
ISSN 1342-2812

Sanitizable Signature with Secret Information

Manabu Suzuki and Toshiyuki Isshiki and Keisuke
Tanaka

December 2005, C–215

Sanitizable Signature with Secret Information

Manabu Suzuki Toshiyuki Isshiki Keisuke Tanaka §

Dept. of Mathematical and Computing Sciences
Tokyo Institute of Technology

W8-55, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
{suzuki1, keisuke}@is.titech.ac.jp

February 20, 2006

Abstract

A sanitizable signature scheme is a signature scheme that allows the sanitizer to sanitize certain
portions of the document and to generate the valid signature of the resulting document with no
interaction with the signer. There exist many models and schemes for sanitizable signature. In this
paper, we precisely formalize the algorithms and the security requirements of sanitizable signature
with secret information. We propose a sanitizable signature scheme based on the gap co-Diffie-
Hellman groups and prove that our scheme satisfies these security requirements. Furthermore, we
discuss various models for sanitizable signature. In particular, we focus on three major properties,
such as state controllability for signer, flags for the sanitized messages, and designation of the
sanitizer. We also classify the previously proposed schemes and our scheme.

Keywords: sanitizable signature, the gap co-Diffie-Hellman groups, bilinear maps, the random
oracle model.

1 Introduction

Digital signature has been an essential tool in current society. The standard digital signature schemes
are designed to prevent the alteration of the signed documents. However, in some cases, appropriate
alteration of the signed documents should be allowed.

One such situation is the disclosure of the official information. Consider, for example, what
happens when a citizen demands the public releases of the official document and its signature. The
office then deletes the sensitive data such as personal information or national secrets, and discloses
the sanitized version of the document. If this disclosure is done digitally by using the standard
digital signature schemes, the citizen cannot verify the disclosed information correctly because the
information has been altered to prevent the leakage of sensitive information. The standard digital
signature schemes provide the means to achieve the authentication of the document. However, the
standard digital signatures do not allow any alteration of the document.

A simple solution is to sign the document every moment when the document is changed, but it
is not practical in the case that the document is frequently changed. An alternative solution would
be to obtain a valid signature of the sanitized document without any help of the original signer.

There could be many possible reasons for not asking the original signer to re-sign, including; (1)
the signer’s key has expired, (2) the original signature was securely time-stamped, (3) the signer may
not be available, (4) each new signature would cost too much, either in terms of real expense or in
terms of computation. Sanitizable signature is introduced in order to address these needs.

§Supported in part by NTT Information Sharing Platform Laboratories and Grant-in-Aid for Scientific Research,
Ministry of Education, Culture, Sports, Science, and Technology, 14780190, 16092206.

1

Sanitizable signatures. A sanitizable signature scheme is a signature scheme that allows the
sanitizer to sanitize certain portions of the document and to generate the valid signature of the
resulting document with no interaction with the signer. A sanitizable signature is processed by three
parties consisting of a signer, a sanitizer, and a verifier. The signer generates the signature assuring
the authenticity of the document. The sanitizer receives the document and its signature from the
signer. The sanitizer generates the sanitized document and its signature without any help of the
signer. The verifier receives the sanitized document of the signature from the sanitizer. The verifier
accepts the signature only if he verifies the authenticity of the disclosed document.

Previous works. There are some previously proposed schemes. Miyazaki et al. [9] proposed the
schemes called SUMI-1, SUMI-2, SUMI-3, and SUMI-4. In the model of the schemes, the sanitizer
can sanitize any message he wants. The signer cannot restrict sanitization. Steinfeld, Bull, and
Zheng [10] proposed CES-CV, CES-HT, CES-RSAP, and CES-MERP. They are provably secure. In
the model of the schemes, the signer can assign each message whether it can be sanitized or not.
However, the signer cannot change his assignment once the signer generates the signature. Miyazaki
et al. [8] proposed SUMI-5. In the model of the scheme, the signer can change his assignment even
after he generates the signature. Miyazaki et al. [7] also proposed SUMI-6. Miyazaki et al. [7]
claims that the scheme can hide the number of sanitized messages of the document. Ateniese, Chou,
Medeiros, and Tsudik introduced the sanitizable signatures [1]. In the model of the scheme, only
the designated sanitizer can sanitize the document. Even the signer cannot sanitize the document
after he generates the signature. Notice that the meaning of ‘sanitize’ in this scheme is different from
the other protocols. In this scheme, ‘sanitize the message’ means ‘change the message’, while in our
scheme and the other schemes, ‘sanitize the message’ means ‘hide the message’.

Although there exist many models and schemes for sanitizable signature, most of the schemes are
not proved to be secure.

Our contribution. In this paper, we precisely formalize the algorithms and the security require-
ments of sanitizable signature with secret information. We propose a sanitizable signature scheme
based on the gap co-Diffie-Hellman groups and prove that our scheme satisfies these security require-
ments. In our model, the signer can assign each message whether it can be sanitized or not. The
signer can change his assignment even after he generates the signature. Furthermore, we discuss
various models for sanitizable signature. In particular, we focus on three major properties, such as
state controllability for signer, flags for the sanitized messages, and designation of the sanitizer. We
also classify the previously proposed schemes and our schemes.

Organization. The rest of this paper is organized as follows. In Section 2, we provide some
mathematical preliminaries. In Section 3, we describe sanitizable signature with secret information.
We provide the notation, procedure, and some security definitions. In Section 4, we describe a
sanitizable signature scheme based on the gap co-Diffie-Hellman groups and prove that our scheme
satisfies the security requirements. In Section 5, we survey previously proposed schemes and classify
them. We conclude in Section 6.

2 Preliminaries

We review several concepts related to bilinear maps and gap Diffie-Hellman groups. We also review
the co-GDH signature scheme and the aggregate signature.

2.1 Bilinear Maps and Gap Diffie-Hellman Groups

We use the following notation:

2

1. G1 and G2 are two (multiplicative) cyclic groups of prime order p,

2. g1 is a generator of G1 and g2 is a generator of G2,

3. Let √ : G2 → G1 be an isomorphism that satisfies √(g2) = g1,

4. e : G1 ×G2 → GT is a computable bilinear map.

With this setup, we obtain natural generalizations of the CDH and DDH problem:

Computational co-Diffie-Hellman problem on (G1, G2). Given g2, ga
2 ∈ G2 and h ∈ G1, com-

pute ha ∈ G1.

Decision co-Diffie-Hellman problem on (G1, G2). Given g2, ga
2 ∈ G2 and h, hb ∈ G1, output

yes if a = b and no otherwise.

Gap co-Diffie-Hellman groups. We define gap co-Diffie-Hellman groups. We say that a pair
(G1, G2) is a gap co-Diffie-Hellman group pair if the decision co-Diffie-Hellman problem on (G1, G2)
is easy but the computational co-Diffie-Hellman problem on (G1, G2) is hard.

We define the advantage of an algorithm A in solving the computational co-Diffie-Hellman problem
on (G1, G2) as

Adv co-CDHA = Pr[A(g2, g
a
2 , h) = ha; a ← p, h ← G1]

The probability is taken over the choice of a, h and A’s coin tosses. An algorithm A (t, ≤)-
breaks the computational co-Diffie-Hellman problem on G1 and G2 if A runs in time at most t, and
Adv co-CDHA is at least ≤.

Definition 1 Two Groups (G1, G2) are a (t, ≤)-gap co-Diffie-Hellman group (co-GDH group) pair if
they satisfy the following properties:

1. The computation on both G1 and G2 and the map √ from G2 to G1 can be computed in one
time unit,

2. The decision co-Diffie-Hellman problem on (G1, G2) can be solved in one time unit,

3. No algorithm (t, ≤)-breaks the computational co-Diffie-Hellman problem on (G1, G2).

Currently, the only examples of gap Diffie-Hellman groups arise from bilinear maps [5].

Bilinear Maps. Let G1 and G2 be two groups as above, with an additional group GT such that
|G1| = |G2| = |GT |. A bilinear map is a map e : G1 ×G2 → GT with the following properties:

1. Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ , e(ua, vb) = e(u, v)ab,

2. Non-degenerate: e(g1, g2) 6= 1.

These properties imply that for any u1, u2 ∈ G1 and v ∈ G2, e(u1u2, v) = e(u1, v) · e(u2, v), and
that for any u, v ∈ G2, e(√(u), v) = e(√(v), u).

3

2.2 The co-GDH Signature Scheme

We review the co-GDH signature scheme [4] proposed by Boneh, Lynn, and Shacham. This scheme
works in any gap co-Diffie-Hellman group pair (G1, G2). It uses a full-domain hash function h :
{0, 1}§ → G1, viewed as a random oracle [3].

Key Generation. Pick random x ← p, and compute v ← gx
2 . The public key is v ∈ G2. The

secret key is x ∈ p.

Signing. Given a secret key x and a message M ∈ {0, 1}§, compute w ← h(M), where w ∈ G1, and
σ ← wx. The signature is σ ∈ G1.

Verification. Given a public key v, a message M , and a signature σ, compute w ← h(M) and verify
that e(w, v) = e(σ, g2) holds.

This scheme satisfies the existential unforgeability under the chosen message attack [6] in the
random oracle model assuming that (G1, G2) is a (t, ≤)-gap co-Diffie-Hellman group pair, where ≤ is
negligible.

2.3 Bilinear Aggregate Signatures

We review a bilinear aggregate signature scheme based on the co-GDH signature scheme described
above. Individual signatures in the aggregate signature scheme are created and verified precisely as
are signatures in the co-GDH signature scheme. Aggregate verification makes use of a bilinear map
on G1 and G2.

The aggregate signature scheme allows the creation of signatures on arbitrary distinct messages
Mi ∈ {0, 1}k, where k is the security parameter. An individual signature σi is an element of G1. The
base groups G1 and G2, their respective generators g1 and g2, the computable isomorphism √ from
G2 to G1, and the bilinear map e : G1 ×G2 → GT , with target group GT , are system parameters.

The scheme employs a full-domain hash function h : {0, 1}§ → G1, viewed as a random oracle.

Key Generation. For a particular user, pick random x
R← p, and compute v ← gx

2 . The user’s
public key is v ∈ G2. The user’s secret key is x ∈ p.

Signing. For a particular user, given the secret key x and a message M ∈ {0, 1}k, compute w ←
h(M), where w ∈ G1, and σ ← wx. The signature is σ ∈ G1.

Verification. Given user’s public key v, a message M , and a signature σ, compute w ← h(M);
accept if e(σ, g2) = e(w, v) holds.

Aggregation. For the set U of users, assign to each user an index i, ranging from 1 to n = |U |.
Each user ui ∈ U provides a signature σi ∈ G1 on message Mi ∈ {0, 1}k of his choice. The

messages Mi must all be distinct. Compute σ ←
n∏

i=1

σi. The aggregate signature is σ ∈ G1.

Aggregate Verification. We are given an aggregate signature σ ∈ G1 for U , indexed as before,
and are given the original messages Mi ∈ {0, 1}k and public keys vi ∈ G2 for all users ui ∈ U .
To verify the aggregate signature σ,

1. ensure that the messages Mi are all distinct, and reject otherwise; and

2. compute wi ← h(Mi) for 1 ∑ i ∑ n = |U |, and accept if e(σ, g2) =
n∏

i=1

e(wi, vi) holds.

4

A bilinear aggregate signature, like a co-GDH signature, is a single element of G1. Note that
aggregation can be done incrementally.

The intuition behind bilinear aggregate signatures is as follows. Each user ui has a secret key
xi ∈ p and a public key vi = gxi

2 . User ui’s signature, if correctly formed, is σi = wxi
i . Using the

properties of the bilinear map, the left-hand side of the verification equation expands:

e(σ, g2) = e(
∏

i

wxi
i , g2) =

∏
i

e(wi, g2)xi =
∏

i

e(wi, g
xi
2) =

∏
i

e(wi, vi),

which is the right-hand side, as required.

3 Sanitizable Signature with secret information

In this section, we precisely formalize the algorithms and the security requirements of sanitizable
signature with secret information.

A sanitizable signature scheme is a signature scheme that allows the sanitizer to sanitize certain
portions of the document and to generate the valid signature of the resulting document with no
interaction with the signer. Sanitizable signature is processed by three parties consisting of a signer, a
sanitizer, and a verifier. The signer generates the signature assuring the authenticity of the document.
The sanitizer receives the document and the signature from the signer. The sanitizer generates the
sanitized document and its signature without any help of the signer. The verifier receives the sanitized
document of the signature from the sanitizer. The verifier accepts the signature only if he verifies
the authenticity of the disclosed document.

3.1 Notation

In this section, we describe the notation for document and message, state, and secret information.

Document and message. We denote that a document M is the list of messages Mi (e.g. M =
(M1 k · · · k Mn)). We denote that k is the concatenation. We use length(M) to denote the number of
the messages in M . For example, if the document is M = (M1 k · · · k Mn), then length(M) = n. We
use φ to indicate that the message is sanitized. For example, if the i-th message of the document M
is sanitized, then the document M

0 is represented as M
0 = (M1 k · · · k Mi−1 k φ k Mi+1 k · · · k Mn).

For M1 and M2 such that length(M1) = length(M2), we say that M1 is a subdocument of M2

if M1
i = M2

i for all i where M1
i are not sanitized. For example, if M1 = (a k b k φ k d k φ) and

M2 = (a k b k φ k d k e), then M1 is a subdocument of M2.

State. Each message has one of the following three states:

1. Sanitized,

2. Disclosed and sanitizing is allowed,

3. Disclosed and sanitizing is prohibited.

We define the state st of the document M .

Definition 2 (State) Let M be a document. st describes the states of Mi. Each Mi is either
‘sanitized’, ‘disclosed and sanitizing is allowed’, or ‘disclosed and sanitizing is prohibited’. st is
constructed as st = (stS , stA , stP), where stS , stA , stP are sets of indices. stS is a set of
indices of the messages that are ‘sanitized’. stA is a set of indices of the messages that are ‘disclosed
and sanitizing is allowed’. stP is set of indices of the messages that are ‘disclosed and sanitizing is
prohibited’. Note that every index i must belong in only one of stS , stA , and stP .

5

Secret information. In our model, the signer can control the states of the messages whether
‘disclosed and sanitizing is allowed’ or ‘disclosed and sanitizing is prohibited’. The signer can control
the states by using the secret information. The signer generates the secret information for each
message of the document. The secret information is necessary to generate the signature of the
sanitized document. The signer sends the secret information of the message to the sanitizer if he
allows the sanitizer to sanitize the message. Otherwise he does not send the secret information of the
message.

Definition 3 (Secret Information) Let M be a document. SI is a set of the secret information
of the messages, that is generated by the signer. It is described as SI = {Ai|i ∈ stA }, where Ai is
the secret information to sanitize the message Mi.

3.2 Procedure

Sanitizable signature schemes with secret information consists of the set of four algorithms.

Key Generation. A probabilistic algorithm KeyGen, on input 1k, outputs public and secret keys
(PK,SK), where k is the security parameter:

(PK,SK) ← KeyGen(1k).

Signing. A probabilistic algorithm Sign takes as input a document M , a secret key SK, and a
state st of the document. The signing algorithm outputs a document M , a signature σ of
M , a state st of M , and a set of secret information SI = {Ai|i ∈ stA }. Ai is necessary for
the sanitizer to sanitize the message Mi. In this model, the signer can control the state of each
message of the document by the secret information Ai. The signer can assign each message of
the document whether it is allowed to sanitize or prohibited to sanitize:

(M , st , σ, SI) ← Sign(M , st ;SK).

Sanitizing. A deterministic algorithm Sanitize takes as input a document M , a state st of M , a
signature σ on M , secret information SI = {Ai|i ∈ stA }, and a state of the sanitized document
st 0 . It outputs a sanitized document M

0 , a state st 0 of M 0, a signature σ
0 of M

0 . It outputs
? if i ∈ stP satisfies i ∈ stS 0 :

((M
0
, st 0 , σ

0
) or ?) ← Sanitize(M , st , σ, SI, st 0 ;PK).

Verification. A deterministic algorithm Verify that, on input a sanitized document M
0 , a state

st 0 of M 0, a possibly valid signature σ
0 , and a public key PK, outputs ‘accept’ or ‘reject’:

{accept, reject } ← Verify(M
0
, st 0 , σ

0
;PK).

We require that sanitizable signature schemes satisfy the following correctness condition: for any
st 0 such that i ∈ stS 0 is in stA ,

Pr[Verify(M
0
, st 0 , σ

0
;PK) = accept |

(PK,SK) ← KeyGen(1k),
(M , st , σ, SI) ← Sign(M , st ;SK),
(M

0
, st 0 , σ

0
) ← Sanitize(M , st , σ, SI, st 0 ;PK)] = 1.

6

3.3 Security Requirements

Sanitizable signature schemes with secret information should satisfy the following criteria, that is,
unforgeability and indistinguishability.

Unforgeability. It should be difficult to generate the valid signature on the document without the
knowledge of the secret signing key, and also to sanitize specific messages of the document without
the secret information.

Game.

Unforgeability is defined using the following game between the challenger B and the adversary A. A
can query to the signing oracle. Let qs be the number of the queries to the signing oracle.

Setup. The challenger B runs the algorithm KeyGen to obtain a public key PK and a secret key
SK. The adversary A is given PK.

Queries. Adaptively, A requests signatures with PK on at most qs documents M1, . . . ,M qs . The
attacker A queries (M j , st j ,flag) to the signing oracle, where flag ∈ {0, 1}. The attacker
A chooses M j = M1

j k M2
j k · · · k Mn

j (notice that each message Mi
j can be Mi

j = φ),
and the state st j for M j . A queries (M j , st j ,flag) to the signing oracle. Remind that
st j = (stS j , stA j , stP j). The signing oracle returns answers according to the flag ∈ {0, 1}
as follows.

flag = 0.
The signing oracle responds to each query with the queried document and its signature
(M j , σj) and the secret information SIj = {Aj

i} where i ∈ stA j . For i ∈ stS j , the signing
oracle picks a random Rj

i ∈ {0, 1}k and sets M j0 = M j0
1 || · · · ||M j0

n , where if i ∈ stS j then
M j0

i = Rj
i , else M j0

i = M j
i . The signing oracle generates a signature on M j0 . Then,

the signing oracle sanitizes the document M j0 (i.e. for any i ∈ stS j , replaces M j0
i with

Mi
j = φ) and generates its signature σj . Note that the sanitized document is equal to M j .

The signing oracle sets SIj = {Aj
i}, where i ∈ stA j . The oracle returns (M j , σj , SIj) to

A.

flag = 1.
The signing oracle responds to each query with the sanitized document and the signature
pair (M j00 , σj00) and the secret information SIj00 = φ. For i ∈ stS j , the signing oracle picks
a random Rj

i ∈ {0, 1}k and sets M j0 = M j0
1 || · · · ||M j0

n , where if i ∈ stS j then M j0
i = Rj

i ,
else M j0

i = M j
i . The signing oracle generates a signature on M j0 . Then, the signing oracle

sanitizes the document M j0 (i.e. for any i ∈ stS j ∪ stA j , replaces M j0
i with Mi

j = φ) and
generates its signature. The oracle returns (M j00 , σj00 , SIj00) to A, where M j00 is sanitized
document, σj00 is its signature, and SIj00 = φ.

Output. Eventually, A outputs a triple (MB, st B , σB) and wins the game if

Verify(MB, st B , σB;PK) = accept and either 1, 2, or 3 holds.

1. MB is not a subdocument of any M j(i = 1, . . . , qs).

2. (a) and (b) are satisfied.

(a) MB is a subdocument of some M j(i = 1, . . . , qs).
(b) Some messages MB

i (i ∈ stP j) are sanitized.

7

3. (a) and (b) are satisfied.
(a) MB is a subdocument of some M j(i = 1, . . . , qs).
(b) There exists some i such that i ∈ stS j ∧ i /∈ stS B .

The statement 1 corresponds to the standard forging of signatures. The statement 2 implies
that the attacker sanitizes a message which is prohibited to sanitize. The statement 3 implies
that the attacker discloses a message which is sanitized.

We now define AdvSigA to be the probability that A wins the game.

Definition 4 A forger A (t, qs, qh, ≤)-wins the game if A runs in time at most t, A makes at most qs

signature queries and at most qh queries to the hash function, and AdvSigA is at least ≤. A sanitizable
signature scheme is (t, qs, qh, ≤)-unforgeable if no forger (t, qs, qh, ≤)-wins it.

Indistinguishability. It should be difficult to obtain any information on the sanitized messages.
Informally, it should be infeasible for the attacker, having access to the signing oracle, to distinguish
between two signatures σ0 and σ1 of his choice, where σ0 (σ1) is the signature on the sanitized
document M00 (M10) of the original document M0 (M1).

For example, let M0 = (l k i k k k e) and M1 = (l k o k v k e). Let M00 = (l k φ k φ k e) and
M10 = (l k φ k φ k e). Let σ0 (σ1) is a signature of the sanitized document M00 (M10). The attacker
cannot distinguish the signatures σ0 and σ1 of two sanitized documents.

Game.

Formally, indistinguishability is defined using the following game between the challenger B and the
adversary A = (Afind, Aguess). A is constructed by two algorithms Afind and Aguess. Let qs be the
number of the queries to the signing oracle.

Setup. The challenger B runs the algorithm KeyGen to obtain a public key PK and a secret key
SK. The adversary A is given PK.

Queries. Adaptively, A = (Afind, Aguess) requests signatures with PK on at most qs documents
M1, . . . ,M qs . Each Query is done in the same way as in the game for the unforgeability.

Afind. Afind outputs two original documents and the corresponding states (M0, st 00) and (M1, st 10).
They must satisfy the following properties.

1. st 00 = st 10 .
2. M0

i = M1
i for all i /∈ stS 00 (i /∈ stS 10).

3. M0
i 6= M1

i for some i ∈ stS 00 (i ∈ stS 10).

Afind sends (M0, st 00) and (M1, st 10) to the challenger B.

Responds of the challenger B. The challenger B receives (M0, st 00) and (M1, st 10) from Afind.

The challenger B first checks that these documents and states satisfy above statements. Then
the challenger B randomly chooses b ← {0, 1} and sends (M b0 , st b0 , σb0) to Aguess, where σb0

is the signature of the sanitized document.

Aguess. Aguess outputs b0 and wins if b = b0.

We now define AdvIndA as AdvIndA = |Pr[b = b0]− 1/2|. We say that the sanitizable signature
scheme satisfies indistinguishability if there is no adversary that wins the above game with non-
negligible probability.

8

Definition 5 A forger A (t, qs, qh, ≤)-wins the game if A runs in time at most t, A makes at most
qs signature queries and at most qh queries to the hash function, and AdvIndA is at least ≤. A
sanitizable signature scheme is (t, qs, qh, ≤)-indistinguishable if no forger (t, qs, qh, ≤)-wins it.

Note that the above definition on the indistinguishability is computational. As defined in [1], the
indistinguishability can be strengthened to be information theoretic. In fact, as done in the proof on
the indistinguishability of our scheme is information theoretic.

4 Our Scheme

4.1 Description

We describe our scheme in this section. Our scheme is processed by three parties consisting of a
signer, a sanitizer, and a verifier.

The key generation algorithm KeyGen, on input 1k, to obtain (x, g2, gx
2) and output (PK,SK),

where PK = (g2, gx
2 , h : {0, 1}§ → G1, e : G1 ×G2 → GT) and SK = (x).

We now describe how to sign the document. The inputs to the algorithm Sign are a document
M , a state st of M , and a secret key SK. The outputs are the document M , the state st of
M , the signature σ of M , and the secret information SI = {Ai|i ∈ stA }.

Sign(M , st , SK)

1. Choose random strings ri ∈ {0, 1}k for i = 1, . . . , n + 1. Note that k is the security parameter.

2. Compute wi = h(Mi k ri) for i = 1, . . . , n.

3. Compute Ai = (wi)x for i = 1, . . . , n.

4. Compute A =
n∏
i

Ai.

5. Compute wn+1 = h(w1 k · · · k wn k rn+1).

6. Compute S = (wn+1)x.

7. Compute D = A · S.

8. Return (M , st , σ, SI), where σ = D k r1 k · · · k rn+1 and SI = {Ai|i ∈ stA }.

Ai is necessary to sanitize message Mi. If the signer wants to prohibit the sanitization of Mi,
then he does not send Ai to the sanitizer. The signer sends (M , st , σ, SI = {Ai|i ∈ stA }) to the
sanitizer.

The sanitizer receives (M , st , σ, SI = {Ai|i ∈ stA }) from the signer. We now describe how to
sanitize the document M = M1 k M2, k · · · k Mn. The input is (M , st , σ, SI, st 0). It outputs a
sanitized document M

0 , a state st 0 of the document, a signature σ
0 of M

0 .

Sanitize (M , st , σ, SI, st 0)

1. Check that each index i ∈ stS 0 is in stA . If not, then report failure and terminate. Otherwise
continue.

2. Check that Ai satisfies e(wi, gx
2) = e(Ai, g2) for all i ∈ stA . If not, then report failure and

terminate. Otherwise continue.

3. Compute wi = h(Mi k ri) for all i ∈ stA and i ∈ stP .

9

4. Compute D
0
= D/

∏
i∈stS 0

Ai.

5. Return (M 0
, st 0 , σ

0), where σ
0 = D

0 k ri(i /∈ stS 0) k wi(i ∈ stS 0).

The sanitizer sends (M 0
, st 0 , σ

0) to the verifier, where M
0 is the sanitized document of M by

replacing each Mi (i ∈ stS 0) with φ.

Verify(M 0
, st 0 , σ

0
, PK)

1. Check that M
0
i = φ for all i ∈ stS 0 and M

0
i 6= φ for all i /∈ stS 0 . If not, then report failure and

terminate. Otherwise continue.

2. Compute each wi = h(Mi k ri) for all i /∈ stS 0 .

3. Compute wn+1 = h(w1 k · · · k wn k rn+1)

4. Compute w = (
∏

i/∈stS 0

wi) · wn+1.

5. Return ‘accept’ if e(D0
, g2) = e(w, gx

2) and return ‘reject’ otherwise.

4.2 Security

Correctness. It is clear that for any for any st 0 such that i ∈ stS 0 is in stA , a signature of the
sanitized document generated correctly by the algorithms KeyGen, Sign, and Sanitize is accepted
by the algorithm Verify.

4.2.1 Unforgeability

The following theorem implies that our scheme is unforgeable. The proof of the theorem is in
Appendix A.

Theorem 1 Let (G1, G2) be a (t0 , ≤0)-co-GDH group pair of order p. Then our scheme on (G1, G2)
is (t, qs, qh, ≤)-unforgeable in the random oracle model for all t and ≤ satisfying

≤ ≥ e(qs + 1) · ≤0 ,

t ∑ t
0 − cG1(qh + (n + 2) · qs),

where cG1 is constant that depends on G1 and e is the base of the natural logarithm.

Hence, security of the signature scheme follows from the hardness of the co-CDH problem on
(G1, G2).

4.2.2 Indistinguishability

The following theorem implies that our scheme satisfies indistinguishability. The proof of the theorem
is in Appendix B.

Theorem 2 If h is a random oracle, A can distinguish the signature with the sanitized document of
(M0, st 0) and that of (M1, st 1) with probability at most 1/2k−1.

10

5 Discussion on the Models for Sanitizable Signature

There exist many models and schemes for sanitizable signature. In this section, we first discuss
various models of sanitizable signature. We then classify the previously proposed schemes and our
scheme.

5.1 Various Models

In this section, we discuss various models for sanitizable signature. We here focus on three major
properties such as state controllability for the signer, flags for the sanitized messages, and designation
of the sanitizer.

State controllability for the signer. We can consider three types of the state controllability for
the signer.

1. The signer cannot control each state of the message. It means that the sanitizer can sanitize
any message he wants and the signer cannot restrict sanitization.

2. The signer can assign one of the states ‘disclosed and sanitizing is allowed’ or ‘disclosed and
sanitizing is prohibited’ to the message. However, one cannot change each state of the message
without the signer’s secret key after the signer generates the signature.

3. The signer can assign one of the conditions ‘disclosed and sanitizing is allowed’ or ‘disclosed
and sanitizing is prohibited’. One can control each state of the message without the signer’s
secret key even after the signer generates the signature.

We cannot say that which one is superior to another. It depends on the application.

Flags for the sanitized messages. We can consider three types of the flags for the sanitized
messages.

1. The positions of the sanitized message are flagged. In this case, anyone can notice which
messages are sanitized by the sanitizer.

2. The positions of the sanitized messages are not flagged. In this case, anyone except for the
signer and the sanitizer cannot notice the sanitization of the messages.

3. The sanitizer can select whether the positions of the sanitized message are flagged or not.

We cannot say that which one is superior to another. It depends on the application.

Designation of the sanitizer. We can consider three types of the designation of the sanitizer.

1. Anyone who receives the document and its signature can generate the signature of the sanitized
document.

2. The signer has to designate the specific sanitizer. Only the designated sanitizer can sanitize
the document. Even the signer cannot sanitize the document after he generates the signature.

3. The signer can select whether he designates the specific sanitizer or not.

We cannot say that which one is superior to another. It depends on the application.

11

5.2 Previous Works

In this section, we review the previously proposed schemes. We also classify these schemes and ours
in terms of the categories discussed above.

Digitally signed document sanitizing schemes (SUMI-1, SUMI-2, SUMI-3, SUMI-4). Miyazaki
et al. [9] proposed simple schemes SUMI-1, SUMI-2, SUMI-3, and SUMI-4. For example, we describe
SUMI-4 as follows. The signer generates random numbers for all messages of the document. Then the
signer calculates hash values with corresponding random numbers for all messages of the document
and generates the signature for the concatenation of the hash values. The sanitizer can sanitize any
messages he wants. If he wants to sanitize the specific messages, he just calculates the hash values
and substitutes the hash values for the messages. The model of the scheme is the type 1 of the state
controllability for the signer. The signer cannot prohibit sanitization. This model is the type 1 of the
flags for the sanitized messages. The positions of the sanitized messages are flagged. If the message
is replaced with its hash value, one can notice that the message is sanitized. This model is the type 1
of the designation of the sanitizer. Anyone who receives the documents, corresponding signatures,
and the secret information can generate the sanitized signatures.

Content extraction signatures (CES-CV, CES-HT, CES-RSAP, CES-MERP). Steinfeld, Bull,
and Zheng proposed [10] CES-CV, CES-HT, CES-RSAP, and CES-MERP). They are provably se-
cure. CES-CV uses the standard digital signature scheme and the message commitment scheme.
The security is based on unforgeability of the standard digital signature, hiding and binding of the
commitment scheme. CES-RSAP is the modification of an RSA batch screening verifier, proposed by
Bellare et al [2]. CES-HT is the variant of CES-CV, and CES-MERP is the variant of CES-RSAP.

In the model of the scheme, the signer controls the states of the messages by Content Extrac-
tion Access Structure (CEAS). The signer uses CEAS to specify which messages the signer allows
sanitization. CEAS is an encoding of positions of the messages that are allowed to sanitize.

This model is the type 2 of the state controllability for the signer. The signer can assign to the
message, one of the conditions ‘disclosed and sanitizing is allowed’ or ‘disclosed and sanitizing is
prohibited’ by CEAS. However, the signer cannot control each state of the message of once the signer
generates the signature of the document. The signer signs to the concatenation of the document and
CEAS. This model is the type 1 of the flags for the sanitized messages. The positions of the sanitized
messages are flagged. One can notice which messages are sanitized by the sanitizer. This model is
the type 1 of the designation of the sanitizer. Anyone who receives the documents, corresponding
signatures can generate the sanitized signatures.

Digitally signed document sanitizing scheme with disclosure condition control (SUMI-5).
Miyazaki et al. [8] proposed SUMI-5. This scheme uses the standard digital signature scheme and
the message commitment scheme. It is provably secure. The security is based on unforgeability of
the standard digital signature, hiding and binding of the commitment scheme.

The model of the scheme is the type 3 of the state controllability for the signer. The signer
can assign one of the conditions ‘disclosed and sanitizing is allowed’ or ‘disclosed and sanitizing is
prohibited’. In addition to it, the signer can control each state of the message even after he generates
the signature. The signer can control the states by some auxiliary information. This model is the
type 1 of the flags for the sanitized messages. The positions of the sanitized messages are flagged. One
can notice which messages are sanitized by the sanitizer. This model is the type 1 of the designation
of the sanitizer. Anyone who receives the documents, corresponding signatures, and some auxiliary
information can generate the sanitized signatures.

Digitally signed document sanitizing scheme from bilinear maps (SUMI-6). Miyazaki et
al. [7] also proposed SUMI-6. This scheme is based on the aggregate signature from bilinear maps.

12

scheme state controllability flag designation
SUMI-4 [9] 1 1 1

CES-CV [10] 2 1 1
SUMI-5 [8] 3 1 1
SUMI-6 [7] 3 2 1

Sanitizable signatures [1] 2 - 2
Our scheme 3 1 1

Figure 1: The types of models

The model of the scheme is the type 3 of the state controllability for the signer. In this model, the
signer can control the state of the document even after he generates the signature. This model is the
type 2 of the flags for the sanitized messages. Miyazaki et al. claims that the scheme can hide the
number of sanitized messages of the document. It means that the positions of the sanitized messages
are not flagged. . This model is the type 1 of the designation of the sanitizer. Anyone who receives
the document, the signature, and the secret information can sanitize.

However, there are some defects in this scheme. At first, it has to put the message ID and the
address of each message. It is undesirable to put the message ID and the address. Second, they
did not provide the security proof. The definition of the security is not clear and not enough. This
scheme has the attack that anyone can sanitize the message which is prohibited by the signer to
sanitize.

Sanitizable signatures. Ateniese, Chou, Medeiros, and Tsudik proposed schemes called sanitiz-
able signatures [1]. This model of the scheme allows the sanitizer (authorized semi-trusted censors)
to modify parts of the signed message without interacting with the signer. Notice that the meaning
of ‘sanitize’ in this scheme is different from other protocols. In this scheme, ‘sanitize the message’
means ‘change the message’, while in our scheme and the other schemes, ‘sanitize the message’ means
‘hide the message’.

We describe the scheme. There exist two pairs of keys. The signer and the sanitizer (semi-trusted
censors who can modify parts of a signed message) have their own public keys and secret keys. The
signer signs the document with his own secret key and the sanitizer’s public key. The sanitizer (semi-
trusted censors who receives the signed message) uses his secret key to generate the new document
of the signature. The verifier verifies the signature with the signer’s public key and sanitizer’s public
key.

The model of the scheme is the type 2 of the state controllability for the signer. The signer
can assigns to the message, one of the conditions ‘disclosed and sanitizing is allowed’ or ‘disclosed
and sanitizing is prohibited’. However, once the signer generates the signature of the document, the
signer cannot control each state of the message of the document. In other words, the signer cannot
change each state of the message once the signer generates the signature. In this model, only the
designated sanitizer can sanitize the document. Even the signer cannot sanitize the document after
he generates the signature of it. However, the meaning of ‘sanitize’ in this scheme is different from
other protocols.

5.3 Our Scheme

In this section, we classify our scheme and the previously proposed schemes in terms of the categories
discussed above. We discuss our model and then list the models with the types in Fig 1.

The model of our scheme is the type 3 of the state controllability for the signer. The signer
can assign one of the conditions ‘disclosed and sanitizing is allowed’ or ‘disclosed and sanitizing
is prohibited’. In addition to it, the signer can control each state of the message even after he
generates the signature. The signer can control the states by the secret information. He sends the

13

secret information of the message to the sanitizer if he allows the sanitizer to sanitize the message.
Otherwise he does not sends the secret information of the message. This model is the type 1 of the
flags for the sanitized messages. The positions of the sanitized message are flagged. One can notice
which messages are sanitized by the sanitizer. In our scheme, φ indicates that the message is sanitized.
This model is the type 1 of the designation of the sanitizer. Anyone who receives the documents,
corresponding signatures, and the secret information can generate the sanitized signatures.

The model of our scheme is same as SUMI-5. In SUMI-5, they use a standard digital signature
scheme and a commitment scheme. The security of their scheme is based on the unforgeability of
the standard digital signature and the perfect concealing and computational binding properties of
the commitment scheme, while our scheme satisfies the security requirement by assuming the gap
co-Diffie-Hellman groups in the random oracle model.

6 Concluding Remarks

In this paper, we have precisely formalized the algorithms and the security requirements of sanitizable
signature with secret information. We have proposed a sanitizable signature scheme based on the
gap co-Diffie-Hellman groups and proved that our scheme satisfies these security requirements.

We have also discussed various models of sanitizable signature. In particular, we have focused on
three major properties, such as state controllability for the signer, flags for the sanitized messages,
and designation of the sanitizer. We have also classified the previously proposed schemes and our
scheme.

The proof for the indistinguishability of our scheme heavily depends on the random oracle model.
It is interesting to consider the schemes without the random oracles and their security proofs.

References

[1] Ateniese, G., Chou, D., de Medeiros, B., and Tsudik, G. Sanitizable signatures. In
ESORICS 2005 (Milan, Italy, 2005), vol. 3679 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 159–177.

[2] Bellare, M., Garay, J., and Rabin, T. Fast batch verification for modular exonentiation
and digital signatures. In Advances in Cryptology – EUROCRYPT ’98 (Espoo, Finland, May
1998), K. Nyberg, Ed., vol. 1403 of Lecture Notes in Computer Science, Springer-Verlag, pp. 236–
250.

[3] Bellare, M., and Rogaway, P. The exact security of digital signatures - how to sign with
rsa and rabin. In Advances in Cryptology – EUROCRYPT ’96 (Saragossa, Spain, May 1996),
U. Maurer, Ed., vol. 1070 of Lecture Notes in Computer Science, Springer-Verlag, pp. 399–416.

[4] Boneh, D., Lynn, B., and Shacham, H. Short signatures from the weil pairing. In Advances
in Cryptology – ASIACRYPT 2001 (Gold Coast, Australia, December 2001), C. Boyd, Ed.,
vol. 2248 of Lecture Notes in Computer Science, Springer-Verlag, pp. 514–532.

[5] Joux, A., and Nguyen, K. Separating decision diffie-hellman from diffie-hellman in cryp-
tographic groups. Cryptology ePrint Archive, Report 2001/003, http://eprint.iacr.org/,
2001.

[6] Micali, S., and Rivest, R. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. Computing 17, 2 (1988), 281–308.

[7] Miyazaki, K., Hanaoka, G., and Imai, H. Digitally signed document sanitizing scheme from
bilinear maps. In The 2005 Symposium on Cryptography and Information Security (SCIS2005)
(Maiko Kobe, Japan, 2005), pp. 1471–1476.

14

[8] Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., and Imai, H.
Digitally signed document sanitizing scheme with disclosure condition control. IEICE Trans.
Fundamentals E88-A, 1 (2005), 239–247.

[9] Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., and Yoshiura,
H. Digital documents sanitizing problem. Tech. Rep. ISEC2003-20, IEICE, 2003.

[10] Steinfeld, R., Bull, L., and Zheng, Y. Content extraction signatures. In Information
Security and Cryptology–ICISC’01 (Seoul, South Korea, 2002), vol. 2288 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 285–304.

A Unforgeability

The following theorem shows that our scheme is secure.

Theorem 1 Let (G1, G2) be a (t0 , ≤0)-co-GDH group pair of order p. Then our scheme on (G1, G2)
is (t, qs, qh, ≤)-unforgeable in the random oracle model for all t and ≤ satisfying

≤ ≥ e(qs + 1) · ≤0 ,

t ∑ t
0 − cG1(qh + (n + 2) · qs),

where cG1 is constant that depends on G1 and e is the base of the natural logarithm.

Hence, security of the signature scheme follows from the hardness of the co-CDH problem on
(G1, G2).

Proof of Theorem 1. Suppose A is a forger algorithm that (t, qs, qh, ≤)-breaks our scheme. We
show how to construct a t

0-time algorithm B that solves the co-CDH problem in (G1, G2) with
probability at least ≤

0 . This will contradict the fact that (G1, G2) are (t0 , ≤0)-co-GDH group pair.
Let g2 be a generator of G2. Algorithm B is given g2, ga

2 ∈ G2 and t ∈ G1. Its goal is to output
ta ∈ G1. Algorithm B simulates the challenger and interacts with forger A as follows.

Setup. Algorithm B starts by giving A the generator g2 and the public key ga
2 · gr

2, where r is
random in p.

h-queries. At any time algorithm A can query to the random oracle h. To respond to these queries
algorithm B maintains a list (h-list) of tuples (Mi, ri, wi, bi, ci) as explained below. The list is initially
empty. When A queries Mi k ri (Mi ∈ {0, 1}k and ri ∈ {0, 1}k) to the oracle h, algorithm B responds
as follows.

1. If the query Mi k ri already appears on the h-list in a tuple (Mi, ri, wi, bi, ci), then algorithm B
responds with h(Mi k ri) = wi ∈ G1.

2. Otherwise, B generates a random coin ci ∈ {0, 1} such that Pr[ci = 0] = 1/(qs + 1).

3. Algorithm B picks a random bi ∈ p. If ci = 0, B computes wi ← t · √(g2)bi ∈ G1. If ci = 1, B
computes wi ← √(g2)bi ∈ G1.

4. Algorithm B adds the tuple (Mi, ri, wi, bi, ci) to the h-list and responds wi.

Note that wi is uniform in G1 and is independent of A’s current view.

15

Signature queries. Let (M j , st j ,flag) be a signature query issued by A, where M j = M1
j k

M2
j , k · · · k Mn

j . Algorithm B responds to this query as follows:

flag = 0.

1. Algorithm B obtains M j
i (i = 1, . . . , n) from M j . If M j

i = φ, then B picks a random
M j

i ∈ {0, 1}k.
2. Algorithm B picks a random rj

i ∈ {0, 1}k and runs above algorithm for responding to
h-queries to obtain a wj

i ∈ G1 as h(M j
i k rj

i) for all i = 1, . . . , n. Let (M j
i , rj

i , w
j
i , b

j
i , c

j
i) be

the corresponding tuple on the h-list. If cj
i = 0 for some i = 1, . . . , n, B repeats running

above algorithm until it satisfies cj
i = 1. It follows that cj

i = 1 for all i = 1, . . . , n.
3. Let M j

n+1 = wj
1 k · · · k wj

n. Algorithm B picks a random rj
n+1 ∈ {0, 1}k and runs above

algorithm for responding to h-queries to obtain a wj
n+1 ∈ G1 as h(M j

n+1 k rj
n+1). Let

(M j
n+1, r

j
n+1, w

j
n+1, b

j
n+1, c

j
n+1) be the corresponding tuple on the h-list. If cj

n+1 = 0, then
B reports failure and terminates. Otherwise continues.

4. Algorithm B computes Aj
i = (wj

i)
a+r = √(ga

2)bj
i · √(g2)rbj

i . (Note that wj
i = √(g2)bj

i since
cj
i = 1 for all i = 1, . . . , n.)

5. Algorithm B computes Sj = (wj
n+1)

a+r = √(ga
2)bj

n+1 · √(g2)rbj
n+1 .

6. Algorithm B computes Dj = Sj · (
n∏

i=1

Aj
i) and σj = Dj k rj

i k · · · k rj
n+1. Note that

Algorithm B sanitizes M j
i for i ∈ stS j .

7. Algorithm B returns σj = Dj k rj
i k · · · k rj

n+1 and Aj
i (i ∈ stA j).

flag = 1.

1. Algorithm B obtains M j
i (i = 1, . . . , n) from M j . If M j

i = φ, then B picks a random
M j

i ∈ {0, 1}k.
2. Algorithm B picks a random rj

i ∈ {0, 1}k and runs above algorithm for responding to h-
queries to obtain a wj

i ∈ G1 such that h(M j
i k rj

i) for all i = 1, . . . , n. Let (M j
i , rj

i , w
j
i , b

j
i , c

j
i)

be the corresponding tuple on the h-list. If cj
i = 0 for some i = 1, . . . , n, B repeats running

above algorithm until it satisfies cj
i = 1. It follows that cj

i = 1 for all i = 1, . . . , n.
3. Let M j

n+1 = wj
1 k · · · k wj

n. Algorithm B picks a random rj
n+1 ∈ {0, 1}k and runs above

algorithm for responding to h-queries to obtain a wj
n+1 ∈ G1 such that h(M j

n+1 k rj
n+1).

Let (M j
n+1, r

j
n+1, w

j
n+1, b

j
n+1, c

j
n+1) be the corresponding tuple on the h-list. If cj

n+1 = 0,
then B reports failure and terminates. Otherwise continues.

4. Algorithm B computes Aj
i = (wj

i)
a+r = √(ga

2)bj
i · √(g2)rbj

i . (Note that wj
i = √(g2)bj

i since
cj
i = 1 for all i = 1, . . . , n.)

5. Algorithm B computes Sj = (wj
n+1)

a+r = √(ga
2)bj

n+1 · √(g2)rbj
n+1 .

6. Algorithm B computes Dj = Sj · (
n∏

i=1

Aj
i) and σj = Dj k rj

i k · · · k rj
n+1. Note that

Algorithm B sanitizes M j
i for i ∈ stS j .

7. Algorithm B computes Dj0 = Dj/
∏

i∈stA j

Aj
i .

8. Algorithm B returns σj0 = Dj0 k rj
i k · · · k rj

n+1. Note that algorithm B does not return
any Aj

i (i ∈ stA j).

16

Outputs. Eventually algorithm A generates a document-signature pair (MB, σB). By the defini-
tion of the unforgeability, (MB, σB) satisfies one of these cases.

1. MB is not a subdocument of any M j(i = 1, . . . , qs).

2. (a) and (b) are satisfied.

(a) MB is a subdocument of some M j(i = 1, . . . , qs).

(b) Some messages MB
i (i ∈ stP j) are sanitized.

3. (a) and (b) are satisfied.

(a) MB is a subdocument of some M j(i = 1, . . . , qs).

(b) There exists some i such that i ∈ stS j ∧ i /∈ stS B .

We show that algorithm B can output ta ∈ G1 in Case 1, Case 2, and Case 3.

Case 1

If a document-signature pair (MB, σB) satisfies Case 1, then algorithm A generates a document-
signature pair (MB, σB) such that no signature query was issued for MB.

1. Algorithm B obtains MB
i (i = 1, . . . , n) from MB.

2. Algorithm B does nothing to the messages MB
i (i ∈ stS).

3. Algorithm B runs h-queries algorithm to obtain (MB
i , rB

i , wB
i , bB

i , cB
i) if there is no tuple on the

h-list.

4. Algorithm B obtains all (MB
i , rB

i , wB
i , bB

i , cB
i) for i = 1, . . . , n + 1. Notice that MB

n+1 = wB
1 k

· · · k wB
n .

5. If cB
i = 0 for only one i and cB

i = 1 for n other i, then B computes DB/(tr ·
n+1∏
i=1

(√(ga
2)·√(g2)bir)).

This completes the description of algorithm B if A’s output satisfies Case 1. It remains to show
that B solves the given instance of the co-CDH problem in (G1, G2) with probability at least ≤

0 . To
do so, we analyze the three events needed for B to succeed:

ε1: Algorithm B does not abort as a result of any of A’s signature queries.

ε2: A generates a valid document-signature forgery (MB, σB).

ε3: Event ε2 and cB
n+1 = 0.

Algorithm B succeeds if all of these events happen. The probability Pr[ε1 ∧ ε3] decomposes as

Pr[ε1 ∧ ε3] = Pr[ε1] · Pr[ε2|ε1] · Pr[ε3|ε1 ∧ ε2]

The following claims give a lower bound for each of these terms.

Lemma 1 The probability that algorithm B does not abort as a result of A’s signature queries is at
least 1/e. Hence, Pr[ε1] ≥ 1/e.

17

Proof. Without loss of generality, we assume that A does not ask for the signature of the same
document twice. We prove by induction that after A makes i signature queries, the probability that
B does not abort is at least (1 − 1/(qs + 1))i. The lemma is trivially true for i = 0. Let Mi be A’s
signature query and let (Mi, ri, wi, bi, ci) be the corresponding tuple on the h-list. The only value
that could be given to A that depends on ci is H(Mi k ri), but the distribution on H(Mi k ri) is
the same whether ci = 0 or ci = 1. Therefore, the probability that this query causes B to abort
is at most 1/(qs + 1). That is because B generates a random coin ci ∈ {0, 1} only when the query
is M j

n+1 = wj
1 k · · · k wj

n k rn+1. Using the inductive hypothesis and the independence of ci, the
probability that B does not abort after this query is at least (1 − 1/(qs + 1))i. This proves the
inductive lemma. Since A makes at most qs signature queries the probability that B does not abort
as a result of all signature queries is at least (1− 1/(qs + 1))qs ≥ 1/e.

Lemma 2 If algorithm B does not abort as a result of A’s signature queries, then algorithm A’s view
is identical to its view in the real attack. Hence, Pr[ε2|ε1] ≥ ≤.

Proof. The public key given to A is from the same distribution as a public key generated by
algorithm KeyGen. Responses to h-queries are as in the real attack since each response is uniformly
and independently distributed in G1. All responses to signature queries are valid. Therefore, A will
generate a valid document-signature pair with probability at least ≤. Hence, Pr[ε2|ε1] ≥ ≤.

Lemma 3 The probability that algorithm B does not abort after A outputs a valid forgery that satisfies
Case 1 is at least 1/(qs + 1). Hence, Pr[ε3|ε1 ∧ ε2] ≥ 1/qs + 1.

Proof. Given that event ε1 and ε2 happened, algorithm B will abort only if A generates a
forgery (MB, σB) for which the tuple (MB

n+1, r
B
n+1, w

B
n+1, b

B
n+1, c

B
n+1) on the h-list has cB

n+1 = 1. The
distribution on h(MB

n+1 k rB
n+1) is the same whether cB

n+1 = 0 or cB
n+1 = 1. Since A could not have

issued a signature query for (MB
n+1 k rB

n+1). We know that c is independent of A’s view. Therefore,
Pr[c = 0|ε1 ∧ ε2] ≥ 1/qs + 1 as required.

Using the bounds from the lemma above and equation Pr[ε1∧ε3] = Pr[ε1] ·Pr[ε2|ε1] ·Pr[ε3|ε1∧ε2],
we can say that B generates the correct answer with probability at least ≤/e(qs + 1) ≥ ≤

0 . Algorithm
B’s running time is the same as A’s running time plus the time to respond to (qh + (n + 1) · qs) hash
queries and qs signature queries. Each query requires an exponentiation in G1. We assume that it
takes time cG1 . Hence, the total running time is at most t + cG1(qh + (n + 2) · qs) ∑ t

0 .

Case 2

If a document-signature pair (MB, σB) satisfies Case 2, then A outputs some Ai that is not asked
to the signing oracle before.

In this case, we can mention that algorithm B can output correct answer by the following propo-
sition.

Proposition 1 Let (G1, G2) be a (t0 , ≤0)-co-GDH group pair of order p. Then the co-GDH signature
scheme on (G1, G2) is (t, qs, qh, ≤)-secure against existential forgery under an adaptive chosen-message
attack in the random oracle model for all t and ≤ satisfying

≤ ≥ e(qs + 1) · ≤0 ,
t ∑ t

0 − cG1(qh + 2qs),

where cG1 is constant that depends on G1 and e is the base of the natural logarithm.

We described the co-GDH signature scheme in section 2. The proof of this proposition shows
directly how algorithm B outputs ta ∈ G1. This proof is done by Boneh, Lynn, Shacham in [4].

18

Case 3

In this case, it satisfies the following three statement.

1. MB is a subdocument of some M j(i = 1, . . . , qs).

2. There exists some i such that i ∈ stS j ∧ i /∈ stS B .

If a document-signature pair (MB, σB) satisfies Case 3, B can output ta ∈ G1 as follows.

1. Algorithm B obtains MB
i (i = 1, . . . , n) from MB.

2. Algorithm B does nothing to the messages MB
i (i ∈ stS).

3. Algorithm B runs h-queries algorithm to obtain (MB
i , rB

i , wB
i , bB

i , cB
i) if there is no tuple on the

h-list.

4. Algorithm B obtains all (MB
i , rB

i , wB
i , bB

i , cB
i) for i = 1, . . . , n + 1. Notice that MB

n+1 = wB
1 k

· · · k wB
n .

5. Algorithm B checks the signature list and obtain all the signatures of M j that are the subdoc-
ument of MB.

6. If cB
i = 0 for only one i and cB

i = 1 for n other i, then B computes Dj/DB.

Lemma 4 The probability that algorithm B does not abort after A outputs a valid forgery that satisfies
Case 3 is at least 1/(qs + 1).

Proof. The probability that algorithm B outputs a valid forgery is equal to the probability that
cB
i = 0 for only one i and cB

i = 1 for n other i.

Summary of Case 1, Case 2, and Case 3

We showed that given g2, ga
2 ∈ G2 and t ∈ G1, algorithm B can output ta ∈ G1 in Case 1, Case 2,

and Case 3.
If the output of A satisfies Case 1, B generates the correct answer with probability at least

≤/e(qs + 1) ≥ ≤
0 . The running time is estimated as t + cG1(qh + (n + 2) · qs) ∑ t

0 .
If the output of A satisfies Case 2, B generates the correct answer with probability at least

≤/e(qs + 1) ≥ ≤
0 . The running time is t ∑ t

0 − cG1(qh + 2qs).
If the output of A satisfies Case 3, B generates the correct answer with probability at least

≤/e(qs + 1) ≥ ≤
0 . The running time is estimated as t + cG1(qh + (n + 2) · qs) ∑ t

0 .
Namely, given g2, ga

2 ∈ G2 and t ∈ G1, algorithm B can output ta ∈ G1 with probability at least
≤/e(qs + 1) ≥ ≤

0 . The running time is estimated as t + cG1(qh + (n + 2) · qs) ∑ t
0 . It does not depends

on the probability of the event Case 1, Case 2, and Case 3. We proved the theorem.

B Indistinguishability

The following theorem shows that our scheme satisfies indistinguishability.

Theorem 2 If h is a random oracle, A can distinguish the signature with the sanitized document of
(M0, st 0) and that of (M1, st 1) with probability at most 1/2k−1.

19

Proof of Theorem 2. Suppose Afind outputs (M0, st 00) and (M1, st 10).
We now compare two signatures with the sanitized document of (M0, st 0) and that of (M1, st 1).

We show that Aguess cannot distinguish them.
Let σ0 = D

00 k r0
i (i /∈ stS 00) k h(M0

i k r0
i)(i ∈ stS 00) and σ1 = D

01 k r1
i (i /∈ stS 01) k h(M1

i k
r1
i)(i ∈ stS 01). Note that D0b = Db/

∏
i∈stS 0b

Ab
i , and Ab

i = h(M b
i k rb

i).

If Aguess distinguishes some of their elements, Aguess can distinguish σb from the challenger B.
By the definition of the Sign, each rb

i is chosen randomly so that Aguess can distinguish them
with the probability 1/2k. By the definition of the random oracle, Aguess can distinguish h(M b

i k rb
i)

with probability at most 1/2k. We can also say that Aguess can distinguish each Ai with probability
at most 1/2k. We can also say that Aguess can distinguish D

0 with probability at most 1/2k.
Therefore, A can distinguish the signature with the sanitized document of (M0, st 0) and that

of (M1, st 1 with probability at most 1/2k−1.

Remarks. The above proof heavily depends on the random oracle model. It is interesting to
consider the schemes without the random oracles and their security proofs.

20

