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Abstract

We first propose the notion of universal anonymizable public-key encryption. Suppose that
we have the encrypted data made with the same security parameter, and that these data do not
satisfy the anonymity property. Consider the situation that we would like to transform these
encrypted data to those with the anonymity property without decrypting these encrypted data.
In this paper, in order to formalize this situation, we propose a new property for public-key
encryption called universal anonymoizablity. We then propose the universal anonymizable public-
key encryption schemes based on RSA-OAEP, the ElGamal encryption, and the Cramer-Shoup
encryption schemes, and prove their security.
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1 Introduction

The classical security requirement of public-key encryption schemes is that it provides privacy of the
encrypted data. Popular formalizations such as indistinguishability or non-malleability, under either
the chosen-plaintext or the chosen-ciphertext attacks are directed at capturing various data-privacy
requirements.

Bellare, Boldyreva, Desai, and Pointcheval [1] proposed a new security requirement of encryption
schemes called “key-privacy” or “anonymity.” It asks that an encryption scheme provides (in addition
to privacy of the data being encrypted) privacy of the key under which the encryption was performed.
That is, if an encryption scheme provides the key-privacy, then the receiver is anonymous from the
point of view of the adversary.

Anonymous encryption schemes have various applications such as anonymous authenticated key
exchange protocol (Krawczyk [11]), anonymous credential system (Camenisch and Lysyanskaya [4]),
and auction protocols (Sako [14]).

In addition to the notion of key-privacy, they provided the RSA-based key-privacy encryption
scheme, RSA-RAEP, which is a variant of RSA-OAEP (Bellare and Rogaway [2], Fujisaki, Okamoto,
Pointcheval, and Stern [7]). Recently, Hayashi, Okamoto, and Tanaka [9] proposed the RSA-based
key-privacy encryption scheme by using the RSACD function, and Hayashi and Tanaka [10] also
constructed the RSA-based key-privacy encryption scheme by using the sampling twice technique.
With respect to the discrete-log based schemes, Bellare, Boldyreva, Desai, and Pointcheval [1] proved
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that the ElGamal and the Cramer-Shoup encryption schemes provide the anonymity property when
all of the users use a common group.

Suppose that we have the encrypted data made with the same security parameter, and that these
data do not satisfy the anonymity property. Consider the situation that we would like to transform
these encrypted data to those with the anonymity property without decrypting these encrypted data.
In this paper, in order to formalize this situation, we propose a special type of public-key encryption
scheme called a universal anonymizable public-key encryption scheme. The universal anonymizable
public-key encryption scheme consists of a standard public-key encryption scheme PE and two other
additional algorithms, that is, an anonymizing algorithm UA and a decryption algorithm DA for
anonymized ciphertexts. We can use PE as a standard encryption scheme which is not necessary to
have the anonymity property. Furthermore, in this scheme, by using the anonymizing algorithm UA,
anyone who has a standard ciphertext can anonymize the ciphertext with its public key whenever
she wants to do that. The receiver can decrypt the anonymized ciphertext by using the decryption
algorithm DA for anonymized ciphertexts. Then, the adversary cannot know under which key the
anonymized ciphertext was created.

To formalize the security properties for universal anonymizable public-key encryption, we de-
fine three requirements, the key-privacy, the data-privacy on standard ciphertexts, and that on
anonymized ciphertexts.

We then propose the universal anonymizable public-key encryption schemes based on RSA-OAEP,
the ElGamal encryption, and the Cramer-Shoup encryption schemes, and prove their security.

We show the key-privacy property of our schemes by a similar argument as in [1]. The argument
in [1] for the discrete-log based scheme depends heavily on the situation where all of the users employ
a common group. However, in our descrete-log based schemes, we do not use the common group for
obtaining the key-privacy property. Therefore, we cannot straightforwardly apply their argument to
our schemes. To prove the key-privacy property of our schemes, we employ the idea described in [5]
by Cramer and Shoup, where we encode the elements of QRp (a group of quadratic residues modulo
p) where p = 2q + 1 and p, q are prime to those of Zq. This encoding plays an important role in our
schemes.

The organization of this paper is as follows. In Section 2, we describe the definitions of the RSA
family of trap-door permutations, the DDH problem, and the paired DDH problem. In Section 3, we
formulate the notion of universal anonymizable public-key encryption and its security properties. We
propose the universal anonymizable public-key encryption scheme based on RSA-OAEP in Section 4,
that based on the ElGamal encryption scheme in Section 5, and that based on the Cramer-Shoup
encryption scheme in Section 6. We conclude in Section 7.

2 Preliminaries

In this section, we describe the definitions of the RSA family of trap-door permutations, the DDH
problem, and the paired DDH problem. Our schemes are based on these family and problems.

2.1 The RSA Family of Trap-Door Permutations

Definition 1 (the RSA family of trap-door permutations). The RSA family of trap-door permutations
RSA = (K,E, I) is described as follows. The key generation algorithm K takes as input a security
parameter k and picks random, distinct primes p, q in the range 2dk/2e−1 < p, q < 2dk/2e and 2k−1 <
pq < 2k. It sets N = pq and picks e, d ∈ Z∗φ(N) such that ed = 1 (mod φ(N)). The public key
is N, e, k and the secret key is N, d, k. The evaluation algorithm is EN,e,k(x) = xe mod N and the
inversion algorithm is IN,d,k(y) = yd mod N .

We describe the definition of partial one-wayness of RSA.
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Definition 2 (θ-partial one-wayness of RSA). Let k ∈ N be a security parameter. Let 0 < θ ≤ 1 be
a constant. Let A be an adversary. We consider the following experiments:

Experiment Expθ-pow-fnc
RSA,A (k)

((N, e, k), (N, d, k)) ← K(k); x
R← Z∗N ; y ← xe mod N

x1 ← A(pk, y) where |x1| = dθ · |x|e
if ((x1||x2)e mod N = y for some x2) return 1 else return 0

Here “ ||” denotes concatenation, and “ x
R← Z∗N” is the operation of picking an element x uniformly

from Z∗N . We define the advantages of the adversary via

Advθ-pow-fnc
RSA,A (k) = Pr[Expθ-pow-fnc

RSA,A (k) = 1]

where the probability is taken over K, x
R← Z∗N , and A. We say that the RSA family RSA is θ-partial

one-way if the function Advθ-pow-fnc
RSA,A (·) is negligible for any adversary A whose time complexity is

polynomial in k.

The “time-complexity” is the worst case execution time of the experiment plus the size of the code
of the adversary, in some fixed RAM model of computation.

Note that when θ = 1 the notion of θ-partial one-wayness coincides with the standard notion of
one-wayness. Fujisaki, Okamoto, Pointcheval, and Stern [7] showed that the θ-partial one-wayness of
RSA is equivalent to the (1-partial) one-wayness of RSA for θ > 0.5.

2.2 The Decisional Diffie-Hellman Problem

Definition 3 (DDH). Let G be a group generator which takes as input a security parameter k and
returns (q, g) where q is a k-bit integer and g is a generator of a cyclic group Gq of order q. Let D
be an adversary. We consider the following experiments:

Experiment Expddh-real
G,D (k) Experiment Expddh-rand

G,D (k)

(q, g) ← G(k); x, y
R← Zq (q, g) ← G(k); x, y

R← Zq

X ← gx; Y ← gy; T ← gxy X ← gx; Y ← gy; T
R← Gq

d ← D(q, g, X, Y, T ) d ← D(q, g, X, Y, T )
return d return d

The advantage of D in solving the Decisional Diffie-Hellman (DDH) problem for G is defined by

Advddh
G,D(k) = |Pr[Expddh-real

G,D (k) = 1]− Pr[Expddh-rand
G,D (k) = 1]|.

We say that the DDH problem for G is hard if the function Advddh
G,D(k) is negligible for every algorithm

D whose time-complexity is polynomial in k.

2.3 The Paired Decisional Diffie-Hellman Problem

We now define the paired DDH problem. In order to prove the securities of our schemes based on
the ElGamal and Cramer-Shoup schemes, we use this problem for reductions.

Definition 4 (paired DDH). Let G be a group generator. Let D be an adversary. We consider the
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following experiments:

Experiment Exppddh-real
G,D (k) Experiment Exppddh-rand

G,D (k)

(q0, g0) ← G(k); x0, y0
R← Zq0 (q0, g0) ← G(k); x0, y0

R← Zq0

X0 ← gx0
0 ; Y0 ← gy0

0 ; T0 ← gx0y0
0 X0 ← gx0

0 ; Y0 ← gy0
0 ; T0

R← Gq0

(q1, g1) ← G(k); x1, y1
R← Zq1 (q1, g1) ← G(k); x1, y1

R← Zq1

X1 ← gx1
1 ; Y1 ← gy1

1 ; T1 ← gx1y1
1 X1 ← gx1

1 ; Y1 ← gy1
1 ; T1

R← Gq1

d ← D((q0, g0, X0, Y0, T0), d ← D((q0, g0, X0, Y0, T0),
(q1, g1, X1, Y1, T1)) (q1, g1, X1, Y1, T1))

return d return d

The advantage of D in solving the paired Decisional Diffie-Hellman problem for G is defined by

Advpddh
G,D (k) = |Pr[Exppddh-real

G,D (k) = 1]− Pr[Exppddh-rand
G,D (k) = 1]|.

We say that the paired DDH problem for G is hard if the function Advpddh
G,D (k) is negligible for every

algorithm D whose time-complexity is polynomial in k.

We prove the following theorem, and its proof is in Appendix A.

Theorem 1. The paired DDH problem for G is hard if and only if the DDH problem for G is hard.

3 Universal Anonymizable Public-Key Encryption

In this section, we propose the definition of universal anonymizable public-key encryption schemes
and its security properties.

3.1 The Definition of Universal Anonymizable Public-Key Encryption Schemes

We formalize the notion of universal anonymizable public-key encryption schemes as follows.

Definition 5. A universal anonymizable public-key encryption scheme UAPE = ((K, E ,D),UA,DA)
consists of a public-key encryption scheme PE = (K, E ,D) and two other algorithms.

• The key generation algorithm K is a randomized algorithm that takes as input a security pa-
rameter k and returns a pair (pk, sk) of keys, a public key and a matching secret key.

• The encryption algorithm E is a randomized algorithm that takes the public key pk and a plain-
text m to return a standard ciphertext c.

• The decryption algorithm D for standard ciphertexts is a deterministic algorithm that takes the
secret key sk and a standard ciphertext c to return the corresponding plaintext m or a special
symbol ⊥ to indicate that the standard ciphertext is invalid.

• The anonymizing algorithm UA is a randomized algorithm that takes the public key pk and a
standard ciphertext c, and returns an anonymized ciphertext c′.

• The decryption algorithm DA for anonymized ciphertexts is a deterministic algorithm that takes
the secret key sk and an anonymized ciphertext c′ and returns the corresponding plaintext m or
a special symbol ⊥ to indicate that the anonymized ciphertext is invalid.

In the universal anonymizable public-key encryption scheme, we can use PE = (K, E ,D) as a
standard encryption scheme. Furthermore, in this scheme, by using the anonymizing algorithm
UA, anyone who has a standard ciphertext can anonymize the ciphertext whenever she wants to do
that. The receiver can decrypt the anonymized ciphertext by using the decryption algorithm DA for
anonymized ciphertexts.
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3.2 Security Properties of Universal Anonymizable Public-Key Encryption Scheme

We now define two security properties with respect to universal anonymizable public-key encryption
schemes.

3.2.1 Key-Privacy

First, we define the security property called key-privacy of universal anonymizable public-key encryp-
tion schemes. If the scheme provides the key-privacy, the adversary cannot know under which key
the anonymized ciphertext was encrypted.

Definition 6 (Key-Privacy). Let b ∈ {0, 1} and k ∈ N. Let Acpa = (A1
cpa, A

2
cpa), Acca = (A1

cca, A
2
cca)

be adversaries that run in two stages and where Acca has access to the oracles Dsk0(·), Dsk1(·),
DAsk0(·), and DAsk1(·). Note that si is the state information. It contains pk0, pk1, and so on. For
atk ∈ {cpa, cca}, we consider the following experiment:

Experiment Expkey-atk-b
UAPE,Aatk

(k)
(pk0, sk0) ← K(k); (pk1, sk1) ← K(k)
(m0,m1, si) ← A1

atk(pk0, pk1); c ← Epkb
(mb); c′ ← UApkb

(c); d ← A2
atk(c

′, si)
return d

Note that m0 and m1 are chosen from the message spaces for pk0 and pk1, respectively. Above it is
mandated that A2

cca never queries the challenge c′ to either DAsk0(·) or DAsk1(·). For atk ∈ {cpa,
cca}, we define the advantage via

Advkey-atk
UAPE,Aatk

(k) =
∣∣∣Pr[Expkey-atk-1

UAPE,Aatk
(k) = 1]− Pr[Expkey-atk-0

UAPE,Aatk
(k) = 1]

∣∣∣.

We say that a universal anonymizable public-key encryption scheme UAPE provides the the key-
privacy against the chosen plaintext attack (respectively the adaptive chosen ciphertext attack) if the
function Advkey-cpa

UAPE,Acpa
(·) (resp. Advkey-cca

UAPE,Acca
(·)) is negligible for any adversary A whose time

complexity is polynomial in k.

Bellare, Boldyreva, Desai, and Pointcheval [1] proposed a security requirement of the encryption
schemes called “key-privacy.” Similar to the above definition, it asks that the encryption provides
privacy of the key under which the encryption was performed. In addition to the property of the
universal anonymizability, there are two differences between their definition and ours.

In [1], they defined the encryption scheme with some common-key which contains the common
parameter for all users to obtain the key-privacy property. For example, in the discrete-log based
schemes such that the ElGamal and the Cramer-Shoup encryption schemes, the common key contains
a common group G, and the encryption is performed over the common group for all uses.

On the other hand, in our definition, we do not prepare any common key for obtaining the
key-privacy property. In the universal anonymizable public-key encryption scheme, we can use the
standard encryption scheme which is not necessary to have the key-privacy property. In addition to
it, anyone can anonymize the ciphertext by using its public key whenever she want to do that, and
the adversary cannot know under which key the anonymized ciphertext was created.

The definition in [1], they considered the situation that the message space was common to each
user. Therefore, in the experiment of their definition, the adversary chooses only one message m from
the common message space and receives a ciphertext of m encrypted with one of two keys pk0 and
pk1.

In our definition, we do not use common parameter, the message spaces for users may be different
even if the security parameter is fixed. In fact, in Sections 5 and 6, we propose the encryption
schemes whose message spaces for users are different. Therefore, in the experiment of our definition,
the adversary chooses two messages m0 and m1 where m0 and m1 are in the message spaces for pk0
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and pk1, respectively, and receives either a ciphertext of m0 encrypted with pk0 or a ciphertext of m1

encrypted with pk1. The ability of the adversary with two messages m0 and m1 might be stronger
than that with one message m.

3.2.2 Data-Privacy

Second, we define the security property called data-privacy of universal anonymizable public-key
encryption schemes. The definition is based on the indistinguishability for standard public-key en-
cryption schemes.

We can consider two types of data-privacy, that is, the data-privacy on standard ciphertexts and
that on anonymized ciphertexts.

Definition 7 (Data-Privacy of Standard Ciphertexts). Let b ∈ {0, 1} and k ∈ N. Let Acpa =
(A1

cpa, A
2
cpa), Acca = (A1

cca, A
2
cca) be adversaries that run in two stages and where Acca has access to

the oracles Dsk0(·), Dsk1(·), DAsk0(·), and DAsk1(·). For atk ∈ {cpa, cca}, we consider the following
experiment:

Experiment ExpdataS-atk-b
UAPE,Aatk

(k)
(pk, sk) ← K(k)
(m0,m1, si) ← A1

atk(pk); c ← Epk(mb); d ← A2
atk(c, si)

return d

Note that m0 and m1 are chosen from the message space for pk. Above it is mandated that A2
cca never

queries the challenge c to either Dsk0(·) or Dsk1(·). It is also mandated that A2
cca never queries either

the anonymized ciphertexts c̃ ∈ {UApk0(c)} to DAsk0(·) or c̃ ∈ {UApk1(c)} to DAsk1(·). For atk ∈
{cpa, cca}, we define the advantage via

AdvdataS-atk
UAPE,Aatk

(k) =
∣∣∣Pr[ExpdataS-atk-1

UAPE,Aatk
(k) = 1]− Pr[ExpdataS-atk-0

UAPE,Aatk
(k) = 1]

∣∣∣.

We say that a universal anonymizable public-key encryption scheme UAPE provides the data-privacy
on standard ciphertexts against the chosen plaintext attack (respectively the adaptive chosen ciphertext
attack) if the function AdvdataS-cpa

UAPE,Acpa
(·) (resp. AdvdataS-cca

UAPE,Acca
(·)) is negligible for any adversary A

whose time complexity is polynomial in k.

Definition 8 (Data-Privacy of Anonymized Ciphertexts). Let b ∈ {0, 1} and k ∈ N. Let Acpa =
(A1

cpa, A
2
cpa), Acca = (A1

cca, A
2
cca) be adversaries that run in two stages and where Acca has access to

the oracles Dsk0(·), Dsk1(·), DAsk0(·), and DAsk1(·). For atk ∈ {cpa, cca}, we consider the following
experiment:

Experiment ExpdataA-atk-b
UAPE,Aatk

(k)
(pk, sk) ← K(k)
(m0,m1, si) ← A1

atk(pk); c ← Epk(mb); c′ ← UApk(c); d ← A2
atk(c

′, si)
return d

Note that m0 and m1 are chosen from the message space for pk. Above it is mandated that A2
cca

never queries the challenge c′ to either DAsk0(·) or DAsk1(·). For atk ∈ {cpa, cca}, we define the
advantage via

AdvdataA-atk
UAPE,Aatk

(k) =
∣∣∣Pr[ExpdataA-atk-1

UAPE,Aatk
(k) = 1]− Pr[ExpdataA-atk-0

UAPE,Aatk
(k) = 1]

∣∣∣.

We say that the universal anonymizable public-key encryption scheme UAPE provides the data-
privacy on anonymized ciphertexts against the chosen plaintext attack (respectively the adaptive cho-
sen ciphertext attack) if the function AdvdataA-cpa

UAPE,Acpa
(·) (resp. AdvdataA-cca

UAPE,Acca
(·)) is negligible for any

adversary A whose time complexity is polynomial in k.
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We say that a universal anonymizable public-key encryption scheme UAPE is CPA-secure (re-
spectively CCA-secure) if the scheme UAPE provides the key-privacy, the data-privacy on standard
ciphertexts, and that on anonymized ciphertexts, against the chosen plaintext attack (resp. the
adaptive chosen ciphertext attack).

4 RSA-OAEP and its Universal Anonymizability

In this section, we propose a universal anonymizable RSA-OAEP scheme.

4.1 RSA-OAEP

Definition 9 (RSA-OAEP). RSA-OAEP PERO = (KRO, ERO,DRO) is as follows. Let k, k0 and k1 be
security parameters such that k0 +k1 < k. This defines an associated plaintext-length n = k−k0−k1.
The key generation algorithm KRO takes as input a security parameter k and runs the key generation
algorithm of the RSA family to get N, e, d. The public key pk is (N, e), k, k0, k1 and the secret key sk
is (N, d), k, k0, k1. The other algorithms are depicted below. Let G : {0, 1}k0 → {0, 1}n+k1 and H :
{0, 1}n+k1 → {0, 1}k0 be hash functions. Note that [x]n denotes the n most significant bits of x and
[x]m denotes the m least significant bits of x.

Algorithm ERO
pk (m) Algorithm DRO

sk (c)

r
R← {0, 1}k0 s ← [cd]n+k1 ; t ← [cd]k0

s ← (m||0k1)⊕G(r) r ← t⊕H(s)
t ← r ⊕H(s) m ← [s⊕G(r)]n; p ← [s⊕G(r)]k1

c ← (s||t)e mod N if (p = 0k1) z ← m else z ←⊥
return c return z

Fujisaki, Okamoto, Pointcheval, and Stern [7] proved that OAEP with partial one-way permuta-
tion is secure in the sense of IND-CCA2. They also showed that the RSA family is one-way if and
only if the RSA family is θ-partial one-way for θ > 0.5. Thus, RSA-OAEP is secure in the sense of
IND-CCA2 assuming the RSA family is one-way.

4.2 Universal Anonymizability of RSA-OAEP

A simple observation that seems to be folklore is that if one publishes the ciphertext of the RSA-OAEP
scheme directly (without anonymization) then the scheme does not provide the key-privacy. Suppose
an adversary knows that the ciphertext c is created under one of two keys (N0, e0) or (N1, e1), and
suppose N0 ≤ N1. If c ≥ N0 then the adversary bets it was created under (N1, e1), else the adversary
bets it was created under (N0, e0). It is not hard to see that this attack has non-negligible advantage.
In order to construct the schemes with anonymity, it is necessary that the space of ciphertexts is
common to each user.

To anonymize ciphertexts of RSA-OAEP, we use the expanding technique. In the expanding
technique, if we get the ciphertext, we expand it to the common domain. This technique was proposed
by Desmedt [6]. In [8], Galbraith and Mao used this technique for the undeniable signature scheme.
In [13], Rivest, Shamir, and Tauman also used this technique for the ring signature scheme.

Definition 10. Our universal anonymizable RSA-OAEP scheme UAPERO = ((KRO, ERO,DRO),UARO,
DARO) consists of RSA-OAEP PERO = (KRO, ERO,DRO) and two algorithms described as follows.

Algorithm UARO
pk (c) Algorithm DARO

sk (c′)

α
R← {0, 1, 2, · · · , b(2k+160 − c)/Nc} c ← c′ mod N

c′ ← c + αN z ← DRO
sk (c)

return c′ return z
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4.3 Security

In this section, we prove that our universal anonymizable RSA-OAEP scheme UAPERO is CCA-
secure.

In order to prove that our scheme provides the key-privacy and the data-privacy on anonymized
ciphertexts, we need the restriction as follows.

We define the set of ciphertexts ECRO(c′, pk) called “equivalence class” as

ECRO(c′, pk) = {č ∈ {0, 1}k+160|č = c′ (mod N)}.

If c′ ∈ {0, 1}k+160 is an anonymized ciphertext of m0 for pk0 = (N0, e0, k) then any element
č ∈ ECRO(c′, pk0) is also an anonymized ciphertext of m0 under pk0. Therefore, when c′ is a challenge
anonymized ciphertext, the adversary can ask an anonymized ciphertext č ∈ ECRO(c′, pk0) to the
decryption oracle DARO

sk0
for anonymized ciphertexts, and if the answer of DARO

sk0
is m0 then the

adversary knows that c′ is encrypted by pk0 and the plaintext of c′ is m0.
Furthermore, since the adversary can compute the standard ciphertext c as c′ mod N0, the ad-

versary can ask c to the decryption oracle DRO
sk0

and if the answer of DRO
sk0

is m0, then the adversary
knows that c′ is encrypted by pk0 and the plaintext of c′ is m0.

To prevent this attack, we add some natural restriction to the adversaries in the definitions of
the key-privacy and the data-privacy on anonymized ciphertexts. That is, it is mandated that the
adversary never queries either č ∈ ECRO(c′, pk0) to DARO

sk0
or č ∈ ECRO(c′, pk1) to DARO

sk1
. It is also

mandated that the adversary never queries either c′ mod N0 to DRO
sk0

or c′ mod N1 to DRO
sk1

.
We think these restrictions are natural and reasonable. Actually, in the case of undeniable and

confirmer signature schemes, Galbraith and Mao [8] defined the anonymity on undeniable signature
schemes with the above restriction. In [10], Hayashi and Tanaka also employed the same restriction
in order to prove anonymity of their encryption scheme.

If we add these restrictions then we can prove that our scheme provides the key-privacy against
the adaptive chosen ciphertext attack in the random oracle model assuming RSA family is θ-partial
one-way for θ > 0.5. More precisely, we show the following theorem, the proof is in Appendix B.

Theorem 2. If the RSA family is partial one-way then our scheme UAPERO provides the key-privacy
against the adaptive chosen ciphertext attack in the random oracle model. More precisely, for any
adversary A attacking the key-privacy of our scheme under the adaptive chosen ciphertext attack, and
making at most qdec queries to decryption oracle for standard ciphertexts, q′dec queries to decryption
oracle for anonymized ciphertexts, qgen G-oracle queries, and qhash H-oracle queries, there exists a
θ-partial inverting adversary B for the RSA family, such that for any k, k0(k), k1(k), and θ = k−k0(k)

k ,

Advkey-cca

UAPERO,A
(k) ≤ 8qhash · ((1− ε1) · (1− ε2))

−1 ·Advθ-pow-fnc
RSA,B (k)

+qgen · qhash · (1− ε2)−1 · 2−k+2

where

ε1 =
1

2k/2−3 − 1
+

1
2159

; ε2 =
2qgen + qdec + q′dec + 2qgen(qdec + q′dec)

2k0
+

2qgen

2k1
+

2qhash

2k−k0
,

and the running time of B is that of A plus qgen · qhash ·O(k3).

We can also prove that our scheme provides the data-privacy on standard ciphertexts against the
adaptive chosen ciphertext attack in the random oracle model assuming the RSA family is θ-partial
one-way for θ > 0.5. More precisely, we can prove that if there exists a CCA-adversary A attacking
the data-privacy on standard ciphertexts of our scheme with advantage ε, then there exists a CCA2-
adversary B attacking indistinguishability of RSA-OAEP with advantage ε. In the reduction of the
proof, we have to simulate the decryption oracles for anonymized ciphertexts for A. If A makes
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a query c′ to DAsk0(·), we simply compute c ← c′ mod N0 and decrypt c by using the decryption
algorithm Dsk0(·) for standard ciphertexts for B. We can simulate DAsk1(·) in a similar way.

Furthermore, if we add the restrictions described above, we can prove that our scheme provides the
data-privacy on anonymized ciphertexts against the adaptive chosen ciphertext attack in the random
oracle model assuming the RSA family is θ-partial one-way for θ > 0.5. More precisely, we can
prove that if there exists a CCA-adversary C attacking the data-privacy on anonymized ciphertexts
of our scheme with advantage ε, then there exists a CCA-adversary A attacking the data-privacy on
standard ciphertexts of our scheme with the same advantage ε.

In conclusion, since the RSA family is θ-partial one-way if and only if the RSA family is one-way
for θ > 0.5, our universal anonymizable RSA-OAEP scheme UAPERO is CCA-secure in the random
oracle model assuming the RSA family is one-way.

5 ElGamal and its Universal Anonymizability

In this section, we propose a universal anonymizable ElGamal encryption scheme.

5.1 The ElGamal Encryption Scheme

Definition 11 (ElGamal). The ElGamal encryption scheme PEEG = (KEG, EEG,DEG) is as follows.
Note that Q is a QR-group generator with safe prime which takes as input a security parameter k
and returns (q, g) where q is k-bit prime, p = 2q + 1 is prime, and g is a generator of a cyclic group
QRp (a group of quadratic residues modulo p) of order q.

Algorithm KEG(k) Algorithm EEG
pk (m) Algorithm DEG

sk (c1, c2)

(q, g) ← Q(k) r
R← Zq m ← c2 · c−x

1

x
R← Zq; y ← gx c1 ← gr return m

return pk = (q, g, y) and c2 ← m · yr

sk = (q, g, x) return (c1, c2)

The ElGamal encryption scheme is secure in the sense of IND-CPA if the DDH problem for Q is
hard.

5.2 Universal Anonymizability of the ElGamal Encryption Scheme

We now consider the situation that there exists no common key, and in the above definition of the
ElGamal encryption scheme, each user chooses an arbitrary prime q where |q| = k and p = 2q + 1
is also prime, and uses a group of quadratic residues modulo p. Therefore, each user Ui uses a
different groups Gi for her encryption scheme and if she publishes the ciphertext directly (without
anonymization) then the scheme does not provide the key-privacy. In fact, the adversary simply
checks whether the ciphertext y is in the group Gi, and if y 6∈ Gi then y was not encrypted by Ui.
To anonymize the standard ciphertext of the ElGamal encryption scheme, we consider the following
strategy in the universal anonymizing algorithm.

1. Compute a ciphertext c over each user’s prime-order group.

2. Encode c to an element c̄ ∈ Zq (encoding function).

3. Expand c̄ to the common domain (expanding technique).

We have already used the expanding technique in Section 4. We now describe the encoding function.
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The Encoding Function Generally speaking, it is not easy to encode the elements of a prime-
order group of order q to those of Zq. We employ the idea described in [5] by Cramer and Shoup.
We can encode the elements of QRp where p = 2q + 1 and p, q are prime to those of Zq.

Let p be safe prime (i.e. q = (p − 1)/2 is also prime) and QRp ⊂ Z∗p be a group of quadratic
residues modulo p. Then we have |QRp| = q and

QRp = {12 mod p, 22 mod p, · · · , q2 mod p}.

It is easy to see that QRp is a cyclic group of order q, and each g ∈ QRp\{1} is a generator of QRp.
We now define a function Fq : QRp → Zq as

Fq(x) = min
{
±x

p−1
4 mod p

}
.

Noticing that ±x
p−1
4 mod p are the square roots of x modulo p, the function Fq is bijective and we

have
F−1

q (y) = y2 mod p.

We call the function Fq an encoding function. We also define a t-encoding function F̄q,t : (QRp)t →
(Zq)t. F̄q,t takes as input (x1, · · · , xt) ∈ (QRp)t and returns (y1, · · · , yt) ∈ (Zq)t where yi = Fq(xi) for
each i ∈ {1, · · · , t}. It is easy to see that F̄q,t is bijective and we can define F̄−1

q,t .

Our Scheme. We now propose our universal anonymizable ElGamal encryption scheme. Our
scheme provides the key-privacy against the chosen plaintext attack even if each user chooses an
arbitrary prime q where |q| = k and p = 2q + 1 is also prime, and uses a group of quadratic residues
modulo p.

Definition 12. Our universal anonymizable ElGamal encryption scheme UAPEEG = ((KEG, EEG,DEG),
UAEG,DAEG) consists of the ElGamal encryption scheme PEEG = (KEG, EEG,DEG) and two algo-
rithms described as follows.

Algorithm UAEG
pk (c1, c2) Algorithm DAEG

sk (c′1, c
′
2)

(c̄1, c̄2) ← F̄q,2(c1, c2) c̄1 ← c′1 mod q; c̄2 ← c′2 mod q

t1
R← {0, 1, 2, · · · , b(2k+160 − c̄1)/qc} (c1, c2) ← F̄−1

q,2 (c̄1, c̄2)

t2
R← {0, 1, 2, · · · , b(2k+160 − c̄2)/qc} m ← DEG

sk (c1, c2)
c′1 ← c̄1 + t1q; c′2 ← c̄2 + t2q return m
return (c′1, c

′
2)

5.3 Security

In this section, we prove that our universal anonymizable ElGamal encryption scheme UAPEEG is
CPA-secure.

In order to prove that our scheme provides the key-privacy and the data-privacy on anonymized
ciphertexts against the chosen plaintext attack, we need the restrictions similar to those for our univer-
sal anonymizable RSA-OAEP scheme. We define the equivalence class for our universal anonymizable
ElGamal encryption scheme as follows:

ECEG((c′1, c
′
2), pk) = {(č1, č2) ∈ ({0, 1}k+160)2|č1 = c′1 (mod q) ∧ č2 = c′2 (mod q)}.

It is mandated that the adversary never queries either (č1, č2) ∈ ECEG((c′1, c
′
2), pk0) to DAsk0 or

(č1, č2) ∈ ECEG((c′1, c
′
2), pk1) to DAsk1 . It is also mandated that the adversary never queries either

F̄−1
q0,2(c

′
1 mod q0, c

′
2 mod q0) to Dsk0 or F̄−1

q1,2(c
′
1 mod q1, c

′
2 mod q1) to Dsk1 .

We prove the following theorem with the above restrictions. The proof of the following theorem
is in Appendix C.
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Theorem 3. Our universal anonymizable ElGamal encryption scheme provides the key-privacy
against the chosen plaintext attack if the DDH problem for Q is hard.

We can also prove that our scheme provides the data-privacy on standard ciphertexts and that
on anonymized ciphertexts against the chosen plaintext attack if the DDH problem for Q is hard.
The reductions in these proofs are similar to those in the proofs for our universal anonymizable
RSA-OAEP scheme.

In conclusion, our universal anonymizable ElGamal encryption scheme UAPEEG is CPA-secure
assuming that the DDH problem for Q is hard.

6 Cramer-Shoup and its Universal Anonymizability

In this section, we propose a universal anonymizable Cramer-Shoup encryption scheme.

6.1 The Cramer-Shoup Encryption Scheme

Definition 13 (Cramer-Shoup). The Cramer-Shoup encryption scheme PECS = (KCS, ECS, DCS) is
defined as follows. Note that Q is a QR-group generator with safe prime and H = (GH, EH) be a
family of hash functions (See Appendix D for families of hash functions.).

Algorithm KCS(k) Algorithm ECS
pk (m) Algorithm DCS

sk (u1, u2, e, v)

g1 ← g; g2
R← Gq r

R← Zq α ← EHK(u1, u2, e)
(q, g) ← Q(k); K ← GH(k) u1 ← gr

1; u2 ← gr
2 if (ux1+y1α

1 ux2+y2α
2 = v)

x1, x2, y1, y2, z
R← Zq e ← hrm then m ← e/uz

1

c ← gx1
1 gx2

2 ; d ← gy1
1 gy2

2 ; h ← gz
1 α ← EHK(u1, u2, e) else m ←⊥

pk ← (g1, g2, c, d, h, K) v ← crdrα return m
sk ← (x1, x2, y1, y2, z) return (u1, u2, e, v)
return (pk, sk)

Cramer and Shoup [5] proved that the Cramer-Shoup encryption scheme is secure in the sense of
IND-CCA2 assuming that H is universal one-way (See Appendix D for universal one-way.) and the
DDH problem for Q̄ is hard. Lucks [12] recently proposed a variant of the Cramer-Shoup encryption
scheme for groups of unknown order. This scheme is secure in the sense of IND-CCA2 assuming that
the family of hash functions in the scheme is universal one-way, and both the Decisional Diffie-Hellman
problem in QRN (a set of quadratic residues modulo N) and factoring N are hard.

6.2 Universal Anonymizability of the Cramer-Shoup Encryption Scheme

We propose our universal anonymizable Cramer-Shoup encryption scheme. Our scheme provides the
key-privacy against the adaptive chosen ciphertext attack even if each user chooses an arbitrary prime
q where |q| = k and p = 2q + 1 is also prime, and uses a group of quadratic residues modulo p.

Note that in our scheme we employ the expanding technique in Section 4 and the encoding
function in Section 5.

Definition 14. Our universal anonymizable Cramer-Shoup encryption scheme UAPECS = ((KCS, ECS,
DCS),UACS,DACS) consists of the Cramer-Shoup encryption scheme PECS = (KCS, ECS,DCS) and
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two algorithms described as follows.

Algorithm UACS
pk (u1, u2, e, v) Algorithm DACS

sk (u′1, u
′
2, e

′, v′)
(ū1, ū2, ē, v̄) ← F̄q,4(u1, u2, e, v) ū1 ← u′1 mod q; ū2 ← u′2 mod q

t1
R← {0, 1, 2, · · · , b(2k+160 − ū1)/qc} ē ← e′ mod q; v̄ ← v′ mod q

t2
R← {0, 1, 2, · · · , b(2k+160 − ū2)/qc} (u1, u2, e, v) ← F̄−1

q,4 (ū1, ū2, ē, v̄)

t3
R← {0, 1, 2, · · · , b(2k+160 − ē)/qc} m ← DCS

sk (u1, u2, e, v)

t4
R← {0, 1, 2, · · · , b(2k+160 − v̄)/qc} return m

u′1 ← ū1 + t1q; u′2 ← ū2 + t2q
e′ ← ē + t3q; v′ ← v̄ + t4q
return (u′1, u

′
2, e

′, v′)

6.3 Security

In this section, we prove that our universal anonymizable Cramer-Shoup encryption scheme UAPEEG

is CCA-secure.
In order to prove that our scheme provides the key-privacy against the adaptive chosen ciphertext

attack, we need to add restrictions similar to those for our universal anonymizable ElGamal encryption
scheme. We define the equivalence class for our universal anonymizable Cramer-Shoup scheme as
follows:

ECCS((u′1, u
′
2, e

′, v′), pk) = {(ǔ1, ǔ2, ě, v̌) ∈ ({0, 1}k+160)4|
ǔ1 = u′1 (mod q) ∧ ǔ2 = u′2 (mod q) ∧ ě = e′ (mod q) ∧ v̌ = v′ (mod q)}

We can prove the following theorem with the above restrictions. The proof of the following
theorem is in Appendix E and see Appendix D for collision resistant.

Theorem 4. Our universal anonymizable Cramer-Shoup encryption scheme provides the key-privacy
against the adaptive chosen ciphertext attack if the DDH problem for Q is hard and H is collision
resistant.

We can also prove that our scheme provides the data-privacy on standard ciphertexts and that
on anonymized ciphertexts against the adaptive chosen ciphertext attack if the DDH problem for Q
is hard and H is universal one-way. The reductions in these proofs are similar to those in the proofs
for our universal anonymizable RSA-OAEP scheme.

In conclusion, since if H is collision resistant then H is universal one-way, our universal anonymiz-
able Cramer-Shoup encryption scheme UAPECS is CCA-secure assuming that the DDH problem for
Q is hard and H is collision resistant.

7 Conclusion

We have proposed the notion of universal anonymizable public-key encryption. We have also pro-
posed the universal anonymizable public-key encryption schemes based on RSA-OAEP, the ElGamal
encryption, and the Cramer-Shoup encryption schemes, and prove their security.
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A Proof of Theorem 1

It is easy to see that if the paired DDH problem for G is hard then the DDH problem for G is hard.
We now consider the opposite direction. We assume that there exists an algorithm D for the

paired-DDH problem such that the advantage Advpddh
G,D (k) is non-neglibigle. By using the algorithm

D, we construct an algorithm D′ for the DDH problem as follows:

Algorithm D′(q, g, X, Y, T )

i
R← {0, 1}

if (i = 0)

(q0, g0) ← G(k); x0, y0
R← Zq0 ; X0 ← gx0

0 ; Y0 ← gy0
0 ; T0 ← gx0y0

0

(q1, g1, X1, Y1, T1) ← (q, g, X, Y, T )
d ← D((q0, g0, X0, Y0, T0), (q1, g1, X1, Y1, T1))

else
(q0, g0, X0, Y0, T0) ← (q, g, X, Y, T )

(q1, g1) ← G(k); x1, y1, z1
R← Zq1 ; X1 ← gx1

1 ; Y1 ← gy1
1 ; T1 ← gz1

1

d ← D((q0, g0, X0, Y0, T0), (q1, g1, X1, Y1, T1))
return d

Furthermore, we consider the additional experiment as follows:

Experiment Exppddh-temp
G,D (k)

(q0, g0) ← G(k); x0, y0
R← Zq0 ; X0 ← gx0

0 ; Y0 ← gy0
0 ; T0 ← gx0y0

0

(q1, g1) ← G(k); x1, y1
R← Zq1 ; X1 ← gx1

1 ; Y1 ← gy1
1 ; T1

R← Gq1

d ← D((q0, g0, X0, Y0, T0), (q1, g1, X1, Y1, T1))
return d

Then, we have

Advddh
G,D′(k) = |Pr[Expddh-real

G,D′ (k) = 1]− Pr[Expddh-rand
G,D′ (k) = 1]|

= |12(Pr[Expddh-real
G,D′ (k) = 1|i = 0] + Pr[Expddh-real

G,D′ (k) = 1|i = 1])
− 1

2(Pr[Expddh-rand
G,D′ (k) = 1|i = 0] + Pr[Expddh-rand

G,D′ (k) = 1|i = 1])|
= |12(Pr[Exppddh-real

G,D (k) = 1] + Pr[Exppddh-temp
G,D (k) = 1])

− 1
2(Pr[Exppddh-temp

G,D (k) = 1] + Pr[Exppddh-rand
G,D (k) = 1])|

= 1
2 |Pr[Exppddh-real

G,D (k) = 1]− Pr[Exppddh-rand
G,D (k) = 1]|.

= 1
2Advpddh

G,D (k).

Therefore, the advantage of D′ is non-negligible.

B Proof of Theorem 2

We first describe the RSA partial inverting algorithm M using a CCA-adversary A attacking anonymity
of our encryption scheme. M is given pk = (N, e, k) and a point y ∈ Z∗N where |y| = k = n + k0 + k1.
Let sk = (N, d, k) be the corresponding secret key. The algorithm is trying to find the n + k1 most
significant bits of the e-th root of y modulo N .

1) M picks a bit µ
R← {0, 1, 2, . . . , b(2k+160 − y)/Nc} and sets Y ← y + µN .

2) M runs the key generation algorithm of the RSA family with security parameter k to obtain
pk′ = (N ′, e′, k) and sk′ = (N ′, d′, k). Then it picks a bit b

R← {0, 1}, sets pkb ← (N, e) and
pk1−b ← (N ′, e′). If the above y does not satisfy y ∈ (Z∗N0

∩ Z∗N1
) then M outputs Fail and

halts; else it continues.
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3) M initializes for lists, called G-list, H-list, Y0-list, and Y1-list to empty. It then runs A as
follows. Note that M simulates A’s oracles G, H, Dsk0 , and Dsk1 as described below.

3-1) M runs A1(pk0, pk1) and gets (m0,m1, si) which is the output of A1.

3-2) M runs A2(Y, si) and gets a bit d ∈ {0, 1} which is the output of A2.

4) M chooses a random element on the H-list and outputs it as its guess for the n + k1 most
significant bits of the e-th root of y modulo N .

M simulates the random oracles G and H, and the decryption oracle as follows:

• When A makes an oracle query g to G, then for each (h,Hh) on the H-list, M builds z =
h||(g ⊕ Hh), and computes yh,g,0 = ze0 mod N0 and yh,g,1 = ze1 mod N1. For i ∈ {0, 1}, M
checks whether y = yh,g,i. If for some h and i such a relation holds, then we have inverted y
under pki, and we can still correctly simulate G by answering Gg = h ⊕ (mi||0k1). Otherwise,
M outputs a random value Gg of length n + k1. In both cases, M adds (g, Gg) to the G-list.
Then, for all h, M checks if the k1 least significant bits of h⊕Gg are all 0. If they are, then it
adds yh,g,0 and yh,g,1 to the Y0-list and the Y1-list, respectively.

• When A makes an oracle query h to H, M provides A with a random string Hh of length k0

and adds (h,Hh) to the H-list. Then for each (g,Gg) on the G-list, M builds z = h||(g ⊕Hh),
and computes yh,g,0 = ze0 mod N0 and yh,g,1 = ze1 mod N1. M checks if the k1 least significant
bits of h⊕Gg are all 0. If they are, then it adds yh,g,0 and yh,g,1 to the Y0-list and the Y1-list,
respectively.

• When for i ∈ {0, 1}, A makes an oracle query ŷ ∈ Z∗Ni
to Dski , M checks if there exists some

yh,g,i in the Yi-list such that ŷ = yh,g,i. If there is, then it returns the n most significant bits of
h⊕Gg to A. Otherwise it returns ⊥ (indicating that ŷ is an invalid ciphertext).

• When for i ∈ {0, 1}, A makes an oracle query Ŷ ∈ {0, 1}k+160 to DAski , M checks if there
exists some yh,g,i in the Yi-list such that Ŷ mod Ni = yh,g,i. If there is, then it returns the n

most significant bits of h ⊕ Gg to A. Otherwise it returns ⊥ (indicating that Ŷ is an invalid
anonymized ciphertext).

Now, we analyze the advantage of M . For i ∈ {0, 1}, let wi = ydi mod Ni, si = [wi]n+k1 , and
ti = [wi]k0 . Let ri be the random variable ti ⊕H(si). We consider the following events.

• FBad denotes the event that

– A G-oracle query r0 was made by A1 in step 3-1, and Gr0 6= s0 ⊕ (x||0k1), or

– A G-oracle query r1 was made by A1 in step 3-1, and Gr1 6= s1 ⊕ (x||0k1).

• GBad denotes the event that

– A G-oracle query r0 was made by A2 in step 3-2, and at the point in time that it was
made, the H-oracle query s0 was not on the H-list, and Gr0 6= s0 ⊕ (x||0k1), or

– A G-oracle query r1 was made by A2 in step 3-2, and at the point in time that it was
made, the H-oracle query s1 was not on the H-list, and Gr1 6= s1 ⊕ (x||0k1).

• DABad denotes the event that

– A DAsk0 query is not correctly answered, or

– A DAsk1 query is not correctly answered.

• DSBad denotes the event that
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– A Dsk0 query is not correctly answered, or

– A Dsk1 query is not correctly answered.

• DBad = DABad ∨ DSBad.

• G = ¬FBad ∧ ¬GBad ∧ ¬DBad.

We let Pr[·] denote the probability distribution in the game defining advantage. We introduce
the following additional events:

• YBad denotes the event that y ∈ (Z∗N0
∩ Z∗N1

).

• FAskS denotes the event that H-oracle query s0 or s1 was made by A1 in step 3-1.

• AskR denotes the event that (r0, Gr0) or (r1, Gr1) is on the G-list at the end of step 3-2.

• AskS denotes the event that (s0,Hs0) or (s1,Hs1) is on the H-list at the end of step 3-2.

Let Pr1[·] denote the probability distribution in the simulated game where ¬YBad occurs.
We can bound Pr1[AskS] in a similar way as in the proof of anonymity for RSA-RAEP [1], and

we have
Pr1[AskS] ≥ 1

2
· Pr1[AskR ∧ AskS|¬DBad] · Pr1[¬DBad|¬AskS].

We next bound Pr1[AskR ∧ AskS|¬DBad]. Let Pr2[·] denote the probability distribution in the
simulated game where ¬DBad ∧ ¬YBad occurs.

The proof of the following lemma is similar to that for RSA-RAEP.

Lemma 1.

Pr2[AskR ∧ AskS] ≥ ε

2
·
(
1− 2qgen · 2−k0 − 2qhash · 2−n−k1

)
− 2qgen · 2−k.

We next bound Pr1[¬DBad|¬AskS]. It is easy to see that

Pr1[¬DBad|¬AskS] ≤ Pr1[¬DABad|¬AskS] + Pr1[¬DSBad|¬AskS].

The proof of the following lemma is similar to that for RSA-RAEP.

Lemma 2.

Pr1[DSBad|¬AskS] ≤ qdec ·
(
2 · 2−k1 + (2qgen + 1) · 2−k0

)
.

Furthermore, we can prove the following lemma in a similar way as that for Lemma 2.

Lemma 3.

Pr1[DABad|¬AskS] ≤ q′dec ·
(
2 · 2−k1 + (2qgen + 1) · 2−k0

)
.

By applying Lemmas 1, 2, and 3, we have

Pr1[AskS] ≥ 1
2
·
(

ε

2
·
(

1− 2qgen

2k0
− 2qhash

2n+k1

)
− 2qgen

2k

)
·
(

1− (qdec + q′dec) ·
(

2
2k1

+
2qgen + 1

2k0

))

≥ ε

4
·
(

2qgen + qdec + q′dec + 2qgen(qdec + q′dec)
2k0

+
2qgen

2k1
+

2qhash

2k−k0

)
− qgen

2k
.

Assuming ¬YBad, we have by the random choice of b and symmetry, that the probability of M
outputting s is at least 1

2qhash
· Pr1[AskS].

We next bound the probabilities that ¬YBad occurs.
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Lemma 4.

Pr[YBad] ≤ 2
2k/2−3 − 1

+
1

2159
.

Proof of Lemma 4. Let N = pq and N ′ = p′q′. Note that 2dk/2e−1 < p, q, p′, q′ < 2dk/2e and 2k−1 <
N, N ′ < 2k. We define a set S[N ] as {Ỹ |Ỹ ∈ [0, 2k+160) ∧ (Ỹ mod N) ∈ S[N ]}. Then, we have

Pr[YBad] = Pr[y R← Z∗N ; µ
R← {0, 1, 2, . . . , b(2k+160 − y)/Nc}; Y ← y + µN : Y 6∈ S[N ′]]

≤ Pr[Y ′ R← S[N ] : Y ′ 6∈ S[N ′]] + 1/2159

since the distribution of Y ′ is statistically indistinguishable from that of Y , and the statistically
distance is less than 1/2159.

Since φ(N) ≤ |S[N ]| ≤ 2k, we have

Pr[Y ′ R← S[N ] : Y ′ 6∈ S[N ′]] ≤ |S[N ]| − |S[N ′]|
|S[N ]| ≤ 2k − |S[N ′]|

φ(N)
.

Furthermore, we have

2k − |S[N ′]| =
∣∣{Y ′|Y ′ ∈ [0, 2k) ∧ (Y ′ mod N ′) 6∈ Z∗N ′}

∣∣
≤ ∣∣{Y ′|Y ′ ∈ [0, 2N ′) ∧ (Y ′ mod N ′) 6∈ Z∗N ′}

∣∣
= 2× ∣∣{Y ′|Y ′ ∈ [0, N ′) ∧ Y ′ 6∈ Z∗N ′}

∣∣
= 2(N ′ − φ(N ′)).

Therefore, we can bound Pr[Y ′ R← S[N ] : Y ′ 6∈ S[N ′]] as

Pr[Y ′ R← S[N ] : Y ′ 6∈ S[N ′]] ≤ 2k − |S[N ′]|
φ(N)

≤ 2(N ′ − φ(N ′))
φ(N)

=
2(p′ + q′ − 1)
N − p− q + 1

≤ 2(p′ + q′)
N − p− q

≤ 2(2dk/2e + 2dk/2e)
2k−1 − 2dk/2e − 2dk/2e =

2(1 + 1)
2k−1−dk/2e − 1− 1

≤ 4
2k/2−2 − 2

=
2

2k/2−3 − 1
.

We have that

Advθ-pow-fnc
RSA,B (k) ≥ (1− Pr[YBad]) ·

(
Pr1[AskS]

2qhash

)
.

Substituting the bounds for the above probabilities and re-arranging the terms, we get the claimed
result.

Finally, we estimate the time complexity of M . It is the time complexity of A plus the time for
simulating the random oracles. In the random oracle simulation, for each pair ((g,Gg), (h,Hh)), it is
sufficient to compute yh,g,0 = ze0 mod N0 and yh,g,1 = ze1 mod N1. Therefore, the time complexity
of M is that of A plus qgen · qhash ·O(k3).

C Proof of Theorem 3

Since the DDH problem is hard if and only if the paired DDH problem is hard, we construct a
distinguisher D for the paired DDH problem for Q in Figure 1. In this algorithm, we employ an
adversary A attacking the key-privacy of our universal anonymizable ElGamal encryption scheme.

Now we analyze D. First we consider Exppddh-real
Q,D (k). In this case, for i ∈ {0, 1}, the inputs

Xi, Yi, Ti to D satisfy Ti = gxiyi
i where Xi = gxi

i and Yi = gyi
i for some xi, yi ∈ Zqi . Thus Xi has

17



Algorithm D((q0, g0, X0, Y0, T0), (q1, g1, X1, Y1, T1))

pk0 ← (q0, g0, X0); pk1 ← (q1, g1, X1)

(m0,m1, si) ← A1
cpa(pk0, pk1)

b
R← {0, 1}

(c̄1, c̄2) ← F̄qb,2(Yb, Tb ·mb)
t1 ← {0, 1, 2, · · · , b(2k+160 − c̄1)/qbc}; t2 ← {0, 1, 2, · · · , b(2k+160 − c̄2)/qbc}
c′1 ← c̄1 + t1qb; c′2 ← c̄2 + t2qb

d ← A2
cpa((c

′
1, c

′
2), si)

if (b = d) then return 1 else return 0

Figure 1: Distinguisher for Theorem 3

the proper distribution of public keys for our universal anonymizable ElGamal encryption scheme.
Furthermore, the challenge ciphertext has the right form under the public key pkb. Hence,

Pr[Exppddh-real
Q,D (k) = 1] =

1
2

+
1
2
Advkey-cpa

UAPEEG,A
(k).

Now we consider Exppddh-rand
Q,D (k). In this case, for i ∈ {0, 1}, the inputs Xi, Yi, Ti to D are all

independently and uniformly distributed over QRpi . We have proper distribution public keys for our
universal anonymizable ElGamal encryption scheme. However, Yb, Tb are random elements in QRpb

,
and the distribution of (c′1, c

′
2) is statistically indistinguishable from the uniform distribution over

({0, 1}k+160)2. This means that the challenge ciphertext gives A no information about b. Therefore,
we have

Pr[Exppddh-rand
Q,D (k) = 1] ≤ 1

2
+

1
22(k−2)

+
(

1
2159

)2

.

Above, the second term accounts for the maximum probability that the random inputs to D happen
to have the distribution of the valid paired-DDH tuple, and the last term is the advantage of the
decision problem between the distribution of the output by the expanding technique and that of the
uniform distribution.

In conclusion, we have

Advpddh
Q,D (k) ≥ 1

2
Advkey-cpa

UAPEEG,A
(k)− 1

22(k−2)
−

(
1

2159

)2

.

The time-complexity of D is bounded by TA + O(k3) where TA is the time-complexity of A.

D Families of Hash Functions

In this section, we describe the definitions of families of hash functions, universal one-way, and
collision resistant.

Definition 15. A family of hash functions H = (GH, EH) is defined by two algorithms. A prob-
abilistic generator algorithm GH takes the security parameter k as input and returns a key K. A
deterministic evaluation algorithm EH takes the key K and a string M ∈ {0, 1}∗ and returns a string
EHK(M) ∈ {0, 1}k−1.

18



Definition 16. Let H = (GH, EH) be a family of hash functions and let C = (C1, C2) be an adversary.
We consider the following experiment:

Experiment Expuow
H,C(k)

(x0, si) ← C1(k); K ← GH(k); x1 ← C2(K,x0, si)
if ((x0 6= x1) ∧ (EHK(x0) = EHK(x1))) then return 1 else return 0

Note that si is the state information. We define the advantage of C via

Advuow
H,C(k) = Pr[Expuow

H,C(k) = 1].

We say that the family of hash functions H is universal one-way if Advuow
H,C(k) is negligible for every

algorithm C whose time-complexity is polynomial in k.

Definition 17. Let H = (GH, EH) be a family of hash functions and let C be an adversary. We
consider the following experiment:

Experiment Expcr
H,C(k)

K ← GH(k); (x0, x1) ← C(K)
if ((x0 6= x1) ∧ (EHK(x0) = EHK(x1))) then return 1 else return 0

We define the advantage of C via

Advcr
H,C(k) = Pr[Expcr

H,C(k) = 1].

We say that the family of hash functions H is collision-resistant if Advcr
H,C(k) is negligible for every

algorithm C whose time-complexity is polynomial in k.

Note that if H is collision resistant then H is universal one-way.

E Proof of Theorem 4

Since the DDH problem is hard if and only if the paired DDH problem is hard, we construct a
distinguisher D for the paired DDH problem for Q in Figure 2. In this algorithm, we employ
an adversary A attacking the key-privacy of our universal anonymizable Cramer-Shoup encryption
scheme. First of all, the time-complexity of D is bounded by TA + O(k3) where TA is the time-
complexity of A.

Note that if A makes a decryption query (ũ′1, ũ
′
2, ẽ

′, ṽ′) to DAski (i ∈ {0, 1}), D makes its answer
m̃ as follows:

(ũ1, ũ2, ẽ, ṽ) ← F̄−1
qi,4

(ũ′1 mod qi, ũ
′
2 mod qi, ẽ

′ mod qi, ṽ
′ mod qi)

α̃ ← EHKi(ũ1, ũ2, ẽ)
if (ṽ = (ũ1)x1,i+y1,iα̃ + (ũ2)x2,i+y2,iα̃) then m̃ ← ẽ/(ũz1,i

1 ũ
z2,i

2 ) else m̃ ← ⊥

Similarly, if A makes a decryption query (ũ1, ũ2, ẽ, ṽ) to Dski (i ∈ {0, 1}), D makes its answer m̃ as
follows:

α̃ ← EHKi(ũ1, ũ2, ẽ)
if (ṽ = (ũ1)x1,i+y1,iα̃ + (ũ2)x2,i+y2,iα̃) then m̃ ← ẽ/(ũz1,i

1 ũ
z2,i

2 ) else m̃ ← ⊥

Lemma 5.

Pr[Exppddh-real
Q,D (k) = 1] =

1
2

+
1
2
Advkey-cca

UAPECS,A
(k)
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Algorithm D((q0, g0, X0, Y0, T0), (q1, g1, X1, Y1, T1))

for each j ∈ {0, 1} do
g1,j ← gj ; g2,j ← Xj ; u1,j ← Yj ; u2,j ← Tj

x1,j , x2,j , y1,j , y2,j , z1,j , z2,j
R← Zqj

cj ← (g1,j)x1,j (g2,j)x2,j ; dj ← (g1,j)y1,j (g2,j)y2,j ; hj ← (g1,j)z1,j (g2,j)z2,j

Kj ← GH(k)
pkj ← (g1,j , g2,j , cj , dj , hj ,Kj)
skj ← (x1,j , x2,j , y1,j , y2,j , z1,j , z2,j)

(m0, m1, si) ← A1
cca(pk0, pk1)

b
R← {0, 1}

e ← (u1,b)z1,b(u2,b)z2,bmb

α ← EHKb
(u1,b, u2,b, e)

v ← (u1,b)x1,b+αy1,b(u2,b)x2,b+αy2,b

(ū1, ū2, ē, v̄) ← F̄qb,4(u1,b, u2,b, e, v)

t1
R← {0, 1, 2, · · · , b(2k+160 − ū1)/qbc}; t2

R← {0, 1, 2, · · · , b(2k+160 − ū2)/qbc}
t3

R← {0, 1, 2, · · · , b(2k+160 − ē)/qbc}; t4
R← {0, 1, 2, · · · , b(2k+160 − v̄)/qbc}

u′1 ← ū1 + t1qb; u′2 ← ū2 + t2qb; e′ ← ē + t3qb; v′ ← v̄ + t4qb

d ← A2
cca((u

′
1, u

′
2, e

′, v′), si)

if (b = d) then return 1 else return 0

Figure 2: Distinguisher for Theorem 4

Lemma 6. There exists an adversary C attacking the collision-resistance of H such that

Pr[Exppddh-rand
Q,D (k) = 1] ≤ 1

2
+

qd(k) + q′d(k) + 2
2k−4

+ 4Advcr
H,C(k) +

(
1

2159

)4

,

where qd(k) is the number of decryption query to DAsk and q′d(k) is the number of decryption query
to Dsk, and whose time-complexity is bounded by that of A plus O(k3).

Proof of Theorem 4. The statement follows from the above two lemmas. More concretely, we have

Advpddh
Q,D (k) ≥ 1

2
Advkey-cca

UAPECS,A
(k)− qd(k) + q′d(k) + 2

2k−4
− 4Advcr

H,C(k)−
(

1
2159

)4

.

E.1 Proof of Lemma 5

To prove this lemma, we show that the view of the adversary A in the experiment Exppddh-real
Q,D (k) is

the same as that in the actual experiment.
It is easy to see that ci, di have the right distribution. Furthermore, we can rewrite hi as hi =

g
z1,i+ωiz2,i

1,i where ωi = logg1,i
g2,i, and z̄i = z1,i + ωiz2,i is uniformly distributed over Zqi . Therefore,

the public-key in the simulation has the right distribution.
We can rewrite the challenge ciphertext (u1,b, u2,b, e, v) which D computes as e = g

r1,bz̄b

1,b mb and
v = c

r1,b

b d
r1,bαb

b where r1,b = logg1,b
u1,b and αb = EHKb

(u1,b, u2,b, e). Hence, the challenge ciphertext
has the right distribution since r1,b is randomly distributed over Zqb

.
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Finally, since we can rewrite the response M of the decryption query in the simulation as M =
e/g

r1,iz̄i

1,i = e/h
r1,i

i , the output of decryption oracle in the simulation demonstrates that of the actual
decryption oracle.

E.2 Proof of Lemma 6

In the experiment Exppddh-rand
Q,D (k), the distribution of challenge ciphertexts is statistically indistin-

guishable from the uniform distribution over ({0, 1}k+160)4, and the statistically distance is less than
(1/2159)4.

In the experiment Exppddh-rand
Q,D (k), for i ∈ {0, 1}, we can see the input (qi, gi, Xi, Yi, Ti) as

(qi, g1,i, g2,i, u1,i, u2,i) where u1,i = (g1,i)r1,i , u2,i = (g2,i)r2,i = (g1,i)ωir1,i , ωi = logg1,i
g2,i, where

r1,i, r2,i are random element in Zqi . When the adversary A makes a decryption query (ũ1, ũ2, ẽ, ṽ) for
Dski , we say the ciphertext is invalid when logg1,i

ũ1 6= logg2,i
ũ2. Furthermore, we say the anonymized

ciphertext UApk(ũ1, ũ2, ẽ, ṽ) is invalid when (ũ1, ũ2, ẽ, ṽ) is invalid. We define the following events
associated to D:

• NR is true if r1,0 = r2,0 or r1,1 = r2,1 or g2,0 = 1 or g2,1 = 1,

• Inv is true if during the execution of D the adversary A submits an invalid anonymized ciphertext
to the oracle DAsk0 or DAsk1 and does not get ⊥, or submits an invalid ciphertext to the oracle
Dsk0 or Dsk1 and does not get ⊥.

Lemma 7. Pr[NR] ≤ 1/2k−3.

Lemma 8. We have

Pr[Exppddh-rand
Q,D (k) = 1|b = 0 ∧ ¬NR ∧ ¬Inv] =

1
2
,

Pr[Exppddh-rand
Q,D (k) = 1|b = 1 ∧ ¬NR ∧ ¬Inv] =

1
2
.

Lemma 9. There exists a polynomial-time adversary C such that

Pr[Inv|¬NR] ≤ 4Advcr
H,C(k) +

qd(k) + q′d(k)
2k−3

.

Proof of Lemma 6.

Pr[Exppddh-rand
Q,D (k) = 1]

=
1
2

Pr[Exppddh-rand
Q,D (k) = 1|b = 0] +

1
2

Pr[Exppddh-rand
Q,D (k) = 1|b = 1]

≤ Pr[Exppddh-rand
Q,D (k) = 1|b = 0 ∧ ¬NR ∧ ¬Inv]

+Pr[Exppddh-rand
Q,D (k) = 1|b = 1 ∧ ¬NR ∧ ¬Inv] + Pr[NR] + Pr[Inv] +

(
1

2159

)4

≤ Pr[Exppddh-rand
Q,D (k) = 1|b = 0 ∧ ¬NR ∧ ¬Inv]

+Pr[Exppddh-rand
Q,D (k) = 1|b = 1 ∧ ¬NR ∧ ¬Inv] + 2 Pr[NR] + Pr[Inv|¬NR] +

(
1

2159

)4

≤ 1
2

+
1

2k−4
4Advcr

H,C(k) +
qd(k) + q′d(k)

2k−3
+

(
1

2159

)4

=
1
2

+
qd(k) + q′d(k) + 2

2k−4
+ 4Advcr

H,C(k) +
(

1
2159

)4

where the last term is the advantage of the decision problem between the distribution of the output
by the expanding technique and that of the uniform distribution.
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E.2.1 Proof of Lemma 7

We have Pr[r1,0 = r2,0], Pr[g2,0 = 1] ≤ 1/q0 and Pr[r1,1 = r2,1],Pr[g2,1 = 1] ≤ 1/q1. Since 2k−1 <
q0, q1 < 2k, we have Pr[NR] ≤ 2/q0 + 2/q1 ≤ 1/2k−3.

E.2.2 Proof of Lemma 8

We consider a sample space S from which the random choice is uniformly chosen in the experiment
Exppddh-rand

Q,D (k). It consists of the values chosen at random in Exppddh-rand
Q,D (k). We will denote an

element of S as

~s = (x1,0, x2,0, y1,0, y2,0, z1,0, z2,0, x1,1, x2,1, y1,1, y2,1, z1,1, z2,1,
g1,0, g2,0, u1,0, u2,0, g1,1, g2,1, u1,1, u2,1, t1, t2, t3, t4, b).

and S is a subset of
Z6

q0
× Z6

q1
×G4

q0
×G4

q1
× ({0, 1}160)4 × {0, 1}.

To evaluate the space S, we consider two spaces S0 = {~s ∈ S|b = 0} and S1 = {~s ∈ S|b = 1}.
When b = 0 (respectively b = 1), the random choice is uniformly chosen from S0 (resp. S1) in the
Experiment Exppddh-rand

Q,D (k). It is clear that S = S0 ∪ S1 and |S| = |S0|+ |S1| since S0 ∩ S1 = ∅. We
evaluate S0, S1, and S later on.

We let View be the function which has the domain S and associates to any ~s ∈ S the view of the
adversary A in the experiment Exppddh-rand

Q,D (k) when the random choice in that experiment is chosen
from S. For simplicity, we assume the adversary is deterministic. The argument can simply be made
for each choice of its coins. The view then includes the inputs that the adversary receives in its two
stages, and the answers to all its oracle queries. The adversary’s output is a deterministic function
of its view.

Lemma 10. Fix a specific view V̂ of the adversary A simulated by D. Assume that the event
¬NR ∧ ¬Inv occurs for this view. Then

Pr[View = V̂ | b = 0] = Pr[View = V̂ | b = 1].

Proof of Lemma 8. Lemma 10 means that, if ¬NR∧¬Inv occurs then A’s view is independent of the
hidden bit b. Therefore A can output its guess of b correctly only with the probability 1/2.

Proof of Lemma 10. For simplicity of the analysis, we will exclude the keys K̂0 and K̂1, because they
are clearly independent of the bit b. We do not consider the answers of the decryption oracles to the
valid ciphertext queries as a part of the view of the adversary since we show below that this does not
give the adversary any information about the hidden bit b. We have

V̂ = (ĝ1,0, ĝ2,0, ĉ0, d̂0, ĥ0, ĝ1,1, ĝ2,1, ĉ1, d̂1, ĥ1, û
′
1, û

′
2, ê

′, v̂′).

We evaluate Pr[View = V̂ ∧b = 0]. We first compute |S0|. Note that we now consider the situation that
¬NR. We let b = 0 and fix four values (u′1, u

′
2, e

′, v′) ∈ ({0, 1}k+160)4. Then t1 ∈ {0, 1, 2, · · · , b(2k+160−
ū1)/q0c} and ū1 ∈ Zq0 are fixed uniquely since u′1 = ū1 + t1q0.

Similarly, t2, t3, t4, ū2, ē, v̄ are also fixed uniquely. Furthermore, u1 = F−1
q0

(ū1) is fixed uniquely
since F is bijective. Similarly, u2, e, v are fixed uniquely.

We now consider the following equations:

e = u
z1,0

1,0 u
z2,0

2,0 m0 (mod p0)
v = u

x1,0+αy2,0

1,0 u
x2,0+αy2,0

2,0 (mod p0)
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where α = EH(u1, u2, e). For any (u1, u2, e, v) ∈ G4
q0

, the number of vectors (x1,0, x2,0, y1,0, y2,0, z1,0, z2,0)
which satisfy the above two equations is q4

0. Furthermore, the other values of ~s, that is, g1,0, g1,1, x1,0, x2,0,
y1,0, y2,0, z1,0, z2,0, g1,0, g1,1, u1,1, u2,1, are not restricted in S0. Therefore,

|S0| = (2k+160)4 · q4
0 · q2

0 · q6
1 · q4

1 = (2k+160)4 · q6
0 · q10

1 .

We next define E0 ⊆ S0 as the set of all ~s ∈ S0 such that ~s gives rise to b = 0 and View(~s) = V̂
and ¬NR is true when the random choice in the experiment is ~s. Then

Pr[View = V̂ |b = 0] =
|E0|
|S0| .

We next compute |E0|. This is the number of solutions to the following system of 16 equations in 24
unknowns – x1,0, x2,0, y1,0, y2,0, z1,0, z2,0, x1,1, x2,1, y1,1, y2,1, z1,1, z2,1, g1,0, g2,0, u1,0, u2,0, g1,1, g2,1, u1,1, u2,1,
t1, t2, t3, t4 (Note that b is fixed to 0 since we now consider E0 ⊆ S0.):

g1,0 = ĝ1,0 (mod p0) (1)

g2,0 = ĝ2,0 (mod p0) (2)

x1,0 + ω̂0x2,0 = logĝ1,0
ĉ0 (mod q0) (3)

y1,0 + ω̂0y2,0 = logĝ1,0
d̂0 (mod q0) (4)

z1,0 + ω̂0z2,0 = logĝ1,0
ĥ0 (mod q0) (5)

g1,1 = ĝ1,1 (mod p1) (6)

g2,1 = ĝ2,1 (mod p1) (7)

x1,1 + ω̂1x2,1 = logĝ1,1
ĉ1 (mod q1) (8)

y1,1 + ω̂1y2,1 = logĝ1,1
d̂1 (mod q1) (9)

z1,1 + ω̂1z2,1 = logĝ1,1
ĥ1 (mod q1) (10)

Fq0(u1,0) + t1q0 = û′1,0 (11)

Fq0(u2,0) + t2q0 = û′2,0 (12)

Fq0(e) + t3q0 = ê′ (13)

Fq0(v) + t4q0 = v̂′ (14)

r1,0z1,0 + r2,0ω̂0z2,0 = logĝ1,0

e
m0

(mod q0) (15)

r1,0x1,0 + r1,0α0x2,0 + r2,0ω̂0x2,0 + r2,0ω̂0α0y2,0 = logĝ1,0
v (mod q0) (16)

In the above equations, ω̂0 = logĝ1,0
ĝ2,0, ω̂1 = logĝ1,1

ĝ2,1 r1,0 = logĝ1,0
u1,0, r2,0 = logĝ1,0

u2,0, and
α0 = EHK̂0

(u1,0, u2,0, e). The variables with hats, and p0, p1, q0, q1, m0 denote the known constants
whereas the variables without hats except p0, p1, q0, q1, m0 denote unknowns.

In the following, we evaluate the number of solutions of the above 16 equations. Note that we
consider the situation that ¬NR.

From equations 1, 2, 6, and 7, the values g1,0, g2,0, g1,1, g2,1 are fixed uniquely. Noticing that
Fq0 : Gq0 → Zq0 is bijective, from equations 11, 12, 13, and 14, the values t1, t2, t3, t4 ∈ N and
u1,0, u2,0, e, v ∈ QRp0 are fixed uniquely.

Since the values u1,0, u2,0, e are fixed, r1,0, r2,0, α0 are also fixed. In the following, we consider the
situation such that g1,0, g2,0, g1,1, g2,1, t1, t2, t3, t4, u1,0, u2,0, e, v, r1,0, r2,0, α0 are fixed.

From equations 5 and 15, the values z1,0, z2,0 are fixed uniquely.
The values x1,0, x2,0, y1,0, y2,0 are restricted only by equations 3, 4, and 16, and the number of

vectors (x1,0, x2,0, y1,0, y2,0) which satisfy these three equations is q0.
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The values x1,1, x2,1, y1,1, y2,1, z1,1, z2,1 are restricted only by equations 8, 9, and 10, and the
number of vectors (x1,1, x2,1, y1,1, y2,1, z1,1, z2,1) which satisfy these three equations is q3

1.
Finally, u1,1, u2,1 are not restricted by the above 16 equations, therefore the number of vectors

(u1,1, u2,1) which satisfy these above equations is q2
1.

Hence, the number of solutions is q0 · q5
1, which is |E0|, and

Pr[View = V̂ |b = 0] =
|E0|
|S0| =

q0 · q5
1

(2k+160)4 · q6
0 · q10

1

=
1

(2k+160)4 · q5
0 · q5

1

.

In the case of b = 1, the equations 11–16 are replaced by the following equations 11′–16′ respec-
tively.

Fq1(u1,1) + t1q1 = û′1,1 (11′)

Fq1(u2,1) + t2q1 = û′2,1 (12′)

Fq1(e) + t3q1 = ê′ (13′)

Fq1(v) + t4q1 = v̂′ (14′)

r1,1z1,0 + r2,1ω̂1z2,0 = logĝ1,1

e
m1

(mod q1) (15′)

r1,1x1,1 + r1,1α1x2,1 + r2,1ω̂1x2,1 + r2,1ω̂1α1y2,1 = logĝ1,1
v (mod q1) (16′)

where r1,1 = logĝ1,1
u1,1, r2,1 = logĝ1,1

u2,1, and α1 = EHK̂1
(u1,1, u2,1, e).

By a similar observation as that in the case of b = 0, we have |S1| = (2k+160)4 · q6
1 · q10

0 and
|E1| = q1 · q5

0. Therefore,

Pr[View = V̂ |b = 1] =
|E1|
|S1| =

q1 · q5
0

(2k+160)4 · q6
1 · q10

0

=
1

(2k+160)4 · q5
1 · q5

0

.

In conclusion, we have Pr[View = V̂ |b = 0] = Pr[View = V̂ |b = 1].

E.2.3 Proof of Lemma 9

We first define the events InvA0 and InvA1. The event InvA0 (respectively InvA1) is true if during the
execution of D the adversary A submits an invalid anonymized ciphertext to its decryption oracle
DAsk0 (resp. DAsk1) for anonymized ciphertexts and does not get ⊥. We also define the events InvS0

and InvS1. The event InvS0 (respectively InvS1) is true if during the execution of D the adversary A
submits an invalid ciphertext to its decryption oracle Dsk0 (resp. Dsk1) for standard ciphertexts and
does not get ⊥.

It is clear that

Pr[Inv|¬NR] ≤ Pr[InvA0|¬NR] + Pr[InvA1|¬NR] + Pr[InvS0|¬NR] + Pr[InvS1|¬NR].

We now evaluate Pr[InvA0|¬NR]. Assume the adversary A submits an invalid ciphertext (ũ′1, ũ
′
2, ẽ

′, ṽ′)
to its decryption oracle DAsk0 . Let (u′1,b, u

′
2,b, e

′, v′) denote the challenge ciphertext.
Then, we have

(u1,b, u2,b, e, v) = F−1
q0,4(u

′
1,b mod q0, u

′
2,b mod q0, e

′ mod q0, v
′ mod q0)

and
(ũ1, ũ2, ẽ, ṽ) = F−1

q0,4(ũ
′
1 mod q0, ũ

′
2 mod q0, ẽ

′ mod q0, ṽ
′ mod q0).

Note that F−1
q0,4 is bijective. Furthermore, we have α̃0 = EHK0(ũ1, ũ2, ẽ) and α0,b = EHK0(u1,b, u2,b, e).

We consider the following three cases.
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• Case 1 : (ũ1, ũ2, ẽ) = (u1,b, u2,b, e)

• Case 2 : (ũ1, ũ2, ẽ) 6= (u1,b, u2,b, e) and α̃0 = α0,b

• Case 3 : (ũ1, ũ2, ẽ) 6= (u1,b, u2,b, e) and α̃0 6= α0,b

In Case 1, noticing that (ũ′1, ũ
′
2, ẽ

′, ṽ′) 6∈ ECCS((u′1,b, u
′
2,b, e′, v′), pk0), ṽ 6= v and the decryption

oracle will reject. If Case 2 occurs, it implies that the adversary A can find a collision for EHK0 .
Therefore, there exists an adversary C attacking the collision-resistance of H such that

Pr[InvA0|¬NR] = Pr[InvA0|Case 1 ∧ ¬NR] · Pr[Case 1]
+ Pr[InvA0|Case 2 ∧ ¬NR] · Pr[Case 2] + Pr[InvA0|Case 3 ∧ ¬NR] · Pr[Case 3]
≤ 0 + Pr[Case 2] + Pr[InvA0|Case 3 ∧ ¬NR]
≤ 0 + Advcr

H,C(k) + Pr[InvA0|Case 3 ∧ ¬NR].

Note that the time-complexity of C is bounded by that of A plus O(k3).
We now bound Pr[InvA0|Case 3 ∧ ¬NR].
A ciphertext (ũ′1, ũ

′
2, ẽ

′, ṽ′) submitted to the DAsk0 is accepted when

(ũ1)x1,0+y1,0α̃0(ũ2)x2,0+y2,0α̃0 = ṽ.

Let ũ1 = gr̃1
1,0, ũ2 = gr̃2

2,0 = gω0r̃2
1,0 . We can rewrite the above equation as

r̃1x1,0 + r̃1α̃x2,0 + r̃2ω̂0x2,0 + r̃2ω̂0α̃y2,0 = logĝ1,0
ṽ (mod q0). (17)

Let us define the following events:

• InvAi,0 is true if the adversary A during its i-th query submits an invalid ciphertext (ũ′1, ũ
′
2, ẽ

′, ṽ′)
subject to Case 3 to the decryption oracle DAsk0 for i ∈ {1, 2, · · · , qd} and does not get ⊥.

• Einv
0 is a set {~s ∈ S|~s gives rise to equation 17 and ¬NR} and Case 3.

We now consider the simulation of DAsk0 . To submit a ciphertext which will not be rejected, the
adversary should find the coefficients for Equation 17 which is consistent with its view, which with
equal probability can contain a hidden bit b = 0 and b = 1. Therefore,

Pr[InvA1,0|¬NR]

=
1
2

Pr[Einv
0 |E0] +

1
2

Pr[Einv
0 |E1] ≤ Pr[Einv

0 ∧ E0]
Pr[E0]

+
Pr[Einv

0 ∧ E1]
Pr[E1]

≤ |Einv
0 ∧ E0| · |S|
2|S||E0| +

|Einv
0 ∧ E1| · |S|
2|S||E1| =

|Einv
0 ∧ E0|
2q0q5

1

+
|Einv

0 ∧ E1|
2q1q5

0

.

where |Einv
0 ∧ E0| is the number of solutions to the system of equations 1–16 and 17 assuming ¬NR,

and |Einv
0 ∧ E1| is that of equations 1–10, 11′–16′, and 17 assuming ¬NR.

In the case of |Einv
0 ∧E0|, adding equation 17 to the system of equations 1–16, (x1,0, x2,0, y1,0, y2,0)

are fixed uniquely. The other values are not restricted by equation 17. Then, we have |Einv
0 ∧E0| = q5

1.
In the case of |Einv

0 ∧ E1|, adding equation 17 to the system of equations 1–10 and 11′–16′, the
number of vectors (x1,0, x2,0, y1,0, y2,0) which satisfy the system of equations 1–10, 11′–16′, and 17
is reduced from q2

0 to q1
0. The other values are not restricted by equation 17. Hence, we have

|Einv
0 ∧ E1| = q1q

4
0.

Therefore,

Pr[InvA1,0|¬NR] ≤ q5
1

2q0q5
1

+
q1q

4
0

2q1q5
0

=
1
q0

.
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Each time the adversary submits an invalid ciphertext and it gets rejected, this reduces the set
of the next possible decryption oracle queries at most by one. Hence, we have

Pr[InvA0|¬NR ∧ Case 3] ≤
qd(k)∑

i=1

Pr[InvAi,0|¬NR] ≤
qd(k)∑

i=1

1
q0 − i + 1

≤ 2qd(k)
q0

≤ qd(k)
2k−2

.

Therefore, we have

Pr[InvA0|¬NR] ≤ Advcr
H,C(k) +

qd(k)
2k−2

.

Similarly, we can evaluate Pr[InvA1,1|¬NR ∧ Case 3] ≤ 1/q1, and

Pr[InvA1|¬NR] ≤ Advcr
H,C(k) +

qd(k)
2k−2

.

We now consider Pr[InvS0|¬NR] and Pr[InvS1|¬NR]. We can define the event InvSi,0 in a similar
way as that for InvAi,0. It is easy to see that if the adversary A can submit an invalid ciphertext to its
decryption oracle Dski for standard ciphertexts then A can submit an invalid anonymized ciphertext
to its decryption oracle DAski for anonymized ciphertexts. Thus, we have

Pr[InvS1,0|¬NR ∧ Case 3] ≤ Pr[InvA1,0|¬NR ∧ Case 3],

and

Pr[InvS0|¬NR] ≤ Advcr
H,C(k) +

q′d(k)
2k−2

.

Similarly, we can evaluate

Pr[InvS1|¬NR] ≤ Advcr
H,C(k) +

q′d(k)
2k−2

.

In conclusion, we have

Pr[Inv|¬NR ∧ Case 3] ≤ 4Advcr
H,C(k) +

qd(k) + q′d(k)
2k−3

.
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