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Abstract
Based on the Belief Propagation Method, we propose simple and determin-
istic algorithms for some NP-hard graph partitioning problems, such as the
Most Likely Partition problem and the Graph Bisection problem. These al-
gorithms run in O(n+m) or O((n+m) log n) time on graphs with n vertices
and m edges. For their average case analysis, we consider the planted solu-
tion model and prove that they yield an correct answer with high probability
for large range of probabilistic parameters.

1 Introduction

We propose simple algorithms for some NP-hard graph partition problems including the Graph
Bisection problem. The algorithms are deterministic and run in linear time, i.e., O(n+m) time
w.r.t. vertex size n and edge size m (for some problems, O((n + m) log n) time), and they solve
their target problems with high probability for randomly generated instances.

We first specify our main problem — Most Likely Partition problem. This problem is, for
a given graph (and probability parameters), to find a partition that is most likely to generate
this graph under a certain random model explained below.

For defining this problem, we need some notions and notations. In this paper we consider
simple undirected graphs. A graph is given by a pair G = (V, E) of a vertex set V and an edge
set E. For simplicity, we identify V as {1, ..., |V |}, and assume that E is a set of pairs (i, j) such
that i < j. By V × V , we denote the set {(i, j) : i, j ∈ V and i < j}. By E we denote a set
V × V − E. A partition of a set V is a pair V1 and V2 of disjoint sets such that V1 ∪ V2 = V ,
and it is called an equal size partition if |V1| = |V2|. For a given partition V1 and V2 of a vertex
set V , its cut edge is an edge between u ∈ V1 and v ∈ V2.

∗This work has been done while visiting Tokyo Inst. of Technology.

†Supported in part by a Grant-in-Aid for Scientific Research on Priority Areas “Statical-Mechanical Approach

to Probabilistic Information Processing” 2002-2005.

1



Our random model specifies a way to generate a graph from its partition. For any n, consider
a set of vertices V of size1 2n, and choose some of its elements uniformly at random, generating
a partition V+ and V−. Define a function c : V → {+1,−1} so that c(i) = +1 if i ∈ V+

and c(i) = −1 if i ∈ V−; this function c is called a characteristic function w.r.t. the partition
(V+, V−). For given parameters p and r, we consider the following random generation of a graph
G = (V, E): for any vertices i, j ∈ V , put an edge (i, j) to E with probability p if c(i) = c(j),
and put an edge (i, j) to E with probability r if c(i) 6= c(j). For any size parameter n, and
parameters p and r, this model defines a probability distribution on graphs of size 2n.

For any graph G = (V, E), consider any partition (V+, V−) of V , and let c be its characteristic
function. Then for given parameters p and r, the following is the probability that G is generated
from (V+, V−) in the way specified above.

Pr[G is generated from (V+, V−) ]
=

∏

(i,j)∈E

p[c(i)=c(j)]r[c(i) 6=c(j)] ·
∏

(i,j)∈E

(1− p)[c(i)=c(j)](1− r)[c(i) 6=c(j)]

where [· · · ] takes 1 if · · · holds and 0 otherwise. We call this probability the likelihood2 w.r.t.
(V+, V−). Now our main problem is defined as follows.

Most Likely Partition Problem
Input: An undirected graph G = (V, E), and p and r, 0 < r < p < 1.
Task: Find a partition V+ and V− of V with the max. likelihood w.r.t. p and r.
Remark. Find one of them if there are several solutions.

We will also consider a problem where parameters p and r are not given, which requires to
compute also these parameters besides a partition. This harder version is called a parameterless
version.

Dubhashi et al. gave [DLP03]. the following natural motivation to this problem (for bipartite
graphs). Suppose that some set M of movies is classified into two groups, say, M+, action movies,
and M−, romantic movies. Furthermore, a group P of people is also classified into two groups;
P+ and P−, groups of those who prefer action (resp., romantic) movies. We assume that people
go to see a movie following a simple probabilistic rule; for any s ∈ {+,−}, any one in P s watches
a movie in M s with probability p, and he/she watches a movie in M−s with probability r. Now
a given a bipartite graph recording who watched which movie during some period (and also
somehow given parameters p and r), we would like to obtain the classification of P and M .
Then one natural solution is a partition (of P and M) so that the current record occurs most
likely.

Unfortunately, it is easy3 to prove that the Most Likely Partition problem is NP-hard; thus,
one may not be able to hope for an efficient algorithm solving the problem for all instances.

1Throughout this paper, we will assume that the size of V is 2n in order to discuss the Graph Bisection

problem. But this requirement is not necessary for our algorithms for the Most Likely Partition problem.

2The likelihood of (V+, V−) is, in short, Pr[(V+, V−)|G], whereas this probability is Pr[G|(V+, V−)]. But since

Pr[(V+, V−)|G] = Pr[G|(V+, V−)] · Pr[G]/ Pr[(V+, V−)], and both Pr[G] and Pr[(V+, V−)] are the same for all

possible partitions, we can use the probability Pr[(V+, V−)|G] for determining a most likely partition.

3One can prove the NP-hardness by showing a reduction from the MAX-CUT problem.
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On the other hand, the problem is not so hard on average under some reasonable probability
models on input graphs. A “planted solution model” is one of such models. A planted solution
model is a way to generate input graphs, which is almost the same as the one explained above.
Only one difference is that we fix an initial partition, which we call a planted solution, to be
V ∗

+ = {1, ..., n} and V ∗− = {n+1, ..., 2n}; that is, we assume that graphs are generated randomly
from this partition. It can be shown [Ons05] that if n is large enough for p−r (more specifically,
n = Ω((p − r)−2), or equivalently p − r = Ω(n−1/2)), then the planted solution is a unique
solution for generated instances with high probability. Thus, such size parameter n, the goal of
algorithms is to find the planted solution.

Although our algorithms are designed for the Most Likely Partition problem, the one for
the parameterless version can be regarded as an algorithm for the following Graph Bisection
problem.

Graph Bisection Problem
Input: An undirected graph G = (V, E), where |V | = 2n for some n.
Task: Find an equal size partition V1 and V2 of V with min. number of cut edges.
Remark. Find one of them if there are several solutions.

This problem has been studied extensively by many researchers [Bop87, Betal87, JS98,
CK01], and several algorithms have been proposed. Although the problem is NP-hard [GJS76],
these algorithms are shown to be efficient on average from computer experiments and/or math-
ematical analyses. For such average case analyses, the planted solution model has been often
used, and here we follow this and assume the planted solution model. It has been shown
[Bop87] that if n is large enough4 for p− r (more specifically, n = Ω((p− r)−2), or equivalently
p − r = Ω(n−1/2)), then the planted solution is a unique solution also for the Graph Bisection
problem. Thus, for such size parameter n, we may regard our algorithm (for the parameterless
version) as yet another algorithm for the Graph Bisection problem.

Our algorithms are derived from Pearl’s belief propagation [Pea88] with some slight mod-
ification. Roughly speaking, belief propagation is a way to compute a marginal probability of
the state of each node in a given Bayesian network. We use this technique for the Most Likely
Partition problem. Consider any G, p, and r; these are given input instances for the Most Likely
Partition problem. We first define a Bayesian network on which a belief propagation algorithm
(in short, a BP algorithm) is expected to compute the following probability.

P (i) = Pr[ c(i) = +1 |G(V+, V−) = G ], (1)

Here the probability is defined under our random model for the Most Likely Partition problem.
The approximation of P (i) is in general called a belief (that i belongs to V+). The BP algorithm
computes beliefs in rounds; at each round, it updates beliefs and we would like to have correct
P (i)’s at some round. In fact, it is shown that the BP algorithm converges in finite rounds and
yields the correct probabilities if a given Bayesian network is a tree; although such a convergence

4This bound is of the same order as the one for the condition that a planted solution is with high probability a

solution for the Most Likely Partition problem; but we do not know whether they are the same, or, if not, which

bound is smaller.
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cannot be guaranteed in general Bayesian networks, it is often the case that the BP algorithm
converges and gives quite accurate values even for Bayesian networks with loops. Now suppose
that the BP algorithm computes P (i) correctly at some round, then a natural solution for our
partition problem is to compute V+ (resp., V−) as a set of vertices i with P (i) > 0.5 (resp.,
P (i) < 0.5), which we may expect to give a partition with the max. likelihood. Let us call this
algorithm a BP-based (partition) algorithm. This is the basis of our algorithms.

For many similar problems, this approach has been quite successful, and it is now one of the
standard heuristics; see, e.g., [MMC98]. Note that it is not known whether such BP algorithms
and/or BP-based algorithms work correctly for Bayesian networks with loops. It is one of the
important problems to give rigorous justifications to those algorithms5. Our theoretical analysis
is, though for quite limited usage of the belief propagation, one of few examples such that the
belief propagation is justified rigorously.

Although our preliminary experiments show that the BP-based partition algorithm works
quite well, we also found that some slight modification in the BP algorithm makes the whole
algorithm more stable. Recall that the BP algorithm updates beliefs in rounds. The modification
is simply to remove one restriction from belief propagation’s rule for updating beliefs. More
specifically, we do not exclude any incoming message for updating beliefs; see, the next section
for the detail. Clearly, for each vertex i, a value computed by this modified algorithm is no
longer a belief that the original BP computes; thus, we will call it a pseudo belief. Nevertheless,
we found that with this modification both convergence probability and speed are improved, and
hence, the partition algorithm becomes more stable. (The accuracy of a solution obtained from
a convergent state is equally high for both algorithms.)

Some theoretical analysis is made on this partition algorithm. More precisely, we consider
the following version that we denote PartByPseudoBP2; the algorithm updates, in its BP part,
beliefs6 only twice, and then determine a partition based on the obtained beliefs. This algorithm
can be implemented so that it runs in O(n+m) steps. For this algorithm, we prove the following.

Theorem 1. For any n, and p and r, 0 < r < p < 1, consider the execution of PartByPseudoBP2
on randomly generated graphs under the planted model. Then we have

Pr[ the algorithm yields the planted solution ] ≥ 1− 2n · e−ε1n· (p−4)4

p2 ,

where ε1 is some constant.

For any δ > 0 and any p and r, 0 < r < p < 1, consider any n = Ω(p2(p−r)−4 log(1/(δ(p−r)))).
As mentioned above, one can show that the probability that the planted solution is not a correct
answer is small, say, < δ/2; that is, so long as the algorithm gives the planted solution, it should
be the correct answer with hight probability. Hence, it follows from the above that the success
probability, the probability that the algorithm yields a correct answer, is larger than 1− δ.

The accuracy can be explained in terms of the bound for p − r, which is more useful for
comparing with the other algorithms. Here we consider only the simplest case where p is of the

5Precisely speaking, they should be called “heuristics” instead of “algorithms” until rigorous justification is

given.

6In spite of our modification, since the number of rounds of belief updates is two, the computation of the

algorithm PartByPseudoBP2 is essentially the same as that of the original.
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same order of p− r. In this case, we can show that the algorithm yields a correct answer with
probability > 1 − δ if p − r = Ω(n−1/2 log(n/δ)). The performance of the algorithm is not so
good as this if p is large and p− r is small.

For the Graph Bisection problem, we need to solve the parameterless version. Note here
that we may assume that a planted partition is of equal size; hence, we can estimate p + r by
counting the number of edges in a given graph, and we can expect that this estimated value can
be quite accurate. Then within some appropriate range, we search for approximations p̃ and r̃

of p and r by binary search. This needs to run the algorithm PartByPseudoBP2 for O(log n)
times (if p− r = Ω(n−1/c) for some c > 1). The accuracy of this algorithm is guaranteed by the
following theorem.

Theorem 2. For any n, and p and r, 0 < r < p < 1, consider the execution of PartByPseudoBP2
on randomly generated graphs under the planted model, but here execute it with parameters p̃

and r̃ such that p̃ + r̃ = p + r and p− r ≤ p̃− r̃ < (5/4)(p− r). Even in this case we have

Pr[ the algorithm yields the planted solution ] ≥ 1− 2n · e−ε2n· (p−r)4

p2 ,

where ε2 is some constant.

Although the above theoretial analyses guarantee the performance for very limited versions,
our preliminary computer experiments show that, for the Most Likely Partition problem, the
more general version (allowing more belief update rounds) performs well for much larger range
of p − r. In fact, even for the case p − r = o(n−1/2) (though obviously, there is some limit),
this general algorithm seems to find a most likely partition, which is not necessary the planted
solution.

1.1 Related Works

The Graph Bisection problem has been studied by many researchers; many heuristics and al-
gorithms have been proposed, and some of them have been analyzed mathematically. One of
the first mathematical analysis of the average-case performance of bisection algorithms is due
to Bui et al in [Betal87]. Later Dyer and Frieze [DF89] gave an algorithm that works for dense
graphs. Boppana [Bop87] gave an algorithm based on the ellipsoid method, which is now shown
to work on the largest class of instances among existing (expected) polynomial-time algorithms.
Unfortunately, however, though it is polynomial-time, the time complexity of Boppana’s algo-
rithm is not so low. Much simpler and similarly effective algorithms have been proposed more
recently by Condon and Karp [CK01] for general graphs.

The average-case analysis of partitioning algorithms on the the planted solution model used
in this paper was introduced by Jerrum and Sorkin [JS98], where they proved that an algorithm
based on the simulated annealing heuristics works well for the Graph Bisection problem. Their
algorithm finds a planted solution in O(n2+ε) with high probability if p − r > n−1/6. Later
Condon and Karp gave a simpler algorithm and proved that it finds a planted solution in linear
time if p − r > n−1/2+ε with probability 1 − exp(−nΘ(ε)). Dubhashi et al [DLP03] proposed
some nice senario for studying graph partition problems under the planted solution, and they
gave anoher simple algorithm that solves the Graph Bisection problem for bipartite graphs.
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program PseudoBP(G = (V, E), p, r);
% This algorithm is for computing a pseudo belief
% (in approx. lex) to xi for each vertex i ∈ V .
% W.l.o.g. we assume c(1) = +1.
begin

set all xi to 0;
repeat MAXSTEP times do {

x1 ← +∞;
for each i ∈ V ,
xi ←

∑

j∈N(i)

h+ · Th+(xj)−
∑

j 6∈N(i)

h− · Th−(xj);

if all beliefs are stabilized then break;
}
output(x1, ..., x2n);
% Classification is (sg(x1), ..., sg(x2n)).

end-program

parameters & functions¶ ³

a− =
1− p

1− r
, a+ =

p

r
,

h− =
∣∣∣∣
a− − 1
a− + 1

∣∣∣∣ , h+ =
∣∣∣∣
a+ − 1
a+ + 1

∣∣∣∣ ,

th− =
∣∣∣∣
ln a−
h−

∣∣∣∣ , th+ =
∣∣∣∣
ln a+

h+

∣∣∣∣ .

Th+(z) = sg(z) ·min(z, th+),
Th−(z) = sg(z) ·min(z, th−),
N(i) = the set of i’s neighbors,

sg(z) =





+1, if z > 0,
0, if z = 0, and
−1, otherwise.

µ ´

Figure 1: Computation for pseudo beliefs (by approximate lex)

Compared with the above algorithms, our algorithm, e.g., PartByPseudoBP2, has the fol-
lowing features: Firstly it is deterministic and runs in O(n + m) time. All the other algorithms
are randomized except for Boppana’s algorithm, and Boppana’s algorithm has much higher com-
plexity. Secondly it is applicable to wider ranges of p− r, compared with the algorithm of Dyer
and Frieze and the simulated annealing based algorithm of Jerrum and Sorkin. The range for
p− r that our theorems for PartByPseudoBP2 guarantees is slightly smaller than the one for the
algorithm of Condon and Karp. On the other hand, our preliminary experiments show that a
more general version (allowing more belief update rounds) seems to perform much better than
the other algorithms.

2 Our Base Algorithm

In Figure 2 we state our base algorithm; for a given graph G = (V, E) and parameters p and r,
it computes as xi a “pseudo belief” for each vertex i ∈ V . It should be remarked here that this
“pseudo belief” is different the one explained in the previous section, but the approximation
of its log value that we will explain below; but anyway, the value xi is somehow related to the
“belief” that c(i) = +1 with the most likely classification c. A natural interpretation of this
belief is that c(i) = +1 if and only if xi is positive. A partition algorithm — PartByPseudoBP —
is an algorithm that outputs this classification after pseudo beielfs are computed by PseudoBP.
In the following, we will simply use “belief” for this “pseudo belief”.

Some explanation may be necessary. Without losing generality, we may assume that the
first vertex (i.e., vertex 1) is positive by our target classification c. Hence, x1 is set +∞ at the
beginning of each repetition. Let N(i) be the set of vertices having an edge with i in G. We say
that the belief of vertex i exceeds the threshold if xi is not in a range [−th+,+th+]. (Note that
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th− < th+; hence, this range is larger than [−th−,+th−].) By “round” we mean the number
of repeat iterations. We use a parameter MAXSTEP to bound the number of iterations; in
particular, the one using MAXSTEP = 2, denoted as PartByPseudoBP2, will be analyzed in the
next section.

A Remark on the Implementation of the Algorithm

For general PseudoBP, we need O(n2) floating point operations for computing xi at each round.
It is, nevertheless, possible to implement the special case PartByPseudoBP2 so that the compu-
tation of xi’s at each round is executed in O(n + m) steps. For computing xi for each vertex i,
we simply have to count the number of edges between i and vertices in N(1) and vertices not in
N(1). (Recall that N(1) is the set of neighbors of the vertex 1.) This counting for all xi’s can
be done in O(n + m) steps, if an input graph is given by some appropriate data structure.

2.1 A Derivation of the Algorithm

Our base algorithm PseudoBP is derived from the standard belief propagation algorithm for
computing the marginal probabilities P (i) defined by (1). We briefly explain this derivation.
Below we follow [MMC98] for notions and notations on the belief propagation. (Although we
will not explain the precise meaning of such notations, it is not essential for our later discussion.)

Let G = (V, E) be a given graph with 2n vertices. For any i, j ∈ V , we let eij = +1 if
there exists an edge between i and j in E, and eij = −1 otherwise. A Bayesian network for G

is a graph consisting of nodes {Ni}i∈V corresponding to all vertices in V nodes {Zij}(i,j)∈V×V

corresponding to all pairs in V × V . The belief propagation updates beliefs on these nodes
by exchanging messages between them. But since those messages are quite simple in our case,
we can simplify this scheme so that messages are exchanged between nodes corresponding to
vertices in V . For each pair of vertices i, j ∈ V , two messages πij(x), x ∈ {−1,+1}, sent from
node Ni to Nj are computed as follows from the messages πki that node Ni received at the
previous round.

πij(x) = αqi(x)
∏

k 6=j

(δij(r)πki(−x) + δij(p)πki(x)), (2)

Here qi, α, and δij have the following meaning: qi(x) is a priori probability of c(i) = x (in
our case, qi(+1) = qi(−1) = 1/2 except for the vertex 1); α is a normalization factor to keep
πij(+1) + πij(−1) = 1; and δij(y) = y if eij = +1, and δij(y) = 1 − y otherwise. Notice here
that for computing a message πij from node i to node j, the previous value of πji, a message
from node j, is not used. This is the point we will relax in our modification. A belief bi at node
Ni, intuitively the belief for c(i) = +1, is then computed as

Bi =

∏
j∈V πji(+1)∏

j∈V πji(+1) +
∏

j∈V πji(−1)
.

Now we make several simplifications for our problem. First in order to reduce the number of
variables, we use mij = πij(+1)/πij(−1) and bi =

∏
j∈V mji; also let ρi = qi(+1)/qi(−1). Note

that we can now consider c(i) = +1 if bi > 1 and c(i) = −1 if bi < 1. The following updating
rule is obtained from (2).

mij = ρi

∏

k 6=j

fij(mki),
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Figure 2: lex+ and lex− and their approximations l̃ex+ and l̃ex− (for p = 0.4 and r = 0.2)

where fij(x) is defined by

fij(x) =
aijx + 1
x + aij

, aij =

{
a+ = p

r , if eij = +1, and
a− = 1−p

1−r , if eij = −1.

At this point, we introduce one a priori knowledge. Without losing generality, we may fix the
classification of one vertex; for example, let us assume that vertex 1 belongs to V+, i.e., c(1) = +1.
This means that q1(+1) = 1 and q1(−1) = 0, implying that ρ1 = +∞ and m1j = +∞. For
the other i’s, we have qi(+1) = qi(−1) = 0.5, and hence, ρi = 1. Thus, we have the following
simplified rule.

m1j = +∞, and mij =
∏

k 6=j

fij(mki).

Here we may define fij(+∞) = aij and fij(−∞) = 1/aij .
Let us convert this updating rule to additive one. For this purpose, we introduce `ij =

ln(mij) and a function lex defined by

lexij(x) = ln(fij(ex)). (3)

Then we have, for all i, j ∈ V , i 6= 1,

`ij =
∑

k 6=j

lexki(`ki), (4)

Note that `1j = +∞. The logarithmic belief ln(bi) is computed as
∑

j∈V `ij , and c(i) is deter-
mined whether it is positive or negative.

We simplify the above computation a bit further. As shown in Figure 2.1, both functions
lex+ and lex− can be approximated well by some linear functions with thresholds. More specif-
ically, we consider the following functions for approximating lexσ, σ ∈ {+,−}.

l̃exσ(x) =





hσ · thσ, if thσ < x,
σhσ · x, if −thσ ≤ x ≤ thσ, and
−hσ · thσ, if x < thσ,

(5)
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where hσ (i.e., h+ and h−) and thσ (i.e., th+ and th−) are those defined in Figure 2. Our
(linearlized version of) belief propagation algorithm is to compute messages by (4) with these
approximations of lex functions.

Finally we introduce one modification. When computing a message from node i to node j,
we do not exclude the previous value of wji, a message that came from j to i. Then there is no
distinction between messages to j and to j′, and we only need to consider the following quantity

xi =
∑

k∈V

l̃exki(xk), (6)

which we may interpret as a message from i to any node. Furthermore, we may now consider
it also as a quantity corresponding to ln(bi), which we will call a pseudo belief. It is easy to see
that our base algorithm PseudoBP computes this pseudo belief by using the updating formula
(6).

3 Analysis of PartByPseudoBP2

Here we prove two theorems stated in Introduction. From our base algorithm PseudoBP, by using
setting MAXSTEP = 2 and modifying it to output classification instead of beliefs, we obtain
the algorithm PartByPseudoBP2 that we will study in this section. But in order to simplify
our analysis, we modify the algorithm a bit more7: (i) in order to avoid some difficulty from
applying the thresholding, use some small value θ < min(th+, th−) for the inivial value of x1,
(ii) at the second belief update round, simply set x1 = 0, thereby ignoring the effect from the
vertex 1, and (iii) the output classification vertex 1 is +1 no matter what value is computed at
x1. Precisely speaking, this is the algorithm PartByPseudoBP2 we will investigate below.

Now we prove Theorem 1. Below let G = (V, E) be a random graph of size |V | = 2n

generated from the planted solution V ∗
+ = {1, ..., n} and V ∗− = {n + 1, ..., 2n} with parameters p

and r, 0 < r < p. Let c∗ be its characteristic function. For any i, j ∈ V , let Ei,j be a random
variable taking a value in {0, 1} that indicates whether there exists an edge between vertices i

and j in G; hence, Ei,j = 1 with prob. p if c∗(i) = c∗(j), and otherwise Ei,j = 1 with prob. r.
Define α = p− r and β = p + r, which will be used in the following analysis.

Consider the execution of the algorithm. Let us introduce some notations. We use xi to
denote the value computed at the variable xi after the execution of the algorithm. On the
other hand, the value of the variable xi after the first round is denoted as x

(1)
i . Since we treat

the vertex 1 separately, by V ∗
+, we simply denote the set {2, ..., n} ignoring the vertex 1. We

introduce random variables (where the randomness is due to the random graph G). Let P1 and
P0 be the set of vertices in V ∗

+ that respectively does/does not have an edge with the vertex 1;
sets N1 and N0 are defined similarly for V ∗−. It is easy to see that x

(1)
i = h+ · θ if i ∈ P1 ∪ N1

and x
(1)
i = −h− · θ if i ∈ P0 ∪N0. Recall that θ is an initial value for x1, which is introduced in

place of ∞ for avoiding technical difficulty from the thresholding. Since θ is a common factor
for all the following values, we omit denoting θ in the following discussion.

7We think that the modifications (i) and (ii) are not essential; but it may be possible that more detail calculation

without any modification leads some small improvement.
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We further introduce the following random variables.

Y + = |P1|, Y − = |N1|,
X+,1

i =
∑

j∈P1
Ei,j , X+,0

i =
∑

j∈N1
Ei,j ,

X−,1
i =

∑
j∈P0

Ei,j , X−,0
i =

∑
j∈N0

Ei,j .

On these variables, we have the following two claims.

Claim 1. For any i ∈ V − {1}, we have

xi = 2n · h2− − h−(h+ + h−)(Y + + Y −)
+ h+(h+ + h−)(X+,1

i + X−,1
i )− h−(h+ + h−)(X+,0

i + X−,0
i ).

(7)

Proof. It is easy to see that xi is calculated as follows, from which the claim follows immediately.

xi =
∑

j∈P1

(
Eijh

2
+ + (1− Eij)(−h−)h+

)
+

∑

j∈P0

(
Eijh+(−h−) + (1− Eij)(−h−)2

)

+
∑

j∈N1

(
Eijh

2
+ + (1− Eij)(−h−)h+

)
+

∑

j∈N0

(
Eijh+(−h−) + (1− Eij)(−h−)2

)

tu

Claim 2. For any i ∈ V − {1}, we have

E[xi] = c∗(i) · 2nβ4

α2(2− α)2
. (8)

Proof. The proof is tedious but easy caliculation, once we have the following expectations.

E[Y +] = pn, E[Y −] = rn,

E[X+,1
i ] =

{
p2n if i ∈ V+, and
prn if i ∈ V−,

E[X+,0
i ] =

{
(1− p)pn if i ∈ V+, and
(1− p)rn if i ∈ V−,

E[X−,1
i ] =

{
r2n if i ∈ V+, and
prn if i ∈ V−,

E[X−,0
i ] =

{
(1− r)rn if i ∈ V+, and
(1− r)pn if i ∈ V−,

Although these are again easy to obtain, there are some points that we need to be a bit
careful. For example, for any i ∈ V+, the expectation E[X+,1

i ], i.e., the expectation of X+,1
i =∑

j∈P1
Eij seems E[ |P1| ] · Pr[Eij = 1] = pn · p. This is in fact true due to the independence of

Y + = |P1| and Eij ; let us check this for the sake of completeness.
Let i ∈ V+. For any set U ⊆ V , and any j ∈ V , we have Pr[ Eij = 1 |P1 = U ] = p, which is

due to independence of Eij and E1k for all k ∈ V . Hence, we have E[ X+,1
i |P1 = U ] = p · |U |;

in other words, for any y ≥ 0, we have E[ X+,1
i |Y + = y ] = py. Then we have E[X+,1

i ] =∑
y Pr[Y + = y ] · E[X+,1

i |Y + = y ] = p ·∑y Pr[Y + = y ] · y = p · E[Y + ] = p(pn). tu

The above claim shows that each xi gives on average the correct classification. Thus, it now
suffices to show a condition that all xi’s are close to their expectations. In the following, consider
any i ∈ V ∗

+ − {1}, and we show a sufficient condition for xi being positive. Furthermore, we
consider the case where α (= p + r) ≤ 1. (The case α > 1 and the case i ∈ V ∗− can be analyzed
similarly (in fact, even by slightly easier arguments), and the analysis for these cases is omitted.)
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For any δ+, δ−, γ+, γ−, γ′+, and γ′−, all taking values in [0, 1), consider the following
situation.

Y + = E[Y +] + δ+n = pn + δ+n,

Y − = E[Y −] + δ−n = rn + δ−n,

X+,1
i = (pn + δ+n)(p− γ+) = p2n + (pδ+ − pγ+ − δ+γ+)n,

X−,1
i = (rn + δ−n)(r − γ−) = r2n + (rδ− − rγ− − δ−γ−)n,

X+,0
i = ((1− p)n− δ+n)(p + γ′+) = (1− p)pn + ((1− p)γ′+ − pδ+ − δ+γ′+)n, and

X−,0
i = ((1− r)n− δ−n)(r + γ′−) = (1− r)rn + ((1− r)γ′− − rδ− − δ−γ′−)n.

We may also consider the other situations such as the case where Y + = E[Y +]− δ+n; but it is
easy to check that the above choice makes xi the smallest (under the assumption that α ≤ 1).

Evaluate (7) with these expectations; by easy but tedious caliculation, we have

xi = E[xi] − nh−(h+ + h−) ( δ+ + δ− )
− nh−(h+ + h−)((1− p)γ′+ + (1− r)γ′−)
− nh+(h+ + h−) ( pγ+ + rγ− + δ+γ+ + δ−γ− )
+ nh+(h+ + h−) ( pδ+ + rδ− )
+ nh−(h+ + h−)

(
pδ+ + rδ− + δ+γ′+ + δ−γ′−

)
.

(9)

Here we may let γ′+ = γ′− = γ and ignore the last positive term, which implies

xi ≥ E[xi] − n(h+ + h−) ( h−(δ+ + δ−)− h+(pδ+ + rδ−) )
− nh−(h+ + h−)(2− α)γ − nh+(h+ + h−) ( pγ+ + rγ− + δ+γ+ + δ−γ− ) .

By expressing h+ and h− by α and β, we have

xi ≥ E[xi] − 2nβ3(δ− − δ+)
α2(2− α)2

− 2nβ2

α(2− α)2
( pδ+ + rδ− )

− 2nβ2γ

α(2− α)
− 2nβ2

α2(2− α)
( pγ+ + rγ− + δ+γ+ + δ−γ− )

From this we immediately have the following claim.

Claim 3. For any i ∈ V+ − {1}, assume the following bounds hold for the parameters defined
above.

δ+ < min
(

p,
β2

8pα

)
, δ− < min

(
p,

β

8
,

β2

8rα

)
,

γ+ <
β2

8p(2− α)
, γ− <

β2

8p(2− α)
, and γ <

β2

8α(2− α)
.

Then we have xi > E[xi]− 2nβ4/(α2(2− α)2) = 0.

Now for the theorem it suffices to show that the bounds in the above claim hold with
probability 1− δ if n is large enough. We use the following Chernoff bound.

Proposition 1. Let X1, ..., Xm be m the outcomes of independent Bernoulli trials, i.e., inde-
pendent random variables with Pr[Xi = 1] = q and Pr[Xi = 0] = 1− q. Then there exists some
constant c0 > 1 such that for any ε, we have

Pr[
∑

1≤i≤m

Xi ≥ (1 + ε)qm ] ≤ e−mqε2/c0 , and Pr[
∑

1≤i≤m

Xi ≤ (1− ε)qm ] ≤ e−mqε2/c0 .
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Claim 4. There exists some constant ε1 such that for any p, r, 0 < r < p < 1 (here considering
the case that α = p + r ≤ 1), we have

Pr[ all bounds of Claim 3 hold ] ≥ 1− e
−ε1n·β4

p2 . (10)

Proof. Recall that, e.g., Y + = |P1| =
∑

j∈V ∗+
E1,j and X+,1

i =
∑

j∈P1
Ei,j , and that Ei,j

are independent Bernoulli trials. Thus, roughly speaking, for each bound in Claim 3, we use
the Chernoff bound to show that the probability that the bound does not hold is at most
e−ε1n(β4/p2)/8, thereby deriving the bound of the claim. But since some random variables, e.g.,
X+,1

i =
∑

j∈P1
Ei,j , depend on the others, e.g., P1, we need to be a bit careful.

First consider the bounds for δ+ and δ−. For these, we can simply apply the Chernoff bound.
For example, since Y − =

∑
j∈V ∗−

E1,j , Pr[E1,j = 1 ] = r for any j ∈ V ∗− = {n + 1, ..., 2n}, and
α ≤ 1, we have

Pr[ δ− ≥ p ] = Pr[Y − ≥
(
1 +

p

r

)
rn ] ≤ e−nr·(p/r)2/c0 = e−n(p2/r)/c0 ,

Pr
[

δ− ≥ β

8

]
= Pr

[
Y − ≥

(
1 +

β

8r

)
rn

]
≤ e−nr·(β/8r)2/c0 = e−n(β2/64r)/c0 , and

Pr
[

δ− ≥ β2

8pα

]
≤ Pr

[
Y − ≥

(
1 +

β2

8pr

)
rn

]
≤ e−nr·(β2/8pr)2/c0 = e−n(β2/64p2r)/c0 .

Hence, to show that these are all smaller than e−ε1n(β4/p2)/(3 · 8) for some constant ε1, we only
have to confirm the following.

p2

r
,

β2

r
,

β2

p2r
≥ β4

p2
.

Next consider the other bounds, i.e., the bounds for γ+, γ−, and γ. Since the bound for γ−
is most subtle, we explain our argument for bounding the probability that γ− ≥ β2/(8p(2− α))
holds; below let ε = β2/(8p(2− α)). Here we consider this probability under the condition that
Y − = rn + δ−n for some δ− ≥ 0. More precisely, under the condition that P0 = U for some
U ⊆ V ∗− such that |U | = rn + δ−n. Then since X−,1

i =
∑

j∈U Eij and these Eij ’s are mutually
independent and independent from the choice of U , we can use the Chernoff bound to show

Pr[ γ− ≥ ε |P0 = U ]
= Pr[X−,1

i (= (rn + δ−n)(r − γ−)) ≤ r((r + δ−)n)− ε((r + δ−)n) |P0 = U ]
= Pr[X−,1

i ≤ (1− ε/r)r((r + δ−)n) |P0 = U ]
≤ e−((r+δ−)n)r(ε/r)2/c0 ≤ e−nr2(ε/r)2/c0 = e−nε2/c0 .

Since ε = (β2/p) · (1/8(2−α) ≥ (β2/p) · (1/16), we have Pr[ γ− ≥ ε |P0 = U ] ≤ e−ε1n(β4/p2)/8 for
some constant ε1. Note that this bound holds uniformly for any U ⊆ V ∗− such that |U | = rn+δ−n;
hence the same bound holds for Pr[ γ− ≥ ε |Y − = rn + δ−n ].

Now, for example, for ε′ = min(p, β/8, β2/(8rα)), we have

Pr[ γ− < ε ∧ δ− < ε′ ]
= Pr[ γ− < ε |Y − = rn + δ−n ∧ δ− < ε′ ] · Pr[ δ− < ε′ ]

≤
(
1− e−ε1n(β4/p2)/8

)
·
(
1− e−ε1n(β4/p2)/8

)

≤ 1− 2e−ε1n(β4/p2)/8
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By similar arguments, we can give the desired bound (10) for the probability that all bounds of
Claim 3 hold. tu

Next we consider Theorem 2. Before proving the theorem, we clarify our algorithmic strategy
and recall the motivation of the theorem.

For the parameterless version, the goal of the problem is to compute, for a given graph G,
parameters p and r and a partition to achieve the maximum likelihood. But here we assume
that input graphs are generated under the planted solution model, and relax our goal to obtain
a planted solution and compute parameters p′ and r′ close enough8 to those used to generate
the input graph from the planted solution. For this goal, we consider the following algorithm:
First by counting the number of edges, we compute the estimation α̃ of α (= p + r), which
should be very close to the real value p + r if n is sufficiently large. Then by using a guess β̃

of β, run the algorithm PartByPseudoBP2 with guessed p̃ and r̃. (Note that p̃ = (α̃ + β̃)/2 and
r̃ = (α̃ − β̃)/2.) The initial value of β̃ is the largest candidate, i.e., α̃; that is the case where
p̃ = α̃ and r̃ = 0. If any “consistent partition” is obtained, then output the partition. Otherwise,
revise β̃ with (4/5)β̃, and repeat the above process. The consistency of the partition can be
checked as follows: First check whether it is an equal size partition (because we assume the
planted solution model). Next estimate parameters p′ and r′ by couting the number of edges to
vertices in the same set and in the other set, and confirm that (i) the estimation does not differ
so much between vertices, and (ii) the same partition is obtained by running the algorithm with
p′ and r′. (Note that these p′ and r′, which may be different from p̃ and r̃ used to obtain the
partition, are better approximations of p and r.)

For justifying the above algorithm, we only need to show the following property: a planted
solution can be obtained with high probability if α̃ is estimated accurate enough and the guessed
β̃ satisfies β ≤ β̃ < (5/4)β. So long as β = Ω(n−1/c) for some c > 1, β̃ satisfying this condition
can be obtained in O(log n) iterations. For simplifying our discussion, we assume here that α̃

is estimated exactly, i.e., α̃ = α (= p + r), and gives a sufficient condition such that the above
property holds. This is our Theorem 2. (The effect of the error |α̃ − α| can be analyzed in the
same way as the above proof of Theorem 1; we can derive some error bound and show some
sufficient condition for n, which is similar to the one for Theorem 1. We leave this analysis to
the reader.)

Now we prove Theorem 2. In the following, let p̃ and r̃ be those obtained from guessed β̃

of β. Since we assume that α̃ = α, we have p̃ + r̃ = p + r. Define ∆ so that p̃ = p + ∆; from
our assumption, we have r̃ = r − ∆ and β̃ = β + 2∆. For the theorem, we may assume that
0 ≤ ∆ < β/8. But for a while, let us also consider the case where ∆ < 0, i.e., the case where we
underestimate β.

Consider any i ∈ V − {1}. Here we use the same notations used in the proof of Theorem 1.
Let Ẽ[xi] denote the value of the righthand expression of (8) computed with p̃ and r̃ for p and
r; that is, it is the expectation of xi if p̃ and r̃ were the parameters for generating the random
input graph. Then we can reuse the formula (9); the difference xi − E[xi] computed here is the
same as E[xi]− Ẽ[xi] with δ+ = ∆, δ− = −∆, γ+ = −∆, γ− = ∆, γ′+ = ∆, and γ′− = −∆. From
this the following claim follows.

8Precisely speaking, this relaxed goal should be specified by using some accuracy parameter ε > 0 for p′ and

r′, which we will omit in the following explanation.
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Claim 5. For any i ∈ V+ − {1}, we have

E[xi] = Ẽ[xi]− c∗(i)

(
2n(4β̃2)

α2(2− α)2

)
( β̃∆−∆2 ).

Consider the case ∆ < 0; that is, we somehow guessed β̃ smaller than β. In this case, the
average margin |E[xi]| is larger than |Ẽ[xi]|, the value that we expect from our guessed p̃ and r̃.
Note, however, the deviation of xi from E[xi] is also larger than what we expect, and desired
confidence cannot be guaranteed if too small β̃ is used.

Consider, on the other hand, the case β̃ ≥ β (i.e., ∆ ≥ 0). For this case, it is easy to check
that tolerance to the deviation is stronger. Therefore, for the theorem, it suffices to show that
the average margin is large enough for our parameters. Now, as stated in Theorem 2, assume
that β ≤ β̃ < (5/4)β, which implies that 0 ≤ ∆ ≤ β/8 ≤ β̃/8. Thus, for any i ∈ V+ we have

E[xi] = Ẽ[xi]−
(

2n(4β̃2)
α2(2− α)2

)
( β̃∆−∆2 )

≥ 2nβ̃4

α2(2− α)2
− 2n(4β̃3∆)

α2(2− α)2
≥ 2nβ̃4

α2(2− α)2
− 2n(4β̃4/8)

α2(2− α)2
≥ Ẽ[xi]/2.

That is, the real average value is at least the half of the “pseudo average” computed from the
parameters p̃ and r̃. Therefore, by using an argument similar to the one for Theorem 1, we can
delive a similar condition for the value of the random variable xi being positive. (Because the
margin is now the half of what we expect from p̃ and r̃, we need roughly the half of the bounds
in the proof of Theorem 1.) A similar condition can be derived for i ∈ V−. Then by analyzing
the probability that all these condition hold, we can show the desired bound for the success
probability.

4 Some Experimental Results and Concluding Remarks

For some graph partitioning problems, we proposed a simple deterministic algorithm based on
the belief propagation, and we investigated its performance and gave some theoretical justi-
fication. There are, however, many open questions on the performance and the behavior of
our algorithm, which have been observed from computer experiments. Here we report on our
computer experiments and ask related open questions.

For comparing the experiments of [DLP03], our experiments are conducted on bipartite
graphs of size n = 200; vertices are divided into four groups U+, V+, U−, and V−, and edges
are randomly generated with probability p between pairs (u, v) of vertices u ∈ U+ and v ∈ V+

(resp., u ∈ U− and v ∈ V−) and with probability r between pairs (u, v) of vertices u ∈ U+ and
v ∈ V− (resp., u ∈ U− and v ∈ V+). For three choices of p, p = 0.3, p = 0.6, and p = 0.9, we
change p − r from 0.001 to min(0.399, p) with 0.001 increment. For each choice of parameters,
we generate 2,000 graphs and run PartByPseudoBP with sufficiently large MAXSTEP. (Recall
that PartByPseudoBP is the same as PseudoBP of Figure 2 except that it outputs a classification
instead of pseudo beliefs.)

Figure 3 shows the relation between p − r and the success probability, the probability of
obtaining a planted solution. Compared with the results reported in [DLP03], our algorithm
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Figure 3: Success probability vs. p− r

seems to show better performance than the one proposed in [DLP03]. It is easy to see that, for
each p (and n), there is some threshold and the success probability increases rapidly when p− r

gets larger than the threshold. When p−r is fixed, among three choices of p, the performance of
the algorithm seems the worst when p = 0.6. On the other hand, the success probability bound
obtained by our theoretical analysis becomes lowest when p = 1.0. Of course, our theoretical
bound is for the case MAXSTEP = 2, and the situation may differ when more iterations are
allowed; but it is also likely that our bound is not sharp enough. One of the important open
problems is to improve our analysis for obtaining a sharper bound and a bound for a few
iterations.

The success probabilities are obtained by running the algorithm with sufficiently large
MAXSTEP. Figure 4 shows the relation between p − r and the number of iterations until all
pseudo beliefs get stabilized. (Right one is obtained by overlapping Figure 3 onto the left one.)

Again it is easy to see that the algorithm terminates in at most 45 steps and that for
sufficiently large p − r, the number of iterations is quite small, i.e., less than 10. Another
important open problem is to give some upper bound for the number of iterations. We observe
that pseudo beliefs get stabilized with values greater than the positive threshold th+ or less than
the negative threshold −th+. But the proportion of such overthreshold values becomes less than
1 and gets decreased when p− r gets smaller than 0.15. Note that this is about the point when
the number of iterations starts increasing. For very small p− r, the computed values stay in a
very small range after the first iteration; thus, the algorithm (in our current implementation)
regard this situation as a stable state, and it terminates in two iterations. But we do not know
whether the values indeed get converged.

As shown in Figure 3, for small p − r, the probability that our algorithm does not yield a
planted solution is large. But this does not necessarily mean that the algorithm makes an error.
In fact, when p − r is small, a planted solution is no longer the best for the Graph Bisection
problem nor the Most Likely Partition problem. While it is hard to find the best solution, we
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can check whether the output of the algorithm is better than the planted solution that is used to
create the input graph. Figure 4 shows the relation between p− r and the probability that the
algorithm yields a partition whose likelihood is better than the one by the planted solution. It
is challenging to verify (either experimentally or theoretically) that the output of the algorithm
is almost optimal for the Molst Likely Partition problem.

Note that when the algorithm yields a solution different from the planted solution, it is
often the case that the partition defined by the solution is not of equal size; that is, it is not a
solution for the Graph Bisection problem.
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