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Abstract

The traveling salesman problem is a problem of finding the shortest tour
through given points. In 1959, Beardwood, Halton, and Hammersley studied
asymptotic length of the shortest tour through points on Euclidean space. In
particular they described the optimal tour length with Euclidean dimension
for the case that points are distributed with respect to Lebesgue absolutely
continuous measure. In this paper we reinterpret and generalize their results
in terms of fractal geometry. We give the asymptotic order of the optimal
tour length in terms of Hausdorff dimension.
key words: TSP, BHH theorem, Hausdorff dimension, fractal geometry.

1 Introduction

The traveling salesman problem (TSP) is a problem of finding the shortest tour
through given points. We study asymptotic length of the shortest tour through
points on Euclidean space.

Though TSP is an NP-hard problem, Karp [5] showed that if points X1, · · · , Xn

are uniformly distributed on the unit square then there is a polynomial time algo-
rithm that generate a tour of length L(X1, · · · , Xn) such that

lim
n→∞L(X1, · · · , Xn)/Lopt(X1, · · · , Xn) = 1, a.s.,

where Lopt is the length of the shortest tour. Karp’s algorithm is based on the
following theorem by Beardwood, Halton, and Hammersley (BHH theorem):

Theorem 1.1 (BHH[2]) If points X1, · · · , Xn are i.i.d. random variables with re-
spect to distribution µ on [0, 1]d then

lim
n→∞Lopt(X1, · · · , Xn)/n1− 1

d = β(d)
∫

[0,1]d
f(x)1− 1

d dx, µ− a.s.,

where β(d) is a constant that depend on the dimension d, and f(x) is the density of
µ with respect to Lebesgue measure.
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We show that an analogous result holds for singular distributions. To state the
result we introduce some notations and results shown in [3]. Let x ∈ [0, 1]d. Let
Br(x) be the d-dimensional ball with center x and radius r. Let µh be a probability
distribution on [0, 1]d such that

lim
r→0

log µh(Br(x) ∩ [0, 1]d)/ log r = h, µh − a.s. (1)

Let H(µh) be the support set of µh, i.e.,

H(µh) = {x| lim
r→0

log µh(Br(x) ∩ [0, 1]d)/ log r = h}. (2)

Then it is known that
dim H(µh) = h, (3)

where dim H is the Hausdorff dimension of H. For a proof of (3) see [3]. Note that
many of sets including fractal sets are described by such a manner [3].

We prove that:

Theorem 1.2 (Main result) If points X1, · · · , Xn are i.i.d. random variables with
respect to µh, then under conditions on µh, there exist two constants c1 and c2

(0 < c1 ≤ c2 < ∞) such that for h > 1

c1 ≤ lim inf
n

Lopt(X1, · · · , Xn)/n1− 1
h ≤ lim sup

n
Lopt(X1, · · · , Xn)/n1− 1

h ≤ c2, µh − a.s.,

and for 0 < h ≤ 1, Lopt(X1, · · · , Xn) = O(
√

log n), µh − a.s.

Note that if h < d, the measure µh is singular with respect to Lebesgue measure on
[0, 1]d; and therefore BHH theorem cannot be applied to the measure µh since the
density of the absolutely continuous part is 0.

The theorem above shows that if points are distributed over a set H(µh) of
Hausdorff dimension h (< d), then the optimal tour length is much shorter than that
of the case for uniform distribution for large number of points. Roughly speaking,
this is because if h < d, the points X1, · · · , Xn are distributed over the d-dimensional
volume 0 set and therefore the average distance from a given point X ∈ H(µh) to
the nearest point of X1, · · · , Xn is much smaller than that of the case for uniform
distribution.

Our results are reinterpretation and generalization of results of [2, 7, 8] in terms
of fractal geometry.

2 Average optimal tour length

The proof is almost parallel to those of Stadje [7] and Steel [8]. In this paper we
consider the class of distributions that satisfy the following condition:
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Condition 1 Let µh be a distribution on [0, 1]d that satisfies the following property:
There exist a subset H(µh) of [0, 1]d such that

µh(H(µh)) = 1,

and for x ∈ H(µh)
µh(Br(x) ∩ [0, 1]d) = f(x)rh+g(r,x), (4)

where
h > 0, f(x) > 0, lim

r→0
g(r, x) = 0,

and f is the density. Let µ̃ be the measure defined by µ̃h(Br(x)) = rh+g(r,x). We
assume that µ̃h([0, 1]d) < ∞.

Note that µh and H(µh) that satisfy the condition above satisfy (1) and that
dim H(µh) = h > 0. Conversely if µh satisfies (1) and h > 0, then there exists
H(µh), g, and f that satisfy the condition above such that µh(H(µh)) = 1 and
dim H(µh) = h > 0.

Let
qn(x) = E( min

1≤i≤n
|Xi − x|). (5)

In [7], Stadje showed that if X1, · · · , Xn are i.i.d. random variables with respect to
an absolutely continuous distribution with respect to Lebesgue measure on [0, 1]d

then

lim
n→∞n

1
d qn(x) = f(x)−

1
d d−1π−

1
2 Γ(

1

d
)Γ(1 +

d

2
)

1
d , (6)

where f is the density and f(x) > 0.
In the following let X1, · · · , Xn be i.i.d. random variables with respect to µh in

(5). We show that an analogous result of (6) holds for the distribution µh.

Lemma 2.1 Let h(n) be function of n such that limn→∞ h(n) = h > 0. For any
positive constant a, b, and c, we have

lim
n→∞(cn)

1
h(n)

∫ a

0
(1− crh(n))ndr = lim

n→∞(cn)
1

h(n)

∫ n
− 1

(1+b)h

0
(1− crh(n))ndr =

Γ( 1
h
)

h
. (7)

Proof) We prove (7) by Laplace method. Let crh(n) = 1
n
r̃h(n), i.e., r̃ = (cn)

1
h(n) r.

Then we have

∫ n
− 1

(1+b)h

0
(1− crh(n))ndr = (cn)−

1
h(n)

∫ ∞

0
I
[0,c

1
h(n) n

− 1
(1+b)h

+ 1
h(n) ]

exp{n log(1− 1

n
r̃h(n))}dr̃,

where IA is the characteristic function of a set A. Since c
1

h(n) n−
1

(1+b)h
+ 1

h(n) → ∞ as
n →∞, we have for sufficiently large n,
I
[0,c

1
h(n) n

− 1
(1+b)h

+ 1
h(n) ]

exp{n log(1− 1
n
r̃h(n))} ≤ exp{−r̃

h
2 }, ∫∞

0 exp{−r̃
h
2 }dr̃ < ∞, and
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limn→∞ I
[0,c

1
h(n) n

− 1
(1+b)h

+ 1
h(n) ]

exp{n log(1− 1
n
r̃h(n))} = exp{−r̃h} for r̃ > 0; and there-

fore by Lebesgue dominated convergence theorem, we have

lim
n→∞

∫
I
[0,c

1
h(n) n

− 1
(1+b)h

+ 1
h(n) ]

exp{n log(1− 1

n
r̃h(n))}dr̃ =

∫ ∞

0
exp{−r̃h}dr̃ =

Γ( 1
h
)

h
,

which proves the second equality of (7).
For the first equality, observe that

∫ a

n
− 1

(1+b)h
(1− crh(n))ndr ≤ a(1− cn−

h(n)
(1+b)h )n ≤ a exp(−cn1− h(n)

(1+b)h ). (8)

Since 1 − h(n)
(1+b)h

> 0 for sufficiently large n, by (8), and the second equality of (7),

we have the first equality of (7).
In the following, let b be a positive constant, and let

δ(n, x) = sup

0≤r≤n
− 1

(1+b)h

|g(r, x)|, (9)

and
δ(n) = sup

x∈H(µh)

δ(n, x).

Lemma 2.2 Let µh and H(µh) be a distribution on [0, 1]d and its support set that

satisfy Condition 1. Let Ch
1 (x) = f(x)−

1
h

Γ( 1
h
)

h
. Then for x ∈ H(µh), we have

lim sup
n

qn(x)n
1

h+δ(n,x) ≤ Ch
1 (x) ≤ lim inf

n
qn(x)n

1
h−δ(n,x) . (10)

In particular if δ(n, x) = o((log n)−1), we have for x ∈ H(µh),

lim
n→∞ qn(x)n

1
h = Ch

1 (x). (11)

Proof) Let x ∈ H(µh). We have

µh( min
1≤i≤n

|Xi − x| ≥ r) = (1− µh(Br(x) ∩ [0, 1]d))n,

and hence

qn(x) = E( min
1≤i≤m

|Xi − x|) =
∫ √

d

0
µh( min

1≤i≤m
|Xi − x| ≥ r)dr

=
∫ √

d

0
(1− µh(Br(x) ∩ [0, 1]d))ndr

=
∫ a(n)

0
An(r)dr +

∫ √
d

a(n)
An(r)dr (12)

where An(r) = (1−µh(Br(x)∩[0, 1]d))n, a(n) = n−
1

(1+b)h , and b is a positive constant.
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We have

∫ a(n)

0
An(r)dr =

∫ a(n)

0
(1− f(x)rh+g(r,x))ndr

≤
∫ a(n)

0
(1− f(x)rh+δ(n,x))ndr (13)

= (f(x)n)−
1

h+δ(n,x)
Γ( 1

h
)

h
(1 + o(1)), (14)

where the first equality and the first inequality follow from (4) and (9); for the last
equality observe that limn→∞ δ(n, x) = 0, and hence (14) follows from Lemma 2.1.

Since An(r) is decreasing as r grows, we have

∫ √
d

a(n)
An(r)dr ≤

√
dAn(a(n))

=
√

d(1− f(x)a(n)h+g(a(n),x))n

≤
√

d exp(−f(x)n1−h+g(a(n),x)
(1+b)h ). (15)

Since limn→∞ g(a(n), x) = 0, we see
∫√d
a(n) An(r)dr = o(n−

1
h+δ(n,x) ); hence we have the

first inequality of (10). In a similar way, we can prove the other inequality of (10).
If δ(n, x) = o((log n)−1), we have (11).

Remark 2.1 If µd is an absolutely continuous distribution with respect to Lebesgue
measure on [0, 1]d and if x is a interior point of [0, 1]d, we see µd(Br(x)) = f(x)cdr

d+g(r,x),
where cd (= πd/2/Γ((d + 2)/2)) is the volume of the d-dimensional unit ball, f(x)
is the density, and g(r, x) = o((log r)−1). By applying Lemma 2.2 to µd(Br(x)), we
have (6).

Lemma 2.3 Let µh be a distribution that satisfy Condition 1.

Let Ch
2 = E(Ch

1 (x)) = E(f(x)−
1
h )

Γ( 1
h
)

h
≤ ∞. We have

lim sup
n

E(qn(x)n
1

h+δ(n,x) ) ≤ Ch
2 ≤ lim inf

n
E(qn(x)n

1
h−δ(n,x) ). (16)

In particular if δ(n, x) = o((log n)−1), we have

lim
n→∞E(qn(x))n

1
h = Ch

2 . (17)

Proof) First we show the lemma when Ch
2 < ∞. Since Ch

2 = E(Ch
1 (x)) < ∞ and

µh(Hµ) = 1, by Fatou lemma and (10), we have (16). If δ(n, x) = o((log n)−1), we
have (17).

Note that by Fatou lemma, lim infn E(qn(x)n
1

h−δ(n,x) ) ≥ E(lim infn qn(x)n
1

h−δ(n,x) )

holds without assuming that qn(x)n
1

h−δ(n,x) is bounded by integrable function; hence
the lemma holds for Ch

2 = ∞.
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Remark 2.2 If h ≥ 1, E(f(x)−
1
h ) always exists and have a finite value, because by

Jensen’s inequality we have E(( 1
f(x)

)
1
h ) ≤ E(1/f(x))

1
h = (

∫
H(µh) dµ̃h)

1
h < ∞ where

µ̃h is the finite measure defined by µ̃h(Br(x)) = rh+g(r,x).

In the following for simplicity, L denote Lopt. Then it is known that

nE(qn−1(X)) ≤ E(L(X1, · · · , Xn)) ≤ 2
n∑

i=1

E(qi(X)). (18)

For a proof, see [7, 8].
From (18) and Lemma 2.3, we have:

Theorem 2.1 Assume that Ch
2 < ∞ and δ(n) = o((log n)−1). Under Condition 1,

for 1 < h

c1 ≤ lim inf
n

E(L(X1, · · · , Xn))/n1− 1
h ≤ lim sup

n
E(L(X1, · · · , Xn))/n1− 1

h ≤ c2, (19)

and for 0 < h ≤ 1, supn E(X1, · · · , Xn) < ∞, where c1 and c2 are constants depen-
dent on h such that 0 < c1 ≤ c2 < ∞.

3 Concentration

Let Fi be a σ-algebra generated by X1, · · · , Xn for 1 ≤ i ≤ n, and F0 be a trivial one.
Let f be a measurable function with respect to Fn. Let di = E(f |Fi)− E(f |Fi−1).
We see f −E(f) =

∑n
i=1 di, and {∑i

k=1 dk}i is a martingale sequence with respect to
Fi, 1 ≤ i ≤ n. For a random variable X, let ess supX f(X) = inf{a |P (f(X) > a) =
0}, and ess infX f(X) = sup{a |P (f(X) < a) = 0}. Let d̃i = ess sup di − ess inf di.
Then the following Azuma-Hoeffding inequality holds.

Theorem 3.1 (Azuma-Hoeffding[1, 4]) For any t > 0,
P (|f − E(f)| ≥ t) ≤ 2 exp(−2t2/

∑n
i=1 d̃2

i ).

For some applications of the theorem to combinatorics, see [6, 8] and for Markov
processes see [9]. In this section we apply Azuma-Hoeffding inequality to our model.

In Theorem 3.1, let f = L(X1, · · · , Xn). In order to obtain d̃i, observe that [7, 8]

L(X1, · · · , X̂i, · · · , Xn) ≤ L(X1, · · · , Xn) ≤ L(X1, · · · , X̂i, · · · , Xn) + 2 min
1≤j≤n,j 6=i

|Xi −Xj|,

where (X1, · · · , X̂i, · · · , Xn) is the random vector obtained by deleting Xi from
(X1, · · · , Xn). Thus we have

d̃i ≤ 2 ess sup
X1,···,Xi

E( min
1≤j≤n,j 6=i

|Xi −Xj| |Fi)

≤ 2 ess sup
X1,···,Xi

E( min
i<j≤n

|Xi −Xj| |Fi)

= 2 ess sup
Xi

E( min
i<j≤n

|Xi −Xj| |Xi) = 2 ess sup
Xi

qn−i(Xi), (20)

where the first equality follows from that X1, · · · , Xn are i.i.d. random variables.
To prove the following theorem we need a condition.
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Condition 2 Assume that there exists a positive constant m such that infx∈H(µh) f(x) >
m > 0. Assume that limn→∞ δ(n) = 0.

Lemma 3.1 Under Condition 1 and 2, there exists a constant M such that

sup
x∈H(µh)

qn(x) ≤ Mn−
1

h+δ(n) . (21)

Proof) Let An(r) and a(n) be the same as in the proof of Lemma 2.2. From (13),
Condition 2, and Lemma 2.1, we have for sufficiently large n,

∫ a(n)

0
An(r)dr ≤

∫ a(n)

0
(1− f(x)rh+δ(n,x))ndr

≤
∫ a(n)

0
(1−mrh+δ(n))ndr

≤ mn−
1

h+δ(n) , (22)

where m is a constant. Note that a(n) → 0 as n →∞.
From (15), we have

∫ √
d

a(n)
An(r)dr ≤

√
d exp(−f(a(n), x)n1−h+g(a(n),x)

(1+b)h ) ≤
√

d exp(−mn1−h+δ(n)
(1+b)h ). (23)

Since limn→∞ δ(n) = 0 (Condition 2), from (22), (23), and (12), we have (21).

Theorem 3.2 Under Condition 1, and 2, if δ(n) = o((log n)−1), there exist con-
stants M1,M2, and M3 such that

n∑

i=1

d̃2
i ≤





M1, if h < 2,
M2 log n, if h = 2,

M3n
1− 2

h , if h > 2,

and for any t > 0,

µh(|f − E(f)| ≥ t) ≤ 2 exp(−2t2/
n∑

i=1

d̃2
i ),

where f = L(X1, · · · , Xn).

Proof) Since µh(H(µh)) = 1, by (20) and Lemma 3.1, we have

d̃i ≤ M(n− i)−
1
h ,

where M is a positive constant. Theorem 3.2 follows from Theorem 3.1.
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Theorem 3.3 Assume that δ(n) = o((log n)−1). Under Condition 1, and 2, for
1 < h,

c1 ≤ lim inf
n

L(X1, · · · , Xn)/n1− 1
h ≤ lim sup

n
L(X1, · · · , Xn)/n1− 1

h ≤ c2, µh − a.e.,(24)

where c1 and c2 are constants that depend on h. For 0 < h ≤ 1, we have L(X1, · · · , Xn) =
O(
√

log n), µh − a.s.

Proof) By Borel-Cantelli’s lemma and Theorem 3.2, we have

lim sup
n

|f − E(f)|
g(n)

≤ 1, µh − a.s.,

where f = L(X1, · · · , Xn), and

g(n) =





O(
√

log n), if h < 2,
O(log n), if h = 2,

O(n
1
2
− 1

h

√
log n), if h > 2.

By Theorem 2.1, we have the theorem.
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problem. Sankhyā Ser. A, 57:33–40, 1995.

[8] J. Michael Steel. Probability Theory and Combinatorial Optimization. SIAM,
Philadelphia, 1997.

[9] Hayato Takahashi and Yasuaki Niikura. An extension of Azuma-Hoeffding in-
equalities and its application to an analysis for randomized local search algo-
rithms. In Proceedings of the 26th Symposium on Information Theory and Its
Applications (SITA2003), pages 541–544, 2003.

9


