
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: Computer Science

ISSN 1342-2812

Security for Authenticated Key Exchange
Based on Non-Malleability

Hiroki Hada and Keisuke Tanaka

December 2004, C–207

Security for Authenticated Key Exchange
Based on Non-Malleability

Hiroki Hada ∗ Keisuke Tanaka ∗

Abstract— This paper continues the study of password-based protocols for authenticated key
exchange (AKE). In 2000, Bellare, Pointcheval, and Rogaway [2] proposed the formal model on AKE.
In this paper, we propose the new security notions on AKE, based on the non-malleability of session
keys. Then we prove that this security notion is equivalent to that proposed in [2]. Furthermore, we
show that there is a protocol secure in the random oracle model not always secure in the standard
model with collision-resistant hash functions.

Keywords: AKE, AKE-Secure, Non-Malleability, OMDHKE

1 Introduction

This paper continues the study of password-based
protocols for authenticated key exchange (AKE). We
consider the scenario in which there are two entities—a
client A and a server B—where A holds a password pw
and B holds a key related to this. The parties would
like to engage in a conversation at the end of which
each holds a session key, sk, which is known to nobody
but the two of them. There can be an active adversary
A whose capabilities include enumerating, off-line, the
words in a dictionary D, this dictionary being rather
likely to include pw.

This kind of attack was first suggested by Bellovin
and Merritt [3], who also offered a protocol, Encrypted
Key Exchange (EKE), and gave its informal security
analysis. This kind of attack has become quite popular,
and there are further papers suggesting solutions.

In 2000, Bellare, Pointcheval, and Rogaway [2] pro-
posed the formal model on AKE. In addition to it, they
proposed the protocol EKE2, which is essentially the
pair of flows from the Bellovin and Merritt’s Diffie-
Hellman based Encrypted Key Exchange protocol [3].
They showed that EKE2 is secure, in the ideal-cipher
model.

In this paper, we continue the study of passward-
based protocols for AKE. Our work is inspired by the
paper of Nagao, Manabe, and Okamoto [6].

First, we propose the new security notions on AKE,
based on the non-malleability of session keys. For pub-
lic-key cryptosystems there are several notions based
on non-malleability. In this paper, we focus on those
notions proposed by Dolev, Dwork, and Naor [5] and
Bellare, Desai, Pointcheval, and Rogaway [1], and pro-
pose the security notions corresponding to them.

Consider the following situation in order to observe
the necessity of non-malleability for AKE. Even if an
adversary cannot obtain a session key sk of A and B,
∗ Dept. of Mathematical and Computing Sciences, Tokyo In-

stitute of Technology, W8-55, 2-12-1 Ookayama Meguro-ku,
Tokyo 152-8552, Japan. (hada1, keisuke)@is.titech.ac.jp

Supported in part by NTT Information Sharing Platform
Laboratories and Grant-in-Aid for Scientific Research, Min-
istry of Education, Culture, Sports, Science, and Technology,
14780190, 16092206.

she may obtain another key sk′ which is related to sk.
Then when A uses the session key sk in the conversa-
tion with B in some protocol, the adversary may attack
the protocol with the related key sk′. For example, we
consider the situation that A and B distribute a session
key sk with an AKE protocol, then A sends a cipher-
text c encrypted with sk by the Vernam Cipher to B.
If an adversary obtains a key sk′ whose most significant
bit is the same as that of sk, then the adversary can
get the most significant bit of the plaintext of c. There-
fore, we propose the security notions corresponding to
the above situation.

Then, we prove that these security notions are equiv-
alent to that proposed in [2]. Furthermore, we show
that there is a protocol secure in the random oracle
model not always secure in the standard model with
collision-resistant hash functions.

2 Preliminaries

The two models for AKE, with and without the que-
ries for corrupting the clients, was proposed in [2]. In
this paper, in order to simplify the arguments on the
proofs we employ the model without the query that
corrupts the clients. We can extend out results to the
model with this kind of query. In this section, we review
the model without this kind of query.

Protocol participants. We fix a nonempty set
ID of principals. Each principal is either a client or a
server: ID is the union of the finite, disjoint, nonempty
sets Client and Server. Each principal U ∈ ID is
named by a string, and that string has some fixed
length. When U ∈ ID appears in a protocol flow or
as an argument to a function, we mean to the string
which names the principal.

Long-lived keys. Each principal A ∈ Client holds
some password, pwA. Each server B ∈ Server holds a
vector pwB = 〈pwB [A]〉A∈Client which contains an en-
try per client. Entry pwB [A] is called the transformed-
password. In a protocol for the symmetric model pwA

= pwB [A]; that is, the client and server share the same
password. In a protocol for the asymmetric model,
pwB [A] will typically be chosen so that it is hard to
compute pwA from A, B, and pwB [A]. The password

2

pwA (and therefore the transformed password pwB [A])
might be a poor one. Probably some human chose it
himself, and then installed pwB [A] at the server. We
call the pwA and pwB long-lived keys (LL-keys).

Figure 1 specifies how a protocol is run. It is in
Initialization that pwA and pwB arise: everybody’s LL-
key is determined by running a LL-key generator, PW .
A simple possibility for PW is that the password for
client A is determined by pwA ←R PWA, for some
finite set PWA, and pwB [A] is set to pwA. Notice that,
in Figure 1, PW takes a superscript h, which is chosen
from space Ω. This lets PW ’s behavior depend on an
idealized hash function. Different LL-key generators
can be used to capture other settings, like a public-key
one.

Executing the protocol. Formally, a protocol is
just a probabilistic algorithm taking strings to strings.
This algorithm determines how instances of the prin-
cipals behave in response to signals (messages) from
their environment. It is the adversary who sends these
signals. As with the LL-key generator, P may depend
on h.

Adversary A is a probabilistic algorithm with a dis-
tinguished query tape. Queries written on this tape
are answered as specified in Figure 1. The following
description may clarify what is happening.

During the execution there may be running many
instances of each principal U ∈ ID. We call instance
i of principal U an oracle, and we denote it Πi

U . Each
instance of a principal might be embodied as a process
(running on some machine) which is controlled by that
principal.

A client-instance speaks first, producing some first
message, Flow1. A server-instance responds with a
message of its own, Flow2, intended for the client-
instance which sent Flow1. This process is intended
to continue for some fixed number of flows, until both
instances have terminated. By that time each instance
should have accepted, holding a particular session key
(SK), session id (SID), and partner id (PID). Let us
describe these more fully.

At any point in time an oracle may accept. When an
oracle accepts it holds a session key sk, a session id sid,
and a partner id pid. Think of these values as having
been written on a write-only tape. The SK is what the
instance was aiming to get. It can be used to protect
an ensuing conversation. The SID is an identifier which
can be used to uniquely name the ensuing session. The
PID names the principal with which the instance be-
lieves it has just exchanged a key. The SID and PID
aren’t secret—indeed we will hand them to the adver-
sary—but the SK certainly is. A client-instance and a
server-instance can accept at most once.

The adversary A can make queries to any instance:
she has an endless supply of Πi

U oracles (U ∈ ID and
i ∈ N). There are all together five types of queries
that A can make. The responses to these queries are
specified in Figure 1. We now explain the capability
that each kind of query captures.
(1) Send (U, i, M) — This sends message M to ora-
cle Πi

U . The oracle computes what the protocol says

to, and sends back the response. Should the oracle
accept, this fact, as well as the SID and PID, will be
made visible to the adversary. Should the oracle ter-
minate, this too will be made visible to the adversary.
To initiate the protocol with client A trying to enter
into an exchange with server B the adversary should
send message M = B to an unused instance of A. A
Send-query models the real-world possibility of an ad-
versary A causing an instance to come into existence,
for that instance to receive communications fabricated
by A, and for that instance to respond in the manner
prescribed by the protocol.
(2) Reveal (U, i) — If oracle Πi

U has accepted, holding
some session key sk, then this query returns sk to the
adversary. This query models the idea that loss of a
session key shouldn’t be damaging to other sessions. A
session key might be lost for a variety of reasons, includ-
ing hacking, cryptanalysis, and the prescribed-release
of that session key when the session is torn down.
(3) Execute (A, i,B, j) — Assuming that client ora-
cle Πi

A and server oracle Πj
B have not been used, this

call carries out an honest execution of the protocol be-
tween these oracles, returning a transcript of that ex-
ecution. This query may at first seem useless since,
using Send queries, the adversary already has the abil-
ity to carry out an honest execution between two or-
acles. Yet the query is essential for properly dealing
with dictionary attacks. In modeling such attacks the
adversary should be granted access to plenty of honest
executions, since collecting these involves just passive
eavesdropping. The adversary is comparatively con-
strained in its ability to actively manipulate flows to
the principals, since bogus flows can be auditied and
punitive measures taken should there be too many.
(4) Test (U, i) — If Πi

U has accepted, holding a session
key sk, then the following happens. A coin b is flipped.
If it lands b = 0, then sk is returned to the adversary. If
it lands b = 1, then a random session key, drawn from
the distribution from which session keys are supposed
to be drawn, is returned. This type of query is only
used to measure adversarial success—it does not cor-
respond to any actual adversarial ability. You should
think of the adversary asking this query just once.
(5) Oracle (M) — Finally, we give the adversary ora-
cle access to a function h, which is selected at random
from some probability space Ω. As already remarked,
not only the adversary, but the protocol and the LL-
key generator may depend on h. The choice of Ω deter-
mines if we are woking in the standard model, random
oracle model. See the discussion below.

Standard model, random oracle model. Fig-
ure 1 refers to probability space Ω. We consider two
possibilities for Ω, giving rise to two different models of
computation. In the standard model Ω is the distribu-
tion which puts all the probability mass on one func-
tion: the constant function which returns the empty-
string, ε, for any query M . So in the standard model,
all mention of h can be ignored. Fix a finite set of
strings C. In the random oracle model choosing a ran-
dom function from Ω means choosing a random func-
tion h from {0, 1}∗ to C. This models the use of a

3

cryptographic hash function which is so good that, for
purposes of analysis, one prefers to think of it as a pub-
lic random function.

Partnering using SIDs. Fix a protocol P , adver-
sary A, LL-key generator PW , and session-key space
SK. Run P in the manner specified above. In this
execution, we say that oracles Πi

U and Πi′
U ′ are part-

nered (and each oracle is said to be a partner of the
other) if both oracles accept, holding (sk, sid, pid) and
(sk′, sid′, pid′) respectively, and the following hold:

1. sid = sid′, sk = sk′, pid = U ′, and pid′ = U .

2. (U,U ′) ∈ Client× Server,
or (U,U ′) ∈ Server × Client.

3. No oracle besides Πi
U and Πi′

U ′ accepts with a PID
of pid.

The above definition of partnering is quite strict. For
two oracles to be partners with one another they should
have the same SID and the same SK, one should be a
client and the other a server, each should think itself
partnered with the other, and, finally, no third oracle
should have the same SID. Thus an oracle that has
accepted will have a single partner, if it has any partner
at all.

Freshness. Once again, run a protocol with its ad-
versary. Suppose that the adversary made exactly one
Test query, and it was to Πi

U . Intuitively, the oracle
Πi

U should be considered unfresh if the adversary may
know the SK contained within it. In Figure 2 we de-
fine a notion of freshness. Here is the notation used
in that figure. We say “RevealTo(U, i)” is true iff there
was, at some point in time, a query Reveal(U, i). We
say “RevealToPartnerOf(U, i)” is true iff there was, at
some point in time, a query Reveal(U ′, i′) and Πi′

U ′ is a
partner to Πi

U .
In order to define the security on authentication of

AKE protocols, we use the following definition.

Definition 1. The goal of adversary is unilateral au-
thentication of either A or S wherein the adversary
impersonates a party. We denote by SuccA−auth

P (A)
(resp. SuccS−Auth

P (A)) the probability that A success-
fully impersonates an A instance (resp. an S instance)
in an execution of P , which means that S (resp. A)
agrees on a key, while the latter is shared with no in-
stance of A (resp. S).

In order to define the security on session keys of AKE
protocols, we use the following definition.

Definition 2. Let A = (A1, A2) be an adversary. For
t ∈ N let,

AdvAKE
P (A) = 2 Pr[ExpAKE

P (A) = 1]− 1

where

Algorithm Initialization() {
h ←R Ω
〈pwA, pwB〉A∈Client,B∈Server ←R PWh()
for i ∈ N and U ∈ ID do

statei
U ← ready

acci
U ← termi

U ← usedi
U ← false

sidi
U ← pidi

U ← ski
U ← false

}

Algorithm Send(U, i,M) {
usedi

U ← true
if termi

U = true then return invalid
〈msg-out, acc, termi

U , sid, pid, sk, statei
U 〉

← Ph(〈U, pwU , statei
U ,M〉)

if (acc = true and ¬acci
U = true)

then sidi
U ← sid; pidi

U ← pid;
ski

U ← sk; acci
U ← true

return 〈msg-out, sid, pid, acc, termi
U 〉

}

Algorithm Reveal(U, i) {
return ski

U

}

Algorithm Execute(A, i, B, j) {
if A ∈/ Client or B ∈/ Server

or usedi
A = true or usedj

B = true
then return invalid

msg-in ← B
for t ← 1 to ∞ do
〈msg-out, sid, pid, acc, termA〉
←R Send(A, i, msg-in)

αt ← 〈msg-out, sid, pid, acc, termA〉
if termA and termB

then return 〈α1, β1, α2, β2, ..., αt〉
〈msg-out, sid, pid, acc, termB〉
←R Send(B, j, msg-in)

βt ← 〈msg-out, sid, pid, acc, termB〉
if termA and termB

then return 〈α1, β1, α2, β2, ..., αt, βt〉
}

Algorithm Oracle(M) {
return h(M)

}

Figure 1: Available oracles

4

Algorithm Fresh(U, i) {
if RevealTo(U, i) or RevealToPartnerOf(U, i)

then return 0
return 1

}

Figure 2: Fresh

ExpAKE
P (A) {

Initialization()
(U, i, s) ← AO1 ()
b ←R {0, 1}
if b = 1

then sk ← Reveal(U, i)
else sk ←R SK

d ← AO2 (sk, s)
return 1 iff

Fresh(U, i) = 1 and b = d and acci
U = true

}
and

O = {Send, Reveal, Execute}.
We say that the AKE protocol P is (t, ε)-AKE se-
cure, if for all adversaries A with the running time t,
AdvAKE

P (A) is smaller than ε.

3 New Security Notions

In this section we define two security notions based
on non-malleability. For public-key cryptosystems there
are several notions based on non-malleability. In this
paper, we focus on this proposed by Dolev, Dwork,
and Naor [5] and Bellare, Desai, Pointcheval, and Ro-
gaway [1].

Consider the following situation. Even if an adver-
sary cannot get a session key sk of A and B, she may
get another key sk′ which is related to sk. Then when
A uses the session key sk in the communication with B
in some protocol, the adversary may attack the proto-
col with the related key sk′. Therefore we propose the
security notions corresponded to the above situation.

We propose the security notion NM1 corresponding
to the non-malleability proposed in [5].

Definition 3. Let A = (A1, A2) be an adversary and
S = (S1, S2) be a simulator and R : (x, y, s) → {0, 1}
be a relation. For t ∈ N , define

AdvNM1
P (R, A, S) =Pr[ExpNM1

P (R,A) = 1]−
Pr[ExpNM1

P (R, S) = 1],

where

ExpNM1
P (R, A) {

Initialization()
(U, i, s1) ← AO1 ()
sk ← Reveal(U, i)
(sk′, s2) ← AO2 (s1)
return 1 iff Fresh(U, i) = 1

and R(sk, sk′, s2) = 1 and acci
U = true

}

ExpNM1
P (R, S) {

Initialization()
(U, i, s1) ← SO1 ()
sk ←R SK
(sk′, s2) ← SO2 (s1)
return 1 iff Fresh(U, i) = 1

and R(sk, sk′, s2) = 1 and acci
U = true

}
and

O = {Send, Reveal, Execute}.
We say that the AKE protocol P is (t, ε)-NM1 Secure,
if for all adversaries A with the running time t and for
all relations R, there exists a simulator S such that
AdvNM1

P (R, A, S) < ε.

We next propose the security notion NM2 correspond-
ing to the non-malleability in [1].

Definition 4. Let A = (A1, A2) be an adversary. For
t ∈ N , define

AdvNM2
P (A) = Pr[ExpNM2

P (A) = 1]−Pr[Ẽxp
NM2

P (A) = 1],

where

ExpNM2
P (A) {

Initialization()
(U, i, s) ← AO1 ()
sk ← Reveal(U, i)
(R, sk′) ← AO2 (s)
return 1 iff Fresh(U, i) = 1

and R(sk, sk′) = 1 and acci
U = true

}

Ẽxp
NM2

P (A) {
Initialization()
(U, i, s) ← AO1 ()
s̃k ←R SK
(R, sk′) ← AO2 (s)
return 1 iff Fresh(U, i) = 1

and R(s̃k, sk′) = 1 and acci
U = true

}
and

O = {Send, Reveal, Execute}.
We say that the AKE protocol P is (t, ε)-NM2 Se-

cure, if for all adversaries A with the running time t,
AdvNM2

P (A) < ε.

5

4 Relations among the Notions of Se-
curity

In this section, we prove that these security notions
proposed in this paper and that proposed in [2] are
equivalent. In order to prove this, we will show the
three theorems below. We denote A ⇒ B that if pro-
tocol P is any AKE protocol meeting notion of security
A then P also meets notion of security B.

Theorem 5. (t, ε)-NM2 Secure ⇒ (t− α, ε)-NM1 Se-
cure.

Proof. We assume that a protocol P is not (t′, ε)-NM1
Secure. That is, for some relation R, there exists an
adversary A = (A1, A2) attacking the NM1 Security
of P such that AdvNM1

P (R,A, S) > ε for any simu-
lator S = (S1, S2). Then we construct the adversary
B = (B1, B2) attacking P in the sense of NM2 Security
as follows.

Algorithm BO
1 () { Algorithm BO

2 (s1) {
(U, i, s) ← AO1 () (sk′, s2) ← AO2 (s1)
return (U, i, s) Define R′(x, y) as R(x, y, s2)

} return (R′, sk′)
}

and the simulator S = (S1, S2) as follows.

Algorithm SO1 () { Algorithm SO2 (s1) {
(U, i, s) ← AO1 () (sk′, s2) ← AO2 (s1)
return (U, i, s) return (sk′, s2)

} }
It is easy to see that the running time of B is within
a constant factor of that of A. Now we claim that
AdvNM2

P (B) = AdvNM1
P (R,A).

ExpNM2
P (A) = 1 if and only if ExpNM1

P (A) = 1,
that is, Pr[ExpNM1

P (A) = 1] = Pr[ExpNM2
P (A) = 1].

Algorithm ExpNM2
P (S) is the same as Ẽxp

NM1

P (A).

Theorem 6. (t, ε)-NM1 Secure ⇒ (t− α, ε)-AKE Se-
cure.

Proof. We prove that the AKE protocol P is not NM1
Secure under the assumption that P is not AKE secure.
Let A = (A1, A2) be the adversary attacking P in the
sense of AKE security. We show that there exists an-
other adversary B = (B1, B2) attacking P in the sense
of NM1 Security that succeeds with the same probabil-
ity. The running time of B is almost the same as that
of A. The adversary B = (B1, B2) is as follows:

Algorithm BO
1 () { Algorithm BO

2 (s1) {
(U, i, s) ← AO1 () sk′ ←R SK
return (U, i, s) return (sk′, s1)

} }
and the relation R(sk, sk′, s2) is as follows.

R(sk, sk′, s2) {
d ← AO2 (sk, s2)
return d

}

Then,

Pr[ExpNM1
P (R, A) = 1] = Pr[ExpAKE

P (A) = 1 | b = 1],

Pr[ExpNM1
P (R,S) = 1] = Pr[ExpAKE

P (A) = 0 | b = 0].

Therefore,

AdvNM1
P (R, A, S) = Pr[ExpAKE

P (A) = 1 | b = 1]

− (1− Pr[ExpAKE
P (A) = 1] | b = 0)

= 2 Pr[ExpNM1
P (A) = 1]− 1

= AdvAKE
P (A).

Theorem 7. (t, ε)-AKE Secure ⇒ (t−α, 2ε)-NM2 Se-
cure.

Proof. We prove that the AKE protocol P is not AKE
secure under the assumption that P is not NM2 Secure.
Let A = (A1, A2) be the adversary attacking P in the
sense of NM2 Security. We show that there exists an-
other adversary B = (B1, B2) attacking P in the sense
of AKE security that succeeds with the same probabil-
ity. The running time of B is almost the same as that
of A. The adversary B = (B1, B2) is as follows:

Algorithm BO
1 () { Algorithm BO

2 (sk, s) {
(U, i, s) ← AO1 () (R, sk′) ← AO2 ()
return (U, i, s) if R(sk, sk′) = 1

} then g ← 1
else g ←R {0, 1}

return g
}

In this situation,

Pr[ExpAKE
P (A) = 1] = Pr[b = 1]× Pr[g = 1 | b = 1]
+ Pr[b = 0]× Pr[g = 0 | b = 0]

=
1
2

{
Pr[ExpNM2

P (B) = 1]× 1

+ (1− Pr[ExpNM2
P (B) = 1])× 1

2

}

+
1
2

{
Pr[Ẽxp

NM2

P (B) = 1]× 0

+ (1− Pr[Ẽxp
NM2

P (B) = 1])× 1
2

}

=
1
4
(Pr[ExpNM2

P,B (z) = 1]− Pr[Ẽxp
NM2

P,B (z) = 1]) +
1
2
.

Therefore,

2Pr[ExpAKE
P (A) = 1]− 1

=
1
2
(Pr[ExpNM2

P (B) = 1]− Pr[Ẽxp
NM2

P (B) = 1]).

Thus,

AdvAKE
P (A) =

1
2
AdvNM2

P (A).

If there exists the NM2 adversary A = (A1, A2) that
succeeds with the probability ε and running time t,
there is the AKE adversary that succeeds with the same
probability and running time.

6

5 Relaxing the Random Oracle Model
in the One Masked Diffie Hellman Key
Exchange Protocol

5.1 One Masked Diffie Hellman Key Exchange

We introduce the One Masked Diffie Hellman Key
Exchange (OMDHKE) protocol described in Figure 3
and mention the security of that protocol in the ran-
dom oracle model. The arithmetic is in a finite cyclic
group G = 〈g〉 of order a `-bit prime number q, where
the operation is denoted multiplicatively. We also de-
note by G∗ the subset G \ {1} of the generators of G.
Hash functions from {0, 1}∗ to {0, 1}`i are denoted Hi,
for i = 0, 1. While G denotes a full-domain hash func-
tion from {0, 1}∗ into G. As illustrated on Figure 3,
the protocol runs between two parties C and S, and
the session-key space SK associated to this protocol
is {0, 1}`0 equipped with a uniform distribution. The
parties initially share a low-quality string pw, the pass-
word, drawn from the dictionary Password according to
the distribution Dpw. In the following, we use the no-
tation Dpw(q) for the probability to be in the most
probable set of q passwords:

Dpw(q) = max
P⊆Password

{
Pr

pw∈Dpw

[pw ∈ P | #P ≤ q]
}

.

The security of this protocol is based on the Compu-
tational Diffie Hellman Assumption. It is described as
follows.

Definition 8. A (t, ε)-CDHg,G attacker, in a finite cy-
clic group G of prime order q with g as a generator,
is a probabilistic machine ∆ running in time t such
that its success probability Succcdh

g,G(∆), given random
elements gx and gy to output gxy, is greater than ε. As
usual, we denote by Succcdh

g,G(t) the maximal success
probability over every adversaries running within time
t. The CDH-Assumption states that Succcdh

g,G(t) ≤ ε for
any t/ε not too large.

About the security of the OMDHKE protocol in the
random oracle model, Bresson, Chevassut, and Point-
cheval [4] proved following proposition. They claimed
that the OMDHKE protocol is secure in the sense of
the security notions of [2] in the random oracle model.

Proposition 9 (Bresson, Chevassut, and Point-
cheval). Consider the OMDHKE protocol in the ran-
dom oracle model, over a group of prime order q, where
Password is a dictionary equipped with the distribu-
tion Dpw. For any adversary A within time bound t,
with less than qs active interactions with the parties
(Send-queries) and qp passive eavesdroppings (Execute-
queries), and asking qg and qh hash queries to the ran-
dom oracles G and any Hi, respectively,

AdvAKE
omdhke(A) ≤ 2qs

2`1
+ 12×Dpw(qs)+

12q2
h × Succcdh

g,G(t + 2τe) +
2Q2

q

SuccS−auth
omdhke(A) ≤ qs

2`1
+ 3×Dpw(qs)+

3q2
h × Succcdh

g,G(t + 3τe) +
Q2

2q

where Q = qp+qs+qg and τe denotes the computational
time for an exponentiation in G.

5.2 Non AKE-Secure in the Standard Model
with Collision-Resistant Functions

In section 5.1, we stated that the OMDHKE protocol
in the random oracle model is secure. In this section,
we show that the OMDHKE protocol is not secure in
the standard model with collision-resistant functions.

Theorem 10. The OMDHKE protocol is not NM2
secure in the standard model with collision-resistant
functions.

Proof. We denote F1 and F2 family of collision-resist-
ant functions. For each function Fi ∈ Fi (i = 1, 2), Fi :
{0, 1}∗ → {0, 1}`/2, define F such that each function
F : {0, 1}∗ → {0, 1}` is as follows,

F =

{
F (x)

∣∣∣∣∣ F (x) =

{
F1(x) (Y < q

2)
F2(x) + `

2 (Y ≥ q
2),

(F1, F2) ∈ F1 ×F2

}
,

where x = C ||X∗ ||S ||Y ||PW ||K. Then F is also fam-
ily of collision-resistant function. Otherwise, there is
an adversary which can find x1, x2 such that F (x1) =
F (x2) (x1 6= x2). However, {F1(x) | x ∈ {0, 1}∗} ∧
{F2(x)+ `

2 | x ∈ {0, 1}∗} = ∅ so she can find x1, x2 (x1 6=
x2) such that F1(x1) = F1(x2) or F2(x1) = F2(x2).
The adversary A = (A1, A2) is as follows.

Algorithm AO1 () {
((C,X∗), (S, Y, AuthS)) ← Execute(C, 0, S, 0)
s ← {C, S, X∗, Y }
return (C, 0, s)

}

Algorithm AO2 (s) where s = {C, S,X∗, Y } {
Send(C, 1, S); (S, Y ′) ← Send(S, 1, X∗)
sk′ ← Reveal(S, 1)
if (Y < q

2 and Y ′ < q
2) or (Y ≥ q

2 and Y ′ ≥ q
2)

then define R(a, b) ={
1 ((a < `

2 and b < `
2) or (a ≥ `

2 and b ≥ `
2))

0 (otherwise)
else define R(a, b) ={

1 ((a < `
2 and b ≥ `

2) or (a ≥ `
2 and b < `

2))
0 (otherwise)

return (R, sk′)
}

The above algorithms use a few oracle queries

qs = 2, qp = 1, qr = 1,

where qr is the number of the Reveal queries. Those
algorithms run in constant time and always return cor-
rect answers, that is, AdvNM2

P (A) = 1.

7

Client C Server S

PW ← G(pw) PW ← G(pw)
acc ← term ← false acc ← term ← false

x ←R Zq, X ← gx

X∗ ← X × PW -C,X∗
X ← X∗/PW
y ←R Zq, Y ← gy

KS ← Xy

KC ← Y x ¾ S, Y, AuthS AuthS ← H1(C ||S ||X∗ ||Y ||PW ||KS)
if AuthS = H1(C ||S ||X∗ ||Y ||PW ||KC) acc ← true

then acc ← true

skC ← H0(C ||S ||X∗ ||Y ||PW ||KC) skS ← H0(C ||S ||X∗ ||Y ||PW ||KS)
term ← true term ← true

Figure 3: OMDHKE

6 Conclusion

In this paper, we have proposed two new security
notions based on non-malleability which is often em-
ployed in public-key cryptosystems. We have proved
these are equivalent to the security notion proposed
in [2]. We have shown that there is a protocol secure
in the random oracle model not always secure in the
standard model with collision-resistant hash functions.

References

[1] Bellare, M., Desai, A., Pointcheval, D.,
and Rogaway, P. Relations Among Notions of
Security for Public-key Encryption Schemes. In Ad-
vances in Cryptology – CRYPTO ’98 (Santa Bar-
bara, California, USA, August 1998), H. Krawczyk,
Ed., vol. 1462 of LNCS, Springer-Verlag.

[2] Bellare, M., Pointcheval, D., and Rog-
away, P. Authenticated Key Exchange Secure
Against Dictionary Attacks. In Advances in Cryp-
tology – EUROCRYPT 2000 (Bruges, Belgium,
May 2000), B. Preneel, Ed., vol. 1807 of LNCS,
Springer-Verlag.

[3] Bellovin, S., and Merritt, M. Encrypted
Key Exchange: Password-Based Protocols Secure
against Dictionary Attacks. In Proc. of the Sympo-
sium on Security and Privacy (1992), pp. 72–84.

[4] Bresson, E., Chevassut, O., and Point-
cheval, D. New Security Results on Encrypted
Key Exchange. In Public Key Cryptography – PKC
2004 (Singapore, March 2004), F. Bao, R. H. Deng,
and J. Zhou, Eds., vol. 2947 of LNCS, Springer-
Verlag.

[5] Dolev, D., Dwork, C., and Naor, M. Non-
Malleable Cryptography. In Proceedings of the
23rd Annual Symposium on Theory of Computing
(1991), pp. 542–552.

[6] Nagao, W., Manabe, Y., and Okamoto, T.
On the Security of Hybrid Public-Key Encryption.
In Symposium on Cryptography and Information
Security – SCIS (2004), pp. 35–40.

8

