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An extension of Azuma-Hoeffding inequality

Hayato Takahashi∗and Yasuaki Niikura†

Abstract

We propose an approximation of expectation
(pseudo expectation) of Markov process, which is
originally discussed by Watanabe and Sawai in
the context of randomized decoding algorithm for
LDPC. We show a bound of the difference between
pseudo expectation and expectation, and give a de-
viation probability with respect to the the pseudo
expectation. As an example, we study certain kind
of urn model, which is a simplified model of Watan-
abe and Sawai algorithm, and apply our results to
the model.
Keywords: Markov chain, urn model, concentra-
tion, large deviation, randomized algorithm

1 Introduction

In Watanabe et. al. [4], a randomized decoding algo-
rithm for LDPCC (low density parity check coding)
is proposed. Since the state space of the algorithm
is large, it is hard to obtain the average behavior
of the algorithm; therefore they considered an ap-
proximation of the average. By numerical simula-
tion, they observed that processes of the algorithm
are highly concentrated and concluded that expec-
tation and their approximation of expectation are
close. In this paper, we call their approximation as
pseudo expectation. The definition is given later.

In this paper we give analytical results for such
a concentration phenomena. In order to do so, we
first give a simple model. The processes of certain
type of randomized local search algorithms includ-
ing random decoding algorithm for LDPC can be
modeled as follows (In the following, let n be a nat-
ural number) :
Let S0 be the initial state of the algorithm (we as-
sume that S0 is constant). If n-step state of the
algorithm is Sn then n + 1-step state is Sn+1 =
Sn + X(Sn), where X(Sn) is a bounded random
variable, which depends on the current state Sn.
And if Sn = q for some step n, where q is the ter-
minate state, then the algorithm stops.

In the above model, let f be a function such that

E(Sn+1|Sn) = f(Sn), a.s.
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The pseudo expectation zn is defined by

zn = fn(zo), z0 = S0 (= constant).

If f is linear, E(Sn+1) = EE(Sn+1|Sn) =
E(f(Sn)) = f(E(Sn)) and hence E(Sn) =
fn(S0) = zn for all n. If f is non-linear, in general,
E(Sn) 6= zn. By this property, the pseudo expecta-
tion zn is considered to be a linear approximation
of E(Sn).

For a random variable X and a measurable func-
tion g, let ess supP

X g(X) = inf{a |P (g(X) > a) =
0} and ess infP

X g(X) = sup{a |P (g(X) < a) = 0};
if P is obvious from the context, we omit P and
write ess supX and ess infX . In this paper we prove
the following;

Theorem 1.1 Let S0, S1, · · · , Sn be Markov pro-
cess, and the state space S is a subset of R. Let
f be a function such that E(Si+1|Si) = f(Si) a.s.

Let

di = ess sup
Si−1

P (·|Si−1)
ess sup Si −

P (·|Si−1)

ess inf Si (1)

Assume that ∀i, di < ∞. Let

r(x, y) =
{

(f(x) − f(y))/(x − y), if x 6= y
0, if x = y

,

r(Si) = r(Si, zi), ri = ess sup
Si

|r(Si)| for 0 ≤ i ≤ n,

Dn =
n−1∑
i=0

(dn−i

i∏
j=1

rn−j)2, where
0∏

j=1

rn−j = 1,

and
βi = E(γiδi|Sn−i−1), (2)

where γi =
∏i

j=1 r(Sn−j) −
E(

∏i
j=1 r(Sn−j)|Sn−i−1), γ0 = 1, and

δi = Sn−i − E(Sn−i|Sn−i−1). Then for any
n, t > 0,

E(Sn) = zn +
n−1∑
i=0

E(βi), (3)

and

P (|Sn − zn −
n−1∑
i=0

βi| > t) ≤ 2e−2t2/Dn . (4)
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Remark 1.1 In the above theorem, βi is the co-
variance of

∏i
j=1 r(Sn−j) and Sn−i conditioned by

Sn−i−1. Thus by Schwarz inequality, we have

|βi| ≤
√

E(γ2
i |Sn−i−1)E(δ2

i |Sn−i−1). (5)

If f is linear, γi ≡ 0 and hence βi ≡ 0. If Si and
zi are included in a closed interval [a, b],−∞ ≤ a <
b ≤ ∞ and f is continuously differentiable on [a, b],
then by the mean value theorem we have

inf
x∈[a,b]

d

dx
f(x) ≤ inf

Si

r(Si) ≤ r(Si)

≤ sup
Si

r(Si) ≤ sup
x∈[a,b]

d

dx
f(x).(6)

Thus we have ri ≤ supx∈[a,b] | d
dxf(x)|.

Corollary 1.1 Under the same condition of Theo-
rem 1.1, we have

E(|Sn − zn|) ≤
√

π

2
Dn + E(|

n−1∑
i=0

βi|), (7)

and

lim sup
n

|Sn − zn −
∑n−1

i=0 βi|
g(n)

≤ 1 a.s., (8)

where g(n) =
√

Dn( 1
2 log n + log log n). Thus we

have

Sn = zn +
n−1∑
i=0

βi + O(g(n)) a.s. (9)

Let rsup = supx,y∈S |r(x, y)|. In this paper, we
call the process contracting if rsup < 1. For that
case, the processes are highly concentrated as fol-
lows.

Corollary 1.2 Assume that rsup < 1 and
supn dn < ∞. Then limn Dn exists and D =
limn Dn ≤ (supn dn)2 1

1−r2
sup

< ∞. Under the same
condition of Theorem 1.1, we have
(a) zn converges, and limn zn is the unique solution
of f(z) = z.
(b) supn |

∑n−1
i=0 βi| ≤ supn dn

1
1−rsup

< ∞ a.s.

(c) supn |E(Sn)−zn| ≤ supn E(|Sn−zn|) ≤
√

π
2 D+

supn E(|
∑n−1

i=0 βi|).
(d) Let g̃(n) =

√
D( 1

2 log n + log log n). Then

lim supn
|Sn−zn|

g̃(n) ≤ 1 a.s., and hence Sn = zn +
O(g̃(n)) a.s.

If {Sn} is a martingale sequence, i.e.,
E(Sn|Sn−1, · · · , S0) = Sn−1, a.s. then r ≡ 1 and
βi ≡ 0, a.s. For that case, Theorem 1.1 reduces to
the following theorem, and hence Theorem 1.1 is an
extension of the Azuma-Hoeffding inequality.

Theorem 1.2 (Azuma-Hoeffding[1, 2]) Let
X1, X2, · · ·Xn be a random process, and let
Sn =

∑n
i=1 Xi + S0. Assume (1). If S1, S2, · · ·Sn

is a martingale sequence, then for any n, t > 0,

P (|Sn − S0| ≥ t) ≤ 2e−2t2/
∑n

i=1
d2

i .

1.1 Comparing to other methods

Let ∀i, Yi = E(g|X1, · · · , Xi), then {Yi} is a mar-
tingale sequence. If we have a bound di, 1 ≤ i ≤ n
such that

ess sup
X1,···,Xi−1

P (·|X1,···,Xi−1)
ess sup

Xi

Yi −
P (·|X1,···,Xi−1)

ess inf
Xi

Yi ≤ di

(10)
then the following bounded difference inequality
holds for any n, t > 0 and for any random vari-
ables X1, · · · , Xn [3],

P (|g(X1, · · · , Xn) − Eg(X1, · · · , Xn| ≥ t)

≤ 2e−2t2/
∑n

i=1
d2

i .

Equation (4) is considered to be a variant of the
bounded difference inequality. However it is hard
to obtain the difference di in (10) for our model
below. Instead of computing di, we introduced ri

whose bound is easily obtained by (6).
In [5], under a certain assumption, an approxi-

mation of stochastic processes is studied. The ap-
proximation is the solution of a certain differential
equation. Our method is similar to [5]; we pro-
posed an approximation of the mean (pseudo expec-
tation) and gave a concentration inequality around
pseudo expectation of Markov process. To obtain
the pseudo expectation, we simply iterate f . Thus
regardless the size of the state space, we can easily
compute the pseudo expectation. In particular our
method is effective for contracting process as shown
in the next section.

2 Example

In this section, we examine our result by simple
models, which is considered to be an urn model.
First consider the following game.
1. Player A and B have An ≥ 0 and Bn ≥ 0 balls
at time n respectively.
2. If A (B) wins, A (B) gives min{d, An}
(min{d, Bn}) balls to B (A).
3. Probability of the event {A wins} depends on
An.
Let S be the total number of balls. Then we see

∀n,An + Bn = S. (11)

Let P (An) and P (Bn) be the probability of the
event {A wins} and {B wins} respectively. Then
we have

∀n, P (An) + P (Bn) = 1.
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Thus we see

E

((
An+1

Bn+1

)
|
(

An

Bn

))
=

(
An

Bn

)
+

(
−min{d,An}P (An) + min{d,Bn}P (Bn)
min{d,An}P (An) − min{d,Bn}P (Bn)

)
.

We approximate above equation by

E

((
An+1

Bn+1

)
|
(

An

Bn

))
=

(
An

Bn

)
+ d

(
−P (An) + P (Bn)
P (An) − P (Bn)

)
.(12)

2.1 linear case

In the above model, let P (An) and P (Bn) be An/S
and Bn/S respectively. Then by (11) we have

E(An+1|An) = (1 − 2d

S
)An + d, a.s.

In our notation,

∀n, dn = 2d, f(An) = (1− 2d

S
)An+d, r ≡ (1− 2d

S
).

Hence we have

Dn = 4d2 1 − r2n

1 − r2
,

where r = 1− 2d
S . Since f is linear, we see β ≡ 0 a.s.

and zn = E(An) for all n (see Remark 1.1). Since
the process is contracting (rsup = 1 − 2d

S < 1), by
solving z = f(z), we see limn zn = S/2.

In Figure 1, we show E(|Sn − zn|), (Sn = An)
and its bound

√
π
2 Dn for this model.
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Figure 1: We show the graph E(|Sn − zn|) and its
bound

√
π
2 Dn for d = 1 and 0 ≤ n ≤ 600. The

initial condition is S0 = A0 = 500 and S = 1000.
The ratio E(|Sn − zn|) :

√
π
2 Dn is about 1 : 4.

2.2 non-linear case

Let P (An) and P (Bn) be wAn

wAn+Bn
and Bn

wAn+Bn
re-

spectively, where w is a positive constant such that
2d/S < w < S/2d. Then by (11) we have

E(An+1|An) = An − d
(w + 1)An − S

(w − 1)An + S
, a.s.

In our notation,

∀n, dn = 2d, f(An) = An − d
(w + 1)An − S

(w − 1)An + S
.

In this case f is non-linear, clearly in general,
E(An) 6= zn. Since

d

dx
f(x) = 1 − 2wdS

((w − 1)x + S)2
, (13)

we have (see Remark 1.1),

rsup ≤ f ′(S) = 1 − 2d

wS
< 1, (14)

and hence the process is contracting. By solving
z = f(z), we see limn zn = S/(w+1). In this model,
ri is not constant. If we bound ri by 1 − 2d

wS , we
can not give a tight bound for E(|An − zn|). In
order to give a sharp bound, we give a heuristic
(not rigorous) approximation (15) below: Since the
process is contracting, by Corollary 1.2, we see that
An and zn are close. Thus by (6), it seems that ri

is nearly equal to f ′(zi) for 1 ≤ i ≤ n − 1. Also by
Figure 2, it seems that βi is nearly equal to 0. Hence
we arrive at the following heuristic approximation
of the right-hand side of (7):√

π

2
Dn, where Dn =

n−1∑
i=0

(dn−i

i∏
j=1

f ′(zn−j))2.

(15)
In Figure 3, we show the graph E(|Sn − zn|) (Sn =
An), and its approximated bound (15).

3 Proof of theorem

Let

α(i, n) = (Sn−i − E(Sn−i|Sn−i−1))
i∏

j=1

r(Sn−j),

for 0 ≤ i ≤ n − 1, where
∏0

j=1 r(Sn−j) = 1.

Lemma 3.1 Sn − zn =
∑n−1

i=0 α(i, n).

Proof. By the definition of f , r, and zn, we see

Sn − zn = Sn − E(Sn|Sn−1) + E(Sn|Sn−1) − zn

= Sn − E(Sn|Sn−1) + f(Sn−1) − f(zn−1)
= Sn − E(Sn|Sn−1) + r(Sn−1)(Sn−1 − zn−1).

3



50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200 1400 1600

        E[A_n]
        z_n

Figure 2: We show the graph E(Sn) and zn for
w = 10, d = 1 and 0 ≤ n ≤ 1500. The initial
condition is S0 = A0 = 500 and S = 1000. We see
that E(Sn) and zn are almost same in this scale and
they converge to S/(w + 1) = 1000/11.

By iteratively applying this identity to Sn−i −
zn−i, 1 ≤ i ≤ n, we have the lemma. Note that
S0 = z0.

Let

βi = β(i, n) = E(α(i, n)|Sn−i−1).

Then

β(i, n) = E((
i∏

j=1

r(Sn−j) − E(
i∏

j=1

r(Sn−j)|Sn−i−1))

(Sn−i − E(Sn−i|Sn−i−1))|Sn−i−1),

for 0 ≤ i ≤ n − 1.
Proof of Theorem 1.1.

Proof of (3).)
By Lemma 3.1, we see

E(Sn) − zn =
n−1∑
i=0

E(α(i, n))

=
n−1∑
i=0

EE(α(i, n)|Sn−i−1) =
n−1∑
i=0

E(β(i, n)),

and (3) holds.
Proof of (4).)

By Lemma 3.1, we have

Sn − zn −
n−1∑
i=0

β(i, n) =
n−1∑
i=0

(α(i, n)−β(i, n)). (16)

By the definition of α and β, we see

E(α(i, n) − β(i, n)|Sn−i−1) = 0, (17)

for all 0 ≤ i ≤ n − 1.
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Figure 3: We show the graph E(|Sn − zn|) and ap-
proximated bound (15) for w = 10, d = 1 and 0 ≤
n ≤ 1500. The initial condition is S0 = A0 = 500
and S = 1000.

Fix Sn−i−1. Then by assumption, the length of
the support set of Sn−i is bounded by dn−i. Thus
there are constants a and b such that α(i, n) ∈
[a, b], a.s., and b − a ≤ dn−i

∏i
j=1 rn−j . Also

β(i, n) ∈ [a, b]. Hence there are constants a′ and
b′ such that

α(i, n) − β(i, n) ∈ [a′, b′], a.s. and

b′ − a′ ≤ dn−i

i∏
j=1

rn−j . (18)

Recall that β(i, n) is a function of Sn−i−1.
Let Y n

k =
∑n−1

i=n−k(α(i, n) − β(i, n)), 1 ≤ k ≤ n.
Then by (17) we have E(Y n

k |Sk−1) = Y n
k−1, and Y n

n

equals to left hand side of (16). Thus by (18) and
applying {Y n

k }1≤k≤n to Azuma-Hoeffding inequal-
ity (Theorem 1.2), we have

P (|Y n
k | > t) ≤ 2e

−2t2/
∑n−1

i=n−k
(dn−i

∏i

j=1
rn−j)

2

.

In particular by letting k = n in the above inequal-
ity, we have (4).

Proof of Corollary 1.1.
Proof of (7).
By (4), we have

E(|Sn − zn −
n−1∑
i=0

βi|)

=
∫ ∞

0

P (|Sn − zn −
n−1∑
i=0

βi| > t)dt

≤
∫ ∞

0

2e−2t2/Dndt =
√

π

2
Dn.

Thus we have (7).
Proof of (8) and (9)).
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By (4), we have

∑
n

P (|Sn − zn −
n−1∑
i=0

βi| > g(n))

≤
∑

n

2e−2g(n)2/Dn =
∑

n

2
n(log n)2

< ∞.

Thus by Borell-Cantelli lemma we have (8) and (9).

Proof of Corollary 1.2.
Since
Dn =

∑n−1
i=0 (dn−i

∏i
j=1 rn−j)2 ≤

(supn dn)2 1
1−r2

sup
< ∞, we see limn Dn exists

and D = limn Dn < ∞. Also since f is a contract-
ing map i.e., ∀x, y, |f(x) − f(y)| < rsup|x − y|, we
have (a). Also since

|
n−1∑
i=0

βi| ≤
n−1∑
i=0

|βi| ≤ sup
n

dn

∑
i

ri
sup ≤ sup

n
dn

1
1 − rsup

,

where the second inequality follows from (2), and
hence we have (b). The first inequality of part (c)
is trivial, and the second inequality of part (c) fol-
lows from Corollary 1.1 (a). Part (d) follows from
Corollary 1.1 (b) and part (b) of this corollary.
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