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Abstract

A king in a directed graph is a node from which each node in the graph can be
reached via paths of length at most two. There is a broad literature on tournaments
(completely oriented digraphs), and it has been known for more than half a century
that all tournaments have at least one king [Lan53]. Recently, kings have proven useful
in theoretical computer science, in particular in the study of the complexity of the
semifeasible sets [HNP98,HT05] and in the study of the complexity of reachability
problems [Tan01,NT02].

In this paper, we study the complexity of recognizing kings. For each succinctly
specified family of tournaments, the king problem is known to belong to Πp

2 [HOZZ].
We prove that this bound is optimal: We construct a succinctly specified tournament
family whose king problem is Πp

2-complete. It follows easily from our proof approach
that the problem of testing kingship in succinctly specified graphs (which need not
be tournaments) is Πp

2-complete. We also obtain Πp
2-completeness results for k-kings

in succinctly specified j-partite tournaments, k, j ≥ 2, and we generalize our main
construction to show that Πp

2-completeness holds for testing k-kingship in succinctly
specified families of tournaments for all k ≥ 2.
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1 Introduction

1.1 General Introduction and Overview

We study the complexity of recognizing kings.
Throughout this paper, unless otherwise stated, Σ = {0, 1}, and each graph will be

simple (no self-loops) and directed, and will have at least one node. A node v of a graph
G = (VG, EG) is said to be a king exactly if each node in G can be reached from v via a path
of length at most two. In the 1950s, Landau noted the simple but lovely result that every
tournament—i.e., every graph G such that for each pair of distinct nodes a, b ∈ VG, exactly
one of the directed edges a→ b and b→ a occurs in EG—contains at least one king [Lan53].
(Throughout this paper “a→ b occurs in E” and “(a, b) ∈ E” will be synonymous. In the
former form, we will sometimes simply write “a → b” when the edge set E is clear from
context.)

When tournaments are specified explicitly in the natural way, it is not hard to
see that the king problem is first-order definable, and so by Lindell [Lin92] is in AC0

(see [Tan01,NT02], which have analogous discussions for reachability—and which involve
kings in their proofs; we also mention that a number of papers interestingly study king-
respecting sequencing in nonsuccinctly specified tournaments, see, e.g., [SSW03,HC03] and
the references therein). Thus, in this paper we focus mostly on the case that actually arises in
the study of the semifeasible sets, namely, succinctly specified tournament families, though
we will also resolve the general case of succinctly specified graphs (which is in some sense
an easier result, since the lower bound is the challenging part).

In particular, we focus on families of tournaments that are defined, uniformly, by a
P-time function. To formalize this, we in effect adopt the existing formalism (though, for
clarity, not the naming scheme) that is already provided by the theory of semifeasible sets.
In particular, we say a function f is a tournament family specifier exactly if

1. f is a polynomial-time computable function.

2. (∀x, y ∈ Σ∗)[f(x, y) = f(y, x)].

3. (∀x, y ∈ Σ∗)[f(x, y) = x ∨ f(x, y) = y].

We interpret this as specifying, in the following way, a family of tournaments, one per length.
At each length n, the nodes in the length n tournament specified by f will be the strings in
Σn. For each two distinct nodes among these, x and y, the edge between them will go from
x to y if f(x, y) = x and will go from y to x if f(x, y) = y. Since our function f always
chooses one of its inputs and is commutative, this indeed yields a family of tournaments.
We will call the tournament just described the length n tournament induced by f . This
formalism is precisely the one that plays an important role in the study of the semifeasible
sets, and in Section 1.2 we will explain what the connection is, and why we were motivated
to study the complexity of kings.1

1The reader may note that the constraints in the definition of tournament family specifiers apply even
between strings of different lengths, and yet this is never used in our proofs of results about tournament
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For f a tournament family specifier, the set whose complexity we will first study is

Kingsf = {x | x is a king in the length |x| tournament induced by f}.

Πp
2 = coNPNP is the “Π-side” second level of the polynomial hierarchy [MS72,Sto76]. It

is already known that for each tournament family specifier f , Kingsf ∈ Πp
2 [HOZZ]. The

central result of this paper shows that that result is optimal: We prove that there is a
tournament family specifier f such that Kingsf is Πp

2-complete (i.e., is ≤pm-complete for
Πp

2). We will note that if one changes one’s notion of tournament family specifier to an
analogous one that specifies an infinite family of graphs, Πp

2-completeness still holds. (Since
the difficult part here is the Πp

2-hardness lower bound, proving our result for the special case
of tournaments is in fact harder than proving it in the general case. But we undertake the
greater challenge of tournaments both because it yields easily the other cases, and because
it better connects to the motivating issue from the theory of semifeasible sets.)

It is easy to see from our proof that we also obtain Πp
2-completeness for the following

problem, which some may find more natural as it deals not with uniform families of problems
but just with individual inputs: “Given a succinctly specified (via a circuit following the
Galperin–Wigderson model2) graph G and a node x ∈ VG, is x a king of G?” Note that we
do not require that G be a tournament.

Recall that the central result of this paper is that there is a tournament family specifier
f such that Kingsf is Πp

2-complete. Can one in some broad cases do better than Πp
2-

completeness? We note that for tournament family specifiers that are associative, the king
problem in fact is always in coNP, yet for associative specifiers we also prove that the
king problem cannot be coNP-complete unless P = NP. On the other hand, we show
that various natural complexity levels are precisely the complexity of the king problem
of some tournament family specifiers: There are tournament family specifiers f for which
Kingsf is coNP-complete, and there are tournament family specifiers f for which Kingsf is
NP-complete.

The results mentioned above, about the complexity of kings in tournaments (and
graphs), appear in Section 2. Recall that kings are nodes that cover the whole graph
via paths of length at most two. The notion has been generalized as follows. For each fixed
k, a k-king in a digraph is a vertex that can reach all other vertices in the digraph via

family specifiers since specifiers specify different, separate tournaments at each length. This observation
is correct. The reason we have required the constraints to hold globally is simply because our motivating
notion, P-selectors from P-selectivity theory, has these constraints holding globally. However, if one changed
the definition of tournament family selector (and, later, graph family specifier and associative tournament
family specifier) to simply require the various constraints to hold merely between strings x and y of the same
length, then every one of our results that uses the words “family specifier” in its theorem statement would
still hold. In particular, the Πp

2-completeness, coNP-completeness, and NP-completeness results would still
hold.

2The Galperin–Wigderson model [GW83] for succinctly specifying a graph (simple and directed, since
in this paper all graphs are taken to be simple and directed) is that one gives a circuit with 2n inputs,
x1, . . . , xn, y1, . . . , yn, and it specifies a graph on the nodes Σn as follows: There are no self-loops, and for
each x 6= y, |x| = |y| = n, x → y is an edge of G exactly if the circuit on the 2n input bits x · y evaluates to
1, where · denotes concatenation.
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paths of length at most k. The existence of k-kings has been intensely studied, especially
with respect to multipartite tournaments, e.g., it is known that no multipartite tournament
that has two or more nodes of indegree zero can have a k-king for any k, and it is known
that every multipartite tournament having at most one vertex of indegree zero does have a
4-king ([Gut86,PT91], see also [BG98] and the references therein).

Section 3 studies the complexity of testing k-kingship in tournaments (and graphs) for
values of k other than the k = 2 case handled in Section 2. We will show that for k = 1
the problem is simpler, but for k > 2 it remains Πp

2-complete, via a proof that rather
interestingly is not a perfect analog of the k = 2 case.

Section 4 studies the complexity of testing k-kingship in multipartite tournaments,
which as mentioned above is the domain in which k-kingship, k > 2, has primarily been
studied previously (though to the best of our knowledge never regarding the computational
complexity of recognizing k-kings). This section is in the model of studying succinct graphs
(not graph families via a specifier), which seems the most natural model for that study.
We completely capture the complexity in each case as either belonging to P or being Πp

2-
complete.

Section 5 presents some open issues for further study.

1.2 Connections to Semifeasible Sets

Selman initiated the study of the semifeasible sets in a series of papers starting in
1979 [Sel79,Sel81,Sel82b,Sel82a]. A set A is P-selective (or semifeasible) exactly if there is
a polynomial-time computable function f (called a P-selector function for A) such that, for
each x, y ∈ Σ∗, (a) f(x, y) = x or f(x, y) = y, and (b) {x, y}∩A 6= ∅ =⇒ f(x, y) ∈ A. (For
a discussion of the motivation for, and examples and applications of, the semifeasible sets,
see [HT03], especially [HT03, Preface].) It was soon observed by Ko [Ko83] that whenever
there exists such a function for A, then there exists such a function that in addition is
commutative, i.e., (∀x, y)[f(x, y) = f(y, x)]. However, note that (aside from the connection
with A) such functions are precisely tournament family specifier functions. Indeed, this
connection between commutative P-selector functions and families of tournaments has been
very useful in obtaining results about the P-selective sets. More particularly, this connection
has been used—starting with the important work of Ko [Ko83] establishing that all P-
selective sets have small circuits—to get results on the advice complexity of the P-selective
sets.

In the rest of this subsection, we will speak a bit about advice classes. So we now quickly
define those, although we assume the reader is generally familiar with the notion. However,
readers who are interested just in our completeness results, or who are unfamiliar with the
notion of advice classes, can safely skip to Section 1.3.

Advice classes, introduced by Karp and Lipton [KL80], ask what class of sets a given
complexity class can accept when given a small amount of extra information that depends
only on the length of the string whose membership is being asked about. These classes have
been the subject of extensive study, and are key tools in showing that certain complexity
assumptions would collapse the polynomial hierarchy. The classes are formally defined as
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follows (we copy this definition from [HT03], but it is faithful to the exact notion of Karp
and Lipton).

Definition 1.1 1. Let f : N→ N be any function. Let C be any collection of sets. Define

C/f = {A | (∃B ∈ C) (∃h : N→ Σ∗) [(∀n) [|h(n)| = f(n)]
∧ (∀x ∈ Σ∗) [x ∈ A ⇐⇒ 〈x, h(|x|)〉 ∈ B]]}.

2. Let F be any class of functions mapping from N to N. Define

C/F = {A | (∃f ∈ F) [A ∈ C/f ]}.

3. “linear” (“poly”) will denote all functions from N to N where the value of the output
is linearly bounded (polynomially bounded) in the value of the input.

For example, P/n is the class of sets that are, informally put, so simple that with just n
extra bits of help at each length n they can be accepted by deterministic polynomial-time
machines. And Ko’s [Ko83] result mentioned earlier can be stated as {L |L is a P-selective
set} ⊆ P/poly.

Let us return to the P-selective sets. When seeking to prove an advice result for a
P-selective set, the standard approach is to take a commutative P-selector function for
the set and view it as a tournament family specifier function, and then to exploit some
properties of the tournament to construct algorithms that show that the set can be accepted
with surprisingly little advice. (Sometimes the focus of the arguments is not on the entire
tournament at a given length but rather is on the subtournament consisting of just the
strings of that length that happen to belong to the P-selective set. However, that is not of
crucial interest to us. And in the key motivating example, the focus in fact is on all the
strings of a given length.)

Due to this close connection between advice results and tournaments, it is hardly
surprising that Landau’s result that all tournaments (by which we always mean all nonempty
tournaments) have at least one king has proven useful in the study of P-selective sets and
their advice. For example, Landau’s result underpins the proof that all P-selective sets
belong not merely to NP/linear [HT96] but even to NP1/linear [HNP98], where NP1 is
the class of all sets accepted by NP machines using only linearly many nondeterministic
guess bits (this class forms the first level of the limited nondeterminism hierarchy of [KF77],
cf. [KF80]).

The particular use of Landau’s result that brought our interest to this topic is related
but somewhat different. As mentioned earlier, it has recently been noted (this is clear by
brute force) that for any tournament family specifier f the problem Kingsf belongs to Πp

2.
However, note that in a tournament, induced by any commutative P-selector function for
a P-selective set A (in our terminology, the P-selector function serves as an appropriate
tournament family specifier), we have that for each length n it holds that: If any string
belongs to A at length n, then all kings in the tournament at length n belong to A. And
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by Landau’s result, there always is at least one king in each such tournament. This led
Hemaspaandra and Torenvliet to the following observation.

Theorem 1.2 ([HT05]) The class of P-selective sets is not Πp
2/1-immune. (That is, each

infinite P-selective set has an infinite subset belonging to Πp
2/1.)

A natural way to seek to improve that nonimmunity upper bound would be to improve
the Πp

2 upper bound on the complexity of Kingsf . However, the core result of this paper
precisely shows that that particular line of attack is essentially hopeless, since we prove that
there exists a tournament family specifier f such that Kingsf is Πp

2-complete. It however
remains conceptually possible that some other attack might lower the Πp

2/1 bound. Also,
as mentioned earlier, the core result of this paper directly shows that the Πp

2 upper bound
of [HOZZ] has a matching lower bound.

1.3 Comparison with Other Work

We now mention another paper that exploits Landau’s king result, and we compare and
contrast that other paper to the work of Section 2 of the current paper. Tantau ([Tan01],
see also the more general conference version by Nickelsen and Tantau [NT02]) critically
uses Landau’s king result in proving that nonsuccinct tournament reachability is first-order
definable. That same paper proves (not via the king result) that in the Galperin–Wigderson
model succinct tournament reachability is Πp

2-complete. This is a lovely result, but differs
from our core result (i.e., our Theorem 2.1: There is a tournament family specifier f such
that Kingsf is Πp

2-complete) in multiple ways.
First, for Tantau, the Πp

2 upper bound is critically dependent on the graphs being
tournaments. In contrast, for us and the king problem, the Πp

2 upper bound easily holds
for both tournaments and general graphs, and for each of those, in both the family-specifier
model and in the Galperin–Wigderson model of inputting individual graph instances as a
circuit.

Second, though this is less a difference than a caution, it is true that a node v is a king
exactly if for each other node w one can reach w from v via some path of length at most
two. But that connection in no way implies that hardness results for reachability (or even
reachability via paths of length at most two) imply hardness results for the king problem
in our model.

Third, we stress that our core result is in the model where we study a tournament
family specifier. In this model, for the tournament family specifier f , there is just one
tournament at each length. Thus, one might perhaps expect merely collective ≤pm-hardness
for TALLY ∩ Πp

2 (i.e., one might expect merely that TALLY ∩ Πp
2 ⊆ {L | (∃ tournament

family specifier f)[L ≤pm Kingsf ]}), rather than having outright Πp
2-hardness hold. In

fact, in our most central proof—that of Theorem 2.1—one main obstacle is to show how
an exponential number of separate kingship problems can be embedded all into a single
tournament in such a way that they do not cross-pollute each other. In contrast, in the
Galperin–Wigderson model this difficult issue does not exist, as there the input is a (node
whose kingship we are interested in, and a succinctly specified) single graph or tournament.
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Why do we in Theorem 2.1 seek to clear this higher bar of studying families? Because we
find it interesting, because our proof will be so general as to in effect give all the other cases
easily, and because this is the model of the existing Πp

2 upper bound of [HOZZ] and so, to
show that that upper bound cannot be improved, we cannot validly cheat by changing to
an easier-to-resolve issue.

On the other hand, Tantau’s [Tan01] (and Nickelsen–Tantau’s [NT02]) work does share
with this paper one important property. Both their work and ours—in contrast with the
many earlier papers showing that a wide variety of properties of succinctly specified graphs
are PSPACE-hard [Wag84,Wag86,PY86]—pinpoints succinctly specified graph problems
whose complexity falls at a substantially lower level, namely, Πp

2 (see also [GW83,Wag86]).
Finally, we mention that the generalization achieved in the transition from Tantau’s

paper [Tan01] to the Nickelsen–Tantau paper [NT02], namely, moving from tournaments
to graphs of bounded independence number, is not particularly interesting in our case. For
the king problem in our setting, our Πp

2-hardness lower bounds are immediately inherited
by the more flexible case of independence numbers beyond two (i.e., beyond the number
possessed by tournaments), and though the Πp

2 upper bound doesn’t automatically transfer,
it is for those problems in our case immediately obvious, directly, that it holds.

2 The Complexity of Kingship (i.e., 2-Kingship) in
Tournaments and Graphs

We now prove our core result.

Theorem 2.1 There is a tournament family specifier f such that Kingsf is Πp
2-complete.

The proof has two parts. First, we show how a single Πp
2-type formula can be converted

to a king problem. Then—since Kingsf speaks of just one tournament per length—we show
how one can in effect embed an exponential number of king problems into a single length
without creating any damaging cross-pollution.
Proof of Theorem 2.1 It is easy to see that for every tournament family specifier
f , Kingsf is in Πp

2 [HOZZ]. We will in this proof define a tournament family specifier f
such that Kingsf is Πp

2-hard. For this tournament family specifier f , we will show Πp
2-

hardness for Kingsf by a reduction from ∀∃SAT, the set of true fully quantified Boolean
formulas where all universal quantifiers precede all existential quantifiers. It is well known
that ∀∃SAT is Πp

2-complete [SM73,Wra76]. Without loss of generality, we will assume
that all formulas in ∀∃SAT have the same number of universally quantified variables as
existentially quantified variables and that the number of universally quantified variables is
greater than 0. We will call formulas of the right form ∀∃-formulas, i.e., we say that φ is
an ∀∃-formula if and only if there exists an integer n > 0 and a propositional formula φ′

such that φ = ∀x1 · · · ∀xn∃y1 · · · ∃ynφ′(x1, . . . , xn, y1, . . . , yn). Using this terminology, for us
∀∃SAT will denote the set of true ∀∃-formulas.

We will define our tournament family specifier f in two stages. First we will define
for every ∀∃-formula φ a tournament Tφ = (Vφ, Eφ) such that a specific “‘potential king”
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〈φ, 0n+2〉

〈φ, 100n〉

〈φ, 110n〉 . . .

〈φ, 101n〉

〈φ, 111n〉

. . .

iff φ′(1n1n)
iff φ′(1n0n)

iff φ′(0n1n)iff φ′(0n0n)

Figure 1: First stage of the 2-Kingsf Πp
2-hardness construction

node in Vφ is a king in Tφ if and only if φ is true. We will then show how to combine all
these tournaments into one family of tournaments (specified by f) without disturbing the
king-ness of the potential king in Tφ for all ∀∃-formulas φ.

To make sure that all tournaments Tφ can be combined in the desired way, we will use
a binary pairing function 〈·, ·〉 that is polynomial-time computable and polynomial-time
invertible (by the latter we mean that the range of the function is in P, and that there
exist two polynomial-time computable functions that, given a string in the range of the
function, return the first and the second component, respectively) such that for all strings
x, x′, y, y′ ∈ Σ∗, if |x| = |x′| and |y| = |y| then |〈x, y〉| = |〈x′, y′〉| and such that for all
x, y ∈ Σ∗, 〈x, y〉 6∈ 0∗. It is easy to see that such a pairing function exists, for example by
defining 〈x1x2 · · ·xn, y〉 as 0x10x2 · · · 0xn1y for all x1, x2, . . . , xn ∈ Σ and y ∈ Σ∗.

Let φ be an ∀∃-formula. Let n > 0 and let φ′ be a propositional formula such that φ =
∀x1 · · · ∀xn∃y1 · · · ∃ynφ′(x1, . . . , xn, y1, . . . , yn). We will define tournament Tφ = (Vφ, Eφ) in
such a way that 〈φ, 0n+2〉 is a king in Tφ if and only if φ is true.

Figure 1 gives a pictorial representation of Tφ. The nodes in Vφ are arranged in three
layers. The first layer consists of the potential king 〈φ, 0n+2〉. The second layer contains a
node 〈φ, 10y〉 for every y ∈ Σn. These 2n nodes correspond to the 2n possible assignments
to the y-variables in φ′. The third layer contains a node 〈φ, 11x〉 for every x ∈ Σn. These
2n nodes correspond to the 2n possible assignments to the x-variables in φ′. In the figure,
we use the convention that missing edges between nodes at different levels go “up,” and
that missing edges between nodes at the same level go “right.”

Formally, Tφ = (Vφ, Eφ) is defined as follows. Vφ = {〈φ, 0n+2〉} ∪ {〈φ, 10y〉 | y ∈ Σn} ∪
{〈φ, 11x〉 | x ∈ Σn}. Note that all strings in Vφ have the same length by the properties of
the pairing function. (There will be strings in Σ∗ at that length that are not in Vφ; this
will be handled in the second stage of our construction.) For all z, z′ ∈ Σn+2 such that
〈φ, z〉, 〈φ, z′〉 ∈ Vφ and z < z′ (i.e., z <lexicographic z

′), let (〈φ, z〉, 〈φ, z′〉) ∈ Eφ if and only if

• (z = 0n+2 and z′ = 10y for some y ∈ Σn), or
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• (z = 10y for some y ∈ Σn and z′ = 11x for some x ∈ Σn and φ′(xy)), or

• (z = 10y for some y ∈ Σn and z′ = 10y′ for some y′ ∈ Σn), or

• (z = 11x for some x ∈ Σn and z′ = 11x′ for some x′ ∈ Σn).

For all z, z′ ∈ Σn+2 such that 〈φ, z〉, 〈φ, z′〉 ∈ Vφ and z > z′, let (〈φ, z〉, 〈φ, z′〉) ∈ Eφ if and
only if (〈φ, z′〉, 〈φ, z〉) 6∈ Eφ.

It is clear that Tφ is a tournament. It is immediate from the construction that

• 〈φ, 0n+2〉 is a king in tournament Tφ if and only if for all x ∈ Σn, 〈φ, 0n+2〉 reaches
〈φ, 11x〉 in two steps,

• for all x ∈ Σn, 〈φ, 0n+2〉 reaches 〈φ, 11x〉 in two steps if and only if there exists a
y ∈ Σn such that (〈φ, 10y〉, 〈φ, 11x〉) ∈ Eφ, and

• for all x, y ∈ Σn, (〈φ, 10y〉, 〈φ, 11x〉) ∈ Eφ if and only if φ′(xy).

From these observations, the following claim follows immediately.

Claim 2.2 〈φ, 0n+2〉 is a king in tournament Tφ if and only if φ is true.

We will now show how to combine the Tφ tournaments into a family of tournaments
specified by f in such a way that for every ∀∃-formula φ, 〈φ, 0nφ+2〉 is a king in Tφ if only
if 〈φ, 0nφ+2〉 ∈ Kingsf , where nφ is the number of universally quantified variables in φ.

For every ∀∃-formula φ and for all x, y ∈ Vφ, let f(x, y) = x if and only if (x, y) ∈ Eφ.
Note that by definition of 〈·, ·〉, all elements in Vφ have the same length. We need to ensure
that the rest of f is specified in such a way as to not disturb the king-ness of 〈φ, 0n+2〉.
Note that it is unavoidable that there exist different ∀∃-formulas φ and ψ such that strings
in Vφ and Vψ have the same length.

Figure 2 gives a pictorial representation of of the tournament induced by f at length m.
In the figure, φ1, φ2, . . . , φk are all ∀∃-formulas such that Vφi ⊆ Σm. The φi’s are ordered
lexicographically, in ascending order. For readability, we write Ti for Tφi and ni for nφi . Note
that for all formulas φ, 0m 6∈ Vφ (by properties of the pairing function) and 〈φ, 010nφ〉 6∈ Vφ.
We use the convention that all missing arrows between Ti and Tj go right, that all missing
arrows between 〈φi, 010ni〉 and 〈φj , 010nj 〉 go right, that all missing arrows between nodes
in “all other strings” go from lexicographically smaller strings to lexicographically larger
strings, and that all other missing arrows go up. This completely specifies the tournament
on strings of length m.

Formally, we define f as follows. Let

Other = Σ∗ −
(
0∗ ∪ {〈φ, 010nφ〉 | φ is a ∀∃-formula} ∪

⋃
{Vφ | φ is a ∀∃-formula}

)
.

The set Other is clearly in P, since the pairing function is polynomial-time invertible. For
all m and all z, z′ ∈ Σm, let f(z, z′) = z if and only if

• z = z′, or
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0m

. . .

. . .

all other strings in
lexicographic order

〈φ1, 010n1〉 〈φ2, 010n2〉

T1 T2

Figure 2: Second stage of the 2-Kingsf Πp
2-hardness construction

• z = 0m and z′ = 〈φ, 010nφ〉 for some ∀∃-formula φ, or

• z = 0m and z′ ∈ Other, or

• z = 〈φ, 010nφ〉 for some ∀∃-formula φ and z′ = 〈ψ, 010nψ〉 for some ∀∃-formula ψ and
φ < ψ, or

• z = 〈φ, 010nφ〉 for some ∀∃-formula φ and z′ ∈ Vφ, or

• z = 〈φ, 010nφ〉 for some ∀∃-formula φ and z′ ∈ Other, or

• z ∈ Vφ for some ∀∃-formula φ and (z′ = 0m or z′ ∈ Other), or

• z ∈ Vφ for some ∀∃-formula φ and z′ = 〈ψ, 010nψ〉 for some ∀∃-formula ψ and φ 6= ψ,
or

• z ∈ Vφ for some ∀∃-formula φ and z′ ∈ Vφ and (z, z′) ∈ Eφ, or

• z ∈ Vφ for some ∀∃-formula φ and z′ ∈ Vψ for some ∀∃-formula ψ and φ < ψ, or

• z, z′ ∈ Other and z < z′.

For all z, z′ ∈ Σm, if f(z, z′) 6= z, then let f(z, z′) = z′. The definition of f on strings of
different lengths is irrelevant (as long as f remains a tournament family specifier). To be
complete, we define f(z, z′) = z if |z| < |z′| and f(z, z′) = z′ if |z| > |z′|.
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It is immediate that for all x, y ∈ Σ∗, f(x, y) = f(y, x) and that f(x, y) = x or f(x, y) =
y. Since the pairing function is polynomial-time invertible, it is easy to see that f is
computable in polynomial time. Thus f is a tournament family specifier.

To finish the proof, let φ be a ∀∃-formula and let n = nφ. It remains to show that
〈φ, 0n+2〉 ∈ Kingsf if and only if φ is true. By Claim 2.2, it suffices to show that 〈φ, 0n+2〉 ∈
Kingsf if and only if 〈φ, 0n+2〉 is a king in Tφ. Let m = |〈φ, 0n+2〉|.

First suppose that 〈φ, 0n+2〉 is a king in Tφ. It is easy to see from the definition of f at
length m that 〈φ, 0n+2〉 reaches all strings in Σm−Vφ in one or two steps. (Strings of length
m that are in Vψ for some ∀∃-formula ψ 6= φ are reached in two steps via 〈ψ, 010nψ〉.) It
follows that 〈φ, 0n+2〉 is a king in the tournament induced by f on strings of length m, i.e.,
〈φ, 0n+2〉 ∈ Kingsf .

For the converse, suppose that 〈φ, 0n+2〉 is a king in the tournament induced by f on
strings of length m. Then every string of length m can be reached from 〈φ, 0n+2〉 in at most
two steps. In particular, every element from Vφ can be reached from 〈φ, 0n+2〉 in at most
two steps. By the construction of f , there do not exist length two paths v → w → v′ such
that v, v′ ∈ Vφ and w 6∈ Vφ in the tournament induced by f on length m. This implies that
every node in Vφ can be reached from 〈φ, 0n+2〉 by a path of length at most two such that
all nodes of the path are in Vφ. It follows that 〈φ, 0n+2〉 is a king in the tournament induced
by f on Vφ, and thus 〈φ, 0n+2〉 is a king in Tφ.

To be explicit, our ≤pm-reduction g from ∀∃SAT to Kingsf is as follows. Note that
Other 6= ∅ and no element of Other belongs to Kingsf . Let out be any fixed element of
Other. Our reduction g on an arbitrary input φ will output out if φ is not a ∀∃-formula,
and otherwise will output 〈φ, 0nφ+2〉. ❑

We mention briefly that our proof approach clearly also yields Πp
2-completeness for

general graph families specified by the general-graph analog of tournament family specifiers,
and for individual graphs specified in the Galperin–Wigderson formalism (see footnote 2).
We now give the definitions and theorems to state this explicitly.

We say a function f is a graph family specifier exactly if

1. f is a polynomial-time computable function.

2. (∀x, y ∈ Σ∗)[f(x, y) = 1 ∨ f(x, y) = 0].

We interpret this as specifying, in the following way, a family of (simple, directed) graphs.
At each length n, the nodes in the graph specified by f will be the strings in Σn. And
for each two distinct nodes among these, x and y, there is an edge from x to y exactly if
f(x, y) = 1. We will call the graph just described the length n graph induced by f .

We also define two sets to capture the complexity of kingship in tournaments and graphs
in the Galperin–Wigderson model. The second of these sets, similarly to [Tan01,NT02],
places into the complexity of the set the check (of coNP-type complexity, and easily handled)
that the input circuit indeed is a tournament. Here, “the graph specified by c” of course
refers to the Galperin–Wigderson model.

KingsGW = {〈c, x〉 | c has 2|x| inputs and x is a king in the graph specified by c}.
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Tournament-KingsGW = {〈c, x〉 | c has 2|x| inputs and x is a king in the graph
specified by c and the graph specified by c is a tournament}.

Theorem 2.3 1. There is a graph family specifier f such that Kingsf is Πp
2-complete.

2. KingsGW is Πp
2-complete.

3. Tournament-KingsGW is Πp
2-complete.

Each of these problems is obviously in Πp
2, and in light of our embedding of formulas

into a king problem, is easily seen to be (though in parts 2 and 3 of Theorem 2.3 one has
to be slightly careful about ensuring that we maintain a power of two cardinality of nodes)
Πp

2-complete.
Recall that each tournament family specifier f satisfies Kingsf ∈ Πp

2 [HOZZ], and
Theorem 2.1 proves that for some tournament family specifier f̂ , Kings bf is Πp

2-complete.
What if we require our tournament-specifying functions to be not merely commutative but
also associative? Does Πp

2-completeness still hold? The answer is no, unless P = NP (see
Theorem 2.5). Indeed, the complexity drops to coNP. However, beyond that, it also holds
that the complexity in this case can never be coNP-complete unless P = NP. Also, the
coNP upper bound here yields the result that for associatively P-selective sets, the Πp

2/1
nonimmunity bound of [HT05] can be improved to coNP/1 nonimmunity. We now state
and briefly prove these claims.

We say that a function f is an associative tournament family specifier if it is a
tournament family specifier and in addition satisfies

(∀x, y, z ∈ Σ∗)[f(x, f(y, z)) = f(f(x, y), z)].

(In the study of P-selective sets, a set A is said to be associatively, commutatively
P-selective [HHN04] exactly if it has a P-selector function that is an associative
tournament family selector f and that in addition obeys the key constraint of P-selectivity:
(∀x, y)[{x, y}∩A 6= ∅ =⇒ f(x, y) ∈ A]. And a set is said to be associatively P-selective if it
has a P-selector function that satisfies the same constraints, except without commutativity
being required.)

Theorem 2.4 If f is an associative tournament family specifier, then

1. Kingsf is a sparse set.

2. Kingsf ∈ coNP.

Proof Associativity of the specifier implies transitivity of each tournament in the family
(i.e., in each, the edge set is transitive), and transitive tournaments impose a linear order
on their nodes ([Moo68], see also [HHN04]). So each tournament in the family has exactly
one king. So the king set is sparse; indeed, it has exactly one element per length. And due
to the linear ordering, there is a coNP test for kingship in this case, namely, z is a king
exact if (∀y : |y| = |z|)[f(y, z) = z]. ❑

12



Theorem 2.5 The following statements are equivalent:

1. P = NP.

2. Every associative tournament family specifier’s king problem is coNP-complete.

3. Some associative tournament family specifier’s king problem is coNP-complete.

4. Every associative tournament family specifier’s king problem is Πp
2-complete.

5. Some associative tournament family specifier’s king problem is Πp
2-complete.

Proof The second part immediately implies the third part. The third part implies the first
part by the sparseness claim of Theorem 2.4 plus the result of Fortune [For79] that if there
exists a coNP-hard sparse set then P = NP. The first part implies the second part since
if P = NP then every set other than ∅ and Σ∗ is coNP-complete (as always in this paper,
with respect to ≤pm reductions). But a king problem of an associative tournament family
specifier, as noted in the proof of Theorem 2.4, always has exactly one king per length, and
so the king set is neither ∅ nor Σ∗. The final two parts are equivalent to the first part by
essentially the same reasoning, keeping in mind that all Πp

2-hard sets are coNP-hard, and
so Fortune’s Theorem still applies. ❑

Corollary 2.6 (Corollary to Theorem 2.4) If L is an associatively P-selective, infinite
set, then L is not coNP/1-immune (i.e., L has an infinite coNP/1 subset).

Proof If L is associatively P-selective, then by [HHN04] it is commutatively, associatively
P-selective, say via function f . So by Theorem 2.4 its king set Kingsf is in coNP. So infinite
set L has an infinite coNP/1 subset, namely, the coNP set is

{〈x, b〉 | b = 1 and x is the king in the length |x| tournament induced by f},

the advice function at length k outputs 1 if Σk ∩ L 6= ∅ and outputs 0 if Σk ∩ L = ∅, and
the coNP/1 set thus is {y | y ∈ Kingsf and Σ|y| ∩ L 6= ∅}. ❑

So, for some tournament family specifier f , Kingsf is Πp
2-hard, and for all associative

tournament family specifiers f , Kingsf ∈ coNP. But unless P = NP no associative
tournament family specifier’s king problem is coNP-complete. Do any tournament family
specifiers have king problems that are coNP-complete? NP-complete? To give a sense
of the possibilities that can hold, we prove that both of these cases hold. In doing so,
we will exploit a property of the second part of our main construction—a property that
was not critical there but that is critical here. In particular, the second part of our main
construction—the part that weaves together an exponential number of subtournaments—
does so in such a way as to not increase the complexity of king recognition for nodes in
the subproblems: Each node associated with a subtournament is a king in the combined
tournament exactly if it was a king in its native subtournament. Also useful will be that our
Πp

2 construction’s new “bookkeeping” nodes that are employed in the “weaving together”
stage of that construction have king problems that can be solved in coNP. The reason that
these facts—that our weaving does not boost complexity—are important is that to prove,
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for example, coNP-completeness of Kingsf , we need not just coNP-hardness, but we need
the king problem of f to be in coNP. So, if for some nodes the king problem would require
complexity beyond coNP, that would be fatal to our proof. The reason this was not an issue
in our Πp

2-completeness proof’s construction is that Πp
2 is an outright upper bound on king

checking, and so that construction cannot possibly have nodes whose checking problem is
beyond Πp

2.
Since some of the bookkeeping nodes in our Πp

2 construction’s weaving stage seem to need
coNP for their king tests, and that would ruin an NP upper bound, for our NP-completeness
proof (Theorem 2.10) we will have to somewhat modify the weaving construction from that
used in the Πp

2 construction’s weaving.
The issue of retaining the low upper bound of NP or coNP applies not just in the

combination stage but also in the new—and aimed at coNP or NP—subtournaments we
must design for the subtournament stages for those cases. In particular, when doing this
research, the first subtournament we constructed for the NP case indeed had one node
whose king problem supported NP-hardness and was in NP, but it also had other nodes
whose king tests seemed to require the power of coNP. And thus we had to modify our
subtournaments (from that first attempt) to add two extra nodes whose purpose was to
make sure that all nodes have kingship problems that fall in NP.

Theorem 2.7 There exists a tournament family specifier f such that Kingsf is coNP-
complete.

Proof We will define a tournament family specifier f such that Kingsf is coNP-complete.
For this tournament family specifier f , we will show coNP-hardness for Kingsf by a
reduction from TAUTOLOGY, the set of Boolean formulas that are tautologies, i.e., that
are true for every assignment. Without loss of generality, we will in this proof assume that
every formula contains at least one variable. We will denote the number of variables of
formula φ by nφ.

As in the proof of Theorem 2.1, we will define our tournament specifier f in two stages.
First we will for every (propositional) formula φ with n > 0 variables define a tournament
Tφ = (Vφ, Eφ) in such a way that 〈φ, 0n+2〉 is a king in Tφ if and only if φ is a tautology.
(We use the same binary pairing function 〈·, ·〉 as in the proof of Theorem 2.1.) We will
then combine these tournaments into one family of tournaments (specified by f) using the
construction from Theorem 2.1, and we will show that Kingsf is coNP-complete. We use
F̂ to denote all propositional formulas having at least one variable.

Let φ ∈ F̂ be a formula with n variables. Figure 3 gives a pictorial representation of
Tφ. The nodes in Vφ are arranged in three layers, and we use the convention that missing
edges between nodes at different levels go “up,” and that missing edges between nodes at
the same level go “right.”

Formally, Tφ = (Vφ, Eφ) is defined as follows. Vφ = {〈φ, 0n+2〉, 〈φ, 100n〉}∪{〈φ, 11x〉 | x ∈
Σn}. Note that all strings in Vφ have the same length by the properties of the pairing
function. For all z, z′ ∈ Σn+2 such that 〈φ, z〉, 〈φ, z′〉 ∈ Vφ and z < z′, let (〈φ, z〉, 〈φ, z′〉) ∈
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. . . . . .

iff φ(x)

〈φ, 0n+2〉

iff φ(0n)

〈φ, 100n〉

iff φ(1n)

〈φ, 110n〉 〈φ, 11x〉 〈φ, 111n〉

Figure 3: First stage of the coNP-completeness construction

Eφ if and only if

• (z = 0n+2 and z′ = 100n), or

• (z = 100n and z′ = 11x′ for some x′ ∈ Σn and φ(x′)), or

• (z = 11x for some x ∈ Σn and z′ = 11x′ for some x′ ∈ Σn).

For all z, z′ ∈ Σn+2 such that 〈φ, z〉, 〈φ, z′〉 ∈ Vφ and z > z′, let (〈φ, z〉, 〈φ, z′〉) ∈ Eφ if and
only if (〈φ, z′〉, 〈φ, z〉) 6∈ Eφ.

It is clear that Tφ is a tournament. The following claim follows immediately from the
construction.

Claim 2.8 〈φ, 0n+2〉 is a king in tournament Tφ if and only if φ is tautology.

It is also immediate that in tournament Tφ,

• 〈φ, 100n〉 is a king if and only if φ(0n) (if ¬φ(0n), then 〈φ, 110n〉 is not reachable from
〈φ, 100n〉) and

• for all x ∈ Σn, 〈φ, 11x〉 is a king if and only if (¬φ(x)) ∧ (∀x′ ∈ Σn)[x′ < x⇒ φ(x′)].

From these observations and the polynomial-time invertibility of the pairing function,
we have the following.

Claim 2.9 {z | (∃φ ∈ F̂ )[z is a king in tournament Tφ]} is in coNP.

To combine the Tφ tournaments into a family of tournaments specified by f , we use the
same construction as that in the proof of Theorem 2.1 (as depicted in Figure 2), except that
we replace in the construction every occurrence of the string “∀∃-formula” by the string
“formula in F̂ .”

The same argument as in the proof of Theorem 2.1 can be used to show that f is a
tournament family specifier and that for every formula φ ∈ F̂ , 〈φ, 0nφ+2〉 ∈ Kingsf if and
only if φ is a tautology. This shows that Kingsf is coNP-hard.
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It remains to show that Kingsf is in coNP. The following hold:

• For all m, 0m ∈ Kingsf .

• For all z ∈ Other, z 6∈ Kingsf (since 0|z| is not reachable from z).

• For all z such that (∃φ ∈ F̂ )[z ∈ Vφ], z ∈ Kingsf if and only if z is a king in Tφ, since
there are no paths of the form v → w → v′ such that v, v′ ∈ Vφ and w 6∈ Vφ.

• For all z such that (∃φ ∈ F̂ )[z = 〈φ, 010nφ〉], z ∈ Kingsf if and only if φ is the
lexicographically smallest formula such that |〈φ, 0nφ+2〉| = m, i.e., if and only if for
all formulas ψ < φ, it holds that |〈ψ, 0nψ+2〉| > m.

From these observations and Claim 2.9 it follows immediately that Kingsf is in
coNP. ❑

Theorem 2.10 There exists a tournament family specifier f such that Kingsf is NP-
complete.

Proof We will define a tournament family specifier f such that Kingsf is NP-complete.
For this tournament family specifier f , we will show NP-hardness for Kingsf by a reduction
from SAT, the set of satisfiable Boolean formulas. As in the proof of Theorem 2.7, we
will in this proof without loss of generality assume that every formula contains at least one
variable. We will denote the number of variables of formula φ by nφ.

As in the proofs of Theorems 2.1 and Theorem 2.7, we will define our tournament
specifier f in two stages. First we will for every (propositional) formula φ with n > 0
variables define a tournament Tφ = (Vφ, Eφ) in such a way that 〈φ, 0n+2〉 is a king in Tφ if
and only if φ is satisfiable. We will then show how to combine these tournaments into one
family of tournaments (specified by f) such that Kingsf is NP-complete. In contrast to the
proof of Theorem 2.7, we cannot use the exact same construction as that of Theorem 2.1,
since in that construction, 〈φ, 010nφ〉 ∈ Kingsf if and only if φ is the lexicographically
smallest formula such that |〈φ, 0nφ+2〉| = m, i.e., if and only if for all formulas ψ < φ,
|〈ψ, 0nψ+2〉| > m. This is a coNP predicate, but we need the king problem to be in NP. We
will show in the sequel how to modify the construction from Theorem 2.1. In order to be
able to do so, we modify the pairing function from the proof of Theorem 2.1 such that it
obeys the extra requirement that the pairing function never outputs a string in 0∗1 + 10∗.
It is easy to see that such a pairing function exists, for example by defining 〈x1x2 · · ·xn, y〉
as 0x10x2 · · · 0xn11y for all x1, x2, . . . , xn ∈ Σ and y ∈ Σ∗.

Let φ ∈ F̂ be a formula with n variables. F̂ again denotes the set of all propositional
formulas having at least one variable. Figure 4 gives a pictorial representation of Tφ. The
nodes in Vφ are arranged in five layers, and we use the convention that missing edges between
nodes at different levels go “up,” and that missing edges between nodes at the same level
go “right.” Note that since n > 0, the layers are disjoint.

Formally, Tφ = (Vφ, Eφ) is defined as follows. Vφ =
{〈φ, 0n+2〉, 〈φ, 110n〉, 〈φ, 001n〉, 〈φ, 1n+2〉} ∪ {〈φ, 10x〉 | x ∈ Σn}. Note that all strings
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. . . . . .

iff φ(x)

〈φ, 0n+2〉

〈φ, 100n〉 〈φ, 10x〉 〈φ, 101n〉

iff φ(0n) iff φ(1n)

〈φ, 110n〉

〈φ, 1n+2〉

〈φ, 001n〉

Figure 4: First stage of the NP-completeness construction

in Vφ have the same length by the properties of the pairing function. For all z, z′ ∈ Σn+2

such that 〈φ, z〉, 〈φ, z′〉 ∈ Vφ and z < z′, let (〈φ, z〉, 〈φ, z′〉) ∈ Eφ if and only if

• (z = 0n+2 and z′ = 001n), or

• (z = 0n+2 and z′ = 10x for some x ∈ Σn), or

• (z = 001n and z′ = 10x for some x ∈ Σn), or

• (z = 001n and z′ = 1n+2), or

• (z = 10x for some x ∈ Σn and z′ = 10x′ for some x ∈ Σn), or

• (z = 10x for some x ∈ Σn and z′ = 110n and φ(x)).

For all z, z′ ∈ Σn+2 such that 〈φ, z〉, 〈φ, z′〉 ∈ Vφ and z > z′, let (〈φ, z〉, 〈φ, z′〉) ∈ Eφ if and
only if (〈φ, z′〉, 〈φ, z〉) 6∈ Eφ.

It is clear that Tφ is a tournament. It is immediate from the construction that the
following holds.

Claim 2.11 〈φ, 0n+2〉 is a king in tournament Tφ if and only if φ is satisfiable.

Note that Claim 2.11 also holds in the simpler tournament that results when we remove
nodes 〈φ, 001n〉 and 〈φ, 1n+2〉 from Tφ. However, in this simpler tournament, 〈φ, 101n〉 is a
king if and only if for all x ∈ Σn, φ(x) ⇔ x = 1n. This is a coNP predicate, but we need
the king problem to be in NP.
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In Tφ, the following hold.

• 〈φ, 001n〉, 〈φ, 110n〉, and 〈φ, 1n+2〉 are kings.

• For all x ∈ Σn, 〈φ, 10x〉 is not a king, since 〈φ, 1n+2〉 is not reachable from 〈φ, 10x〉 by
a path of length at most two.

From these observations, Claim 2.11, and the polynomial-time invertibility of the pairing
function, we have the following claim.

Claim 2.12 {z | (∃φ ∈ F̂ )[z is a king in tournament Tφ]} is in NP.

As explained earlier in this proof, we cannot use the construction from the proof of
Theorem 2.1 to combine the Tφ tournaments into a family of tournaments with the desired
properties. We will modify the construction from the proof of Theorem 2.1 as follows. For
all m ≥ 2,

• Remove two nodes 0m−11 and 10m−1 from the set Other. (Recall that we modified
the pairing function in such a way that these two strings are not in the range of the
pairing function.)

• For all z ∈ Σm, let f(0m−11, z) = 0m−11 if and only if z ∈ {0m−11, 10m−1} ∪Other ∪
{〈φ, 010nφ〉 | φ ∈ F̂}.
For all z ∈ Σm, if f(0m−11, z) 6= 0m−11, then let f(0m−11, z) = z.

• For all z ∈ Σm, let f(10m−1, z) = 10m−1 if and only if z 6= 0m−11.

• The rest of the construction remains the same, except that, as in the proof of
Theorem 2.7, we replace every occurrence of the string “∀∃-formula” by the string
“formula in F̂ .”

Arguments similar to those in the proof of Theorem 2.1 clearly show that f is a
tournament family specifier and that for every formula φ ∈ F̂ , 〈φ, 0nφ+2〉 ∈ Kingsf if
and only if φ is satisfiable. This shows that Kingsf is NP-hard.

It remains to show that Kingsf is in NP. The following hold.

• For all m, 0m ∈ Kingsf .

• For all m ≥ 2, 0m−11 ∈ Kingsf , and 10m−1 ∈ Kingsf .

• For all z such that |z| ≥ 2 and z ∈ Other, z 6∈ Kingsf (since 0|z| is not reachable from
z).

• For all z such that |z| ≥ 2 and (∃φ ∈ F̂ )[z ∈ Vφ], z ∈ Kingsf if and only if z is a
king in Tφ (since there are no paths of the form v → w → v′ such that v, v′ ∈ Vφ and
w 6∈ Vφ).

• For all z such that |z| ≥ 2 and (∃φ ∈ F̂ )[z = 〈φ, 010nφ〉], it holds that z 6∈ Kingsf
(since 10m−1 is not reachable from z by a path of length at most two).

From these observations and Claim 2.12 it follows immediately that Kingsf is in NP. ❑
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3 The Complexity of k-Kingship in Tournaments and Graphs

The previous section studied the complexity of kingship (i.e., 2-kingship) in tournaments
and graphs. In this section we study, in tournaments and graphs, the complexity of k-
kingship for k = 1 and for k > 2. The highlight of this section is Theorem 3.4, which shows
that for k > 2, k-kingship remains Πp

2-complete. To show Πp
2-completeness, our proof draws

on the 2-king subtournament part of the construction from Theorem 2.1’s proof, plus a new
combination phase that involves adding antennas and performing appropriate interweaving.

We will refer to the following sets. For each positive integer k and each tournament
family specifier f , define

k-Kingsf = {x | x is a k-king in the length |x| tournament induced by f}.

For each positive integer k define the following two sets.

k-KingsGW = {〈c, x〉 | c has 2|x| inputs and x is a k-king in the graph specified by c}.
k-Tournament-KingsGW = {〈c, x〉 | c has 2|x| inputs and x is a k-king in the
graph specified by c and the graph specified by c is a tournament}.

3.1 1-Kingship in Tournaments and Graphs

Let us first quickly discuss the quite simple case of 1-kings. Note that in a tournament,
a node is a 1-king exactly if it points to each other node. This is easy to test in coNP. The
“points to each other node” observation makes it clear that a given tournament has a most
one 1-king. Thus, if we study 1-kingship in the tournament family specifier model, we have
the following result.

Theorem 3.1 1. For each tournament family specifier f , 1-Kingsf ∈ coNP.

2. Unless P = NP, for no tournament family specifier f is 1-Kingsf coNP-complete.

On the other hand, the natural analog of KingsGW for 1-kingship (both in tournaments
and in general graphs) easily yields coNP-completeness. The upper bound of coNP is
immediate, and we can easily build a circuit with a header node and “potential certificate
nodes” and have the header node point to the certificates, and so can test tautology. (As
always, we will need some dummy nodes, always pointed to by the header, to ensure that
the whole graph’s size is a power of two, but this is a minor detail. The cross-arrows between
potential certificate nodes can be set arbitrarily, as can the cross-arrows between those and
the padding nodes.) Thus, we have first part of the following result (and the second part is
similarly easy to see).

Theorem 3.2 1-KingsGW and 1-Tournament-KingsGW are coNP-complete.

19



3.2 k-Kingship in Tournaments and Graphs, k > 2

In this section, we study the complexity of k-kingship, k > 2, in tournaments and graphs.
For clarity, we first quickly directly dispatch the case of individually specified

tournaments and graphs (though we could argue it indirectly via family-specified
tournaments). Then we will turn to the far more interesting case of tournaments specified
via a tournament family specifier.

For both individually specified graphs and tournaments, k-kingship, k ≥ 2, is Πp
2-

complete. This follows from an easy “antenna adding” modification to the construction
used in the first stage of the proof of Theorem 2.1.

Theorem 3.3 For each k ≥ 2, k-KingsGW and k-Tournament-KingsGW are Πp
2-complete.

Proof In both cases, the Πp
2 upper bound is not hard to see. The Πp

2 lower bound for
k-KingsGW essentially follows from obtaining a Πp

2 lower bound for k-Tournament-KingsGW ,
so we address just that issue. Consider some fixed k ≥ 2. As noted in the final two parts of
the statement of Theorem 2.3, the first stage construction from the proof of Theorem 2.1
in effect shows the k = 2 case. If k > 2, let us describe the succinctly specified tournament
that handles that case. The tournament will add a directed chain of k−2 nodes, the last of
which will point to the node-being-checked-for-kingship of the k = 2 construction. Except
for the one arrow just mentioned, which connects the end of the chain to the original part,
all nodes from the original part of the construction point to all the nodes of this chain.
And aside from the forward-pointing arrows in the chain itself, all other arrows between
nodes in the chain point from the node nearer the original part to the node nearer the
chain’s first node. Note that the first node of the chain clearly will be a k-king exactly if
the node-being-checked-for-kingship of the k = 2 construction is a 2-king. (Though we said
above we would leave tacit issues of padding nodes, let us mention them explicitly here as
an example. The number of nodes in the construction just given in general might not be
a power of two. In that case, we pad up to the next power of two with dummy nodes,
all of which are pointed to by all the nodes in our construction, and that point amongst
themselves in any fixed, easy-to-compute way.) ❑

We now come to the main result of this section, the complexity of k-Kingsf , k > 2. Recall
the two-stage approach we employed in Section 2: In the first stage of our construction, we
showed how a 2-king problem could capture a single Πp

2-type formula. In the second stage,
we showed how to very uniformly combine an exponential number of such subtournaments
into a giant tournament in which each potential 2-king in each subtournament has the
property that it is a 2-king in its subtournament if and only if it is a 2-king in the new
combined tournament.

It would be natural to hope that the same attack would work for 3-kings, 4-kings,
and so on. However, there are serious obstacles to that approach. By a somewhat tricky
argument, using in part the nice fact that in a tournament each node that is on a long
cycle in fact is on some 3-cycle, one can see that if one substitutes (for example) “3” for
“2” in the above plan of attack, and one makes a few other assumptions about uniformity
of interrelations between subtournaments (an assumption about cyclic connections that is
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satisfied by our 2-kings construction, and most critically, that given any two nodes a and
b from a subtournament and any node c not in that subtournament, either both a and
b point to c or both a and b are pointed to by c; this is a strong assumption but note
that our 2-kings combined tournament construction in fact satisfies it), then every such
construction in fact makes each subtournament’s potential-3-king always be a 3-king in its
subtournament within the combined tournament (via a cross-pollution path). So, this at
least hints that we may not be able to just clone the 2-stage construction approach, and
first show that 3-kings can handle one Πp

2-type problem, and then show how to combine an
exponential number of 3-king examples uniformly.

Rather, we do the following. For our subtournaments, we use not 3-king problems but
2-king problems. After all, we already know that even 2-king problems can encode Πp

2-type
formulas! And then we in our combination stage combine things so as to ensure that each
former potential-2-king has a related node that will be a 3-king in the overall tournament
exactly if the potential-2-king is a 2-king in the original subtournament. Very informally
put, instead of using a 3-king specific first stage, we steal that from the 2-king construction.
And our second stage sticks appropriate length antennas onto each subtournament and
appropriately weaves them all together. (Regarding the obstacle mentioned above, one
might ask why the obstacle does not apply if one views each 2-king subtournament and its
antenna as a 3-king subtournament. The answer is that our weaving treats the body of the
subtournament and the subtournament’s antenna differently in how they connect to other
nodes, and that violates the a/b/c uniformity mentioned above. So, our construction thus
bypasses that obstacle.)

We now state and prove this result, which generalizes Theorem 2.1, but which also draws
in part on the construction used to prove Theorem 2.1.

Theorem 3.4 For each k ≥ 2, there exists a tournament family specifier f such that
k-Kingsf is Πp

2-complete.

Proof Consider some fixed k ≥ 2. It is easy to see that for every tournament family
specifier f , k-Kingsf is in Πp

2. We will construct a tournament family specifier f such that
k-Kingsf is Πp

2-hard. Similarly to the proof of Theorem 2.1, we will show Πp
2-hardness for

k-Kingsf by a reduction from a variant of ∀∃SAT. All formulas in the variant of ∀∃SAT
will have the same number of universally quantified variables as existentially quantified
variables and their number of universally quantified variables must be greater than k −
2. We will call formulas of the right form ∀∃k-formulas, i.e., we say that φ is a ∀∃k-
formula if there exists an integer n > k − 2 and a propositional formula φ′ such that
φ = ∀x1 · · · ∀xn∃y1 · · · ∃ynφ′(x1, . . . , xn, y1, . . . , yn). ∀∃SATk will denote the set of true ∀∃k-
formulas. For standard reasons, ∀∃SATk is Πp

2-complete.
We now will define a tournament family specifier f (dependent on k) and then will argue

that ∀∃SATk ≤pm k-Kingsf .
Let 〈·, ·〉 be the pairing function from the proof of Theorem 2.1. For φ a ∀∃k-formula,

let Tφ = (Vφ, Eφ) be the tournament of that name from the proof of Theorem 2.1. Recall
(Claim 2.2) that for every ∀∃2-formula φ, 〈φ, 0nφ+2〉 is a 2-king in tournament Tφ if and only
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. . .

. . .

all other strings in
lexicographic order

T1 T2

. . .

. . .

. . .

0m 〈φ1, 010n1〉 〈φ2, 010n2〉

〈φ1, 0n1+2〉 〈φ2, 0n2+2〉

〈φ1, 0n1+11〉 〈φ2, 0n2+11〉

〈φ1, 0n1+4−k1k−2〉 〈φ2, 0n2+4−k1k−2〉

Figure 5: Second stage of the k-Kingsf Πp
2-hardness construction

if φ is true. (As in the proof of Theorem 2.1, nφ denotes the number of universally quantified
variables in φ.) So, it certainly also holds that for each ∀∃k-formula φ, 〈φ, 0nφ+2〉 is a 2-king
in tournament Tφ if and only if φ is true (since each ∀∃k-formula is a ∀∃2-formula).

We will combine the Tφ tournaments into a family of tournaments specified by f in such
a way that for every ∀∃k-formula φ, 〈φ, 0nφ+2〉 is a 2-king in Tφ if only if 〈φ, 0nφ+4−k1k−2〉 ∈
k-Kingsf .

Figure 5 gives a pictorial representation of the tournament induced by f at length m.
In the figure, φ1, φ2, . . . , φk are all ∀∃k-formulas such that Vφi ⊆ Σm. The φi’s are ordered
lexicographically, in ascending order. For readability, we write Ti for Tφi and ni for nφi .
Note that for all formulas φ, 0m 6∈ Vφ (by properties of the pairing function), 〈φ, 010nφ〉 6∈ Vφ,
and that for all i, 1 ≤ i ≤ k− 2, 〈φ, 0n+2−i1i〉 6∈ Vφ. We use the convention that all missing
arrows between nodes at the same level of Figure 5 go right (we assume that all nodes in
Ti are at the same level, and that all nodes in “all other strings” are at the same level) and
that all other missing arrows go up. This completely specifies the tournament on strings
of length m. Note that for k = 2, this is the exact same tournament as that depicted in
Figure 2.
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Formally, we define f as follows. Let

Antenna = {〈φ, 0nφ+2−i1i〉 | φ is a ∀∃k-formula and 1 ≤ i ≤ k − 2}

and let

Other = Σ∗−
(
0∗ ∪ {〈φ, 010nφ〉 | φ is a ∀∃k-formula} ∪Antenna ∪

⋃
{Vφ | φ is a ∀∃k-formula}

)
.

The sets Antenna and Other are clearly in P, since the pairing function is polynomial-time
invertible. For all m and all z, z′ ∈ Σm, let f(z, z′) = z if and only if

• z = z′, or

• z = 0m and z′ = 〈φ, 010nφ〉 for some ∀∃k-formula φ, or

• z = 0m and z′ ∈ Antenna ∪Other, or

• z = 〈φ, 010nφ〉 for some ∀∃k-formula φ and z′ = 〈ψ, 010nψ〉 for some ∀∃k-formula ψ
and φ < ψ, or

• z = 〈φ, 010nφ〉 for some ∀∃k-formula φ and z′ ∈ Vφ, or

• z = 〈φ, 010nφ〉 for some ∀∃k-formula φ and z′ ∈ Antenna ∪Other, or

• z ∈ Vφ for some ∀∃k-formula φ and (z′ = 0m or z′ ∈ Other), or

• z ∈ Vφ for some ∀∃k-formula φ and z′ = 〈ψ, 010nψ〉 for some ∀∃k-formula ψ and φ 6= ψ,
or

• z ∈ Vφ for some ∀∃k-formula φ and z′ ∈ Vφ and (z, z′) ∈ Eφ, or

• z ∈ Vφ for some ∀∃k-formula φ and z′ ∈ Vψ for some ∀∃k-formula ψ and φ < ψ, or

• z ∈ Vφ − {〈φ, 0nφ+2〉} for some ∀∃k-formula φ and z′ ∈ Antenna, or

• z = 〈φ, 0nφ+2〉 for some ∀∃k-formula φ and z′ ∈ Antenna− {〈φ, 0nφ+11〉}, or

• z = 〈φ, 0nφ+2−i1i〉 for some ∀∃k-formula φ and some i such that 1 ≤ i ≤ k − 2 and
z′ = 〈φ, 0nφ+3−i1i−1〉, or

• z = 〈φ, 0nφ+2−i1i〉 for some ∀∃k-formula φ and some i such that 1 ≤ i ≤ k − 2 and
z′ = 〈ψ, 0nψ+2−i1i〉 for some ∀∃k-formula ψ and φ < ψ, or

• z = 〈φ, 0nφ+2−i1i〉 for some ∀∃k-formula φ and some i such that 1 ≤ i ≤ k − 2 and
z′ = 〈ψ, 0nψ+2−j1j〉 for some ∀∃k-formula ψ and some j such that 1 ≤ j ≤ k − 2 and
i < j, or

• z = 〈φ, 0nφ+2−i1i〉 for some ∀∃k-formula φ and some i such that 1 ≤ i ≤ k − 2 and
z′ ∈ Other, or

• z, z′ ∈ Other and z < z′.
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For all z, z′ ∈ Σm, if f(z, z′) 6= z, then let f(z, z′) = z′. The definition of f on strings of
different lengths is irrelevant (as long as f remains a tournament family specifier). To be
complete, we define f(z, z′) = z if |z| < |z′| and f(z, z′) = z′ if |z| > |z′|. This completes
the definition of f .

It is immediate that for all x, y ∈ Σ∗, f(x, y) = f(y, x) and that f(x, y) = x or f(x, y) =
y. Since the pairing function is polynomial-time invertible, it is easy to see that f is
computable in polynomial time. Thus f is indeed a tournament family specifier.

We now define a ≤pm-reduction g via which ∀∃SATk ≤pm k-Kingsf . Note that Other 6= ∅
and no element of Other belongs to k-Kingsf . Let out be any fixed element of Other. Let φ
be any element of Σ∗. Our reduction g on input φ will output out if φ is not a ∀∃k-formula.
Otherwise, letting n denote nφ, our reduction g will output 〈φ, 0n+4−k1k−2〉. In light of
the fact, mentioned earlier, that 〈φ, 0nφ+2〉 is a 2-king in tournament Tφ if and only if φ is
true, all that remains to show is that 〈φ, 0n+4−k1k−2〉 ∈ k-Kingsf if and only if 〈φ, 0n+2〉 is
a 2-king in Tφ. Let m = |〈φ, 0n+2〉|.

First suppose that 〈φ, 0n+2〉 is a 2-king in Tφ. Then 〈φ, 0n+2〉 reaches all strings in
Vφ in at most two steps. Also, as in the proof of Theorem 2.1, it is easy to see from the
definition of f that 〈φ, 0n+2〉 reaches all strings in Σm−Vφ in one or two steps. Since there
is a path of length k − 2 from 〈φ, 0n+4−k1k−2〉 to 〈φ, 0n+2〉, it follows that every string of
length m can be reached from 〈φ, 0n+4−k1k−2〉 by a path of length at most k. It follows
that 〈φ, 0n+4−k1k−2〉 ∈ k-Kingsf .

For the converse, suppose that 〈φ, 0n+4−k1k−2〉 is a k-king in the tournament induced by
f on strings of length m. Then every string of length m can be reached from 〈φ, 0n+4−k1k−2〉
in at most k steps. Fix a v ∈ Vφ. There exists a v′ ∈ Σm such that v can be reached in at
most two steps from v′ and v′ can be reached in at most k − 2 steps from 〈φ, 0n+4−k1k−2〉.
Consider the possibilities for v′. From the definition of f , there are only four kinds of nodes
reachable from 〈φ, 0n+4−k1k−2〉 in at most k − 2 steps.

• v′ ∈ Other. In this case, v is not reachable from v′.

• v′ = 〈φ, 0n+2−i1i〉 for some i such that 0 ≤ i ≤ k − 2. In this case, it is clear that
since v is reachable from v′ in at most two steps, v is reachable from 〈φ, 0n+2〉 in at
most two steps.

• v′ = 〈ψ, 0nψ+2−i1i〉 for some ∀∃k-formula ψ > φ and for some i such that 1 ≤ i ≤ k−2.
In this case, v is not reachable from v′ by a path of length at most 2.

• v′ = 〈ψ, 0nψ+2−i1i〉 for some ∀∃k-formula ψ < φ and for some i such that 2 ≤ i ≤ k−2.
In this case, v is not reachable from v′ by a path of length at most 2.

From this case distinction, it follows that v is reachable by a path of length at most two
from 〈φ, 0n+2〉. Since there do not exist paths 〈φ, 0n+2〉 → w → v such that w 6∈ Vφ in the
tournament induced by f on length m, it follows v can be reached from 〈φ, 0n+2〉 by a path
of length at most two such that all nodes on the path are in Vφ. It follows that 〈φ, 0n+2〉 is
a 2-king in the tournament induced by f on Vφ, and thus 〈φ, 0n+2〉 is a 2-king in Tφ. ❑
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It is not hard to see that, as a corollary to the proof’s method, one can even establish
the following slightly stronger claim: There exists a tournament family specifier f such that
for all k ≥ 2, k-Kingsf is Πp

2-complete. (Briefly put, one does this by at longer and longer
lengths using longer and longer antennas and, for lengths at which the antennas are long
enough to handle a particular k, mapping to the appropriate node within the appropriate
antenna, and by, for the finite number of lengths that don’t have long enough antennas to
handle that k, using table lookup.)

4 The Complexity of k-Kingship in Multipartite
Tournaments

In this section, we discuss the complexity of k-kingship in j-partite tournaments. (For
each j > 1, a j-partite tournament is a completely oriented j-partite simple digraph. That
is, between each pair of nodes in the same one of the j parts, there are no edges. And if v
and w are in different ones of the j parts, then exactly one of the edges (v, w) and (w, v)
belongs to the edge set.)

The first issue to address is one of model. Recall that Section 2 focused on tournament
family specifiers. The reason it did so is because the motivation for that study was the theory
of P-selective sets, where the key tool is precisely such families of tournament generators.
However, as we study multipartite tournaments (which are where 3-kingship, 4-kingship and
so on have mostly been discussed in the literature), that connection no longer exists. And
so we will focus not on family specifiers but rather will focus on taking graphs, specified
succinctly as circuits, as our input—or, to be more specific, taking as our input such a graph
plus the node whose k-kingship we wish to investigate.

The multipartite setting raises another issue regarding model. The issue is: Should the
burden of ensuring that the circuit indeed is computing a legal multipartite tournament
be wedged into the complexity of the set we define, or should our model of specifying
multipartite tournaments via circuits be such as to inherently ensure that we always define
legal multipartite tournaments? Both approaches arguably have merits. However, since
we wish to focus our attention on the complexity of kingship decisions, we make the latter
choice: Our model of specifying multipartite tournaments via circuits will be such as to
inherently ensure that we always define legal multipartite tournaments. This is also in
line with the choice—made in the sets already defined in this paper regarding tournaments
(except the sets Tournament-KingsGW and k-Tournament-KingsGW , which take the former
approach)—to inherently ensure that our graphs are tournaments. At the end of this section,
we make some comments on the other approach.

Finally, in the previous sections we were rather rigorous in our constructions. We
generally included not just pictures, but in our text specified exactly what nodes would be
encoded as what strings, and exactly how padding/garbage nodes (such as those needed to
make the total number of nodes come to a power of two) would be handled. In this section,
in cases where it will not lead to confusion, for conciseness and clarity as to our key ideas,
we sometimes are somewhat more informal in the way we state our constructions, and we
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sometimes leave out minor details such as padding nodes in cases when it is not hard to see
how to easily handle them.

So we now turn to our results on k-kingship in multipartite (j-partite) tournaments. As
mentioned above, we formalize our model so as to have the model itself ensure that every
circuit we consider indeed defines a j-partite tournament.

In particular, we will say that a circuit is a j-tournament-circuit if for some n it has
exactly j(n + 1) inputs, and of course one output wire. We interpret this as specifying a
j-partite tournament (a self-loop-free, complete, oriented j-partite graph) as follows. Our
j-partite graph is on the nodes {〈i, s〉 | 1 ≤ i ≤ j ∧ s ∈ Σn}. The j parts of the j-partite
graph are the sets {〈1, s〉 | s ∈ Σn}, {〈2, s〉 | s ∈ Σn}, {〈3, s〉 | s ∈ Σn}, etc. And given
integers 1 ≤ i < i′ ≤ j and strings s, s′ ∈ Σn, there is a directed edge from 〈i, s〉 to 〈i′, s′〉
if the circuit on input 0(i−1)(n+1)1s0(i′−i−1)(n+1)1s′0(j−i′)(n+1) evaluates to 1, and otherwise
there is a directed edge from 〈i′, s′〉 to 〈i, s〉. Let us explain this. We view the input as
having j n-bit fields, and just before each of those fields, a 1-bit control input. Basically,
the ith field is about the ith part of the j-partite graph. When exactly two of the fields are
activated via their control wires, and all the other inputs are 0, the circuit tells us about the
edge between appropriate nodes (named by the parts and the input bits), which per force
are from different parts. Note that this model ensures that any circuit (of the right input
and output size/structure) specifies a j-tournament. Note also that, analogously to having
always a power of two number of nodes in the Galperin–Wigderson model, in this variant
of that for multipartite graphs, we always have that each part of the multipartite graph is
of the same size as the others, and each of those parts is in cardinality a power of two.

We can now define the sets that will let us study the complexity of k-kingship in j-partite
tournaments.

For each integer k ≥ 1 and each integer j ≥ 2, define the following set.

(k, j)-Tournament-Kings = {〈c, x〉 | c is a j-tournament-circuit and x is a k-king
in the j-partite tournament specified by c}.

We now completely classify the complexity of k-kingship in j-partite tournaments.

Theorem 4.1 For each k ≥ 1 and j ≥ 2, (k, j)-Tournament-Kings is in P when k = 1 and
is Πp

2-complete otherwise.

We prove this via the following collection of lemmas. It is immediately clear that these
lemmas yield the result. (Regarding Πp

2-hardness, this holds via double induction with (2,2)
as the base case.)

Lemma 4.2 For each j ≥ 2, (1, j)-Tournament-Kings is in P.

Lemma 4.3 (2, 2)-Tournament-Kings is Πp
2-hard.

Lemma 4.4 For each k ≥ 1 and j ≥ 2, (k, j)-Tournament-Kings ≤pm (k, j +
1)-Tournament-Kings.

Lemma 4.5 For each k ≥ 1, (k, 2)-Tournament-Kings ≤pm (k + 1, 2)-Tournament-Kings.
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iff R(z, x0, y0)

iff R(z, x0, y2p(|z|))
x2p(|z|)

y2p(|z|)

iff R(z, x2p(|z|) , y0)

iff R(z, x2p(|z|) , y2p(|z|))

Figure 6: Figure for Lemma 4.3

Lemma 4.6 For each k ≥ 2 and j ≥ 2, (k, j)-Tournament-Kings ∈ Πp
2.

We now very briefly present the proofs of each of these lemmas. As noted earlier, easily
handled issues of exact encodings and padding strings will not be mentioned.
Proof of Lemma 4.2 Spiritually speaking, this should really be coNP-complete. In
particular, the construction described in the text before Theorem 3.2, with all the cross-
edges removed from between and within potential certificate nodes and padding nodes, is
a bipartite tournament.

However, the fact that our model is such that each partition is of equal size causes
this to be not coNP-complete but rather to be in P. This is simply because the only case
when a 2-partite tournament (specified by a 2-tournament-circuit, and thus balanced) has
a 1-king is when each part has one node, in which case the node that points to the other
is a 1-king. If there is more than one node in a given part, we can have no 1-king since no
node can reach any other node in its part via paths of length 1 (exactly because this is a
bipartite tournament). The same holds not just in 2-partite tournaments but for j-partite
tournaments, j ≥ 2.

This is a fluke effect of k = 1. For k > 1, given a natural construction for an unbalanced
multipartite tournament, it is not hard to see that one can complete it with dummy nodes
without ruining the construction. But as we have just noted, for k = 1 this is not so. ❑

Proof of Lemma 4.3 The most important facets of the construction from the first stage
of the proof of Theorem 2.1 can be embedded into a 2-partite tournament. In particular, if
we are trying (in light of some input z for some arbitrary, fixed Πp

2 set) to test that for all
appropriate-length x there exists an appropriate-length y such that some P-time predicate
R(z, x, y) holds, we can do so via testing whether the node marked a is a 2-king in the
2-partite tournament shown in Figure 6. Here we have not shown padding nodes, but it is
clear how to handle those. Also, we have assumed, as is legal, that the x and y strings are
of the same length as each other. ❑

Proof of Lemma 4.4 Suppose we have a (k, j) problem, with a designated node that
we are interested in. We can easily tweak the j-tournament circuit to make it a j + 1-
tournament circuit whose first j parts correspond exactly to those of the original circuit,
with the same edges, and such that the j + 1st part has the same number of nodes as each
of the other parts, and all nodes between the j+1st part and any of the other parts always
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point toward the j+1st part. It is clear that the designated node is a k-king in the original
j-partite tournament exactly if it is a k-king in our new j + 1-partite tournament. ❑

Proof of Lemma 4.5 Let k be a fixed integer greater than or equal to 1. Suppose we
have a (k, 2) problem, with a designated node, w, whose k-kingship we are interested in.
We can easily tweak the 2-tournament-circuit to make it a new 2-tournament-circuit whose
parts exactly correspond to the previous circuit’s nodes, except we add one new node, z,
in the part of the tournament to which w does not belong. z points to w, but all other
nodes in w’s part point to z. It is clear that z is a k + 1-king in the original 2-tournament
exactly if w is a k-king in the original 2-tournament. (As usual, we have not mentioned
adding padding nodes to ensure that both parts have cardinality equal to the same power
of two, but in this case that is easy. The padding nodes will be pointed to by all nodes from
the other part, except between new padding nodes the edge can be put in in any way, e.g.,
always from part 1 to part 2.) ❑

Proof of Lemma 4.6 This is immediately clear: For each node v, we guess a path of
length at most k from w to v. ❑

The above completes our proof of Theorem 4.1.
All that remains is to make, as we promised earlier, some comments on the model that

we chose not to use, namely, allowing our input to freely be any graph (specified succinctly
via a circuit) and a node, and then asking the complexity of the question (for each fixed
k and j) “Is it the case that the node is a k-king in the specified graph and that the
graph is a j-partite tournament?” Note that this puts into the set the burden not just of
testing kingship but also of testing whether the graph is a j-partite tournament. (Here,
we are not even trying to ensure that the parts are of the same size, as that seems to
make things even harder—potentially requiring sequential exponential time.) However, we
argue that, in this model, for each fixed j > 1, checking whether a succinctly specified
Galperin-Wigderson-model graph is a j-partite tournament is relatively easy, namely, it is
in coNP. To see this, we will need a characterization-by-excluded-subgraphs for j-partite
tournaments. Throughout this paper, all graphs are assumed to be directed, but in the rest
of this section we will need to speak of both directed and undirected graphs, so we will for
the rest of this section be very explicit as to which we mean. Very relevant here are the
following theorems. (Kj denotes a simple, undirected j-clique.)

Theorem 4.7 1. (see [Wes96, Exercise 1.3.37a] and [BvdHL04, p. 269]) A simple,
undirected graph is a complete multipartite graph (i.e., there is a j > 1 such that
it is a complete j-partite graph) if and only if G is (K2 ∪ K1)-free (i.e., it has no
induced 3-node subgraph having exactly one edge).

2. (see [BvdHL04, p. 269]) A simple, undirected graph is a complete 2-partite graph if
and only if G is (K3,K2 ∪ K1)-free (i.e., it has no induced 3-node subgraph having
exactly one or three edges).

It is easy to see from the first part of the above result that the following characterization
holds (in fact, the second part of the above result is the j = 2 case of this).

Theorem 4.8 Let j > 1 be fixed. A simple, undirected graph is a complete j-partite graph
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if and only if G is (Kj+1,K2 ∪K1)-free.3

Now, those results are for simple undirected graphs, but those results easily yield analogous
results for simple directed graphs, and in particular we have the following result. Here, Q2

denotes the 2-node simple directed graph in which each node points to the other node. And
given any simple, directed graph G = (V,E), as usual the underlying graph of G, denoted
here Under(G), is the simple, undirected graph whose node set is V and whose edge set is
{ {a, b} | (a, b) ∈ E}.

Theorem 4.9 Let j > 1 be fixed. A simple, directed graph G is a j-partite tournament if
and only if G is Q2-free and Under(G) is (Kj+1,K2 ∪K1)-free.

Theorem 4.9 makes it immediately clear that, for each fixed j > 1, testing whether a
succinctly specified (in the Galperin–Wigderson model) graph is a j-partite tournament is
a coNP test, since the theorem exactly makes it so. Stated more explicitly, we have the
following.

Theorem 4.10 Let j > 1. The set {c | the graph specified (in the Galperin–Wigderson
model) by circuit c is a j-partite tournament} belongs to coNP.

And in light of Theorem 4.9 and in particular the just-stated result, it is not hard to see that
(though one has to as always be careful regarding padding nodes—a j-partite tournament
in our family model has j times a power of two nodes, and each part is of equal size, but
in the Galperin–Wigderson model and the result we are about to mention, parts can differ
in size, and the total graph is of size a power of two; however, the only real worry about
checking complete j-partite-ness was whether the upper bound would prove a problem, and
the coNP-result above removes that as a worry), for each fixed j > 1, our general techniques
easily yield that the set

{〈c, x〉 | c has 2|x| inputs and x is a king in the graph specified by c and the
graph specified by c is a j-partite tournament},

(which is the natural set to study in the model where one does require the circuit to itself
enforce “j-partite tournament”-ness) is Πp

2-complete.

3For completeness, let us quickly prove this. Regarding the “only if” direction: If G is a simple,
undirected, complete j-partite graph, then by part 1 of Theorem 4.7 it must be (K2∪K1)-free, and clearly it
is Kj+1-free, since if it has Kj+1 as an induced subgraph that immediately blocks j-partite-ness. Regarding
the “if” direction of the theorem: Let G be a simple, undirected graph that is (Kj+1, K2 ∪ K1)-free. By
part 1 of Theorem 4.7, the (K2 ∪ K1)-free-ness implies that for some j′ > 1 it holds that G is complete
j′-partite. But if the smallest such j′ is j + 1 or greater, then each of the j′ parts must be nonempty (since
otherwise j′ would not be the smallest such value). However, those parts being nonempty means the graph
would have Kj′ as an induced subgraph (namely, the one induced from choosing one node from each of the
j′ parts—since j′ is a value for which it is a complete j′-partite graph), which contradicts the assumption
that it is Kj+1-free. Thus, G is certainly a complete j-partite subgraph.
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5 Conclusions and Open Problems

We have seen that for some succinctly specified families of tournaments, the king
problem is Πp

2-complete. We also showed that for succinctly specified general graphs the
king problem is Πp

2-complete, and we explored other complexities of king problems, how
associativity affects such complexity, and what holds for k-kings in tournaments and j-
partite tournaments.

For a set A, the ≡pm-degree (polynomial-time many-one equivalence degree) of A is
{L | L ≤pm A ∧ A ≤pm L}. One question that might be natural for additional study is to
classify which ≡pm-degrees pinpoint the complexity of the king problem of some tournament
family specifier. For example, we already showed that the ≡pm-degrees of the complete
problems for Πp

2, coNP, and NP contain the king problems of some tournament family
specifiers. And note that the extremely computationally simple tournament family specifier
f(x, y) = max(x, y) is such that Kingsf belongs to the ≡pm-degree made up of the sets
P − {∅,Σ∗}. Also, it is very easy to see that the ≡pm-degrees of ∅ and Σ∗ do not contain
the king problem of any tournament family specifier. Can one show—unconditionally, as
this easily holds if one assumes P = NP—that every ≡pm-degree contained in Πp

2, other than
those two, contains some tournament family specifier’s king set?

Also, Theorem 2.1 indeed shows that the Πp
2 upper bound of [HOZZ] is optimal. But

regarding the Πp
2/1-nonimmunity upper bound of Theorem 1.2, the result of Theorem 2.1

merely shows that one particular attack on that claim’s optimality is unlikely to succeed.
Can one provide more direct evidence of the optimality of Theorem 1.2? For example, can
one show that if each infinite P-selective set has an infinite Σp

2/1 (i.e., NPcoNP/1) subset,
then some unexpected complexity class equality or hierarchy collapse follows?

Finally, our study of multipartite tournaments was in the model of individually specified
graphs. What results hold for an analog of family specifiers in that setting?
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