
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: CC oo mm pp uu tt ee rr SS cc ii ee nn cc ee

ISSN 1342-2812

A detail analysis on factor oracle construction
of computing repeated factors

Hisashi Iwasaki

January 2006, C–219

A detail analysis on factor oracle
construction of computing repeated factors

Hisashi Iwasaki
C/O Prof. Osamu Watanabe,

Dept. of Mathematical and Computing science,
Tokyo Institute of Technology
email: iwasaki2@is.titech.ac.jp

Research Report C−219

abstract

We show a detail implementation for a linear time and space
method, introduced in [3], to compute the length of a repeated
suffix for each prefix of a given word p. This method is based on
the utilization of the factor oracle [1] of p, which is deterministic
acyclic automata accepting all subustrings of p.

keyword: factor oracle, suffix link, repetition

1 Introduction

There exist many studies of finding repetitions in a given word p in areas
such as bioinformatics and data compression. In [3] an on-line heuristic
method, linear time and space in |p|, to compute, for each prefix p[1 . . . i]
of p, the length of one of its repeated suffix was proposed. This length is
denoted by lrs[i]. This method, based on factor oracle [1], gives an efficient
way for searching repetitions, which has been shown quite useful in practical
applications, e.g. repetition search in genomic sequences. Furthermore in
[4] on-line data compression scheme using this method was proposed.

Unfortunately, however, the worst-case complexity of constructing a fac-
tor oracle while computing lrs is not clear from the description of the method
stated in [3]. We show here a detail implementation for a linear time and
space method to compute the length of a repeated suffix for each prefix of a
given word p. From our implementation, it is now clear that a factor oracle

1

and the table for its lrs function can be constructed within linear time and
space in |p|.

2 Notations

We will use standard notions and notations on strings such as |p|, the length
of a string p, etc. Let Σ be our alphabet, we assume that all strings p =
p1p2 . . . pm are strings over Σ. A factor or substring (resp. prefix suffix) of p
is a string w (resp. u, v) such that p = uwv for some u, v ∈ Σ∗; in particular,
for an i and j, 1 ≤ i ≤ j ≤ m, we use p[i . . . j] to denote the substrings of p
appearing from the ith character to the jth character.

For a given string p, a factor oracle Oracle(p) is an automaton with the
following features:
• it is an acylic,
• it consists of |p|+1 states (which are all accepting states) and |p| to 2|p|−1
transitions, and
• it accepts all factors of p.

０ １ ２ ３ ４ ５ ６ ８７
b b b c a b c

b

a

c

transition

suffix link

Figure. 1: Oracle(abbbcabc)

For example, a factor oracle Oracle(p) for p = abbbcabc is given as Figure
1. Here state 0 is the initial state. On this figure, the reader can check that
it accepts all substrings of p; it is also easy to check that this factor oracle
accepts “abc”, nonsubstring of p; that is , it makes an error acceptance.

Definition 1. repetp(i) is the longest suffix of p[1 . . . i] that appears at least
twice in p[1 . . . i].

For example, in Figure 1, repetp(1) = ε, repetp(4) = bb, repetp(8) = abc.

Definition 2. A function Sp maps each state i > 0 of Oracle(p) to state j
in which the reading of repetp(i) ends(Sp(i) = j). For completeness, we set
Sp(0) = −1. We call Sp(i) suffix link of the state i in Oracle(p).

Definition 3. We denote k0 = i, kj = Sp(kj−1)(j ≥ 1) for any state i > 0.
The sequence of the ki is finite, strictly decreasing and ends in state 0.

2

We call this sequence of states a suffix path, and define SPp(i) to be the
set of states on the suffix path from i, that is, SPp(i) = {k0 = i, k1 =
Sp(i), . . . , kt = 0}.

3 Computing repeated suffix with factor oracle

In [3] an on-line heuristic algorithm to compute, for each prefix p[1 . . . i], the
length of one of its repeated suffixes, such that S(i) is one of its occurrences.
This length is denoted by lrs[i]. In this section we propose another proof
about the time complexity of this algorithm.

First we explain briefly about definition of lrs. During the construction
of Oracle(p[1 . . . i+1]) from Oracle(p[1 . . . i]) and pi+1, the backward jumps
on the suffix path SPp(i) ends when a state j is reached such that δ(j, pi+1)
is already defined. For this j, we define the following π1, π2.

Definition 4. (Definition 8 in [3]). π1 is the state in SPp(i) such that
Sp(π1) = j

Definition 5. (Definition 9 in [3]). π2 is state j if Sp(i + 1) − 1 = j.
Othewise, π2 is the state in SPp(Sp(i + 1)− 1) such that Sp(π2) = j.

Definition 6. (Definition 10 in [3]).
Let lrs be an array of m + 1 integers such that for each i, 0 ≤ i < m :
.

lrs[i + 1] =

⎧⎨
⎩

0, if Sp(i + 1) = 0, · · · (1)
lrs[π1] + 1, if π2 = Sp(π1), and · · · (2)
min{lrs[π1], lrs[π2]}+ 1 otherwise. · · · (3)

lrs[0] is set to 0.

The value of lrs[i] is defined as above is not exactly |repetp(i)| but it is
an approximate value of |repetp(i)|. The construction of lrs[i] is linear in
space, since each value of this array can be stored in constant space. The
two first case (1) and (2) of Definition 6 are computed in constant time. The
only problem from third case. In this case, since we have to know π2 we
follow suffix links from Sp(i + 1)− 1 until π2 find. For this part we propose
a new method to compute π2. This method compute π2 from j and pi+1 in
O(1) instead of following suffix link from Sp(i + 1)− 1.

Definition 7. For any external transition δ(k, σ) on Oracle(p),
etbrother(k, σ) = l ⇔def (Sp(l) = k) ∧ (δ(k, σ) = δ(l, σ))

We will proof that etbrother(j, pi+1) = π2(j is the state such that j =
Sp(π1)).

3

Lemma 1. For each step i + 1(1 . . . |p| − 1) of Oracle(p) construction, let j
the state such that j = π1, we have etbrother(j, pi+1) = π2.

Proof. Let etbrother(j, pi+1) = l. This means δ(j, pi+1) = δ(l, pi+1) by
definition of etbrother. Now let δ(j, pi+1) = q. Since j = Sp(π1), δ(j, pi+1) =
Sp(i+1). Thus we have q = Sp(i+1). On the other hand δ(l, pi+1) = q since
δ(j, pi+1) = δ(l, pi+1). Hence δ(l, pi+1) is constructed at step q of Oracle(p)
construction. This means that l is in SPp(q − 1) by construction of factor
oracle, that is l ∈ SPp(Sp(i + 1) − 1). Futhermore we have j = Sp(l) by
definition of etbrother. Since this is exactly the definition of π2, we have
l = π2. Thus we have etbrother(j, pi+1) = π2.

When we compute lrs[i+1] in the third case, for finding π2 we only have
to search etbrother(j, pi+1). The computation of etbrother for each external
transition is easy after the external transition is constructed. Figure 2 shows
the pseudo-code for the computation of the factor oracle of a given word p
together with the table of lrs using the function etbrother.

Theorem 1. The complexity of OracleAndLrs2(p = p1p2 . . . pm) is O(m) in
time and space.

Proof. In [1](Theorem 2) it is proved that the construction of Oracle(p) is
linear time and space in |p|. Clearly a table for lrs needs linear space. Also
in the two first case (1) and (2) of Definition 6, each lrs[i] can be computed
in constant time. Therefore, we only have to consider the parts of computing
lrs[i] for the third case. In this case, the problem is to find π2. However
we can find π2 from etbrother(j, pi+1) by Lemma 1 in constant time. The
computation of etbrother for each external transition is also constant time,
and the total number of external transitions is at most m − 1. Hence the
complexity of OracleAndLrs2(p = p1p2 . . . pm) is O(m) in time and space.

Figure 3 shows the example of computation of lrs. In this example,
lrs[3], lrs[8] and lrs[12] is computed by third case of Definition 6. In the
case of lrs[8], π1 is state 7 and j = 2 (since j is the state such that j =
Sp(π1)). Then by Lemma 1 π2 can be computed as etbrother(j, p8), which
is etbrother(2, ‘c′) = 3.

4

OracleAndLrs2 (p = p1p2 · · · pm)
create Oracle(ε){

one single state 0
Sε(0) = −1

}
for(i = 0; i < m; i + +){

Oracle(p[1 . . . i])← NewAddLetter2(Oracle(p[1 . . . i], pi+1))
}
return Oracle(p) and lrs.

NewAddLetter2(Oracle(p[1 . . . i], σ))
create a new state i + 1
create a new internal transition δ(j, σ) ← i + 1.
j ← Sp(i)
k ← i
while(j > −1 and δ(j, σ) is undefined){

create a new external transition δ(j, σ) ← i + 1
etbrother(j, σ)← k (k is the state such that Sp(k) = j)
k ← j
j ← Sp(j)

}
π1 ← k.
if (j = −1) s← 0
else s← δ(j, σ)
Sp(i + 1)← s
compute lrs[i + 1] according to Definition 6.

(In third case, π2 ← etbrother(j, pi+1).)
return Oracle(p[1 . . . i]σ)

Figure. 2: Algorithm: OracleAndLrs2

0 1 2 3 4 5 6 87
b b b c a b c

(b , 1)

a

(c , 3)

9 10 1211
a b cd

(d , 5)

(c , 4)

(d , 8)

0 20 10 0 01 12 22 2

Figure. 3: Example of computation of lrs. The dot arrows represent the
suffix link and the plain arrow represent the transitions. The values written
on the bottom-right of the states is the lrs values. The pairs written on
the external transition represent that the left-value is transition letter and
right-value is etbrother values.

5

References

[1] M. Allauzen, M. Crochemore, and M. Raffinot. Factor oracle: a new
structure for pattern matching. Theory and Practice of Informatics
number 1725, 291 − 306, 1999.

[2] M. Allauzen, M. Crochemore, and M. Raffinot. Efficient experimental
string matching by weak factor recognition. Lecture Notes in Computer
Science, 2089, 51− 72, 2001.

[3] A. Lefebvre, T. Lecroq. Computing repeated factors with a factor or-
acle, In Proc. of the 11th Australasian Workshop on Combinatorial
Algorithms 339 − 348, 2000.

[4] A. Lefebvre, T. Lecroq. Compror: on-line lossless data compression with
a factor oracle, Information Proceedings Letters volume 83, 1− 6, 2001.

[5] A. Lefebvre, T. Lecroq, H. Dauchel and J. Alexandre. FORRepeats:
detects repeats on entire chromosomes and between genomes, bioinfor-
matics volume19 no.3 319 − 326, 2003.

[6] Alban Mancheron and Christophe Moan. Combinatorial Characteri-
zation of the Language Recognized by Factor and Suffix Oracles In
Procedings of the Prague Stringology Conference ’04, 139 − 153, 2004.

[7] L. Cleophas, G. Zwaan and B. Watson. Constructing Factor Oracles,
In Proceedings of the 3rd Prague Stringology Conference, 2003.

6

