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SUMMARY

The static single assignment form (SSA form) is becoming popular as an

intermediate representation in compilers. In the SSA form, the definition of

each variable textually appears only once in the program by using a hypothet-

ical function called a φ-function. Because these functions are nonexecutable,

it is necessary to delete the φ-function and return the SSA form to the normal

form before code generation. This conversion is called SSA back-translation.

Two major algorithms exist for SSA back-translation. One is the method

by Briggs et al., the other is the method by Sreedhar et al. To date, there

has been almost no research that compares these SSA back-translation algo-

rithms.

In this paper, we clarify the merits and demerits of these algorithms. We also

propose an improvement of Briggs’ algorithm. We then compare the three

methods through experiments using the SPEC benchmarks.

Our experiments have shown that Sreedhar’s method is the most favorable.

The efficiency of its object code is better than that from Briggs’s method, by

a few percent in general, up to a maximum of 28%. The experiments have

also clarified several characteristic features of these methods.

KEY WORDS: Static single assignment form; back-translation; machine-

independent program transformation; compiler;
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1 Introduction

Optimizations in compilers are becoming crucial for efficient execution of

large software. The static single assignment form (SSA form) [7] is becoming

popular as an intermediate representation of code in compilers because of its

simplicity for dataflow analysis and the efficiency of optimization algorithms

[8, 9, 11, 15, 18].

In the SSA form, the definition of each variable textually appears only

once in the program by using a hypothetical function called a φ (phi)-

function. Because the φ-functions appearing in the SSA form are nonex-

ecutable, it is necessary to delete the φ-function and return the SSA form

to the normal form before code generation. This translation is called SSA

back-translation.

The naive SSA back-translation algorithm by Cytron et al. [7] has sev-

eral critical problems, and it behaves incorrectly when it is applied to SSA

forms that have been transformed by some optimizations [3]. To remedy this,

Briggs et al. proposed a new back-translation algorithm [2, 3]. Later, Sreed-

har et al. proposed another back-translation algorithm based on a completely

different approach [20]. (Hereafter those methods are simply called Briggs’

method and Sreedhar’s method.) The former is adopted in many compilers

that use the SSA form, such as Marmot [8], gcc [9], Machine SUIF [15] and

Scale [18]. However, the latter is not widely adopted, except in [13], probably

because it was proposed a few years after Briggs’ method.

Briggs’s method replaces φ-functions by copy statements. This augments

the number of copy statements, but they claim that those copy statements

can be deleted by performing a coalescing pass. Sreedhar’s method accom-

plishes a kind of coalescing, which we call “uniting”, to the target (left-hand

side) and parameters of φ-functions.
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In Sreedhar’s method, uniting may augment the length of live ranges of

variables associated with φ-functions. This may increase the register pressure

and thus may cause spilling of registers if the number of allocatable registers

is relatively small. This may harm execution efficiency.

On the other hand, in Briggs’ method, many copy statements are inserted,

which may increase the number of executed instructions. However, it was

thought that an undesirable situation as in Sreedhar’s method would not

occur if coalescing was properly performed in a later phase.

Thus, the two SSA back-translation algorithms have different character-

istics, and the choice of algorithm may affect the runtime efficiency of the

program after register allocation and code generation. However, there have

been no careful comparisons of these algorithms to date. Sreedhar et al.

gave some theoretical discussion of whether the result of their translation

has minimum code length, but the minimality cannot be shown, and they

offered no comparisons with other SSA back-translation algorithms [20]. In

addition, there has been no empirical comparison of back-translation algo-

rithms, especially considering register allocation.

In this paper, we clarify the merits and demerits of the above two ma-

jor algorithms for SSA back-translation. We also propose an improvement

of Briggs’ algorithm. We implemented Briggs’ algorithm, its improvement,

and Sreedhar’s algorithm on the same compiler, and experimented using

the SPEC benchmarks by changing the number of allocatable registers. We

evaluated the influence of coalescing, the relationship with the number of al-

locatable registers and the relationship with the set of optimizations, which

gave insights into the results.

The results show that in Briggs’ method, many copy statements that

cannot be coalesced remain, which falls short of the original expectations.
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x1 = 1 x2 = 2

x3 = φ (x1;L1, x2:L2)
… = x3

x = 1 x = 2

… = xL3

L2L1 L1 L2

L3

(b) SSA form(a) Normal form

Figure 1: The static single assignment form

These copy statements not only cause extra execution time but may also

consume registers wastefully. The combination of optimizations does not

much affect the differences between the back-translation algorithms. The

main result of the experiment is that in most cases Sreedhar’s method is the

most favorable. The efficiency of its object code is better than that of Briggs’

method by a few percent in general and by up to 28% at maximum.

2 Static single assignment form

The static single assignment form (SSA form) [7, 1] is an internal representa-

tion of programs where indices are attached to variables so that the definition

of each variable in a program becomes textually unique. At a joining point

of the control flow graph (CFG) reached by two or more different definitions

of a variable, a hypothetical function called a φ-function is inserted so that

these multiple definitions are merged into one (Fig. 1).

The statement “x3 = φ(x1:L1, x2:L2);” in Fig. 1(b) means that x3 is

assigned the value of x1 when the control comes from L1 and the value of

x2 when the control comes from L2.

Dataflow analysis and optimization for sequential execution can be com-

pacted using the SSA form, because it clarifies the relations between defini-
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tions and uses of variables.

2.1 SSA translation

Let us call the conventional representation form before translating into SSA

form the normal form. SSA translation translates the normal form into the

SSA form. The SSA translation algorithm proposed by Cytron et al. [7] and

that by Sreedhar et al. [19] are well known.

3 SSA back-translation

The SSA form includes the hypothetical φ-functions and cannot be directly

translated into assembly code or machine code. Therefore, translation back

to normal form, which deletes the φ-functions, is necessary before code gen-

eration.

We call the translation from SSA form into normal form SSA back-

translation.

3.1 Naive algorithm for SSA back-translation

Cytron et al. [7] presented a naive algorithm for SSA back-translation. The

process formed by a φ-function is moved into the predecessor basic blocks.

Therefore, the back-translation inserts copy statements for variables used

in the φ-function into the predecessor blocks of the basic block where the

φ-function resides, and then deletes the φ-function. This gives the normal

form. Figure 2 shows an example of the naive SSA back-translation.

In Fig. 2(a), variables x1 and x2 used in the parameters of the φ-function

in block L3 are defined in blocks L1 and L2, respectively. For example, if

control goes from L1 to L3, the value of x3 becomes the value of x1. The

naive method for SSA back-translation puts the definitions of variable x3,
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x1 = 1 x2 = 2

x3 = φ (x1;L1, x2:L2)
… = x3

x1 = 1
x3 = x1

x2 = 2
x3 = x2

… = x3L3

L2L1L1 L2

L3

(a) SSA form (b) Normal form

Figure 2: Naive SSA back-translation

originally defined in the φ-function of block L3, at the end of instructions

of L1 and L2, which are the predecessor blocks of L3. For example, it puts

the copy statement “x3 = x1” at the end of block L1. Then it deletes the

φ-function. This produces the result shown in Fig. 2(b). This algorithm is

simple but, as we will show, it introduces problems. We therefore call it the

naive back-translation algorithm.

3.2 Problems of the naive back-translation algorithm

It has been pointed out that the naive back-translation algorithm does not

work correctly in some cases [3, 20]. There are two main factors that make

the naive back-translation algorithm cause such problems.

The first problem is related to the destruction of the live range when

inserting copy statements. An example of such an incorrect behavior is the

so-called lost copy problem and is shown in Fig. 3.

Figure 3(a) shows the usual SSA form. After applying copy propagation

optimization to this SSA form, “y = x1” in block 2 is deleted, and y in block

3 is replaced by x1, as in Fig. 3(b). This SSA form is correct. Then, if we

apply the naive algorithm to this optimized SSA form, it inserts the copy

statements at the end of each predecessor block. That is, it inserts a copy
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x0 = 1

x1 = φ (x0, x2)
y = x1
x2 = 2

return y

x0 = 1

x1 = φ (x0, x2)

x2 = 2

return x1

x0 = 1
x1 = x0

x2 = 2

x1 = x2

return x1

block1

block3

block2

block1

block3

block2

block1

block3

block2

(a) (b) (c)

Figure 3: The lost copy problem

statement “x1 = x0” at the end of block 1, and “x1 = x2” at the end of

block 2, and deletes the φ-function (Fig. 3(c)). However, this is incorrect.

The value returned by “return x1” is now always 2, which is different from

the original SSA form program. The reason for this error is that the method

inserts the copy statement “x1 = x2” at a point where x1 is live, destroying

the current value of x1.

A second problem with the naive SSA back-translation algorithm occurs

when there are multiple φ-functions in the same block. Examples can be seen

in the so-called simple ordering problem and the swap problem [3, 20].

The simple ordering problem is shown in Fig. 4. Figure 4(a) is the usual

SSA form. After applying copy propagation optimization to this SSA form,

“y2 = x1” of block 2 is deleted, and “y1 = φ(y0, y2)” is replaced by “y1 =

φ(y0, x1)” (Fig. 4(b)). This SSA form is correct. Then, if we apply the naive

algorithm to this optimized SSA form, it inserts the copy statements “x1 =

x0” and “y1 = y0” at the end of block 1, and “x1 = x2” and “y1 = x1” at
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x0 = 1
y0 = 2

x1 = φ(x0, x2)
y1 = φ(y0, y2)

y2 = x1
x2 = 3

block1

block2

Copy propagation

x0 = 1
y0 = 2

x1 = φ(x0, x2)
y1 = φ(y0, x1)

x2 = 3

block1

block2

x0 = 1
y0 = 2

x1 = x0
y1 = y0

x2 = 3 
x1 = x2
y1 = x1

block1

block2

(a) (b) (c)

Figure 4: The simple ordering problem

the end of block 2, and we obtain the SSA form in Fig. 4(c). However, this

is incorrect. The value of “y1” at the exit of block 2 is now always 3, which

is different from the original SSA form program.

The semantics of the SSA form requires that a plurality of φ-functions in

the same block must be regarded as simultaneous assignments. For example,

in the SSA form in Fig. 4(b), assignments to x1 and y1 must be considered

as occurring simultaneously. The reason for the error in the back-translation

here is that the naive method inserts copy statements without considering

the simultaneous assignment property of the φ-function. As a result, a de-

pendency for x1 is introduced among the copy statements inserted in block

2. By executing these statements sequentially, program behavior differs from

the original.
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4 Two major algorithms for SSA back-translation

To remedy the problems presented in Section 3.2, two major algorithms have

been proposed. There are also other algorithms like Morgan’s [16], but they

can be thought of as a subset of the major two algorithms (cf. Section 9.1).

One is by Briggs et al. [3, 2] and the other is by Sreedhar et al. [20].

Hereafter, we often call them simply Briggs’ and Sreedhar’s algorithms.

4.1 The algorithm of Briggs et al.

The SSA back-translation algorithm by Briggs et al. [3, 2] extends the naive

back-translation algorithm to perform a safe translation (Fig. 5).

Among the problems with the naive back-translation algorithm, here we

concentrate on the “lost copy problem” described in Section 3.2.

The problem with the naive translation in Fig. 3 arose because the value

of x1 in block 2 is destroyed by the insertion of “x1 = x2”. Briggs’ method

inserts an assignment to a temporary, “temp = x1”, at the entry of block 2

to save the value of x1 at this point into temp, and replaces the use of x1 in

later blocks by temp, as in Fig. 5(b). In this way, Briggs’ method realizes a

correct SSA back-translation by inserting copy statements such as “temp =

x1” to remedy the problems of the naive method.

We see from this example that the SSA back-translation algorithm by

Briggs et al. may insert many copies, that is, both the copies inserted by the

naive method and copies inserted to avoid these critical problems. However,

Briggs et al. claimed that coalescing the live ranges (coalescing [5] is usually

performed in the register allocation phase) after the back-translation can

eliminate most of these copies. This is illustrated in Fig. 5(c) and (d). Be-

cause the live ranges of x0, x1 and x2 that are connected by copy statements

do not interfere in Fig. 5(c), they can be coalesced into a single variable x as
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x0 = 1

x1 = φ (x0, x2)

x2 = 2

return x1

x0 = 1
x1 = x0

x2 = 2
x1 = x2

return temp

block1

block3

block2

block1

block3

block2

temp = x1

(a) SSA form (b) normal form after back-
     translation

live
range
of x1

live
range
of
temp

x = 1
  

x = 2

return temp

block1

block3

block2

temp = x

(d) after coalescing

x0 = 1
x1 = x0

x2 = 2
x1 = x2

return temp

block1

block3

block2

temp = x1

(c) normal form after back-
     translation (same as (b))

live range of
x0 x1 x2

coalesce {x0, x1, x2} → x

Figure 5: SSA back-translation by Briggs et al. (lost copy problem)
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x1 = 1 x2 = 2

x3 = φ (x1;L1, x2:L2)
… = x3

X = 1 X = 2

… = XL3

L2L1L1 L2

L3

(a) SSA form (b) Normal form
 {x3, x1, x2} => X

Figure 6: SSA back-translation by Sreedhar et al. – principle

shown in Fig. 5(d).

We will also perform coalescing in the experiments in Sections 6 and 7.

4.2 Algorithm of Sreedhar et al.

The SSA back-translation algorithm by Sreedhar et al. [20] uses a completely

different approach from the naive algorithm or Briggs’ algorithm.

Rather than insert copy statements to delete φ-functions, Sreedhar’s al-

gorithm checks whether there is interference between the live ranges of the

parameters of each φ-function. Here we regard the left-hand side variable

of the φ-function as another parameter. If there is such interference, the

algorithm renames some of the parameters by inserting copy statement(s) so

that finally there is no more interference of live ranges between parameters.

Then, it replaces all the parameters of the φ-function by a single variable

and deletes the φ-function.

A very simple example of Sreedhar’s algorithm is shown in Fig. 6. In Fig.

6(a), there is no interference between the parameters x3, x1 and x2 (including

the left-hand side variable x3 ) of the φ-function, so all the parameters x3,

x1 and x2 can be replaced by the same variable X and the φ-function can

be deleted as in Fig. 6(b). In this example, no copy statements are inserted.
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x0 = 1

x1 = φ(x0, x2)

x2 = 2

return x1

live range of
x0 x1 x2

x0 = 1

x1’ = φ(x0, x2)
x1 = x1’
x2 = 2  

return x1

rename {x1’, x0, x2} → X
delete φ

x1 = X
X = 2

X = 1
block1

block3

block2

block1

block3

block2

return x1

(a) SSA form (b) eliminating 
     interference

(c) normal form after
     back-translation

live range of
x0 x1' x2

block1

block3

block2

interfere not interfere

Figure 7: SSA back-translation by Sreedhar et al. (lost copy problem)

(We can regard this replacement to the same variable as a kind of coalescing.

We call it uniting). There is no need to insert copy statements in this case

as opposed to the naive or Briggs’ algorithm.

A more complex example can be found in the treatment of the lost copy

problem. Figure 7(a) is the same SSA form as in Fig. 3(b). Consider the

φ-function in block 2. It has three parameters, x1, x0, and x2. Because there

is interference of live ranges between x1 and x2, we replace x1 by x1’ and

insert a copy “x1 = x1’ ”, producing Fig. 7(b). Now there is no interference

between the live ranges of parameters x1’, x0 and x2 of the φ-function. We

therefore replace all the parameters of the φ-function by a single variable and

delete the φ-function. In this example, we replace x1’, x0 and x2 by X, and

obtain the normal form shown in Fig. 7(c).

The main part of Sreedhar’s algorithm resides in the treatment of the
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x1 = φ (x2, ...)

...

x2 = ...

...

x1’ = φ (x2, ...)
x1 = x1’

...
x2 =  ...

... 

x1 = φ (x2’, ...)
...

x2 = ...
...

x2’ = x2

(a) SSA form (b) rewrite target (c) rewrite source

Figure 8: Sreedhar’s rewriting of the φ-function

interference between the live ranges of the parameters of a φ-function. In

general, if there is such interference, uniting these parameters is not possible.

In that case, we must remove the interference caused by these parameters.

Sreedhar’s algorithm removes this interference by rewriting the φ-function

(Fig. 8). This is done by combining the following processes. They have the

effect of shortening the live ranges of the parameters of the φ-function, and

they finally remove the interference.

• The left-hand side variable of a φ-function is called a target. The target

of a φ-function is considered live at the entry of the block where the φ-

function is placed. Therefore, to minimize the live range of the target,

perform rewriting as in Fig. 8(b).

• A parameter in the right-hand side of a φ-function is called a source.

The source of a φ-function is considered live at the exit of the corre-

sponding block that is predecessor to the block where the φ-function is

placed. (It is not live at the entry of the block where the φ-function is

placed.) Therefore, to minimize the live range of the source, perform

rewriting as in Fig. 8(c).
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Note again that in Sreedhar’s algorithm, no insertion of copy statements

for all parameters of the φ-functions is generally required, in contrast to

Briggs’ algorithm. Therefore, there are generally less inserted copy state-

ments.

Note also that Sreedhar’s algorithm can perform coalescing based on the

SSA form at back-translation time [20].

5 Problems and proposal for improvement

The two algorithms for SSA back-translation presented so far have some

weaknesses. We discuss them and propose an improvement in this section.

5.1 Drawback in Briggs’ algorithm and proposal for
improvement

5.1.1 Unnecessarily long live ranges

In Briggs’ algorithm, copy statements like “temp = target” are sometimes

inserted to save the value of the target of a φ-function. This often causes

related variables to have unnecessarily long live ranges.

For example, in Fig. 9(b), although the value of x3 is stored in temp, the

live range of x3 continues up to “...=x3+1”, because x3 is used there. This

unnecessarily long live range causes x3 to interfere with x2.

In this case, if we make an improvement that first rewrites the target x3

of the φ-function of Fig. 9(a) as in Fig. 9(c), and then perform Briggs’ SSA

back-translation, we obtain Fig. 9(d). (Rewriting the target of a φ-function

is made similarly to that of Sreedhar’s.) In Fig. 9(d), we can coalesce x2 and

x3’ and delete “x3’ = x2”.

This improvement may be very effective because such a situation of saving

the target always occurs in loops.
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Improving Briggs’algorithm (1)

x1=0

return x3

x3=φ(x1, x2)

x2=1
…=x3+1

x1=0
x3=x1

return temp

temp=x3
x2=1

…=x3+1
x3=x2

x2

x3

temp

(a) SSA form (b) Briggs’ back-translation

live range

interfere

Improving Briggs’algorithm (2)

x1=0

return x3

x3’= φ(x1, x2)
x3=x3’
x2=1

…=x3+1

x1=0
x3’=x1

return x3

x3=x3’
x2=1

…=x3+1
x3’=x2

x2 

x3’

x3

live range

(c) rewrite φ (d) after back-translation
(x2 and x3’ can be coalesced)

Figure 9: Example with unnecessarily long live range
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Improving Briggs’ - if

y=x1+1

if (x1 > 10)

x3=φ(x1, x2)
return x3

y=x1+1
x3=x1

if (x3 > 10)

return x3

y=x1+1
x3=x1

if (x1 > 10)

return x3

x1  x3 x1  x3

live range live range

(a) SSA form (b) back-translation 
      by Briggs

(c) improvement

Figure 10: Interference of live ranges because of conditional branch

5.1.2 Conditional branch

The last statement of a block is often a conditional branch. In that case,

the copy statements to be inserted at the end of a block are put immediately

before the conditional branch instruction and its conditional expression. If

the source (the right-hand side) of the inserted copy statement is then used

in the conditional expression, the live ranges of the target (left-hand side)

and the source of the copy statement interfere.

For example, in Fig. 10(b), the live ranges of x1 and x3 interfere. This

occurs because x1 is used in the conditional expression, although x3 keeps

the same value as x1. Therefore, if we make an improvement that rewrites

the conditional expression as in Fig. 10(c), x3 and x1 can be coalesced and

“x3 = x1” can be deleted.
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5.2 Weakness in Sreedhar’s algorithm

Sreedhar’s algorithm deletes φ-functions by uniting all parameters of a φ-

function into the same variable. Therefore, by regarding the φ-function as a

group of copy statements, we can analyze it in the same way as the coalescing

in the register allocation phase. That is, the live ranges of the united variables

become long, which may be a disadvantage when the number of allocatable

registers is small.

We will investigate this problem in Sections 6 and 7 through experiments.

6 Experiments 1

6.1 Purpose and criteria of evaluation

The purpose of this set of experiments was to investigate the general ten-

dencies of the three back-translation algorithms, Briggs’, Sreedhar’s and our

proposed improvement. To achieve a generally applicable result, we exper-

imented by changing the number of registers and the combination of opti-

mizations.

We used the C-to-SPARC compiler of the COINS compiler infrastructure

[6]. The comparisons were made on the same framework of the SSA module

of COINS [17].

The benchmarks were C programs from SPECint2000.

The processing by this compiler is as follows:

1. The source program is first converted into a pruned SSA form [3] in-

termediate representation.

2. Several kinds of optimizations are applied.
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Table 1: Main specifications of Sun-Blade-1000
architecture Superscalar SPARC V9
processor UltraSPARC-III 750 MHz × 2
L1 cache 64 KB (data)

32 KB (instruction)
L2 cache 8 MB external cache
memory 1 GB

OS SunOS 5.8

3. The SSA form is back-translated into normal form using one of Briggs’,

Sreedhar’s or our proposed algorithm.

4. Register allocation with iterated register coalescing [10] is applied.

5. The object code is generated.

Instruction scheduling in COINS is at the test stage and does not run

for some benchmarks used in this experiment, so we do not use instruction

scheduling.

The experiments were run on a Sun-Blade-1000. The main specifications

are shown in Table 1.

Our experiments used 20 and eight registers. The case of 20 registers is

the model for architectures such as SPARC and MIPS, while the use of eight

registers investigates the tendency for CPUs in embedded systems to have

few registers.

The combinations of optimizations used are shown in Table 2. “-opt1” in

the graphs of this section corresponds to “opt1” in Table 2, and so on.

For benchmarks, we used gzip and mcf from SPECint2000.
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Table 2: Combination of optimizations
opt1 copy propagation
opt2 copy propagation, dead code elimination,

common subexpression elimination
opt3 copy propagation,

loop invariant code motion
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Figure 11: Ratios of execution times in eight registers

6.2 Comparison of execution times

We measured several aspects, but because this is a preliminary experiment,

we show only the comparison of execution times here.

6.2.1 With eight registers

Figure 11 shows the relative ratios of the execution times of the object code

when the number of registers is limited to eight (small values are better,

the reference value is the time with Briggs’s method, which is normalized

to one.) ‘new’ means our proposed algorithm for improvement of Briggs’
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Figure 12: Ratios of execution times with 20 registers

method (Section 5.1).

We can see that the execution time with Sreedhar’s method is gener-

ally shorter than that with Briggs’ method, by 3˜4% in gzip except with

optimization 1, and also faster by 4˜5% in mcf except with optimization 2.

Our proposed improvement also raised the performance a little compared

to Briggs’ method, by 1% in gzip and is also in mcf except with optimization

3.

6.2.2 With 20 registers

Next, Fig. 12 shows the relative ratios of execution times when the number of

registers is 20. We can see that Sreedhar’s method generally produces faster

code than Briggs’ method, by 1% in gzip, and by 2˜7% in mcf.

Our proposed improvement also raised the performance compared to

Briggs’ method, by 1% in gzip and by 1˜3% in mcf.
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From these experiments we realize that Sreedhar’s method is superior

to Briggs’ method in terms of the execution time of the object code. De-

tailed analysis can be found in [14]. Our proposal for improvement of Briggs’

method was effective to a certain degree, but it could not overcome the

predominance of Sreedhar’s method. Therefore, in the following section we

focus on Briggs’ method and Sreedhar’s method and make more detailed

evaluations using further benchmarks.

7 Experiments 2

7.1 Purpose and criteria of evaluation

The purpose of this set of experiments was to focus on Briggs’ method and

Sreedhar’s method, and make more detailed evaluation than that of the pre-

vious section, using more benchmarks

We used eight and 20 registers, as in the previous section. The combi-

nations of optimizations are shown in Table 3. In the graphs of figures in

this section, we denote “no optimization” as “-opt0”, “optimization 1” as “-

opt1”, and “optimization 2” as “-opt2”. (This is different from the previous

section.)

From our previous discussion, we can anticipate that in Briggs’ method,

many copy statements that cannot be coalesced (in register allocation) are in-

serted (Section 5.1). Copy statements that cannot be coalesced may possibly

waste registers unnecessarily.

On the other hand, in Sreedhar’s method, we can anticipate problems

similar to the aggressive coalescing in register allocation (Section 5.2).

Therefore, we first made a static evaluation by measuring the number of

move instructions (the number of copy statements that cannot be coalesced)
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Table 3: Combination of optimizations
optimization copy propagation,

1 constant propagation,
dead code elimination,
empty block elimination

optimization remove critical edge,
2 loop invariant code motion,

constant propagation,
common subexpression elimination,
copy propagation,
constant propagation,
dead code elimination,
empty block elimination

in the object code, and the number of variables that are spilled in the register

allocation phase. This gives insight into how copy statements that cannot be

coalesced affect the object code and register allocation. (The static number

means the number at compile time or the number in the text of object code. It

contrasts with the dynamic number that represents the number at execution

time.)

Next, we made a dynamic evaluation by measuring the number of exe-

cuted move instructions, and the number of executed load and store instruc-

tions. This is to check the actual influence of static measurements on runtime

measurements.

We finally measured the execution time as the final criterion.

As for benchmarks, we used gzip, vpr, mcf, parser, bzip2, twolf from

SPEC CINT2000. The environment of the experiments is the same as for

the first experiments.
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Figure 13: Ratios of the numbers of moves with eight registers

7.2 Comparisons of the static numbers of move in-
structions in the object code

To examine the differences in back-translation algorithms, we measured the

static number of move instructions in the object code. This measurement

helps us understand how the differences in the number of copy statements

that cannot be coalesced and the process of uniting parameters in a φ-

function (making them a single variable in Sreedhar’s method) affect the

object code.

Note that the number of move instructions in this section is static. We

therefore cannot judge the relative superiority of algorithms at this stage.

7.2.1 With eight registers

Figure 13 shows the relative ratios of the number of move instructions in the

object code when the number of registers is limited to eight (small values are

better, the reference value is the case of no optimization in Briggs’ method,
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Figure 14: Ratios of the numbers of moves with 20 registers

which is normalized to one.)

We can see that the number of move instructions in Sreedhar’s method is

60%˜90% of that of Briggs’ method. From this, we confirm that in Briggs’

method many copy statements that cannot be coalesced are inserted. We

can anticipate that the dynamic number of move instructions at execution

time will be larger with Briggs’ method. This will be the subject of a later

experiment.

Comparing the combination of optimizations, we see that in Briggs’ method

the number of move instructions becomes less as we perform more optimiza-

tions. This is in contrast to Sreedhar’s method where the number does not

generally change. We think this is because the process of uniting in Sreed-

har’s method has an effect similar to a kind of optimization.

7.2.2 With 20 registers

The result of the same experiment for 20 registers is shown in Fig. 14.
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We can see that the number of move instructions in Sreedhar’s method

is about 50%˜80% of that of Briggs’ method. The difference is much greater

than with eight registers.

When more optimizations are applied, the number of move instructions

decreases in Briggs’ method, which is similar to the case of eight registers.

This is in contrast to Sreedhar’s method where the number does not generally

change. This behavior can be explained similarly to the case of eight registers.

7.3 Comparison of the number of spills

We counted the (static) number of variables that are spilled out at the register

allocation phase, to investigate how the differences in SSA back-translation

algorithms affect register allocations, through the differences in the number

of copy statements that cannot be coalesced, and the uniting process of the

parameters in φ-functions. Note however that we cannot judge the supe-

riority of algorithms at this stage, because this number is static and does

not represent the dynamic cost of spills, similarly to the comparison of the

number of move instructions.

7.3.1 With eight registers

Figure 15 shows the number of variables that are spilled at the register allo-

cation phase when the number of registers is limited to eight.

We can see that fewer variables are spilled out with Sreedhar’s method

than with Briggs’ method. We assume this is because registers are uselessly

consumed in Briggs’ method because of copy statements that cannot be co-

alesced. From this, we can anticipate that the dynamic number of load and

store instructions at execution time will be bigger in Briggs’ method. This

will be the subject of a later experiment.
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Figure 15: Number of spills with eight registers

7.3.2 With 20 registers

Figure 16 shows the number of variables that are spilled at the register allo-

cation phase when the number of registers is 20.

We can see that fewer variables are spilled out with Sreedhar’s method

than with Briggs’ method, similarly to the case of eight registers. As well,

there are fewer spills than with eight registers. From this, we can anticipate

that the influence of spills on the dynamic number of load and store instruc-

tions at execution time with 20 registers will be less than with eight registers.

We will also confirm this in a later experiment.

7.4 Comparison of the number of executed move in-
structions

In the static measurements, the number of move instructions in Sreedhar’s

method was less than that in Briggs’ method. Here, we measure the dynamic

count of move instructions of the object code at execution time.
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Figure 16: Number of spills with 20 registers

7.4.1 With eight registers

Figure 17 shows the relative ratio of the dynamic count of executed move

instructions when the number of registers is limited to eight (small values are

better, the reference value is the case of no optimization in Briggs’ method,

which is normalized to one.)

We can see that the dynamic count of executed move instructions in

Sreedhar’s method is 10% of that of Briggs’ method in gzip and about

50% 80% of that of Briggs in others.

Changing the combination of optimizations shows the same tendencies as

in the static measurements. The number of executed move instructions does

not generally change by optimizations in Sreedhar’s method.

7.4.2 With 20 registers

Figure 18 shows the relative ratios of the dynamic count of executed move

instructions when the number of registers is 20.
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Figure 17: Ratios of the numbers of executed moves with eight registers

�

� � �

� � �

� � �

� � �

�

� � �

� � �

� � 	 
�� 
 
�� � ��
 � 
 � � 
�� � 	 
 ��� � � � �

� 
 	 � � � � � 
 � �
� 
 � � � � � 
 � � 
 � �
� 
 	 � � � � � 
 � �
� 
 � � � � � 
 � � 
 � �
� 
 	 � � � � � 
 � �
� 
 � � � � � 
 � � 
 � �

Figure 18: Ratios of the numbers of executed moves with 20 registers
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We can see that the dynamic count of executed move instructions in

Sreedhar’s method is 3% in gzip and about 40% 80% in others, compared

to Briggs’ method. This shows greater difference than with eight registers,

similarly to the static measurement.

Comparison by changing the combination of optimizations shows that

the number of executed move instructions in Sreedhar’s method does not

generally change.

7.5 Comparison of the number of executed load and
store instructions

In static measurements, Sreedhar’s method has less spills. However, in

Sreedhar’s method, the parameters of the φ-functions are united. This may

lengthen the live range of variables involved in φ-functions, and may result

in increasing the cost of spills per variable.

Therefore, we measured the dynamic count of executed load and store

instructions of the object code, as an approximation of the cost of spills at

execution time.

7.5.1 With eight registers

Figure 19 shows the relative ratio of the dynamic count of executed load

and store instructions of the object code when the number of registers is

limited to eight (small values are better, the reference value is the case of no

optimization in Briggs’ method, which is normalized to one.)

We can see that Sreedhar’s method is favorable in four out of six bench-

marks while Briggs’ method is favorable in two of the benchmarks. In par-

ticular, Sreedhar’s method is quite advantageous in gzip.

Moreover, although the number of spilled variables was absolutely less
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Figure 19: Ratios of the numbers of executed loads and stores with eight
registers

with Sreedhar’s method than with Briggs’ method, the difference in the num-

bers of executed load and store instructions in both methods is reduced or

partly reversed. Therefore, we can assume that the cost of spills per variable

is higher with Sreedhar’s method.

Even if the combination of optimizations is changed, the difference in the

numbers of executed load and store instructions in both methods is preserved.

7.5.2 With 20 registers

Figure 20 shows the relative ratio of the dynamic count of executed load and

store instructions with 20 registers. Little difference is found, as opposed to

the case of eight registers. This is because the difference in the numbers of

spilled variables in Fig. 16 is less than in Fig. 15.

Thus, because there is almost no difference in the number of executed

load and store instructions in both methods, we expect that the execution

time with 20 registers depends mainly on the difference of the numbers of
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Figure 20: Ratios of the numbers of executed loads and stores with 20 reg-
isters

executed move instructions.

7.6 Comparison of execution times

Lastly, we present the comparison of execution time of the object code.

7.6.1 With eight registers

Figure 21 shows the relative ratios of the execution times with eight registers

(small values are better, the reference value is the case of no optimization in

Briggs’ method, which is normalized to one.)

The execution speed of the object code created with Sreedhar’s method

is generally faster than that with Briggs’ method, by about 28% in gzip,

and a little faster in all the others. We discuss scattering in execution time

and the relative ratios in some detail later.
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Figure 21: Ratios of execution times with eight registers
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Figure 22: Ratios of execution times with 20 registers
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7.6.2 With 20 registers

Next, Fig. 22 shows the relative ratios of the execution time with 20 registers.

The execution speed of the object code from Sreedhar’s method is faster in

most benchmarks (by as much as 8%) compared to that from Briggs’ method,

except with all combinations of optimizations in mcf and the no-optimization

case in parser, where the object code from Sreedhar’s method is slower by

up to about 3%.

In the comparison of execution times, the results mostly coincide with

the previous analysis. However, the results do differ partly in showing some

fluctuation or scattering.

We think that these fluctuations of the results are mainly because of the

characteristics of the target architecture such as superscalar and cache lines,

rather than the effect of SSA back-translation algorithms.

One possible reason relates to instruction fetch cycles. For example, if

there is a branch instruction in a loop, the processor tries to fetch a sequence

of next instructions using branch prediction, while processing this branch

instruction. If instructions to be fetched reside in one cache line, they can

be fetched together at once. If they straddle the boundaries of cache lines,

however, fetching takes extra time.

In fact, when we have re-aligned instructions in a loop that takes most of

the execution time according to the cache lines, the execution time sometimes

decreases by 4˜5% [14]. This kind of internal processing mechanism has

particular influence in superscalar machines, such as the one used in this

experiment.

Therefore, for the execution time of the object code, Sreedhar’s method

is favorable on average, although in some cases the effect of the difference of

back-translation algorithms is hidden by other factors.
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In summary, with eight registers, Sreedhar’s method achieves shorter ex-

ecution time of the object code than Briggs’ method. This is considered to

be because of the smaller dynamic cost of spills and the smaller number of

executed move instructions.

On the other hand, with 20 registers, Sreedhar’s method achieves shorter

execution time of the object code in most cases, although there are a few ex-

ceptions. This is considered to be because of the smaller number of executed

move instructions required.

Moreover, the differences in SSA back-translation algorithms are not gen-

erally influenced by changing the combination of optimizations.

8 Discussion on instruction scheduling

In our experiments, no instruction scheduling was performed, as mentioned

in Section 6.1. However, as most modern processors provide instruction-level

parallel processing, its influence on performance is not negligible. In addition,

it is known that instruction scheduling and register allocation interfere with

each other. That is, if we decrease the number of actual registers in the

register allocation, the parallelism among instructions is hampered. On the

other hand, if we want to enhance parallelism by instruction scheduling, the

register pressure will increase.

The consequence for our experiment is that if we increase the reusability

of registers by coalescing, the dependencies among instructions will increase,

and this may decrease the instruction-level parallelism. In processors per-

forming out-of-order execution, this may hinder the exchange of instructions.

Because register allocation and instruction scheduling depend on each

other, many studies have been carried out concerning the order of their ap-
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plication and their cooperative processing [12].

In the COINS compiler, an experimental implementation of instruction

scheduling was made, and application in the order of “instruction scheduling

→ register allocation → instruction scheduling” was tested, and gave good

runtime performance in small examples.

In the experiments described in this paper, we have evaluated the effect of

two major SSA back-translation algorithms, Briggs’ method and Sreedhar’s

method, with register allocation. Even if one back-translation algorithm

with register allocation gives a better result than the other, it is possible

that the advantage will not be preserved if the instruction scheduling phase

is performed. Therefore, evaluation using instruction scheduling will be nec-

essary in the future. Besides, in processors that perform register renaming

by hardware, evaluation from a different point of view will be required.

9 Related work

Our work aims at empirically comparing SSA back-translation algorithms.

As far as we know, there have been no similar studies. Therefore, we present

other SSA back-translation algorithms in this section.

9.1 Morgan’s SSA back-translation

First, we briefly explain the back-translation algorithm by Morgan[16]. This

algorithm replaces φ-functions by copy statements, similarly to Briggs’ method.

In Morgan’s method, a graph like Fig. 23 is used. In this graph, nodes

represent variables, and directed edges are drawn from the targets (left-hand

side variables) to the parameters of φ-functions.

In this graph, variables (nodes) having no predecessor nodes do not ap-

pear in the parameters of φ-functions. This means that such a variable can
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Figure 23: Morgan’s method

be overwritten by back-translation, and a copy statement “that variable =

variable of its successor node” can be safely inserted.

In addition, if this graph has a cycle, it will lead to dependency among

copy statements to be inserted, which must be resolved. The cyclic depen-

dency is cut by using a temporary variable.

For example in Fig. 23, because d has no predecessor node, “d = e” can

be inserted. Next, because a→b→c→a has a cycle, we first insert “temp =

a” to save the value of a, and then insert copy statements along the directed

edges. The resulting copy statements are as follows.

d = e

temp = a

a = b

b = c

c = temp

Briggs’ method can also deal with such a case, and in certain forms of

cycles, Briggs’ method inserts fewer copy statements. Therefore, Morgan’s

method is actually a subset of Briggs’ method.
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9.2 SSA back-translation by Budimlic et al.

Next, we briefly present the SSA back-translation by Budimlic et al. [4] This

back-translation algorithm was developed mainly for just-in-time compilers.

Unlike the algorithms that are the subjects of our experiments, it aims at

reducing compilation time.

The basic idea is to perform the back-translation by uniting parameters

of φ-functions, similarly to Sreedhar’s method. This algorithm first approx-

imates live ranges using the properties of the program represented in SSA

form. The number of copy statements inserted in their method is expected

to be greater than in Sreedhar’s method, because removing the interference

of the φ-functions is made using these approximate live ranges, and the clas-

sification of cases of interference is simpler than in Sreedhar’s method.

10 Conclusions

Two major algorithms exist for the back-translation from SSA form to nor-

mal form. However, there have been no previous studies that empirically

compare them and investigate their characteristics in depth. As a result,

many compilers using the SSA form simply adopted the method by Briggs

et al. without much consideration, because it was the first solution of the

critical problems of the early naive algorithm.

In this paper, we clarified the merits and demerits of different SSA back-

translation algorithms, and validated them through experiments. We showed

that the selection of the back-translation algorithm affects the runtime effi-

ciency of the object code in no small way, which has not previously received

attention. The effect is comparable to applying a middle-level global opti-

mization. A major contribution of our work was to give criteria for selecting
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the SSA back-translation algorithm in future compilers.

The main results are the following:

• In Briggs’ method, a large number of copy statements that cannot

be coalesced are inserted. They affect the performance of the object

code more than the increase of register pressure that is a concern in

Sreedhar’s method.

• When there are relatively few allocatable registers, Sreedhar’s method,

which performs uniting to the φ-functions, is superior because the dy-

namic cost of spills and the number of executed copy statements are

less. Its execution time is better than Briggs’ method by a few percent

in general, and by 28% at maximum.

• When there are relatively many allocatable registers, Sreedhar’s method

is favorable in most cases, because the number of executed copy state-

ments is low. Its execution time is better than Briggs’ method by a

few percent in most cases.

Further experiments using a variety of compiler phases such as instruction

scheduling and its analysis are left for future research.
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