
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: Computer Science

ISSN 1342-2812

A Message Passing Algorithm for MAX2SAT

Osamu Watanabe and Masaki Yamamoto

Dec. 2005, C–216

A Message Passing Algorithm for MAX2SAT

Osamu Watanabe∗and Masaki Yamamoto
Dept. of Math. and Comp. Sci., Tokyo Inst. of Technology, Japan

(watanabe@is.titech.ac.jp)

Research Report C-216

Abstract
We propose a simple and deterministic algorithm for solving MAX2SAT,
which runs O(n(n+m)) time where n and m are respectively the number of
variables and clauses. For discussing its average case performance, we pro-
pose one natural “planted solution model”; a way to generate a MAX2SAT
instance under a certain distribution defined by parameters p and r. We
first show that if p = Ω(ln2 n/n) and p ≥ 9r, then with high probability
the planted solutions (there are four planted solutions) are only the op-
timal solution, unsatisfying 3rn2 clauses out of (on average) 2pn2 + 8rn2

clauses. Then under this planted solution model we show that, for some
constant ε > 0, our algorithm yields one of the planted solutions with high
probability if p− r ≥ n−1/2+ε.

1 Introduction

Motivated by the recent work [OW05] on deriving a simple message passing algorithm for
graph partitioning problems, we consider in this paper the MAX2SAT problem, one of the
well-know NP-hard optimization problems, and propose a simple deterministic algorithm that
runs in O(n(n + m)) time for a given 2-CNF formula with n variables and m clauses. For
analyzing its average case performance, we propose one probabilistic model, a variation of
the planted solution model [JS98] that has been used for the same purpose for the Graph
Bisection problem. Then we prove that the algorithm produces one of the optimal solutions
with high probability if instances are generated by our planted solution model with probability
parameters satisfying a certain condition.

We introduce some notations and state our result more precisely. We will use standard
notions and notations on propositional Boolean formulas and graphs without explanation. For
Boolean formulas, the size parameter n determines the number of variables. Throughout this
paper, for simplicity, we assume that a formula has even number of variables, and let 2n
denote the number of variables of a given formula. On the other hand, we use m to denote
the number of clauses of a given formula. We use x1, ..., x2n for denoting Boolean variables.
Since we consider only 2CNF formulas, formulas defined as a conjunction of clauses of two
literals, each clause is specified as (xi∨xj), (xi∨xj), (xi∨xj), or (xi∨xj), for 1 ≤ i ≤ j ≤ 2n,
where xi and xi are called positive and negative literals respectively. A formula may contain

∗Supported in part by a Grant-in-Aid for Scientific Research on Priority Areas “New Horizons in Computing”
2004-2006.

1

the same clause more than once. We assume that formulas are encoded appropriately. Now
what follows is the description of the MAX2SAT problem.

MAX2SAT problem

Input: A 2CNF formula over Boolean variables x1, ..., x2n.
Task Find an assignment to x1, ..., x2n maximizing the number of satisfied clauses.

In this paper, we reduce the MAX2SAT problem to some variable of graph partitioning
problems. Consider any 2-CNF formula F with 2n variables. Corresponding to this F , consider
the following directed graph HF = (U,A): A vertex set U is defined by U

def= U1∪ Ũ1∪U2∪ Ũ2,
where

U1
def= {1, . . . , n}, Ũ1

def= {−1, . . . ,−n},
U2

def= {n + 1, . . . , 2n}, Ũ2
def= {−(n + 1), · · · ,−2n}.

That is, U = {−2n, ...,−1, 1, ..., 2n}. An edge set A consists of directed edges (i, j) corre-
sponding clauses (`|i| → `|j|) in F . For example, suppose that F has a clause (x2 ∨ x5), which
is equivalent to both (x2 → x5) and (x5 → x2). Then corresponding to this clause, two edges
(−2,−5) and (5, 2) are put into A.

Now consider any assignment a for F , which is considered as a mapping {1, ..., 2n} to
{−1,+1}; that is, a(i) = +1 and a(i) = a(i) − 1 means to assign respectively true and false
to the variable xi. This assignment defines the assignment t to vertices of HF in the following
natural way: for any i ∈ U , t(i) = a(i) if i > 0 and t(i) = −a(i) if i < 0. Consider the
partition of U by the assignment t. Then it is easy to see that cut edges from a true vertex
to a false vertex corresponds to clauses unsatisfied by the assignment a. (Precisely speaking,
two cut edges corresponds to one unsatisfied clause.) Consider the converse. We say that an
assignment t to U is consistent if t(i) = −t(−i) for all i ∈ U . Then it is clear that any consistent
assignment t defines some assignment a to F . Therefore, finding a consistent assignment to
vertices (or a partition) that minimizes the number of cut edges from true to false vertices is
to find the optimal assignment for F .

For this problem, we consider a simple message passing type algorithm1 which computes
b(i), “belief” that a vertex i is assigned true. The computation is based on the following simple
heuristic idea: if a graph HF has an directed edge (j, i) and b(i) is negative, i.e., we believe
(for some reason) that this vertex i is assigned false, then (in order to minimize unsatisfied
cut edges), we had better send a message to the vertex j, suggesting the false assignment to
j. At each iteration, such messages are sent in parallel from vertices with negative beliefs
to their connected vertices. Then at each vertex, its belief is updated based on the received
messages. Note that we need to compute a consistent assignment; thus, beliefs should be
consistent between i and −i, which is achieved by simply forcing b(i) = −b(−i) at each step.
After several iterations, if all beliefs get stabled, then we can determine the assignment to
each vertex i based on the sign of b(i). It is not so hard to see that the algorithm can be
implemented so that each iteration needs O(n + m) time by the standard unit cost RAM
model.

Although simple, we think that this algorithm works quite well on average. For justify-
ing our intuition, we introduce one scenario for discussing the average case performance of

1From the term “belief”, one may expect some relation to the Perl’s belief propagation algorithm [Pea88].
Our algorithm, though motivated by the one [OW05] that is indeed derived from the Perl’s belief propagation
algorithm, has nothing to do with it.

2

algorithms for the MAX2SAT problem, and prove that our algorithm indeed yields a correct
answer with high probability. For the average case scenario, we propose some planted solu-
tion model, which has been proposed [Yam05] as a method for generating test instances for
MAX2SAT algorithms. Also it is regarded as a variation of the the planted solution model
[JS98] that has been used for the same purpose for the Graph Bisection problem. In general, a
model for an average case scenario is a way to define a distribution of problem instances, and
a planted solution model defines is by providing a way to generate problem instances. Intu-
itively, under a planted solution model, a target solution — which is called a planted solution
— is first determined (or generated randomly), and a problem instance is generated randomly
consistent with this solution. In our situation, we first fix one assignment, and then gener-
ate clauses independently following a certain distribution; roughly, clauses satisfied with the
assignment are generated with probability p, and clauses unsatisfied with the assignment are
generated with probability r. More precise description of the generation procedure is stated
again in terms of graphs; see the next section for the details. Intuitively, if p >> r, then one
can expect that the planted solution is the optimal assignment, satisfying O(pn2) clauses and
unsatisfying O(rn2) clauses. In fact, we show the following theorem.

Theorem 1. For any probability parameters p and r satisfying p = Ω(ln2 n/n) and p ≥ 9r,
consider a randomly generated formula F under our planted solution model for the MAX2SAT
problem. Then with high probability (i.e., with probability 1 − o(1) w.r.t. n), four planted
solutions are optimal solutions for F ; futhermore, there are no other optimal solutions.

Under this planted solution model (with probability parameters satisfying the above) the
success probability of the algorithm is computed as the probability that it yields one of the
planted solutions for randomly generated formulas. For some technical reason, we modify
the algorithm so that it terminates after two iterations; see Section 3 for some other detail
modifications. Even with such a strong time bound, we can show that the algorithm yields a
correct answer (i.e., one of the planted solutions) with high probability if p−r is large enough,
which is stated more formally as follows.

Theorem 2. For any probability parameters p and r satisfying p − r ≥ n−1/2+εp for some
constant εp > 0, consider the execution of the algorithm (with MAXSTEP = 2) on a randomly
generated formula F under our planted solution model for the MAX2SAT problem. Then with
high probability (i.e., with probability 1− o(1) w.r.t. n), it yields one of the planted solutions
for F .

2 A Planted Solution Model for MAX2SAT

We explain our average case scenario or probability model, more specifically, a way of gener-
ating 2-CNF formulas for MAX2SAT instances. This model is regarded as a “planted solution
model” for the MAX2SAT problem.

For a given n ≥ 1, we discuss the way of generating a 2-CNF formula over 2n variables
X = {x1, . . . , x2n}. The outline of our generation is as follows. First generate a directed graph,
and then transform the graph into a 2-CNF formula. We first explain the graph generation2.

2The explanation here is for the simplified version, which determine U1, eU1, U2, and eU2 uniquely from n. In
more general, we first generate an equal size partition T1 and T2 of {1, ..., 2n} randomly, and for each i ∈ T1

(resp., i ∈ T2), with randomly chosen s ∈ {−1, +1}, assign s · i into U1 and −s · i into eU1 (resp., s · i into U2

and −s · i into eU2).

3

A generated graph H = (U,D) is a directed graph of 4n vertices. The set U of vertices is
determined from n by U

def= U1 ∪ Ũ1 ∪ U2 ∪ Ũ2, where

U1
def= {1, . . . , n}, Ũ1

def= {−1, . . . ,−n},
U2

def= {n + 1, . . . , 2n}, Ũ2
def= {−(n + 1), · · · ,−2n}.

On the other hand, edges are generated randomly. There are two types of edges, and the set
D of edges is defined by D = I ∪ C where I and C are generated as follows.

Internal edges:
I ← ∅;
for each V ∈ {U1, U2}
and for each i, j ∈ V s.t. i 6= j do {

repeat bpnc times do I ← I ∪ {(i, j)} with probability 1/n;
}

Crossing edges:
C ← ∅;
for each V and V ′ from the following do {

1: (U1, U2), (U1, Ũ2), (Ũ1, U2), (Ũ1, Ũ2),
2: (U1, Ũ1), (Ũ1, U1), and
3: (U2, Ũ2), (Ũ2, U2),
repeat brnc times do {

f ← a random permutation mapping from V to V ′

for each i ∈ V do C ← C ∪ {(i, f(i))};
} }

// Below we simply write, e.g., pn for bpnc.

Note that the graph may have multiple edges. There are rn2 edges from, e.g, U1 to U2, and
C has 8rn2 edges. On the other hand, the number of edges in I is from 0 to 2n2; but its
expectation is 2pn2. We denote the distribution of graphs generated as above by H4n,p,r.

The transformation of a graph H = (U,D) to a 2-CNF formula F is natural. For each edge
(i, j) ∈ D such that i, j > 0, a clause (xi ∨ xj) is added to F . Similarly, for each edge (i,−j)
(resp., (−i, j), (−i,−j)) such that i, j > 0, a clause (xi ∨ xj) (resp., (xi ∨ xj), (xi ∨ xj)) is
added to F . This is our random generation of 2-CNF formulas, i.e., instances of the MAX2SAT
problem. Note that F has |D| edges, where |D| is 2pn2 + 8rn2 on average.

Consider any assignment to a to 2n Boolean variables of the generated formula F . That
is, a(i) ∈ {−1,+1} and a(i) = +1 ⇐⇒ xi = 1. We also regard it an assignment t to the
vertices of H. For any i ∈ U1 ∪ U2, we defined t(i) = a(i), and for any −i ∈ Ũ1 ∪ Ũ2, we
define t(−i) = −a(i). Vertices assigned true (i.e., +1) are called true and vertices assigned
false (i.e., −1) are called false. Directed edges of H from a false vertex to a true vertex are
called unsatisfied edges. Clearly each unsatisfied edge corresponds to a clause of F unsatisfied
by the assignment a. On the other hand, any assignment t to vertices of H can be interpreted
as an assignment to F ’s variables if t(i) = −t(−i) for any i ∈ U . Such an assignment is called
consistent. In particular, consistent assignments assigning the same values to all vertices in U1

and U2 respectively are important. There are four such assignments, and we call them planted
solutions. The corresponding assignments to F are also called planted solutions. There are
four planted solution. For example, assigning true to all vertices in U1 and false to all in U2

4

(hence, false to all in Ũ1 and true to all in Ũ2) is one of the four planted solutions. It is easy
to see that any planted solution has rn2 unsatisfied edges; thus, rn2 clauses are unsatisfied by
the corresponding assignment to F .

Now we claim that if p is large enough (compared with r), then planted solutions are optimal
solutions (and no others) with high probability when MAX2SAT instances are generated as
above.

Theorem 2.1. For any probability parameters p and r satisfying p = Ω(ln2 n/n) and p ≥ 9r,
consider a randomly generated formula F from a random graph of H4n,p,r. Then with high
probability (i.e., with probability 1−o(1) w.r.t. n), four planted solutions are optimal solutions
for F ; futhermore, there are no other optimal solutions.

Proof. We show this by the well-known fact that a random graph is almost surely an expander.
A directed graph G = (V, E) is said to be a δ-expander if for every S ⊂ V with |S| ≤ |V |/2,
the following holds: ∣∣E (

S, S
)∣∣ ≥ δ|S| and

∣∣E (
S, S

)∣∣ ≥ δ|S|
Here by, e.g., E(S, S) we mean the set of edges from vertices in S to vertices in S.

We denote by Gn,q,l a distribution of graphs G = (V, E) over n vertices that are generated
as follows: for every pair (i, j) of vertices such that i 6= j, generate directed edges (i, j) l times
independently with probability q and add them to E. Recall that when generating a graph
of H4n,p,r, inner edges in U1 and U2 are generated in this way. We show here the following
expansion property.

Claim 1. Let l(n) be any function such that l(n) = Ω(ln2 n) and l(n) ≤ n, and let δ(n) be
any function such that l(n)/2− δ(n) ≥ c0l(n) for some constant c0 > 0. Consider a a directed
graph G = (V, E) from Gn,1/n,l(n). Then with high probability (i.e., with probability 1− o(1)
w.r.t. n) G is a δ(n)-expander.

Proof of the claim. Consider sufficiently large n, and let l = l(n) and δ = δ(n). Let S
be a subset of V with size at most n/2. Let Bad(S) be an event that S does not meet the
condition of a δ-expander, i.e., |E(S, S)| < δ|S| or |E(S, S)| < δ|S|. We estimate the upper
bound of Pr{|E(S, S)| < δ|S|}. Note that the value of Pr{Bad(S)} is at most two times of
this value. This is done by using the standard Chernoff bound in the following way: For all
pairs of u ∈ S and v ∈ S and 1 ≤ k ≤ q, we introduce independent random variables Y

(k)
u,v

such that Pr{Yu,v = 1} = 1/n and Pr{Yu,v = 0} = 1 − 1/n. Let Y
def=

∑
u∈S,v∈S Y

(k)
u,v . Then

we have that Y = |E(S, S)| and that E[Y] = l(1/n)(n− |S|)|S|. Since we have

E[Y]− δ|S| = l(1/n)(n− |S|)|S| − δ|S|
≥ ((l/n)(n/2)− δ) · |S|
≥ (l/2− δ) · |S| > 0 (∵ l/2 > δ),

we derive the following from the Chernoff bound:

Pr
{∣∣E (

S, S
)∣∣ < δ|S|} = Pr{E[Y]− Y > E[Y]− δ|S|}

< exp
(
−(E[Y]− δ|S|)2

2E[Y]

)

5

≤ exp
(
− ((l/2− δ)|S|)2

2l(1/n)(n− |S|)|S|
)

≤ exp
(
−(l/2− δ)2

2l
· |S|

)
≤ exp

(
−c2

0l

2
· |S|

)
.

Since the probability that G is not δ-expander is the probability of the union of Bad(S) over
all S ⊂ V with |S| ≤ n/2, it follows that

Pr

⋃

S⊂V :|S|≤n/2

Bad(S)

 ≤

n/2∑

s=1

(
n

s

)
Pr{Bad(S) : |S| = s}

≤
n/2∑

s=1

(en

s

)s
· 2 exp

(
−c2

0l(n)
2
· s

)

≤
n/2∑

s=1

2 ·
(

en

s
· exp

(
−c2

0c ln2 n

2

))s

,

where we used the assumption that l(n) ≥ c ln2 n for some constant c. Then we can conclude
that the probability above is o(1). ¤

Consider a random graph H = (U,D) from H4n,p,r, and let F be its corresponding 2-CNF
formula. Note that the induced graph H[U1] (resp., H[U2]) of H on U1 can be regarded as
a random graph from Gn,1/n,pn. On the other hand, pn = Ω(ln2 n/n) · n = Ω(ln2 n) by our
assumption; hence from the above claim, we may assume that H[U1] and H[U2] are pn/3-
expanders. That is, for each V ∈ {U1, U2} and for every S ⊂ V , we have

∣∣D(S, S) ∩ I
∣∣ >

pn

3
|S| and

∣∣D(S, S) ∩ I
∣∣ >

pn

3
|S|.

Now consider any consistent assignment t to U , which are different from the four planted
solutions. By unsatt(H) we denote the set of unsatisfied edges of H under t. From now on,
we estimate a lower bound of |unsatt(H)|. Recall that |unsatt(H)| is the same as the number
of F ’s unsatisfied clauses. Thus, for the theorem, it suffices to show that |unsatt(H)| > 3rn2.

Let a and b be the numbers of vertices of U1 assigned true and false respectively under t.
Similarly, let c and d be the numbers of vertices of U2 assigned under true and false respectively
under t. From the above expansion property, it is easy to see that the number of unsatisfied
edges in U1 (which are all internal edges of H[U1]) is at least (pn/3)min{a, b}. Similarly, the
number of unsatisfied edges is U2 is at least (pn/3)min{c, d}.

For crossing edges, consider edges, for example, from U1 to U2 generated by one permuta-
tion mapping. Since any unsatisfied edge is from a true vertex to a false vertex, the number
of unsatisfied edges is at least a − d if a ≥ d, and 0 otherwise. We here introduce a symbol
‘ª’ and define xª y = x− y if x ≥ y and xª y = 0 otherwise. Using this notation, the total
number of unsatisfied edges from U1 to U2 is at least rn(a ª d). It is similar for the other
unsatisfied crossing edges. Summing up above, we have

|unsatt(H)| =
pn

3
min{a, b}+

pn

3
min{c, d}

+rn (|a− b|+ |c− d|+ (aª c) + (aª d) + (bª c) + (bª d))

6

Then it is not so hard to see that |unsatt(H)| is greater than rn2 if p ≥ 9r. Though easy, the
derivation of this bound is tedious, we show below the analysis for one case that a ≤ b and
c ≤ d and put the analyses of the other cases in the appendix. The condition of a ≤ b and
c ≤ d implies c ≤ b and a ≤ d because of a + b = c + d = n. We further divide this case into
two sub-cases: (i) a ≤ c and (ii) c ≤ a. For the case of (i), since a ≤ c implies d ≤ b, we have

|unsatt(H)| >
pn

3
(a + c) + rn ((b− a) + (d− c) + (b− c) + (b− d))

=
pn

3
(a + c) + 3rnb− rna− 2rnc

= 3
(pn

9
a + rnb

)
+

(pn

9
c− rna

)
+ 2

(pn

9
c− rnc

)

≥ 3rn(a + b) +
(pn

9
− rn

)
a + 2

(pn

9
− rn

)
c

≥ 3rn2.

On the other hand, for the case of (ii), since c ≤ a implies b ≤ d, we have

unsatt(H) ≥ pn

3
(a + c) + rn ((b− a) + (d− c) + (a− c) + (b− c))

=
pn

3
(a + c) + 2rnb + rnd− 3rnc

= 3
(pn

9
a + rnb

)
+ rn(d− b) + 3

(pn

9
c− rnc

)

≥ 3rn(a + b) + rn(d− b) + 3
(pn

9
− rn

)
c

≥ 3rn2.

Note that the inequality is strict because either c > 0 or d > b. With the analyses for the
other cases given in the appendix, we have unsatt(H) > 3rn2 for any assignment t. ¥

3 Algorithm and Its Average Performance

We state our algorithm algoMP MAX2SAT and prove our main theorem. That is, if a formula F
is generated under our planted solution model with p and r satisfying p − r ≥ n−1/2+ε, then
with high probability, the algorithm yields one of the planted solutions, which is (again with
high probability) the optimal solution for F .

The description of algoMP MAX2SAT is shown in Figure 1. As explained in Introduction,
the algorithm is based on the following simple heuristic idea: if a 2-CNF formula F has a
clause (l → l′) and we believe (for some reason) literal l′ to be assigned false, then (in order
to satisfy as many clauses as possible), we suppose that we had better assign false to literal
l. This idea is implemented as statement (1); for any vertex corresponding literal l′ believed
to be false, a message that supports assignment false is sent from this vertex to all vertices
corresponding literals l such that (l→ l′) ∈ F while no message is sent from vertices believed
to be true. Note that beliefs should be consistent between i and −i, i.e., vertices for the same
variable; this consistency is forced by statement (2).

For understanding the algorithm, some more detail explanations are needed.

7

1. A graph HF = (U,A) constructed from F is different from the one H = (U,D) for
generating F . We use the same vertex set U ; on the other hand, for each clause (xi∨xj),
for example, HF has two edges (i, j) and (−j,−i). Thus, each edge in D corresponds to
two edges in A.

2. For any Ck = (l ∨ l′), let e(Ck) denote a directed edge corresponding to (l → l′), and
e(Ck) is a directed edge corresponding to (l′ → l). By N−1(u) we mean the set of vertices
j having a direct edge to i. The function sign(z) returns +1 if z > 0 and −1 otherwise.

3. For our theoretical analysis, we make the following modifications: (i) set MAXSTEP
= 2, (ii) statement (2) is not executed for the first round, and (iii) statement (3) is
inserted.

4. Due to our simplified version for generating instances (see the footnote of the previous
section), we could assume that x1 = −1 and xn+1 = −1. For the general instances, while
we may still fix x1, we would have to run the algorithm by fixing x1 = ±1 and xj = ±1
for all j ∈ {1, ..., 2n}\{i}.

procedure algoMP MAX2SAT(F);
// An input F = C1 ∧ · · · ∧ Cm is a 2-CNF formula over variables x1, · · · , x2n.
// The algorithm assumes that x1 = −1 (i.e., false) and xn+1 = −1 (i.e., false).
begin

Construct a directed graph HF = (U,A),
where U = U1 ∪ Ũ1 ∪ U2 ∪ Ũ2, and A = {e(Ck), e(Ck) : 1 ≤ k ≤ m};

Set b(i) to 0 for all i ∈ U ;
Set b(1) = b(n + 1) = −1;
repeat MAXSTEP times do {

for each i ∈ {1, · · · , 2n}\{1, n + 1} do {
// The following update is made in parallel.
b(i) ←

∑

j∈N−1(i)

min(0, b(j));

b(−i) ←
∑

j∈N−1(−i)

min(0, b(j));

— (1)

b(i) ← b(i)− b(−i);
b(−i) ← −b(i);

}
— (2)

}
if all sign(i) are stabilized then break;
// Set b(1), b(−1), b(n + 1), b(−(n + 1)) to 0; — (3)

}
output(−1, sign(b(2)), · · · , sign(b(n)),−1, sign(b(n + 2)), · · · , sign(b(2n)));

end-procedure

Figure 1: Message passing algorithm for the MAX2SAT problem

It is easy to see that the running time of the algorithm (for the unit cost RAM model) is
O(n + m); thus, the total running time for the general instances is O((n + m)n).

8

Now we analyze the performance of the algorithm and prove the main theorem. From
now on, we consider sufficiently large n and a random formula F generated by our planted
solution model with parameters p and r. We assume that p and r satisfies the condition of the
theorem and p ≥ 9r. That is, p − r > n−1/2+εp for some εp > 0; hence, clearly p > n−1/2+εp .
Let H = (U,A) be a graph constructed in the algorithm from F . (For simpicity we omit the
subscript F ; this H is different from the one used for generating F .) We denote by I a set of
edges within V ∈ {U1, Ũ1, U2, Ũ2} and define C = A\I.

Consider any i ∈ {1, · · · , 2n}\{1, n + 1}. Let bi be a random variable denoting the value
obtained as b(i) after the execution. Its expectation can be calculated as follows.

Lemma 3.1. For any i ∈ {1, · · · , 2n}\{1, n + 1}, we have E[bi] = −((p− r)2n− 2p(p− r)).

Proof. Let Aij for any (ordered) pair of i, j ∈ V ∈ {U1, Ũ1, U2, Ũ2} be a random variable
related to an internal edge such that Aij = k if the number of edges of I from i to j is k.
Similarly, let Bij for each pair of i ∈ V and j ∈ V ′ where (V, V ′) from the followings

1 : (U1, U2), (U1, Ũ2), (Ũ1, U2), (Ũ1, Ũ2),
1′ : (Ũ2, Ũ1), (U2, Ũ1), (Ũ2, U1), (U2, U1),
2 : (U1, Ũ1), (Ũ1, U1),
3 : (U2, Ũ2), (Ũ2, U2),

be a random variable related to a crossing edge such that Bij = k if the number of edges of C
from i to j is k. Then, for any i ∈ U1\{1}, we have bi = b+

i + (−b−i), where

−b+
i =

∑

j∈U1

AijAj1 +
∑

j∈eU1

BijBj1 +
∑

j∈U2

BijBj1 +
∑

j∈eU2

BijBj1

+
∑

j∈U2

BijAjn+1 +
∑

j∈eU2

BijBjn+1 +
∑

j∈U1

AijBjn+1 +
∑

j∈eU1

BijBjn+1, (1)

and

−b−i =
∑

j∈U1

B−ijAj1 +
∑

j∈eU1

A−ijBj1 +
∑

j∈U2

B−ijBj1 +
∑

j∈eU2

B−ijBj1

+
∑

j∈U2

B−ijAjn+1 +
∑

j∈eU2

B−ijBjn+1 +
∑

j∈U1

B−ijBjn+1 +
∑

j∈eU1

A−ijBjn+1. (2)

Recall our generation of a random graph from which F is obtained. Since for any internal
edge from i to j we independently generate pn times a direct edge (i, j) with probability
1/n, we have E[Aij] = (pn) ∗ (1/n) = p. Moreover, Aij is independent of any Ai′j′ s.t.
(i′, j′) 6∈ {(i, j), (−j,−i)} and any Bi′′j′′ . On the other hand, since for crossing edges we
independently generate rn random permutations, we have E[Bij] = (rn) ∗ (1/n) = r for any
crossing edge from i to j. Moreover, any Bij is independent of any Bjk. Thus, we have

E[−b+
i] = p2(n− 2) + 2pr(n− 1) + 5r2n,

E[−b−i] = 4pr(n− 1) + 4r2n,

from the fact that E[Y Y ′] = E[Y]E[Y ′] if Y is independent of Y ′. Therefore, we conclude
E[bi] = −(p2(n− 2) + 2pr(n− 1) + 5r2n) + 4pr(n− 1) + 4r2n = −((p− r)2n− 2p(p− r)).

9

It is similarly proven for i ∈ U2\{n + 1}. We put a formula of bi for i ∈ U2\{n + 1} in the
appendix. We’ll see there that E[bi] for i ∈ U2\{n + 1} has the same value. ¥

From our choice of p and r, we have E[bi] = −((p−r)2n−2p(p−r)) < −1 because the value
of bi is integer. Thus, the algorithm yields on average all false assignment, which is one of the
planted solutions. Now for showing that the algorithm surely yields this planted solution, we
will discuss below concentration of bi around its average. More specifically, for i ∈ U1\{1},
we estimate the following probability: the value of Pr{bi > (1− α)E[bi]} for any α > 0. (The
analysis is similar for i ∈ U2\{n + 1}.)

Since the expectation of −bi is positive, we deal with −bi not bi for our convenience.
Consider the following cases: for an arbitrary constant ε > 0,

(∗) · · ·
{
|(∑j∈U1\{1,i}Aj1)− p(n− 2)| < εp(n− 2),
|(∑j∈U2\{n+1}Ajn+1)− p(n− 1)| < εp(n− 1),

and

(∗∗) · · ·

max{Aj1 : j ∈ U1} ≤ lnn, max{Ajn+1 : j ∈ U2} ≤ lnn,
max{Bjn+1 : j ∈ U1} ≤ lnn,

max{Bj1 : j ∈ Ũ1} ≤ lnn, max{Bjn+1 : j ∈ Ũ1} ≤ lnn,
max{Bj1 : j ∈ U2} ≤ lnn,

max{Bj1 : j ∈ Ũ2} ≤ lnn, max{Bjn+1 : j ∈ Ũ2} ≤ lnn.

We denote by Good(H) the event that all the events of (∗) and (∗∗) simaltaniously occur. As
is shown in Lemma 3.2, the probability of Good(H) (for any ε > 0) is less than 1/n2. (We
can actually prove much smaller probability. But the value of 1/n2 is sufficiently small for our
purpose.) Thus, we have

Pr{−bi < (1− α)E[−bi]} = Pr{Good(H)}Pr{−bi < (1− α)E[−bi]|Good(H)}
+Pr

{
Good(H)

}
Pr

{
−bi < (1− α)E[−bi]

∣∣Good(H)
}

< 1 · Pr{−bi < (1− α)E[−bi]|Good(H)}
+(1/n2) · Pr

{
−bi < (1− α)E[−bi]

∣∣Good(H)
}

≤ Pr{−bi < (1− α)E[−bi]|Good(H)}+ 1/n2.

Lemma 3.2. The probability that at least one of (∗) and (∗∗) is not satisfied is less than
1/n2, i.e., Pr{Good(H)} < 1/n2.

Proof. Consider the first case of (∗), i.e., |∑j∈U1\{1,i}Aj1− p(n− 2)| < εp(n− 2). According
to our generation of internal edges, Aj1 can be regarded as the sum of independent pn random
variables Y 1

j , · · · , Y pn
j such that Pr{Y k

j = 1} = 1/n and Pr{Y k
j = 0} = 1−1/n for 1 ≤ k ≤ pn.

Note that those pn ∗ (n − 2) random variables
⋃

j∈U1\{1,i}{Y 1
j , · · · , Y pn

j } are independent.
Applying the standard Chernoff bound to it, we have

Pr

∣∣∣∣∣∣
∑

j∈U1

Aj1 − p(n− 2)

∣∣∣∣∣∣
> εp(n− 2)

 < 2 exp

(
−ε2p(n− 2)

3

)
.

10

It is exactly the same for the other case of (∗).
Next, consider the first case of (∗∗), i.e., max{Aj1 : j ∈ U1}. Since we have

Pr{max{Aj1 : j ∈ U1} ≤ lnn} ≤
∑

j∈U1

Pr{Aj1 ≤ lnn}, (3)

we estimate the value of Pr{Aj1 ≤ lnn} for any j ∈ U1. Again, Aj1 can be regarded as
the sum of independent pn random variables Y 1

j , · · · , Y pn
j such that Pr{Y k

j = 1} = 1/n and
Pr{Y k

j = 0} = 1 − 1/n for 1 ≤ k ≤ pn. Applying to it corollary 4.2 in the Appendix with
1 + δ = ln n/µ (> 1) where µ = p, we have

Pr{Aj1 ≤ lnn} <

(
e

lnn/p

)(ln n/p)p

<
(
e · p

lnn

)ln n
.

Since the inequality above is satisfied for any j ≤ U1, we conclude from (3) that

Pr{max{Aj1 : j ∈ U1} ≤ lnn} < n ·
(
e · p

lnn

)ln n
.

It is exactly the same for Pr{max{Ajn+1 : j ∈ U2} ≤ lnn}. Consider the next case of (∗∗),
i.e., max{Bjn+1 : j ∈ U1}. Since we have

Pr{max{Bjn+1 : j ∈ U1} ≤ lnn} ≤
∑

j∈U1

Pr{Bjn+1 ≤ lnn}, (4)

we estimate the value of Pr{Bjn+1 ≤ lnn} for any j ∈ U1. Similarly, Bjn+1 can be regarded
as the sum of independent rn random variables Y 1

j , · · · , Y rn
j such that Pr{Y k

j = 1} = 1/n and
Pr{Y k

j = 0} = 1 − 1/n for 1 ≤ k ≤ rn. Applying to it corollary 4.2 in the Appendix with
1 + δ = ln n/µ (> 1) where µ = r, we have

Pr{Bjn+1 ≤ lnn} <

(
e

lnn/r

)(ln n/r)r

<
(
e · r

lnn

)ln n
.

Since the inequality above is satisfied for any j ≤ U1, we conclude from (4) that

Pr{max{Bj1 : j ∈ U1} ≤ lnn} < n ·
(
e · r

lnn

)ln n
.

It is exactly the same for the other cases. At last, summing up all the probability we have
calculated above, we have that Pr{Good(H)} is less than,

4 exp
(
−ε2p(n− 2)

2

)
+ 2n ·

(
e · p

lnn

)ln n
+ 6n ·

(
e · r

lnn

)ln n
<

1
n2

.

¥

Therefore, we’ll show that the conditional probability of Pr{−bi < (1 − t)E[−bi]} given
Good(H) is small. That is:

11

Lemma 3.3. With high probability, say, 1 − o(1), we have −bi > 1 and b−i > 1 for all
i ∈ {1, · · · , 2n}.
Proof. The idea of estimating the deviation is the following observation: If each term of bi

shown in (1) and (2) little deviate from each expectation, then bi also little deviate from its
expectation. That is:

Claim 2. Let Y +
1 , · · · , Y +

k+ be (not necessarily independent) random variables taking positive
values or zero, and Y −

1 , · · · , Y −
k− be (not necessarily independent) be random variables taking

negative values or zero. Let Y
def=

∑
k′ Y

+
k′ +

∑
k′ Y

−
k′ . If we have Pr{Y +

k′ < (1−ε+k′)E[Y +
k′]} < p+

k′
for 1 ≤ k′ ≤ k+ and Pr{Y −

k′ < (1 + ε−k′)E[Y −
k′]} < p−k′ for 1 ≤ k′ ≤ k−, then

Pr

{
Y <

∑

k′
(1− ε+k′)E[Y +

k′] +
∑

k′
(1 + ε−k′)E[Y −

k′]

}
<

∑

k′
p+

k′ +
∑

k′
p−k′ .

Proof of the claim. It is obvious that if Y +
k′ ≥ (1 − ε+k′)E[Y +

k′] for 1 ≤ k′ ≤ k+ and
Y −

k′ ≥ (1 + ε−k′)E[Y −
k′] for 1 ≤ k′ ≤ k−, then Y ≥ ∑

k′(1 − ε+k′)E[Y +
k′] +

∑
k′(1 + ε−k′)E[Y −

k′].
Taking the contraposition of this, we have that if Y <

∑
k′(1− ε+k′)E[Y +

k′]+
∑

k′(1+ ε−k′)E[Y −
k′],

then Y +
k′ < (1− ε+k′)E[Y +

k′] for some 1 ≤ k′ ≤ k+ or Y −
k′ < (1+ ε−k′)E[Y −

k′] for some 1 ≤ k′ ≤ k−.
That probability is less than

∑k+

k′=1 p+
k′ +

∑k−
k′=1 p−k′ . ¤

Consider first a term
∑

j∈U1
AijAj1 of bi under Good(H). Since we are given Good(H),

we suppose that each value of Aj1 is arbitrarily given such that
∑

j∈U1\{1,i}
Aj1 = (1± ε)p(n− 2) and max{Aj1 : j ∈ U1} ≤ lnn.

We denote this event above by Good(AU11). According to our generation of internal edges, for
j ∈ U1\{1, i}, AijAj1 can be seen as the sum of independent pn random variables Y 1

j , · · · , Y pn
j

such that Pr{Y k
j = Aj1} = 1/n and Pr{Y k

j = 0} = 1− 1/n for 1 ≤ k ≤ pn. Thus, we have for
any y > 0,

Pr

∑

j∈U1

AijAj1 < y
∣∣∣Good(H)

 = Pr

∑

j∈U1

pn∑

k=1

Y k
j < y

∣∣∣Good(AU11)

 .

Note that those pn ∗ (n− 2) random variables
⋃

j∈U1\{1,i}{Y 1
j , · · · , Y pn

j } are independent. We
are now in the position that we can apply corollary 4.5 to the RHS of the equation above.
Since the target value of y we are about to prove is (1− α1)p2(n− 2) for α1 > 0, and

E

 ∑

j∈U1

pn∑

k=1

Y k
j

 =

∑

j∈U1

pn∑

k=1

E
[
Y k

j

]
=

∑

j∈U1

pn∑

k=1

Aj1 · 1
n

=
∑

j∈U1

Aj1 ·
pn∑

k=1

1
n

= p ·
∑

j∈U1

Aj1 = p · (1± ε)p(n− 2) = (1± ε)p2(n− 2),

by applying the corollary with δ = α1 s. t. 1− α1 = (1− δ)(1± ε), we have for some constant
c1,

Pr

∑

j∈U1

pn∑

k=1

Y k
j < (1− δ)(1± ε)p2(n− 2)

∣∣∣Good(AU11)

12

< exp
(
−δ2(1± ε)p2(n− 2)

2 ln n

)
= exp

−

(
1− 1−α1

1±ε

)2
(1± ε)p2(n− 2)

2 ln n

= exp
(
− (α1 ± ε)2p2n

(1± ε)c1 lnn

)
= exp

(
− (α1 ± ε)2nεp

(1± ε)c1 lnn

)
.

Next, consider, for example, a term
∑

j∈U2
BijAjn+1 of bi under Good(H). (It is ex-

actly the same for the other terms of type
∑

j∈V A∗jBj∗ and type
∑

j∈V B∗jAj∗ for V ∈
{U1, Ũ1, U2, Ũ2}.) Since we are given Good(H), we suppose that each value of Ajn+1 is arbi-
trarily given such that

∑

j∈U2

Ajn+1 = (1± ε)p(n− 1) and max{Ajn+1 : j ∈ U2} ≤ lnn.

We denote this event above by Good(AU2n+1). According to our generation of crossing edges,∑
j∈U2

BijAjn+1 can be seen as the sum of independent rn random variables Y 1, · · · , Y rn such
that Pr{Y k = Ajn+1} = 1/n for 1 ≤ k ≤ rn and j ∈ U2\{n+1}. Thus, we have for any y > 0,

Pr

∑

j∈U2

BijAjn+1 < y
∣∣∣Good(H)

 = Pr

{
rn∑

k=1

Y k < y
∣∣∣Good(AU2n+1)

}
.

We are now in the position that we can apply corollary 4.5 to the RHS of the equation above.
Since the target value of y we are about to prove is (1− α2)pr(n− 1) for α2 > 0, and

E

[
rn∑

k=1

Y k

]
=

rn∑

k=1

E
[
Y k

]
=

rn∑

k=1

∑

j∈U2

Ajn+1 · 1
n

=
rn∑

k=1

1
n
·

∑

j∈U2

Ajn+1 =
1
n
· rn · (1± ε)p(n− 1) = (1± ε)pr(n− 1),

by applying the corollary with δ = α2 s. t. (1−α2) = (1− δ)(1± ε), we have for some constant
c2,

Pr

{
rn∑

k=1

Y k
i < (1− δ)(1± ε)pr(n− 1)

∣∣∣Good(AU2n+1)

}

< exp
(
−δ2(1± ε)pr(n− 1)

2 ln n

)
= exp

−

(
1− 1−α2

1±ε

)2
(1± ε)pr(n− 1)

2 ln n

= exp
(
− (α2 ± ε)2prn

(1± ε)c2 lnn

)
= exp

(
−(α2 ± ε)2rn1/2+εp

(1± ε)c2 lnn

)
.

Finally, consider, for example, a term
∑

j∈eU1
BijBj1 of bi under Good(H). (It is exactly the

same for the other terms of type
∑

j∈V B∗jBj∗ for V ∈ {U1, Ũ1, U2, Ũ2}.) From our generation
of crossing edges and condition Good(H), we suppose that each value of Bj1 is arbitrarily
given such that ∑

j∈eU1

Bj1 = rn and max{Bj1 : j ∈ Ũ1} ≤ lnn.

13

We denote this event above by Good(BeU11
). According to our generation of crossing edges,∑

j∈eU1
BijBj1 can be seen as the sum of independent rn random variables Y 1, · · · , Y rn such

that Pr{Y k = Bj1} = 1/n for 1 ≤ k ≤ rn and j ∈ Ũ1. Thus, we have for any y > 0,

Pr

∑

j∈eU1

BijBj1 < y
∣∣∣Good(H)

 = Pr

{
rn∑

k=1

Y k < y
∣∣∣Good(BeU11

)

}
.

We are now in the position that we can apply corollary 4.5 to the RHS of the equation above.
Since the target value of y we are about to prove is (1− α3)r2n for α3 > 0, and

E

[
rn∑

k=1

Y k

]
=

rn∑

k=1

E
[
Y k

]
=

rn∑

k=1

∑

j∈eU1

Bj1 · 1
n

=
rn∑

k=1

1
n
·

∑

j∈eU1

Bj1 =
1
n
· rn · rn = r2n,

by applying the corollary with δ = α3, we have for some constant c3,

Pr

{
pn∑

k=1

Y k < (1− δ)r2n
∣∣∣Good(BeU11

)

}
< exp

(
−δ2r2n

2 ln n

)
= exp

(
−α2

3r
2n

c3 lnn

)
.

At last, from the observation we have seen in Claim 2, summing up all the probability we
have calculated above, the probability of the event

−bi <

(1− α1)p2(n− 2)
+ 2(1− α2)pr(n− 1)
+ 5(1− α3)r2n

 −

{
4(1 + α4)pr(n− 1)
+ 4(1 + α5)r2n

}
,

which is equivalent to

−bi < E[−bi] +

− α1n
εp

− 2α2rn
1/2+εp

− 5α3r
2n

− 4α4rn
1/2+εp

− 4α5r
2n

+

− (1− α1)2p2

− 2(1− α2)pr
+ 4(1 + α4)pr

is less than

exp
(
− (α1±ε)2nεp

(1±ε)c1 ln n

)

+ 2 exp
(
− (α2±ε)2rn1/2+εp

(1±ε)c2 ln n

)

+ 5 exp
(
−α2

3r2n
c3 ln n

)

+

4 exp
(
− (α4±ε)2rn1/2+εp

(1±ε)c2 ln n

)

+ 4 exp
(
−α2

5r2n
c3 ln n

)

 .

We carefully choose parameters α1, · · · , α5 so that the deviation probability above is sufficiently
small, say, 1/n2. We set α1 to some constant, and the others are set as

α2 = α4 = r−1/2n−1/4+εp/4 ∓ ε (> 0)
α3 = α5 = r−1n−1/2+εp/2 (> 0)

14

so that the deviation probability is less than

exp
(
− (α1±ε)2nεp

(1±ε)c1 ln n

)

+ 2 exp
(
− nεp

(1±ε)c2 ln n

)

+ 5 exp
(
− nεp

c3 ln n

)

+

4 exp
(
− nεp

(1±ε)c2 ln n

)

+ 4 exp
(
− nεp

c3 ln n

)

 <

1
n2

.

Since we have the above for all i ∈ {1, · · · , 2n}\{1, n + 1}, we have with probability 1 − 1/n
that for all i ∈ {1, · · · , 2n}\{1, n + 1},

−bi ≥ n2εp +

− α1n

εp

− 6α2rn
1/2+εp

− 9α3r
2n

 +

− (1− α1)2p2

− 2(1− α2)pr
+ 4(1 + α4)pr

≥ n2εp +

− α1n

εp

− 6r1/2n1/4+5εp/4 ± 6εrn1/2+εp

− 9rn1/2+εp/2

 − 1

≥ n2εp +

− α1n

εp

− 6n7εp/4 − 6εrn1/2+εp

− 9n1/2+εp/2

 − 1

≥ n2εp − α1n
εp − 6n7εp/4 − 6εn2εp − 9n3εp/2 − 1

> 1.

¥

Now we summarize what we have obtained is enough for proving the main theorem. First
from Lemma 3.1 and by our choice of p and r, if each bi is close to its expectation, then the
assignment that the algorithm yields is one of the planted solution, i.e., all false assignment.
Secondly, from Lemma 3.3, if H (i.e., HF constructed from F in the algorithm) satisfies some
condition, then the deviation of bi from its expectation is small enough. Finally, Lemma 3.2
guarantees that such a good situation occurs with high probability. Therefore we have our
theorem.

References

[HM98] M. Habib et al. Ed., “Probabilistic Methods for Algorithmic Discrete Mathematics”,
Springer, 1998.

[JS98] M. Jerrum and G. Sorkin, The Metropolis algorithm for graph bisection, Discrete
Appl. Math 82(1-3), 155–175, 1998.

[MR95] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univ. Press,
1995.

[Pea88] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference, Morgan Kaufmann Publishers Inc., 1988.

[OW05] M. Onsjö and O. Watanabe, Simple algorithms for graph partition problems, Re-
search Report C-212, Dept. of Math. and Comput. Sci., Tokyo Inst. of Tech, 2005.

15

[Yam05] M. Yamamoto, Generating instances for MAX2SAT with optimal solutions, Theory
of Comput. Syst., to appear.

4 Appendix

Complete Proof of Theorem 2.1

We present a proof of the lower bound of |unsatt(H)| for the rest case. This completes the
proof of Theorem 2.1. Here, we again describe the target equation:

|unsatt(H)| >
pn

3
min{a, b}+

pn

3
min{c, d}

+rn (|a− b|+ |c− d|+ (aª c) + (aª d) + (bª c) + (bª d)) .

We complete the proof of the claim that |unsatt(H)| is greater than rn2 if p ≥ 9r. We have
proven it for the case that a ≤ b and c ≤ d. In this appendix, we prove it for the other cases,
that is, (1): a ≤ b and d ≤ c, (2): b ≤ a and c ≤ d, and (3): b ≤ a and d ≤ c. For the case of
(1), the condition of a ≤ b and d ≤ c implies d ≤ b and a ≤ c because of a + b = c + d = n.
We further divide this case into two sub-cases: (1-i) a ≤ d and (1-ii) d ≤ a. For the case of
(1-i), since a ≤ d implies c ≤ b, we have

|unsatt(H)| >
pn

3
(a + d) + rn ((b− a) + (c− d) + (b− c) + (b− d))

=
pn

3
(a + d) + 3rnb− rna− 2rnd

= 3
(pn

9
a + rnb

)
+

(pn

9
d− rna

)
+ 2

(pn

9
d− rnd

)

≥ 3rn(a + b) +
(pn

9
− rn

)
a + 2

(pn

9
− rn

)
d

≥ 3rn2.

On the other hand, for the case of (1-ii), since d ≤ a implies b ≤ c, we have

unsatt(H) >
pn

3
(a + d) + rn ((b− a) + (c− d) + (a− d) + (b− d))

=
pn

3
(a + d) + 2rnb + rnc− 3rnd

= 3
(pn

9
a + rnb

)
+ rn(c− b) + 3

(pn

9
d− rnd

)

≥ 3rn(a + b) + rn(c− b) + 3
(pn

9
− rn

)
d

≥ 3rn2.

For the case of (2), the condition of b ≤ a and c ≤ d implies c ≤ a and b ≤ d because of
a + b = c + d = n. We further divide this case into two sub-cases: (2-i) b ≤ c and (2-ii) c ≤ b.
For the case of (2-i), since b ≤ c implies d ≤ a, we have

|unsatt(H)| >
pn

3
(b + c) + rn ((a− b) + (d− c) + (a− c) + (a− d))

=
pn

3
(b + c) + 3rna− rnb− 2rnc

16

= 3
(pn

9
b + rna

)
+

(pn

9
c− rnb

)
+ 2

(pn

9
c− rnc

)

≥ 3rn(a + b) +
(pn

9
− rn

)
b + 2

(pn

9
− rn

)
c

≥ 3rn2.

On the other hand, for the case of (2-ii), since c ≤ b implies a ≤ d, we have

|unsatt(H)| >
pn

3
(b + c) + rn ((a− b) + (d− c) + (a− c) + (b− c))

=
pn

3
(b + c) + 2rna + rnd− 3rnc

= 3
(pn

9
b + rna

)
+ rn(d− a) + 3

(pn

9
c− rnc

)

≥ 3rn(a + b) + rn(d− a) + 3
(pn

9
− rn

)
c

≥ 3rn2.

For the case of (3), the condition of b ≤ a and d ≤ c implies d ≤ a and b ≤ c because of
a + b = c + d = n. We further divide this case into two sub-cases: (3-i) b ≤ d and (3-ii) d ≤ b.
For the case of (3-i), since b ≤ d implies c ≤ a, we have

|unsatt(H)| >
pn

3
(b + d) + rn ((a− b) + (c− d) + (a− c) + (a− d))

=
pn

3
(b + d) + 3rna− rnb− 2rnd

= 3
(pn

9
b + rna

)
+

(pn

9
d− rnb

)
+ 2

(pn

9
d− rnd

)

≥ 3rn(a + b) +
(pn

9
− rn

)
b + 2

(pn

9
− rn

)
d

≥ 3rn2.

On the other hand, for the case of (3-ii), since d ≤ b implies a ≤ c, we have

|unsatt(H)| =
pn

3
(b + d) + rn ((a− b) + (c− d) + (a− d) + (b− d))

=
pn

3
(b + d) + 2rna + rnc− 3rnd

= 3
(pn

9
b + rna

)
+ rn(c− a) + 3

(pn

9
d− rnd

)

> 3rn(a + b) + rn(c− a) + 3
(pn

9
− rn

)
d

≥ 3rn2.

Complete Proof of Lemma 3.1

We present the value of E[bi] for i ∈ U2\{n + 1}. This completes the proof of Lemma 3.1. For
any i ∈ U2\{n + 1}, we have bi = b−i + b+

i , where

−b−i =
∑

j∈U1

BijAj1 +
∑

j∈eU1

BijBj1 +
∑

j∈U2

AijBj1 +
∑

j∈eU2

BijBj1

17

+
∑

j∈U2

AijAjn+1 +
∑

j∈eU2

BijBjn+1 +
∑

j∈U1

BijBjn+1 +
∑

j∈eU1

BijBjn+1, (5)

and

b+
i =

∑

j∈U1

B−ijAj1 +
∑

j∈eU1

B−ijBj1 +
∑

j∈U2

B−ijBj1 +
∑

j∈eU2

A−ijBj1

+
∑

j∈U2

B−ijAjn+1 +
∑

j∈eU2

A−ijBjn+1 +
∑

j∈U1

B−ijBjn+1 +
∑

j∈eU1

B−ijBjn+1. (6)

By the same argument as the case for i ∈ U1\{1}, we have E[bi] = −((p− r)2n− 2p(p− r)).

Some variants of the Chernoff bound

We present some variants of the Chernoff bound we use in the main section. We follow the
argument in [MR95] and in the part by C. McDiarmid of [HM98].

Proposition 4.1. Let Y1, · · · , Yk be independent random variables such that 0 ≤ Yi ≤ 1 and
E[Yi] = µi for 1 ≤ i ≤ k. Then, for Y

def=
∑

i Yi, µ
def= E[Y], and for any δ > 0,

Pr{Y > (1 + δ)µ} <

(
eδ

(1 + δ)(1+δ)

)µ

.

Proof. We make use of the following relationship: Y > (1 + δ)µ ⇔ exp(tY) > exp(t(1 + δ)µ)
for any t > 0. By Markov inequality and the independence of {Y1, · · · , Yk}, we have

Pr{Y > (1 + δ)µ} = Pr{exp(tY) > exp(t(1 + δ)µ)}
<

E[
∏

i exp(tYi)]
exp(t(1 + δ)µ)

=
∏

i E[exp(tYi)]
exp(t(1 + δ)µ)

.

We study the numerator of RHS of the above. Suppose that Yi takes y1, y2 · · · ∈ [0, 1] with
probability p1, p2 · · · , respectively. Then, we have

E[exp(tYi)] = exp(ty1)p1 + exp(ty2)p2 + · · ·
< (1− y1 + y1e

t)p1 + (1− y2 + y2e
t)p2 + · · · .

The last inequality comes from ety ≤ 1− y + yet for any 0 ≤ y ≤ 1. (This fact comes from the
convexity of ety.) It follows that

E[exp(tYi)] < (p1 + p2 + · · ·)− (y1p1 + y2p2 + · · ·) + et(y1p1 + y2p2 + · · ·)
= 1 + (et − 1)µi

≤ exp((et − 1)µi).

The last inequality comes from 1 + x ≤ ex with x = µi(et − 1). Thus,

Pr{Y > (1 + δ)µ} <

∏
i exp((et − 1)µi)
exp(t(1 + δ)µ)

18

=
exp((et − 1)µ)
exp(t(1 + δ)µ)

=
(

exp(et − 1)
exp(t(1 + δ))

)µ

.

Differentiating the last formula, we see that it is minimized by setting t = ln(1+ δ). We notice
that t > 0 iff δ > 0. Substituting this value for t, we obtain the proposition. ¥

Corollary 4.2. If we have Pr{Yi = 1} = pi and Pr{Yi = 0} = 1 − pi for 1 ≤ i ≤ k, then we
have the same bound as the proposition above. In particular, for any δ > 0,

Pr{Y > (1 + δ)µ} <

(
e

1 + δ

)(1+δ)µ

.

Proposition 4.3. Let Y1, · · · , Yk be independent random variables such that 0 ≤ Yi ≤ 1 and
E[Yi] = µi for 1 ≤ i ≤ k. Then, for Y

def=
∑

i Yi, µ
def= E[Y], and for any 0 < δ ≤ 1,

Pr{Y < (1− δ)µ} < exp
(
−δ2µ

2

)

Proof. We almost follow the proof of the previous proposition. In this case, we make use of
the following relationship: Y < (1 − δ)µ ⇔ exp(−tY) > exp(−t(1 − δ)µ) for any t > 0. By
Markov inequality and the independence of {Y1, · · · , Yk}, we have

Pr{Y < (1− δ)µ} = Pr{exp(−tY) > exp(−t(1− δ)µ)}
<

∏
i E[exp(−tYi)]

exp(−t(1− δ)µ)
.

From the proof of the previous proposition, E[exp(−tYi)] < exp((e−t − 1)µi). It follows that

Pr{Y < (1− δ)µ} <
exp((e−t − 1)µ)
exp(−t(1− δ)µ)

=
(

exp(e−t − 1)
exp(−t(1− δ))

)µ

.

Differentiating the last formula, we see that it is minimized by setting t = ln(1/(1 − δ)). We
notice that t > 0 iff δ > 0. Substituting this value for t, we obtain the following:

Pr{Y < (1− δ)µ} <

(
exp(−δ)

(1− δ)(1−δ)

)µ

.

Simplifying the formula above by the fact that (1 − δ)(1−δ) > exp(−δ + δ2/2) for 0 < δ ≤ 1
(this comes from ln(1− δ) = −(δ + δ2/2 + δ3/3 + · · ·)), we obtain the proposition. ¥

Corollary 4.4. If we have Pr{Yi = 1} = pi and Pr{Yi = 0} = 1 − pi for 1 ≤ i ≤ k, then we
have the same bound as the proposition above.

19

Corollary 4.5. Let Y1, · · · , Yk be independent random variables such that c
def= maxi{Yi} and

E[Yi] = µi for 1 ≤ i ≤ k. Then, for Y
def=

∑
i Yi, µ

def= E[Y], and for any 0 < δ ≤ 1,

Pr{Y < (1− δ)µ} < exp
(
−δ2µ

2c

)

Proof. We set Y ′
i = Yi/c for all 1 ≤ i ≤ k, and let Y ′ def=

∑
i Y

′
i and µ′ = E[Y ′] so that we can

apply the previous proposition to Y ′. Note that µ′ = µ/c. Then, we have

Pr{Y < (1− δ)µ} = Pr{Y ′ < (1− δ)µ′}

< exp
(
−δ2µ′

2

)

= exp
(
−δ2µ

2c

)
.

¥

20

