

1. Algorithm B is given a function f which is defined by the public key and c∗ ← f(s∗, t∗), for
(s∗, t∗) R← {0, 1}k−k0 × {0, 1}k0 . The aim of B is to recover the partial pre-image s∗ to c∗.

2. Algorithm B runs A1 on the public data, and gets a pair of messages {m0,m1} as well as states
information st. It chooses a random bit b, and then gives c∗ to A1, as the cipher text of mb.
Algorithm B simulates the answers to the queries of A1 to the decryption oracle and random
oracles G, H respectively. See the description of these simulations below.

3. Algorithm B runs A2(c∗, st) and finally gets answer b′. Algorithm B simulates the answers
to the queries of A2 to the decryption oracle and random oracle G,H respectively. See the
description of these simulations below. Algorithm B then outputs the partial pre-image s∗ of
c∗, if one has been found among the queries asked to H, or the list of queries asked to H.

B.2.2 The simulation

In this section, we explain how the algorithm B simulates the random oracle G,H and the decryption
oracle.

The random oracles

On the simulation of the random oracles, B has to simulate the random oracle answers, managing
query answer lists List H and List G for the oracles G, H, respectively. They are initially set to
empty lists;

Answering G oracle queries

• If there is a γ asked before, return corresponding G(γ) that B answered before.

• For a fresh query γ to G, look at the List H and for any query δ asked to H with answer
H(δ), one build z = γ ⊕H(δ) and check whether c∗ = f(δ, z).

– If for some δ that relation holds, function f has been inverted, and we can still correctly
simulate G, by answering G(γ) = δ ⊕ (mb ‖ 0k1). Note that G(γ) is a uniformly
distributed value since δ = s∗, and the latter is uniformly distributed.

– If there is no such δ, choose G(γ) at random and put (γ, G(γ)) into the List G.

20

Answering H oracle queries

• If there is a δ asked before, return corresponding H(δ) that B answered before.

• For a fresh query δ to H, output a random value H(δ) and the pair (δ,H(δ)) is concatenated
to the List H. Note that once again for any (γ, G(γ)) ∈ List G, one may build z = γ⊕H(δ),
and checks whether c∗ = f(δ, t). If for some γ that relation holds, we have inverted the
function f .

The decryption oracle

On query c = f(s, t) to the decryption oracle, decryption oracle simulation DS looks at each query-
answer (γ, G(γ)) ∈ List G and (δ,H(δ)) ∈ List H.

For each pair taken from both lists, check whether c = f(δ, γ ⊕H(δ)) and [δ ⊕G(γ)]k1 = 0k1 .
As soon as both equalities hold, DS outputs [δ⊕G(γ)]n. If no such pair is found, return REJECT.

B.2.3 Analysis

In this section, we analyze the success probability of the reduction.

Notation

When we have found the pre-image of c∗ and thus inverted f , we could output the expected results
s∗ and stop the reduction. However, for this analysis, we assume the reduction goes on and that B
only outputs it or the list of queries asked to H once A2 has answered b′.

Even if no answer is explicitly specified, expect by a random value for new queries, some are
implicitly defined. Indeed c is defined to be a ciphertext of mb with random tape r∗ :

r∗ ← H(s∗)⊕ t∗ and G(r∗) ← s∗ ⊕ (mb ‖ 0k1).
Since H(s∗) is randomly defined, r∗ can be seen as a random variable.
In order to proceed to the analysis of the success probability of the above-mentioned reduction,

one need to set up notations. First, we still denote with a star ∗ all variables related to the challenge
ciphertext c∗, obtained from the encryption oracle. Indeed this ciphertext of either m0 or m1 implicitly
defined hash values, but the corresponding pairs may not appear in the G or H lists. All other
variables refer to the decryption query c, asked by the adversary to the decryption oracle, and thus
to be decrypted by this simulation. We consider several further events about a ciphertext queried to
the decryption oracle.

• AskH : the events that query s∗ has been asked to H.

• AskG : the event that r∗ has been asked to G.

• Bad= GBad ∨ DBad

– GBad : the event that r∗ has been asked to G, but the answer is something other than
s∗ ⊕ (mb ‖ 0k1). Note that the event GBad implies AskG.

– DBad : the event that decryption simulator fails.

• CBad = RBad ∨ SBad

– SBad : the event that s = s∗,

– RBad : the event that r = r∗ and thus H(s)⊕ t = H(s∗)⊕ t∗

• AskRS = AskR ∨ AskS

21

– AskR : the event that r = t⊕H(s) has been asked to G.

– AskS : the event that s has been asked to H.

• Fail : the event that the above decryption oracle simulator outputs a wrong decryption answer
to query c. Therefore in the global reduction, the event DBad will be set to true as soon as one
decryption simulation fails.

Analysis of the decryption oracle

We analyze the success probability of the decryption oracle simulator DS. We claim the following
computational assumption.

Lemma 4. When at most one ciphertext c∗ = f(s∗, t∗) has been directly obtained from the encryption
oracle, but s∗ has not been asked to H, the decryption oracle simulation DS can correctly produce
the decryption oracle’s output on query c(6= c∗) with probability greater than ε′, within time bound t′,
where

ε′ ≥ 1− (
2

2k1
+

2qG + 1
2k0

) and t′ ≤ qG · qH · (Tf + O(1)).

Since our goal is to prove the security relative to partial domain one-wayness of f , we are only
interested in the probability of the event Fail while ¬AskH occured which may be split according to
other events. Granted ¬CBad ∧ AskRS, the simulation is perfect and cannot fail. Thus we have to
consider the complementary events.

Pr[Fail|¬AskH] = Pr[Fail ∧ CBad|¬AskH] + Pr[Fail ∧ ¬CBad|¬AskH]
= Pr[Fail ∧ CBad|¬AskH] + Pr[Fail ∧ ¬CBad ∧ ¬AskRS|¬AskH].

Concerning the latter contribution to the right hand side, we first note that

¬AskRS = ¬AskR ∨ ¬AskS = (¬AskR) ∨ (¬AskS ∧ AskR).

Forgetting ¬AskH for a while, one gets that

Pr[Fail ∧ ¬CBad ∧ ¬AskRS] = Pr[Fail ∧ ¬CBad ∧ ((¬AskR) ∨ (¬AskS ∧ AskR))]
= Pr[Fail ∧ ¬CBad ∧ ¬AskR] + Pr[Fail ∧ ¬CBad ∧ ¬AskS ∧ AskR]
≤ Pr[Fail ∧ ¬RBad ∧ ¬AskR] + Pr[Fail ∧ ¬SBad ∧ ¬AskS ∧ AskR]
≤ Pr[Fail|¬AskR ∧ ¬RBad] + Pr[AskR|¬AskS ∧ ¬SBad].

However, without having asked r to G, taking into account the further events ¬RBad, G(r) is
unpredictable, and thus the probability that [s⊕G(r)]k1 = 0k1 is less than 2−k0 . On the other hand,
the probability of having asked r to G, without any information about H(s) and thus about r is less
than qG · 2−k0 . Furthermore, this event is independent of AskH, which yield

Pr[Fail ∧ ¬CBad ∧ ¬AskRS|¬AskH] ≤ 2−k0 + qG · 2−k0 .

We now focus on the former term, Fail ∧ CBad while ¬AskH. It can be split according to the
disjoint sub-cases of CBad, which are SBad and ¬SBad ∧ RBad. Then

Pr[Fail ∧ CBad|¬AskH] = Pr[Fail ∧ (SBad ∨ (RBad ∧ ¬SBad))|¬AskH]
≤ Pr[Fail|SBad ∧ ¬AskH] + Pr[RBad|¬SBad ∧ ¬AskH].

22

The latter event means that RBad occurs provided s 6= s∗ and the adversary has not queried s∗

from H. When s∗ has not been asked to H and s 6= s∗, H(s∗) is unpredictable and independent of
H(s) as well as t and t∗. Then event RBad H(s∗) = H(s) ⊕ t ⊕ t∗ occurs with probability at most
2k0 . The former event can be further split according to AskR, it is upper-bounded by

Pr[Fail|SBad ∧ ¬AskH] ≤ Pr[AskR|SBad ∧ ¬AskH] + Pr[Fail|¬AskR ∧ SBad ∧ ¬AskH].

The former event means that r is asked to G whereas s = s∗ and H(s∗) is unpredictable thus
H(s) is unpredictable. Since r is unpredictable, the probability of this event is at most qG · 2−k0 .
On the other hand, the latter event means that the simulator rejects the valid ciphertext c whereas
H(s) is unpredictable and r is not asked to G. It follows from s = s∗ that r = r∗, and thus G(r) is
unpredictable. Then the redundancy cannot hold with probability greater than 2−k1 . To sum up,

Pr[Fail|SBad ∧ ¬AskH] ≤ 2−k1 + qG · 2−k0 ,

Pr[Fail ∧ CBad|¬AskH] ≤ 2−k1 + (qG + 1) · 2−k0 ,

Pr[Fail|¬AskH] ≤ 2
2k1

+
2qG + 1

2k0
.

The running time of this simulator includes just the computation of c = f(δ, γ ⊕ H(δ)) and
[δ ⊕G(γ)]k1 = 0k1 for all possible pairs and is thus bounded by qG · qH · (Tf + O(1)).

Analysis of the success probability

This section analyzes the success probability of our reduction with respect to the advantage of the
CCA2 adversary. The goal of the reduction is given c∗ = f(s∗, t∗) to obtain s∗. Therefore, the success
probability is obtained by the probability that event AskH occurs during the reduction.

We thus evaluate Pr[AskH] by splitting event AskH according to event Bad.

Pr[AskH] = Pr[AskH ∧ Bad] + Pr[AskH ∧ ¬Bad].

First let us evaluate the first term.

Pr[AskH ∧ Bad] = Pr[Bad]− Pr[¬AskH ∧ Bad]
≥ Pr[Bad]− Pr[¬AskH ∧ GBad]− Pr[¬AskH ∧ DBad]
≥ Pr[Bad]− Pr[GBad|¬AskH]− Pr[DBad|¬AskH]
≥ Pr[Bad]− Pr[AskG|¬AskH]− Pr[DBad|¬AskH]

≥ Pr[Bad]− qG

2k0
− qD

(
2

2k1
+

2qG + 1
2k0

)

= Pr[Bad]− 2qDqG + qD + qG

2k0
− 2qD

2k1
.

Here Pr[DBad|¬AskH] ≤ qD · (2 · 2−k1 + (2qG + 1) · 2−k0) is directly obtained from lemma, and
Pr[AskG|¬AskH] ≤ qG · 2−k0 .

We then evaluate the second term.

Pr[AskH ∧ ¬Bad] ≥ Pr[A = b ∧ AskH ∧ ¬Bad]
= Pr[A = b ∧ ¬Bad]− Pr[A = b ∧ ¬AskH ∧ ¬Bad].

The first term can be evaluated

Pr[A = b ∧ ¬Bad] = Pr[A = b]− Pr[A = b ∧ Bad]
≥ Pr[A = b]− Pr[Bad]

≥ ε

2
+

1
2
− 2Pr[DBad]− Pr[Bad]

≥ ε

2
+

1
2
− 2qD

(
2

2k1
+

2qG + 1
2k0

)
− Pr[Bad].

23

Then we evaluate the second term. Here when ¬AskH occurs, H(s∗) is unpredictable, thus
r∗ = t∗⊕H(s∗) is unpredictable and so is b as well. This fact is independent from event ¬Bad. Hence
Pr[A = b|¬AskH ∧ ¬Bad] = 1/2. We can also estimate that

Pr[Bad] + (Pr[AskH ∧ ¬Bad] + Pr[¬AskH ∧ ¬Bad]) = 1.

We have

Pr[AskH ∧ ¬Bad] ≥ ε

2
+

1
2
− 2qD

(
2

2k1
+

2qG + 1
2k0

)
− Pr[Bad]− (1− Pr[AskH ∧ ¬Bad]− Pr[Bad]) · 1

2

=
ε + Pr[AskH ∧ ¬Bad]− Pr[Bad]

2
− 2qD

(
2

2k1
+

2qG + 1
2k0

)
.

and we can figure out Pr[AskH ∧ ¬Bad] as

Pr[AskH ∧ ¬Bad] = Pr[AskH ∧ ¬Bad] ≥ ε− Pr[Bad]− 4qD

(
2

2k1
+

2qG + 1
2k0

)
.

In the conclusion, we have

Pr[AskH] ≥ Pr[Bad]− 2qDqG + qD + qG

2k0
− 2

qD
2k1 + Pr[AskH ∧ ¬Bad]

= ε− 10qDqG + 5qD + qG

2k0
− 10qD

2k1
.

Analysis of the complexity

Note that during the execution of B for any new G query γ, one has to look at all query answer pairs
(δ,H(δ)) in the H List and checks whether it satisfies c = f(δ, γ ⊕ H(δ)) and [δ ⊕ G(γ)]k1 = 0k1 .
Proper bookkeeping allows the computation to be done once for each pair, when the query is asked to
the hash function. Thus the time complexity of the overall reduction is t′ ≤ t + qG · qH · (Tf + O(1)).

24

