
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: CC oo mm pp uu tt ee rr SS cc ii ee nn cc ee

ISSN 1342-2812

Error analysis of factor oracles

Hisashi Iwasaki

December 2005, C–217

Error analysis of factor oracles

Hisashi Iwasaki
C/O Prof. Osamu Watanabe,

Dept. of Information Science, School of Science,
Tokyo Institute of Technology
email: watanabe@is.titech.ac.jp

Research Report C − 217

abstract

Factor oracles [1] constructed from a given text are determin-
istic acyclic automata accepting all substrings of the text. Factor
oracles are more space economical and easy to implement than
similar data structures such as suffix tree[6]. There is, however,
some drawback; a factor oracle may accept strings not in the
text, which we call a error acceptance. In this paper, we charac-
trize factor orales that accept nonsubstrings erroreously. Using
this characterization, we propose an algorithm to decide whether
a factor oracle makes an error acceptance during its linear time
construction.

keyword: Factor oracles, Error acceptance, Error detection
algorithm

1 Introduction

Several data structures, such as suffix tree, suffix automaton, have been
developed for finding substrings in a text efficiently. These structures are
also used to find all occurrences of a pattern in a text. Factor oracle is one
of such data structures proposed by Allauzen et al. [1]. Factor oracle has
several advantages. First, factor oracles, which are acyclic automata, are
easy to construct; there is a simple algorithm [1] that, for any given text
string p, constructs a factor oracle Oracle(p) for p in on-line and within linear
time and space in the length of p. Secondary, factor oracles need less space
than the other data structures. There is , however, some disadvantage of

0

using factor oracle; some factor oracles accept strings not in the text, which
we call an error acceptance.

In this paper we characterize factor oracles that make an error accep-
tance. More specifically, we give a necessary and sufficient condition such
that the on-line factor oracle construction algorithm creates a factor ora-
cle making an error acceptace for the first time. By using this condition,
we propose a modification of the algorithm so that it can check whether a
constructed factor makes an error acceptance, while increasing computation
time only some constant factor.

In the following section, we give necssary definitions. In section 3, we
state a characterization for error acceptance and propose an algorithm to
check whether a factor oracle makes an error acceptance. Finally, in Section
4, we state conclusion and remarks.

2 Factor oracle

We will use standard notions and notations on strings such as |p|, the length
of a string p, etc. Let Σ be our alphabet, we assume that all strings p =
p1p2 . . . pm are strings over Σ. A factor or substring (resp. prefix suffix) of p
is a string w (resp. u, v) such that p = uwv for some u, v ∈ Σ∗; in particular,
for an i and j, 1 ≤ i ≤ j ≤ m, we use p[i . . . j] to denote the substrings of p
appearing from the ith character to the jth character. We denote by suf (i)
the set of all the suffixes of p[1 . . . i] for 1 ≤ i ≤ m

For a given string p, a factor oracle Oracle(p) is an automaton with the
following features:
• it is an acylic,
• it consists of |p|+1 states (which are all accepting states) and |p| to 2|p|−1
transitions, and
• it accepts all factors of p.
For example, a factor oracle Oracle(p) for p = abbbaab is given as figure1.

a b b a a b

b a

a

a

0 1 2 3 4 5 6 7
b

Figure. 1: Oracle(abbbaab)

Here state 0 is the initial state. On this figure, the reader can check that

1

Oracle-Sequential (p = p[1 . . . m])
create Oracle(ε);

create State 0;
Sε(0)← −1;

for(i = 1; i ≤ m; i + +) {
Oracle(p[1 . . . i])← AddLetter(Oracle(p[1 . . . i− 1], pi));

}

Figure. 2: Algorithm Oracle-Sequential

AddLetter (Oracle(p = p[1 . . . i]), σ)
create new state i + 1;
create new transition δ(i, σ) = i + 1;
j ← Sp(i);
while(j > −1 and δ(j, σ) is undefined) {

create new transition δ(j, σ) = i + 1;
j ← Sp(j);

}
if(j = −1) then s← 0;
else s← δ(j, σ);
Spσ(i + 1)← s;
return Oracle(p = p[1 . . . i]σ)

Figure. 3: Constructing Oracle(pσ) from Oracle(p) and σ

it accepts all substrings of p; it is also easy to check that this factor oracle
accepts “aba”, nonsubstring of p; that is , it makes an error acceptance.

In this paper, we will make use of the notions and properties on factor
oracles listed below. The precise definition of facotor oracle is not so impor-
tant. On the other hand, we define the notion of “factor oracle” by stating
an algorithm (Figure 2) for constructing Oracle(p) from p; this algorithm
is one of the two algorithm given in [1], and it constructs an oracle on-line
reading p from the left to right, and the algorithm runs within linear time
and space in |p|.
Definition 1. repetp(i) is the longest suffix of p[1 . . . i] that appears at least
twice in p[1 . . . i].

For example, in Figure 1, repetp(1) = ε, repetp(4) = bb, repetp(7) = ab.

Definition 2. A function Sp maps each state i > 0 of Oracle(p) to state j
in which the reading of repetp(i) ends(Sp(i) = j). For completeness, we set
Sp(0) = −1. We call Sp(i) suffix link of the state i in Oracle(p).

Definition 3. We denote k0 = i, kj = Sp(kj−1)(j ≥ 1) for any state i > 0.
The sequence of the ki is finite, strictly decreasing and ends in state 0.
We call this sequence of states a suffix path, and define SPp(i) to be the
set of states on the suffix path from i, that is, SPp(i) = {k0 = i, k1 =
Sp(i), . . . , kt = 0}.

2

Proposition 1. (Corollary 4 in [1]) Let SPp(i) = {k0 = i, k1. . . . , kt = 0}
be the suffix path of p[1 . . . i] in Oracle(p) and let wj = repetp(kj−1) for
1 ≤ j ≤ t and w0 = p[1 . . . i]. Then, for 0 < l < t, wl is a suffix of all the wj,
0 ≤ j < l ≤ t.

3 Error acceptance of factor oracles

In this section, for a given string p we consider whether Oracle(p) makes an
error acceptance.

First, we give a necessary and sufficient condition for checking whether
Oracle(p) makes an error acceptance in the course of its online construc-
tion. Next, we show an algorithm to decide error acceptance of Oracle(p) by
this condition; the algorithm uses heuristic algorithm to compute |repetp(i)|
given in [3].

3.1 Condition for the first error acceptance of Oracle(p)

Before we state a necessary and sufficient condition for an error acceptance,
we explain the notion of the first error. For a string p = p[1 . . . m], we
say that Oracle(p[1 . . . i − 1]) is error free (up to state i − 1) if it accepts
only substrings of p[1 . . . i − 1]. We say that the first error acceptance oc-
curs at state i if Oracle(p[1 . . . i − 1]) is error free and Oracle(p[1 . . . i])
does accept a string not substring of p[1 . . . i]. This error acceptance is
simply called the first error. Note that once error acceptance occurs at
some state i (i.e. by Oracle(p[1 . . . i])), then all following factor oracles
Oracle(p[1 . . . i+1]), · · · , Oracle(p[1 . . . m])(= Oracle(p)) keep making some
error acceptance. (Let w be the first error accepted by Oracle(p[1 . . . i]).
Then, for every j > i, a string wpi . . . pj is accepted erroreously by Oracle(p[1 . . . j]).)
Thus, for checking whether Oracle(p) makes an error acceptance, it suffices
to find the first error. The following theorem states a neccessary and suffi-
cient condition that the first error occurs in Oracle(p).

Theorem 1. Assume that Oracle(p[1 . . . i − 1]) is error free. Let u =
repetp(i− 1), and let L(i) be a set of strings accepted at state i. Let σ = pi.
Then, for any v ∈ L(Sp(i− 1)), we have

vσ is the first error acceptance
⇔ ∃ v ∈ L(Sp(i− 1)) such that

(1) |v| > |u|, and
(2) δ(Sp(i− 1), σ) = i.

Proof. (⇐) Let v be a string satisfying the condition (1) of the theorem.
We should notice that strings accepted correctly at state i are only suffixes
of p[1 . . . i]. So if v is not in suf (i−1), vσ(= vpi) is not in suf (i). Therefore,
vσ(= vpi) is accepted erroreously at state i. Hence our goal is to show

3

v /∈ suf (i − 1). But we can easily show that v /∈ suf (i − 1), if v were in
suf (i − 1), then repetp(i − 1) shuould not be u but v since |v| > |u|, which
contradicts our definition of u. Thus, we have v /∈ suf (i− 1).

i0
v

v

σ

σ

i-1

u

v

u

S (i-1)p

Figure. 4: factor oracle that vσ is error-accepted

(⇒) Suppose that vσ is accepted erroreously at state i. This means that
vσ /∈ suf (i) and δ(i−1, σ) = i. We only have to show that |v| > |u|. Assume
to the contrary that |v| ≤ |u|. Then v ∈ suf (i−1) since the string v is suffix
of u. On the other hand, we know v /∈ suf (i − 1) because vσ /∈ suf (i) and
δ(i − 1, σ) = i. We reach a contradiction, thus, |v| > |u|.

This theorem gives us a way to check the first error acceptance occurs
at Oracle(p[1 . . . i]) when ith symbol pi is added to Oracle(p[1 . . . i − 1]).
That is, first search for a string v such that |v| > |repetp(i−1)| which is one
of the condition of Theorem 1; then check whether an external transition
is defined to the state i. In the following sections , we discuss the way to
achieve this test efficiently during the on-line construction of Oracle(p).

3.2 Computing repeated suffix for each prefix

In [3] a heuristic algorithm to find longest repeats using factor oracles was
proposed. The length of a repeated suffix of p[1 . . . i], denoted by lrs[i],
computed in this algorithm is defined reccursively as below (Definition 6).
This algorithm also builds Oracle(p) and compute lrs[i] for every i, 0 < i ≤
|p|, the complexity is O(|p|) in time and space.

During the construction of Oracle(p[1 . . . i + 1]) from Oracle(p[1 . . . i])
and pi+1, the backward jumps on the suffix path SPp(i) ends when a state
j is reached such that δ(j, pi+1) is already defined. For this j, we define the
following π1, π2.

Definition 4. (Definition 8 in [3]). π1 is the state in SPp(i) such that
Sp(π1) = j

4

Definition 5. (Definition 9 in [3]). π2 is state j if Sp(i + 1) − 1 = j.
Othewise, π2 is the state in SPp(Sp(i + 1)− 1) such that Sp(π2) = j.

Definition 6. (Definition 10 in [3]).
Let lrs be an array of m + 1 integers such that for each i, 0 ≤ i < m :
.

lrs[i + 1] =

⎧⎨
⎩

0 ifSp(i + 1) = 0
lrs[π1] + 1 ifπ2 = Sp(π1)
min{lrs[π1], lrs[π2]}+ 1 otherwise

lrs[0] is set to 0.

The value of lrs[i] is defined as above is not exactly |repetp(i)| but it
is an approximate value of |repetp(i)|. Thus, we can’t use lrs[i] instead of
|repetp(i)| in Theorem 1. However, in the following lemma we will prove
that lrs[i] = |repetp(i)| for any i provided that Oracle(p[1 . . . i]) doesn’t
make an error acceptance. This enable us to use lrs[i] instead of |repetp(i)|
in Theorem 1.

Lemma 1. Provided that Oracle(p[1 . . . l]) is error free, for any i, 0 ≤ i < l,
we have

(∗) lrs[i] = |repetp(i)|.
Proof. We prove (∗) by induction on the number i of states constructed by
the on-line construction algorithm. At the initial step, where i = 0, we
have by definition that lrs[0] = 0 and that |repetp(0)| = |ε| = 0; hence, (∗)
holds. For the induction step, we assume that lrs[k] = |repetp(k)| for all k,
0 ≤ k ≤ i, and consider the step where the state i + 1 is constructed. The
case Sp(i+1) = 0 is easy because in this case where |repetp(i+1)| = |ε| = 0
and lrs[i+1] = 0 by definition. Thus we consider the case that Sp(i+1) = q
for some q �= 0. There are two cases depending on whether q − 1 = Sp(π1)
or not.

First consider the case that q−1 = Sp(π1). In this case since π2 = Sp(π1)
(by definition of π2), we have lrs[i + 1] = lrs[π1] + 1. This means that an
internal transition δ(q − 1, pi+1) = q is constructed when the state i + 1
is constructed. Hence the length of the longest repeated suffix |repetp(i +
1)| have only to simply add 1 to |repetp(π1)|, that is, |repetp(i + 1)| =
|repetp(π1)| + 1. On the other hand, by induction hypothesis, we have
|repetp(i + 1)| = lrs[π1] + 1 = lrs[i + 1]. From these claims (∗) follows.

Now consider the case that q − 1 �= Sp(π1). In this case lrs[i + 1] =
min{lrs[π1], lrs[π2]}+1 by definition. Let j be the state such that Sp(π1) =
j. Then the transition by pi+1 from state j to q is an external transition.
Since we assume that Oracle(p[1 . . . q]) is error free, both strings p[1 . . . j]pi+1

and p[1 . . . π2]pi+1 is suffix of p[1 . . . q]. This implies that p[1 . . . j] is suffix of
p[1 . . . π2]. Note here that the longest repeated suffix repetp(π2) is accepted
at state j and p[1 . . . j] is indeed the longest string accepted at state j. Hence

5

we have repetp(π2) = p[1 . . . j]; furthermore the relation lrs[π1] ≤ lrs[π2]
holds since lrs[π1] is also at most j. Then by definition of lrs, we have
lrs[i + 1] = lrs[π1] + 1. Also lrs[i + 1] = |repetp(π1)| + 1 by induction
hypothesis. Thus, for (∗) it suffices to prove repetp(i + 1) = repetp(π1)pi+1

which is our goal below.
Let u, v be a string such that repetp(i + 1) = upi+1(u ∈ Σ∗), v =

repetp(π1), and our goal is to show u = v. The string u appears at state j
from Sp(i + 1) = q and δ(j, pi+1) = q. The string v also appears at state
j. Any strings accepted at state j is suffix of p[1 . . . j] since Oracle[1 . . . j]
is error free by assumption. Thus we have u, v ∈ suf (j). Moreover u is
suffix of p[1 . . . i] by definition, v is also suffix of p[1 . . . i] from Proposition
1; that is, u, v ∈ suf (i). We want to verify u = v. Consider now the
following two cases; |u| < |v| and |u| > |v|, and lead to a contradiction.
In the first case, |u| < |v|, repetp(i + 1) must be vpi+1 since vpi+1 appears
at least twice at state q and i + 1, |vpi+1| > |upi+1|. This contradicts
repetp(i + 1) = upi+1. In the second case, |u| > |v|, let SPp(i) = {j0 =
i, j1, . . . , jt = j, . . . , js = 0} be the suffix path of p[1 . . . i]. Then there exists
an integer l(1 ≤ l ≤ t) such that |repetp(jl)| ≤ |u| < |repetp(jl−1)|. This
means Sp(jl) = j and repetp(jl) = u. That is, jl+1 = j and jl = π1;
repetp(jl) = repetp(π1) = v = u. This contradicts |u| > |v|. Since we lead a
contradiction from both cases, we have |u| = |v| which implies u = v. Thus
repetp(i + 1) = upi+1 = vpi+1 = repetp(π1)pi+1 is verified.

3.3 Error acceptance detection algorithm

We build an algorithm to decide whether Oracle(p) makes an error accep-
tance using Theorem 1 and Lemma 1. The algorithm is FOError (Fig-
ure. 5), we explain this algorithm along this figure. As an example, we
state the execution of the algorithm for construction of Oracle(abbbc) in
Figure. 7.

The variable flag may take one of values in the set {0, 1, 2}. At first
the variable flag is initialized 0. This algorithm constructs an oracle on-line
reading p from the left to right. The function NewAddLetter in for-
statement computes Oracle(p[1 . . . i]) and lrs[i]; this function is exactly the
same function given in [3]. After these computation, we check the conditions
of Theorem 1. First, we check the condition (1) of Theorem 1; for a string v
is accepted at state Sp(i−1) and u = repetp(i−1), whether |v| > |u| or not.
Since the longest string is accepted at state Sp(i− 1) is p[1 . . . Sp(i− 1)], we
can use Sp(i) as |v|. Moreover we can replace |u| by lrs[i−1] using Lemma 1.
Hence we check whether Sp(i−1) > lrs[i−1] or not. If Sp(i−1) > lrs[i−1],
we change the variable flag from 0 into 1. Next, we check the condition (2)
of Theorem 1, that is whether external transision is defined from Sp(i − 1)
to i or not. Notice that once the variable flag becomes 1, the condition (1)
keeps satisfied until an error acceptance occurs. Thus once the value of flag

6

FOError (p = p1p2 · · · pm)
create Oracle(ε){

one single state 0
Sε(0) = −1, flag ← 0
}
for(i = 1; i ≤ m; i + +){

Oracle(p[1 . . . i])← NewAddLetter(Oracle(p[1 . . . i− 1], pi))
if(flag == 0){

if(Sp(i− 1) > lrs[i− 1])
flag ← 1 .

}
else if(flag == 1){

if(an external transition is defined to state i)
flag ← 2 · · · (error-acceptance).

}
}
return Oracle(p) and flag.

Figure. 5: Algorithm: FOError

is 1, we check only the condition (2) whenever the factor oracle is updated
by adding a letter. If the condition (2) is satisfied with flag= 1, the value
of flag becomes 2. Then two conditions of Theorem 1 is satisfied and the
factor oracle makes an error acceptance. So if the value of flag isn’t 2 when
the construction of Oracle(p) is finished, Oracle(p) doesn’t make an error
acceptance, that is error free. If we halt the algorithm at the stage when
the value of flag is equal to 2, we can decide at the stage whether Oracle(p)
makes an error acceptance.

Theorem 2. Algorithm FOError(p = p1p2 · · · pm) computes Oracle(p) and
lrs[i](∀i, 0 ≤ i ≤ m). In addition, it decides whether Oracle(p) makes an
error acceptance.

Proof. The correctness of Oracle(p) and lrs[i] is proved in [3]. Using Lemma 1
and Theorem 1, we can also prove about judgement of error acceptance.

Theorem 3. The complexity of FOError(p = p1p2 . . . pm) is O(m) in time
and space.

Proof. In [1](Theorem 2) it is proved that the construction of Oracle(p) is
linear time and space in |p|. [3](Theorem 2) proves that the construction of
lrs[1 . . . m] is linear time and space in |p| 1. Thus we only have to prove the
parts for error acceptance test (line 8-15, Figure 5). For each i, the number

1Detail proof and implementation are in preparation [13].

7

NewAddLetter(Oracle(p[1 . . . i], σ)){
create a new state i + 1
δ(i, σ) ← i + 1
j ← Sp(i)
π1 ← i
while(j > −1 and δ(j, σ) is undefined){

δ(j, σ) ← i + 1
π1 ← j
j ← Sp(j)

}
if (j = −1) s← 0
else s← δ(j, σ)
Sp(i + 1)← s
compute lrs[i + 1] according to Definition 6.
return Oracle(p[1 . . . i]σ)
}

Figure. 6: Function NewAddLetter

of if-statements is at most four times. Therefore, during the construction of
Oracle(p), the number of executed comparisons is at most 4m. Hence the
complexity of FOError(p = p1p2 . . . pm) is O(m) in time and space.

4 Conclusions

We analyze the situation that factor oracles accept a string which is not
substrings of a given text p. We obtained a necessary and sufficient condition
of the first error in the process of constructing Oracle(p). Moreover using
the condition, we provided a method to decide whether Oracle(p) makes an
error acceptance in time and space O(|p|).

Our motivation of this study is that factor oracles accept a string not in
a given text and what this strings is like. We made the first error clear, but
we don’t know the language is accepted erroreously by Oracle(p). In [8], a
characterization of the language recognized by factor oracles is described.
Also, other questions stay open about factor oracle. For example, the fac-
tor oracle is not minimal considering the number of transitions among the
automaton of m + 1 states which recognize at least the factors. Does there
exist an algorithm to build this reduced automaton? This remains an open
problem.

8

0 1 2 3 4

a b b

b

b

0 1 2

a b

b

0 0 0

The subscript of each state i is the value of lrs(i).

:transition

:suffix link

Sp (1) = 0 = lrs[1] = 0　,

0 0 0 1 1

0 1 2 3 4

a b b

b

5

cb

0 0 0 1 2 0
abbc, abc is error-accepted.

(1)

(2)

(3)

δ(0, b) = 2

Sp (3) = 2 > lrs[3] = 1　, δ(2, b) 4=

Sp (4) = 3 > lrs(4) = 2　, δ(3, c) 5=

Sp (3) = 2 > lrs(3) = 1　, δ(2, c) 5=

c

Figure. 7: The behavior of our algorithm for constructing Oracle(abbbc)

References

[1] M. Allauzen, M. Crochemore, and M. Raffinot. Factor oracle: a new
structure for pattern matching. Theory and Practice of Informatics
number 1725, 291 − 306, 1999.

[2] M. Allauzen, M. Crochemore, and M. Raffinot. Efficient experimental
string matching by weak factor recognition. Lecture Notes in Computer
Science, 2089, 51− 72, 2001.

[3] A. Lefebvre, T. Lecroq. Computing repeated factors with a factor or-
acle, In Proc. of the 11th Australasian Workshop on Combinatorial
Algorithms 339 − 348, 2000.

[4] A. Lefebvre, T. Lecroq. Compror: on-line lossless data compression with
a factor oracle, Information Proceedings Letters volume 83, 1− 6, 2001.

[5] A. Lefebvre, T. Lecroq, H. Dauchel and J. Alexandre. FORRepeats:
detects repeats on entire chromosomes and between genomes, bioinfor-
matics volume19 no.3 319 − 326, 2003.

[6] Edward M. McCreight. A space-economical suffix tree constrction al-
gorithm, Journal of the ACM 23 : 262 − 272, 1976.

9

[7] U. Manber, G. Myers. A new method for on-line string searches, 1st
Annual ACM-SIAM Symposium on Discrete Algorithms 319−327, 1990.

[8] Alban Mancheron and Christophe Moan. Combinatorial Characteri-
zation of the Language Recognized by Factor and Suffix Oracles In
Procedings of the Prague Stringology Conference ’04, 139 − 153, 2004.

[9] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M.T. Chen, and
J. Selferas. The smallest automaton recognizing the subwords of a text.
Theoretial Computer Science, volume 40, 31− 55, 1985.

[10] L. Cleophas, G. Zwaan and B. Watson. Constructing Factor Oracles,
In Proceedings of the 3rd Prague Stringology Conference, 2003.

[11] U. Manber, G. Myers. A new method for on-line string searches, 1st
Annual ACM-SIAM Symposium on Discrete Algorithms 319−327, 1990.

[12] E. Ukkonen. On-line construction of suffix trees, Algorithmica 14(3):
249− 260, Sept.1995

[13] H. Iwasaki and O. Watanabe. Detail construction of computing a re-
peated factor. to appear.

10

