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Abstract

We introduce a computational problem of distinguishing between two specific quantum states
as a new cryptographic problem to design a quantum cryptographic scheme that is “secure” against
any polynomial-time quantum adversary. Our problem QSCDff is to distinguish between two types
of random coset states with a hidden permutation over the symmetric group of finite degree. This
naturally generalizes the commonly-used distinction problem between two probability distributions
in computational cryptography. As our major contribution, we show three cryptographic properties:
(i) QSCDff has the trapdoor property; (ii) the average-case hardness of QSCDff coincides with its
worst-case hardness; and (iii) QSCDff is computationally at least as hard in the worst case as the
graph automorphism problem. These cryptographic properties enable us to construct a quantum
public-key cryptosystem, which is likely to withstand any chosen plaintext attack of a polynomial-
time quantum adversary. We further discuss a generalization of QSCDff , called QSCDcyc , and
introduce a multi-bit encryption scheme relying on the cryptographic properties of QSCDcyc .
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1 Introduction

Since Diffie and Hellman [16] first used a computationally intractable problem to design a key exchange
protocol, computational cryptography has been extensively studied; especially, a number of practical
cryptographic systems (e.g., public-key cryptosystems (PKCs), bit commitment schemes (BCSs), pseu-
dorandom generators, and digital signature schemes) have been proposed under popular intractability
assumptions, such as the hardness of the integer factorization problem (IFP) and the discrete loga-
rithm problem (DLP), for which no efficient classical (i.e., deterministic or probabilistic) algorithm
have been found. Using the power of quantum computation, however, we can efficiently solve various
number-theoretic problems, including IFP (and the quadratic residuosity problem) [45], DLP (and
the Diffie-Hellman problem) [11, 28, 45], and the principal ideal problem [23]. Therefore, a quantum
adversary (i.e., an adversary who runs a quantum computer) can easily break the cryptosystems whose
security proofs heavily rely on the computational hardness of these problems.

Fighting against such a powerful quantum adversary, a new area of cryptography, so-called quantum
cryptography, has emerged in the past two decades. In 1984, Bennett and Brassard [8] proposed a
quantum key distribution scheme via a quantum communication channel. Its unconditional security
was later proven by Mayers [35]. Nonetheless, as Mayers [34] and Lo and Chau [32] independently
demonstrated, quantum mechanics cannot make all cryptographic schemes information-theoretically
secure as we had hoped; in particular, they proved that no quantum BCS can be both concealing
and binding unconditionally. Therefore, “computational” approaches are still important in quantum
cryptography. Along this line, a number of quantum cryptographic properties have been discussed
from the complexity-theoretic point of view [1, 13, 14, 15, 17, 41].

A quantum computer is known to be capable of breaking the RSA cryptosystem and other well-
known classical cryptosystems. It is therefore imperative to discover computationally-hard problems
from which a secure quantum cryptosystem is constructed against any polynomial-time quantum
adversary. For instance, the subset sum (knapsack) problem and the shortest vector problem are a
basis to knapsack-based cryptosystems [26, 41] as well as lattice-based cryptosystems [4, 42]. Since
it is currently unknown whether these problems withstand any attack of quantum adversaries, we
need to continue searching for better intractable problems that can guard their associated quantum
cryptosystems against any powerful quantum adversary.

This paper introduces the new notion of computational indistinguishability between quantum states,
which generalizes the classical indistinguishability notion between two probability distributions [9, 19,
48]. In particular, we present a distinction problem, called QSCDff (quantum state computational
distinction with fully flipped permutations), between specific ensembles of quantum states. QSCDff

enjoys remarkable cryptographic properties as a building block of a secure quantum cryptosystem.

Definition 1.1 The advantage of a polynomial-time quantum algorithm A that distinguishes be-
tween two ensembles {ρ0(l)}l∈N and {ρ1(l)}l∈N of quantum states is the function δA(l) defined as:

δA(l) =
∣∣∣∣Pr
A

[A(ρ0(l)) = 1]− Pr
A

[A(ρ1(l)) = 1]
∣∣∣∣

for two l-qubit quantum states ρ0(l) and ρ1(l), where the subscript A means that any output of
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A is determined by measuring the final state of A in the standard computational basis. We say
that two ensembles {ρ0(l)}l∈N and {ρ1(l)}l∈N are computationally indistinguishable if the advantage
δA(l) is negligible for any polynomial-time quantum algorithm A; namely, for any polynomial p, any
polynomial-time quantum algorithm A, and any sufficiently large number l, it holds that δA(l) <

1/p(l). The distinction problem between {ρ0(l)}l∈N and {ρ1(l)}l∈N is said to be solvable with non-
negligible advantage if these ensembles are not computationally indistinguishable; that is, there exist
a polynomial-time quantum algorithm A and a polynomial p such that

∣∣∣∣Pr
A

[A(ρ0(l)) = 1]− Pr
A

[A(ρ1(l)) = 1]
∣∣∣∣ >

1
p(l)

for infinitely many numbers l.

The problem QSCDff asks whether we can distinguish between two sequences of identical samples of
ρ+

π (n) and of ρ−π (n) for each fixed hidden permutation π for each length parameter n of a certain form.
Let Sn be the symmetric group of degree n and letKn = {π ∈ Sn : π2 = id and ∀i ∈ {1, ..., n}[π(i) 6= i]}
for n ∈ N , where id stands for the identity permutation.

Definition 1.2 Let N = {2(2n′ + 1) : n′ ∈ N}. For each π ∈ Kn, let ρ+
π (n) and ρ−π (n) be two

quantum states defined by

ρ+
π (n) =

1
2n!

∑

σ∈Sn

(|σ〉+ |σπ〉)(〈σ|+ 〈σπ|) and ρ−π (n) =
1

2n!

∑

σ∈Sn

(|σ〉 − |σπ〉)(〈σ| − 〈σπ|).

The problem QSCDff is the distinction problem between two quantum states ρ+
π (n)⊗k(n) and

ρ−π (n)⊗k(n) for each parameter n in N , where k is a polynomial. For each fixed polynomial k, we
use the succinct notation k-QSCDff instead.

To simplify our notation, we often drop the parameter n whenever n is clear from the context. For
instance, we write ρ+⊗k

π for ρ+
π (n)⊗k(n). More generally, k-QSCDff can be defined for any integer-valued

function k. Note that Definition 1.2 uses the parameter n to express the “length” of the quantum
states instead of the parameter l of Definition 1.1. There is, however, essentially no difference for
polynomial-time indistinguishability since ρ+

π and ρ−π can be expressed with O(n log n) qubits and
k(n) is a polynomial in n. This parameter n is used to measure the computational complexity of our
problem and is often referred to as the security parameter in the cryptographic context.

1.1 Our Contributions

This paper shows three cryptographic properties of QSCDff and its application to quantum cryptog-
raphy. These properties are summarized as follows. (i) QSCDff has the trapdoor property; namely,
for any given hidden permutation π ∈ Kn, we can efficiently distinguish between ρ+

π and ρ−π . (ii) The
average-case hardness of QSCDff over a randomly chosen permutation π ∈ Kn coincides with its
worst-case hardness. (iii) QSCDff is computationally at least as hard in the worst case as the graph
automorphism problem (GA), where GA is the graph-theoretical problem defined as:
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Graph Automorphism Problem (GA):

input: an undirected graph G = (V, E);
output: YES if G has a non-trivial automorphism, and NO otherwise.

Since there is no known efficient algorithmic solution for GA, the third property suggests that QSCDff

should be hard to solve. In a certain restricted case, we can actually show without any assumption
that no time-unbounded quantum algorithm can solve o(n log n)-QSCDff . Making use of the afore-
mentioned three cryptographic properties, we can design a computationally-secure quantum PKC
where its security relies on the worst-case hardness of GA. The following subsection discusses in depth
numerous advantages of using QSCDff as a basis of secure quantum cryptosystems.

Furthermore, we give a generalization of QSCDff , called QSCDcyc , and show its cryptographic
properties: (i) the trapdoor property and (ii) the equivalence between its average-case and worst-case
hardness. This new problem becomes a basis for another public-key cryptosystem that can encrypt
messages longer than those in QSCDff .

1.2 Comparison between Our Work and Previous Work

In recent literature, computational-complexity aspects of quantum states have been spotlighted in
connection to quantum cryptography. For instance, the notion of statistical distinguishability between
two quantum states was investigated by Watrous [47] and also Kobayashi [29] in the context of quantum
zero-knowledge proofs. They proved that certain problems of statistically distinguishing between two
quantum states are promise-complete for quantum zero-knowledge proof systems. Aharonov and
Ta-Shma [2] also studied the computational complexity of quantum-state generation and showed its
connection to quantum adiabatic computing as well as statistical zero-knowledge proofs. Note that
our distinction problem QSCDff is also rooted in computational complexity theory.

In what follows, we briefly discuss various advantages of using QSCDff as a basis of quantum
cryptosystems in comparison with existing cryptosystems and their underlying problems.

Average-Case Hardness versus Worst-Case Hardness. The efficient solvability of any given
problem on average, in general, does not guarantee the problem to be solved efficiently in worst
case. This makes it desirable to satisfy the following property: the average-case hardness of the
problem is “equivalent” to its worst-case hardness under a certain type of polynomial-time reduction.
Unfortunately, few cryptographic problems are known to enjoy this property.

Roughly, there are two categories of worst-case/average-case reductions discussed in the past lit-
erature. The first category is a strong reduction, which transforms an arbitrary instance of length
n to a random instance of the same length or length polynomial in n. In this strong sense, Ajtai
[3] found a remarkable connection between average-case hardness and worst-case hardness of certain
variants of the shortest vector problem (SVP). He gave an efficient reduction from the problem of
approximating the shortest vector in a given n-dimensional lattice in the worst case to the approxi-
mation problem of the shortest vector in a random lattice over a certain class of lattices with a large
polynomial approximation factor. Later, Micciancio and Regev [36] gave the average-case/worst-case
connection factor of approximately n for approximating SVP (see [10] and references therein for general
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worst-case/average-case reductions).
The second category is a weak reduction of Tompa and Woll [46], where the reduction is randomized

only over a part of its instances. A typical example is DLP, which can be randomly reduced to itself
by a reduction that maps instances to not all instances of the same length but rather to all instances
of the same underlying group. Nonetheless, unknown is an efficient reduction from DLP with the
worst-case prime to DLP with a random prime. Note that Shor’s algorithm [45] efficiently solves DLP
and the inverting problem of the RSA function with worst-case/average-case reductions of the second
category. The graph isomorphism problem (GI) and GA—well-known graph-theoretical problems—
also enjoy such reductions of the second category [46] although there is no known cryptosystem whose
security relies on their hardness.

This paper, to the contrary, shows that QSCDff has a worst-case/average-case reduction of the
first category. Our reduction depends only on the size of the instance unlike the reduction of DLP. In
fact, our distinction problem QSCDff is the first cryptographic problem with a worst-case/average-
case reduction of the first category. Moreover, there is no known efficient solution to QSCDff on a
quantum computer. Our reduction is similar in flavor to the reductions of the aforementioned lattice
problems.

Computational Hardness of Underlying Computational Problems. The hidden subgroup
problem (HSP) has played a central role in recent discussions on the strength and limitation of quantum
computation. The aforementioned IFP and DLP can be viewed as special cases of HSP on Abelian
groups (AHSP). Kitaev [28] showed how to solve AHSP efficiently; in particular, he gave a polynomial-
time algorithm for the quantum Fourier transformation over Abelian groups, which is a generalization
of the quantum Fourier transformation used in Shor’s algorithm [45]. Although an efficient quantum
algorithm exists for AHSP, a simple application of currently known techniques may not be sufficient
to solve HSP on non-Abelian groups. (Note that HSP on certain specific non-Abelian groups were
already solved in [6, 18, 21, 25, 31, 38, 43].) Another important variant is the HSP on the dihedral
groups (DHSP). Recently, Regev [43] demonstrated a quantum reduction from the unique shortest
vector problem (uSVP) to a slightly different variant of DHSP. Note that uSVP is a basis of the
lattice-based PKCs given in [4, 42]. For DHSP, Kuperberg [31] found a subexponential-time quantum
algorithm. Although these results do not directly imply a subexponential-time quantum algorithm for
uSVP, they may be a clue to find the desired algorithm in the end.

Our problem QSCDff is closely related to a much harder problem: HSP on the symmetric groups
(SHSP). Note that no known subexponential-time quantum algorithm exists for SHSP. Hallgren et
al. [25] introduced a problem, similar to QSCDff , distinguishing between certain two random coset
states and showed that we require exponentially-many samples of the random coset states to solve their
distinction problem by the so-called weak quantum Fourier sampling on a single sample. Grigni et
al. [21] improved the hardness of this distinction problem, who proved that exponentially-many samples
are necessary even by the strong Fourier sampling on a single sample with random choices of bases of
the representations of Sn. Kempe and Shalev [27] also gave a generalization of the results of [25] and
[21]. While these results were discussed based on the quatum Fourier sampling methods, Moore et
al. [39] demonstrated that any time-unbounded quantum algorithm on a single sample provides only
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exponentially-little information of the given random coset state, regardless of specific methods such as
the quantum Fourier sampling methods. More precisely, exp(Ω(n)) samples are necessary to solve the
problem by any time-unbounded quantum algorithm on a single sample. Moore and Russell [37] also
extended this result to the case of two samples. More precisely, they showed that exp (Ω(

√
n/ log n))

samples are necessary to solve the problem even by any time-unbounded quantum algorithm over
two samples. More recently, Hallgren et al. [24] proved that no time-unbounded quantum algorithm
solves the distinction problem even from o(n log n) samples. In this paper, we further show that the
distinction problem is polynomial-time reducible to QSCDff . This immediately implies that we have
no time-unbounded quantum algorithm for QSCDff from o(n log n) samples. Even with sufficiently
many samples for QSCDff , there is no known subexponential-time quantum algorithms for QSCDff

and thus finding such an algorithm seems a daunting task. This situation, on the contrary, indicates
that our problem QSCDff should be more suitable than, e.g., uSVP as an underlying intractable
problem founding a secure cryptosystem similar to the classical case of DLP over different groups;
namely, DLP over Z∗p (where p is a prime) is classically solvable in subexponential time whereas no
known classical subexponential-time algorithm exists for DLP over certain groups in elliptic curve
cryptography. It is generally believed that DLP over such groups is more reliable than DLP over Z∗p.

We prove that the computational complexity of QSCDff is lower-bounded by that of GA. Note that
well-known upper bounds of GA are NP∩ co-AM [20, 44], SPP [5], and UAP [12] but GA is not yet
known to be in NP∩co-NP. Since most cryptographic problems fall in NP∩co-NP, few cryptographic
systems are lower-bounded by the worst-case hardness of problems outside of NP ∩ co-NP.

Quantum Computational Cryptography. Apart from PKCs, quantum key distribution gives
a foundation to symmetric-key cryptology; for instance, the quantum key distribution scheme in [8]
achieves unconditionally secure sharing of secret keys in symmetric-key cryptosystems (SKCs) through
an authenticated classical communication channel. Undoubtedly, both SKCs and PKCs have their own
advantages and disadvantages. Compared with SKCs, PKCs require less secret keys in a large-scale
network; however, they often need certain intractability assumptions for their security proofs and are
typically vulnerable to, e.g., the man-in-the-middle attack. As an immediate application of QSCDff ,
we propose a new computational quantum PKC whose security relies on the computational hardness
of QSCDff .

Of many existing PKCs, few make their security proofs solely rely on the worst-case hardness of
their underlying problems. Quantum adversaries can break many PKCs whose underlying problems
are number-theoretic because fast quantum algorithms can solve these problems. Based on a certain
subset of the knapsack problem, Okamoto et al. [41] proposed a quantum PKC, which withstands
certain well-known quantum attacks. Our proposed quantum PKC also seems to fend a polynomial-
time quantum adversary since we can reduce the problem GA to QSCDff , where GA is not known to
be solved efficiently on a quantum computer.
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2 Cryptographic Properties of QSCDff

Through this section, we want to show three cryptographic properties of QSCDff : (i) the trapdoor
property, (ii) the equivalence between average-case hardness and worst-case hardness, and (iii) a
reduction from QSCDff to other computationally-hard problems. These properties help us construct
a quantum PKC in Section 3.

All the cryptographic properties of QSCDff are consequences of the following remarkable char-
acteristics of the set Kn of the hidden permutations (although the definition of Kn seems somewhat
artificial). (i) Each permutation π ∈ Kn is of order 2. This directly provides the trapdoor property
of QSCDff . (ii) For any π ∈ Kn, the conjugacy class of π is equal to Kn. This property enables
us to prove the equivalence between the worst-case hardness and average-case hardness of QSCDff .
(iii) The problem GA is (polynomial-time Turing) equivalent to its subproblem with the promise that
any given graph has a unique non-trivial automorphism in Kn or none at all. This equivalence is used
to give a complexity-theoretic lower bound of QSCDff ; that is, the average-case hardness of QSCDff is
lower-bounded by the worst-case hardness of GA. For these proofs, we introduce two new techniques:
(i) a variant of the so-called coset sampling method , which is broadly used in extensions of Shor’s
algorithm (see, e.g., [43]) and (ii) a quantum version of the hybrid argument, which is a strong tool
for many security reductions used in computational cryptography.

Now, let us assume the reader’s familiarity with basics of quantum computation [40] and recall the
two quantum states ρ+

π = 1
2n!

∑
σ∈Sn

(|σ〉+|σπ〉)(〈σ|+〈σπ|) and ρ−π = 1
2n!

∑
σ∈Sn

(|σ〉−|σπ〉)(〈σ|−〈σπ|)
given for a permutation π ∈ Kn. For convenience, let ι(n) (or simply ι) denote the maximally mixed
state 1

n!

∑
σ∈Sn

|σ〉〈σ| over Sn, which will appear later as a technical tool.

2.1 Trapdoor Property

The first property to prove is that QSCDff enjoys the trapdoor property, which has played a key role in
various cryptosystems in use. To prove this property, it suffices to present an efficient distinguishing
algorithm between ρ+

π and ρ−π without knowing their hidden permutation π ∈ Kn.

Theorem 2.1 (Distinguishing Algorithm) There exists a polynomial-time quantum algorithm
that, for a hidden permutation π ∈ Kn, distinguishes between ρ+

π (n) and ρ−π (n) for any n ∈ N with
probability 1.

Proof. Fix n arbitrarily. Let χ be any given unknown state, which is either ρ+
π or ρ−π . The desired

distinguishing algorithm for χ works as follows.

(D1) Prepare two quantum registers. The first register holds a control bit and the second register
holds χ. Apply the Hadamard transformation H to the first register. The state of the system
now becomes

H|0〉〈0|H ⊗ χ.

(D2) Apply the Controlled-π operator Cπ to the two registers, where the operator Cπ satisfies
Cπ|0〉|σ〉 = |0〉|σ〉 and Cπ|1〉|σ〉 = |1〉|σπ〉 for any given σ ∈ Sn. Since π2 = id for every
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π ∈ Kn, the state of the entire system can be expressed as

1
n!

∑

σ∈Sn

|ψ+
π,σ〉〈ψ+

π,σ| if χ = ρ+
π , and

1
n!

∑

σ∈Sn

|ψ−π,σ〉〈ψ−π,σ| if χ = ρ−π ,

where |ψ+
π,σ〉 and |ψ−π,σ〉 are defined by

|ψ±π,σ〉 = Cπ

(
1
2
|0〉 (|σ〉 ± |σπ〉) + |1〉 (|σ〉 ± |σπ〉)

)

=
1
2
|0〉(|σ〉 ± |σπ〉) +

1
2
|1〉(|σπ〉 ± |σ〉).

(D3) Apply the Hadamard transformation to the first register. If χ is either ρ+
π or ρ−π , then the state

of the system becomes either

(H ⊗ I)|ψ+
π,σ〉 =

1√
2
|0〉 (|σ〉+ |σπ〉) or (H ⊗ I)|ψ−π,σ〉 =

1√
2
|1〉 (|σ〉 − |σπ〉) .

Measure the first register in the computational basis. If the result is 0, then output YES;
otherwise, output NO.

Clearly, the above procedure gives the correct answer with probability 1. 2

2.2 Reduction from Worst Case to Average Case

We want to reduce the worst-case hardness of QSCDff to its average-case hardness. Such a reduction
implies that QSCDff with a random permutation π is at least as hard as QSCDff with the permutation
π of the highest complexity. Since the converse reduction is trivial, the average-case hardness of
QSCDff is, in fact, polynomial-time Turing equivalent to its worst-case hardness.

Theorem 2.2 Let k be any polynomial. Assume that there exists a polynomial-time quantum algo-
rithm A that solves k-QSCDff with non-negligible advantage for a uniformly random π ∈ Kn; namely,
there exists a polynomial p such that, for infinitely many security parameters n in N ,

∣∣∣∣Pr
π,A

[A(ρ+
π (n)⊗k(n)) = 1]− Pr

π,A
[A(ρ−π (n)⊗k(n)) = 1]

∣∣∣∣ >
1

p(n)
,

where π is chosen uniformly at random from Kn. Then, there exists a polynomial-time quantum
algorithm B that solves k-QSCDff with non-negligible advantage for any permutation π ∈ Kn.

Proof. Fix an arbitrary parameter n ∈ N that satisfies the assumption of the theorem. For each
i ∈ {1, 2, ..., k(n)}, let χi be the ith state of the given k(n) states. Note that χi is in {ρ+

π , ρ−π }. We
build the desired worst-case algorithm B from the average-case algorithm A in the following way.

(R1) Choose a permutation τ ∈ Sn uniformly at random.
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(R2) Apply τ to each χi, where i ∈ {1, ..., k}, from the right. If χi = ρ+
π , then we obtain the quantum

state

χ′i =
1

2n!

∑

σ∈Sn

(|στ〉+ |σττ−1πτ〉)(〈στ |+ 〈σττ−1πτ |)

=
1

2n!

∑

σ′∈Sn

(|σ′〉+ |σ′τ−1πτ〉)(〈σ′|+ 〈σ′τ−1πτ |).

When χi = ρ−π , we instead obtain χ′i =
1

2n!

∑

σ′∈Sn

(|σ′〉 − |σ′τ−1πτ〉)(〈σ′| − 〈σ′τ−1πτ |).

(R3) Invoke the average-case quantum algorithm A on the input
⊗k

i=1 χ′i.
(R4) Output the outcome of A.

Note that τ−1πτ belongs to Kn for any τ . Moreover, there exists a τ ∈ Sn satisfying that τ−1πτ = π′

for each π′ ∈ Kn. Hence, the conjugacy class of π is equal to Kn. In addition, the number of all
permutations τ ∈ Sn for which τ−1πτ = π′ is independent of the choice of π′ ∈ Kn. These properties
implies that τ−1πτ is indeed uniformly distributed over Kn. Therefore, by feeding the input

⊗k
i=1 χ′i

to the algorithm A, we achieve the desired non-negligible advantage of A. 2

2.3 Computational Hardness

The third property of QSCDff relates to the computational hardness of QSCDff . We want to present
two claims that witness its relative hardness. First, we prove that the computational complexity of
QSCDff is lower-bounded by that of GA by constructing an efficient reduction from GA to QSCDff .
Second, we discuss a relationship between QSCDff and SHSP and prove that QSCDff cannot be solved
from o(n log n) samples.

Now, we prove the first claim on the reducibility of GA to QSCDff . Our reduction from GA to
QSCDff consists of two parts: a reduction from GA to a variant of GA, called UniqueGAff , and
a reduction from UniqueGAff to QSCDff . To describe the desired reduction, we first introduce two
variants of GA. Earlier, Köbler et al. [30] introduced the following unique graph automorphism problem
(UniqueGA).

Unique Graph Automorphism Problem (UniqueGA):
input: an undirected graph G = (V, E);
promise: G has either a unique non-trivial automorphism or no non-trivial automorphism;
output: YES if G has the non-trivial automorphism, and NO otherwise.

Note that UniqueGA is called (1GA, GA) as a promise problem in [30]. To establish a direct connec-
tion to QSCDff , we further introduce the unique graph automorphism with fully-flipped permutation
(UniqueGAff ).

Unique Graph Automorphism with Fully-Flipped Permutation (UniqueGAff ):
input: an undirected graph G = (V, E), where |V | = n ∈ N ;
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promise: G has either a unique non-trivial automorphism π ∈ Kn or no non-trivial auto-
morphism;
output: YES if G has the non-trivial automorphism, and NO otherwise.

Note that the instance G of UniqueGAff is defined only when the number n of nodes belongs to the
set N = {2(2n′ + 1) : n ∈ N}.

We prove two useful lemmas regarding UniqueGAff . The first lemma uses the so-called coset
sampling method, which has been largely used in many extensions of Shor’s algorithm.

Lemma 2.3 There exists a polynomial-time quantum algorithm that, given an instance G of
UniqueGAff , generates a quantum state ρ+

π if G is an “YES” instance with its unique non-trivial
automorphism π, or generates ι = 1

n!

∑
σ∈Sn

|σ〉〈σ| if G is a “NO” instance.

Proof. Given an instance G of UniqueGAff , we first prepare the quantum state
1√
n!

∑
σ∈Sn

|σ〉|σ(G)〉, where σ(G) is the graph resulting from relabeling its nodes according to each
permutation σ. By discarding the second register, we obtain the unique quantum state χ in the first
register. This χ satisfies χ = ρ+

π if G is an “YES” instance with the unique non-trivial automorphism
π, and χ = ι otherwise, as requested. 2

The second lemma requires a variant of the coset sampling method as a technical tool. The lemma
in essence relies on the fact that the hidden π is an odd permutation. This is one of the special
properties of Kn.

Lemma 2.4 There exists a polynomial-time quantum algorithm that, given an instance G of
UniqueGAff , generates the quantum state ρ−π if G is an “YES” instance with the unique non-trivial
automorphism π or generates ι if G is a “NO” instance.

Proof. Similar to the algorithm of Lemma 2.3, we start with the quantum state 1√
n!

∑
σ∈Sn

|σ〉|σ(G)〉
in two registers. Compute the sign of each permutation in the first register and then invert
its phase exactly when the permutation is odd. Consequently, we obtain the quantum state

1√
n!

∑
σ∈Sn

(−1)sgn(σ)|σ〉|σ(G)〉, where sgn(σ) = 0 if σ is even, and sgn(σ) = 1 otherwise. By dis-
carding the second register, we obtain a certain quantum state, say, χ in the first register. Note that,
since π is odd, if σ is odd (even, resp.) then σπ is even (odd, resp.). Therefore, it follows that χ = ρ−π
if G is an “YES” instance with the unique non-trivial automorphism π, and χ = ι otherwise. 2

We are now ready to present a reduction from GA to QSCDff . This concludes that QSCDff is
computationally at least as hard as GA for infinitely-many input lengths n.

Theorem 2.5 If there exist a polynomial k and a polynomial-time quantum algorithm that solves
k-QSCDff with non-negligible advantage, then there exists a polynomial-time quantum algorithm that
solves GA in the worst case for infinitely-many input lengths n.

Proof. We first show that GA is polynomial-time Turing equivalent to UniqueGAff and then give a
reduction from UniqueGAff to QSCDff . The reduction from GA to UniqueGAff is similar to the one
given by Köbler et al. [30], who presented a polynomial-time Turing reduction from GA to UniqueGA.

10



Their polynomial-time algorithm for GA invokes UniqueGA as an oracle on a promised input, which
is a graph of even number of nodes with either the unique non-trivial automorphism without any fixed
point or no non-trivial automorphism at all. Modifying the construction of their reduction, we can
easily obtain our reduction from GA to UniqueGAff . Furthermore, it is possible to make the length
n satisfy the equation n = 2(2n′ + 1) for a certain n′ ∈ N by a slight modification of their argument.
Therefore, we obtain the following lemma.

Lemma 2.6 UniqueGAff is polynomial-time Turing equivalent to GA.

Actually, a much stronger statement holds. When a Turing reduction to a promise problem makes
only queries that satisfy the promise, the reduction is called smart [22]. Such a smart reduction is
desirable for a security reduction of a cryptosystem. Since the reduction from GA to UniqueGA in
[30] is indeed smart, so is our reduction. For readability, we postpone the proof of Lemma 2.6 until
Appendix.

From Lemma 2.6, it suffices to construct a reduction from UniqueGAff to QSCDff . Assume that
there exist two polynomials k, p and a polynomial-time quantum algorithm A such that, for infinitely
many n’s, A solves k-QSCDff with advantage 1/p(n). Let us fix an arbitrary n for which A solves
k-QSCDff with advantage 1/p(n). For any given instance G of UniqueGAff , we perform the following
procedure:

(S1) Generate two sequences S+ = (χ+⊗k, ..., χ+⊗k) and S− = (χ−⊗k, ..., χ−⊗k) of 8p2(n)n instances
from G using the algorithms of Lemmas 2.3 and 2.4, respectively.

(S2) Invoke A on each component in S+ and S− as an input. Let R+ = (A(χ+⊗k), ...,A(χ+⊗k))
and R− = (A(χ−⊗k), ...,A(χ−⊗k)) be the resulting sequences.

(S3) Output YES if the difference between the number of 1’s in R+ and that in R− is at least 4p(n)n;
output NO otherwise.

Note that if G is an “YES” instance, then we have S+ = (

8p2(n)n︷ ︸︸ ︷
ρ+⊗k

π , ..., ρ+⊗k
π ) and S− = (

8p2(n)n︷ ︸︸ ︷
ρ−⊗k

π , ..., ρ−⊗k
π );

otherwise, we have S+ = S− =

8p2(n)n︷ ︸︸ ︷
(ι⊗k, ..., ι⊗k). Therefore, as far as G is an “YES” instance, the numbers

of 1’s in R+ and in R− are clearly different.
Finally, we estimate the above difference. Let X+ and X− be two random variables respectively

expressing the numbers of 1’s in R+ and in R−. Assume that G is an “YES” instance. The Höffding
bound implies Pr[|X+−X−| > 4p(n)n] > 1−2e−n since |Pr[A(ρ+⊗k

π ) = 1]−Pr[A(ρ−⊗k
π ) = 1]| > 1/p(n)

from our assumption. Similarly, when G is a “NO” instance, we have Pr[|X+ − X−| < 4p(n)n] >

1− 2e−n. This guarantees that the above procedure solves UniqueGAff efficiently. 2

As noted in Section 1, our distinction problem QSCDff is rooted in SHSP. It is known that a special
case of SHSP is reduced to the distinction problem between {ρ+

π (n)}n∈N and {ι(n)}n∈N . Hallgren et
al. [24] proved that this problem cannot be solved by any time-unbounded quantum algorithm over
o(n log n) identical samples. Regarding our second claim, we want to show a close relationship between
QSCDff and this distinction problem between {ρ+

π (n)}n∈N and {ι(n)}n∈N .

11



Before stating the second claim, we present an algorithm that converts ρ+
π to ρ−π for any fixed

π ∈ Kn. This algorithm is a key to the proof of the claim and further to the construction of a
quantum PKC in the subsequent section.

Lemma 2.7 (Conversion Algorithm) There exists a polynomial-time quantum algorithm that,
with certainty, converts ρ+

π (n) into ρ−π (n) and keeps ι(n) as it is for any parameter n ∈ N and any
hidden permutation π ∈ Kn.

Proof. First, recall the definition of sgn(σ). Let π ∈ Kn be any hidden permutation. For its
corresponding quantum state ρ+

π , the desired algorithm simply inverts its phase according to the sign
of the permutation. This is done by performing the following transformation:

|σ〉+ |σπ〉 7−→ (−1)sgn(σ)|σ〉+ (−1)sgn(σπ)|σπ〉.

Note that deciding the sign of a given permutation takes only polynomial time. Since π is odd, the
above algorithm obviously converts ρ+

π to ρ−π . Moreover, the algorithm does not alter the quantum
state ι. 2

A similar result holds for QSCDff to [24] on the hardness of distinction between two quantum
states. Theorem 2.8 shows that QSCDff can be reduced to the above distinction problem in polynomial
time. As an immediate consequence, no time-unbounded quantum algorithm can solve QSCDff from
o(n log n) samples. The proof of the theorem requires a quantum version of the so-called hybrid
argument.

Theorem 2.8 Let k be any polynomial. If there exists a quantum algorithm A such that
∣∣∣∣Pr
A

[A(ρ+
π (n)⊗k(n)) = 1]− Pr

A
[A(ρ−π (n)⊗k(n)) = 1]

∣∣∣∣ > ε(n)

for any security parameter n ∈ N , then there exists a quantum algorithm B such that, for each n ∈ N ,
∣∣∣∣Pr
B

[B(ρ+
π (n)⊗k(n)) = 1]− Pr

B
[B(ι(n)⊗k(n)) = 1]

∣∣∣∣ >
ε(n)

4
.

Proof. Fix n ∈ N arbitrarily and we hereafter omit this parameter n. Assume that a quantum
algorithm A distinguishes between ρ+⊗k

π and ρ−⊗k
π with advantage at least ε(n). Let A′ be the

algorithm that applies the conversion algorithm of Lemma 2.7 to a given state χ (which is either ρ+⊗k
π

or ι⊗k) and then feeds the resulting state χ′ (either ρ−⊗k
π or ι⊗k) to A. Note that A′(ρ+⊗k

π ) = A(ρ−⊗k
π )

and A′(ι⊗k) = A(ι⊗k) by our definition. It thus follows by the triangle inequality that
∣∣∣∣Pr
A

[A(ρ+⊗k
π ) = 1]− Pr

A
[A(ι⊗k) = 1]

∣∣∣∣ +
∣∣∣∣Pr
A′

[A′(ρ+⊗k
π ) = 1]− Pr

A′
[A′(ι⊗k) = 1]

∣∣∣∣ > ε(n)

for any parameter n ∈ N . This inequality leads us to either
∣∣∣∣Pr
A

[A(ρ+⊗k
π ) = 1]− Pr

A
[A(ι⊗k) = 1]

∣∣∣∣ >
ε(n)

2
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or ∣∣∣∣Pr
A′

[A′(ρ+⊗k
π ) = 1]− Pr

A′
[A′(ι⊗k) = 1]

∣∣∣∣ >
ε(n)

2
.

To complete the proof, we design the desired algorithm B as follows: first choose either A or A′ at
random and then simulate the chosen algorithm. It is easy to verify that B distinguishes between
ρ+⊗k

π and ι⊗k with advantage at least ε(n)/4. 2

3 Application to a Quantum Public-Key Cryptosystem

Section 2 has shown the useful cryptographic properties of QSCDff . Founded on these properties,
we wish to construct a quantum PKC where the computational hardness of QSCDff (which can be
further reduced to the hardness of GA) guarantees its security. We start with an efficient quantum
algorithm that generates ρ+

π from π.

Lemma 3.1 (ρ+
ı -Generation Algorithm) There exists a polynomial-time quantum algorithm

that, on input π ∈ Kn, generates the quantum state ρ+
π with probability 1.

Proof. The desired generation algorithm uses two registers and is given below. It is straightforward
to verify the correctness of the given algorithm and we omit the correctness proof.

(G1) Prepare the state |0〉|id〉 in two quantum registers.
(G2) Apply the Hadamard transformation to the first register to obtain the state 1√

2
(|0〉+ |1〉)|id〉.

(G3) Perform the Controlled-π on the both registers and we obtain the state 1√
2
(|0〉|id〉+ |1〉|π〉).

(G4) Subtract 1 from the content of the first register exactly when the second register contains π.
This process gives rise to the state 1√

2
(|0〉|id〉+ |0〉|π〉).

(G5) Apply a uniformly random permutation σ to the content of the second register from the left.
The whole quantum system becomes 1√

2
(|0〉|σ〉+ |0〉|σπ〉).

(G6) Output the content of the second register.

2

Hereafter, we describe our quantum PKC and give its security proof. For the security proof, we
need to specify the model of adversary’s attack. Of all attack models discussed in [7], we choose a
quantum analogue of the indistinguishability against the chosen plaintext attack (IND-CPA) and adapt
the following “weakest” scenario:

Alice (sender) wants to send a classical single-bit message securely to Bob (receiver) via
a quantum channel. Assume that Alice and Bob are capable of running polynomial-time
quantum algorithms. Bob first generates a certain quantum state as an encryption key.
Alice requests him for his encryption key and then encrypts her message using the key. By
making a request to Bob, Eve (adversary) also obtains numerous copies of his encryption
key. Therefore, we can assume that Eve’s attack concentrates on Alice’s message trans-
mission phase through the quantum channel. Eve intercepts Alice’s encrypted message via
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the channel and tries to decrypt it using polynomially-many copies of Bob’s encryption
key by applying polynomial-time quantum algorithms.

Now, we explain our quantum PKC protocol in detail. Note that, in our protocol, Alice transmits
a single-bit message to Bob using his O(log n)-qubit-long encryption key. Our protocol consists of two
phases: Bob’s key transmission phase and Alice’s message transmission phase. (See Figure 1.)

Alice Bobquantum channel
Eve
πρ +

πρ +
πρ +
or πρ −Alice Bobquantum channel
Eve
πρ +

πρ +
πρ +
or πρ −

Figure 1: our public-key cryptosystem

Here is the precise description of our quantum PKC protocol.
[Key transmission phase]

(A1) Bob chooses a decryption key π uniformly at random from Kn.
(A2) Bob generates sufficiently many copies of the encryption key ρ+

π .
(A3) Alice obtains a copy of the encryption key from Bob.

[Message transmission phase]

(A4) Alice encrypts 0 or 1 into ρ+
π or ρ−π , respectively, and sends the encrypted message back to Bob.

(A5) Bob decrypts Alice’s message using the decryption key π.

Step (A1) can be implemented by first choosing different transpositions uniformly at random and then
letting π to be the product of these chosen transpositions. Step (A2) is done by the ρ+

π -generation
algorithm of Lemma 3.1. The conversion algorithm of Lemma 2.7 implements Step (A4) since Alice
sends Bob either the received state ρ+

π or its converted state ρ−π . Finally, the distinguishing algorithm
of Theorem 2.1 implements Step (A5).

The security of our PKC is proven by reducing GA to Eve’s attack during the message transmission
phase. Our reduction is a simple modification of the reduction given in Theorem 2.5.

Proposition 3.2 Let A be any polynomial-time quantum adversary who attacks our quantum PKC
during the message transmission phase. Assume that there exist two polynomials p(n) and l(n)
satisfying that ∣∣∣∣Pr

π,A
[A(ρ+

π , ρ+⊗l(n)
π ) = 1]− Pr

π,A
[A(ρ−π , ρ+⊗l(n)

π ) = 1]
∣∣∣∣ >

1
p(n)

for infinitely many parameters n ∈ N . Then, there exists a polynomial-time quantum algorithm that
solves GA in the worst case with non-negligible probability for infinitely many n’s.

Proof. The proposition immediately follows from the proof of Theorem 2.5 by replacing ρ+⊗k
π ,

ρ−⊗k
π , and ι⊗k in the proof with (ρ+

π , ρ
+⊗l(n)
π ), (ρ−π , ρ

+⊗l(n)
π ), and (ι, ι⊗l(n)), respectively. 2
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4 Generalization of QSCDff

In our QSCDff -based quantum PKC, Alice encrypts a single-bit message using an O(n log n)-qubit
encryption key. We wish to show how to increase the size of Alice’s encryption message and construct
a multi-bit quantum PKC built upon a generalization of QSCDff , called QSCDcyc (QSCD with cyclic
permutations), which is the distinction problem among multiple ensembles of quantum states. Recall
that Definition 1.1 has introduced the notion of computational indistinguishability between two en-
sembles of quantum states. This notion can be naturally generalized as follows to multiple quantum
state ensembles.

Definition 4.1 We say that m ensembles {ρ0(l)}l∈N, ..., {ρm−1(l)}l∈N of quantum states are compu-
tationally indistinguishable if, for any distinct pair i, j ∈ Zm, the advantage between the two ensembles
{ρi(l)}l∈N and {ρj(l)}l∈N is negligible for any polynomial-time quantum algorithm A; namely, for any
two ensembles {ρi(l)}l∈N and {ρj(l)}l∈N, any polynomial p, any polynomial-time quantum algorithm
A, and any sufficiently large number l, we have∣∣∣∣Pr

A
[A(ρi(l)) = 1]− Pr

A
[A(ρj(l)) = 1]

∣∣∣∣ <
1

p(l)
.

The distinction problem among {ρ0(l)}l∈N, ..., {ρm−1(l)}l∈N is said to be solvable with non-negligible
advantage if the ensembles are not computationally indistinguishable; i.e., there exist two ensembles
{ρi(l)}l∈N and {ρj(l)}l∈N, a polynomial-time quantum algorithm A and a polynomial p such that

∣∣∣∣Pr
A

[A(ρi(l)) = 1]− Pr
A

[A(ρj(l)) = 1]
∣∣∣∣ >

1
p(l)

for infinitely many numbers l ∈ N.

We wish to define a specific distinction problem, denoted succinctly QSCDcyc among m ensembles
of quantum states. For any fixed n ∈ N, assume that m ≥ 2 and m divides n. For each σ ∈ Sn,
π ∈ Km

n , and s ∈ Zm, let

|Φσ
π,s〉 =

1√
m

m−1∑

t=0

ωst
m|σπt〉,

where ωm = e2πi/m. Our new hidden permutation π consists of disjoint n/m cyclic permutations of
length m; namely, π is of the form

π = (i0 i1 · · · im−1) · · · (in−m in−m+1 · · · in−1),

where is, it ∈ Zm and is 6= it if s 6= t for any pair (s, t). Such a permutation π has the following
properties: (i) π has no fixed points (i.e., π(i) 6= i for any i ∈ Zn) and (ii) π is of order m (i.e.,
πm = id). For convenience, denote by Km

n ⊆ Sn the set of all such permutations. The distinction
problem QSCDcyc is finally defined in the following way.

Definition 4.2 The problem QSCDcyc is the distinction problem among m ensembles
{ρ(0)

π (n)⊗k(n)}n∈N, ..., {ρ(m−1)
π (n)⊗k(n)}n∈N of quantum states, where k is a polynomial and the no-

tation ρ
(s)
π (n) denotes the mixed state 1

n!

∑
σ∈Sn

|Φσ
π,s〉〈Φσ

π,s| for each π ∈ Km
n . In particular, for any

fixed k, we write k-QSCDcyc .
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As in the case of QSCDff , we also drop the parameter n wherever possible. Note that QSCDff

coincides with QSCDcyc with m = 2 and n = 2(2n′ + 1) for a certain number n′ ∈ N.
The generalized problem QSCDcyc also enjoys useful cryptographic properties. We first present the

trapdoor property of QSCDcyc . In the case of QSCDff , we embed only a single bit into the quantum
states ρ+

π and ρ−π . This is possible because its trapdoor information π is a permutation of order two.
Since π is of order m ≥ 2 in QSCDcyc , m bits can be embedded into the quantum states ρ

(0)
π , ..., ρ

(m−1)
π .

Now, we present a distinguishing algorithm for ρ
(s)
π .

Theorem 4.3 (Generalized Distinguishing Algorithm) There exists a polynomial-time quan-
tum algorithm that, for each n ∈ N, π ∈ Km

n , and s ∈ Zm, decrypts ρ
(s)
π (n) to s with exponentially-

small error probability.

Proof. Let χ be any given quantum state of the form ρ
(s)
π for a certain hidden permutation π ∈ Km

n

and a hidden parameter s. Note that χ is the mixture of pure states |Φσ
π,s〉 over a randomly chosen

σ ∈ Sn. It thus suffices to give a polynomial-time quantum algorithm that decrypts |Φσ
π,s〉 to s for any

fixed σ. Such an algorithm can be given by conducting the following Generalized Controlled-π Test,
which is a straightforward generalization of the distinguishing algorithm given in Theorem 2.1.
[Generalized Controlled-π Test]

(D1’) Prepare two quantum registers. The first register holds a control string, initially set to |0〉, and
the second register holds the state |Φσ

π,s〉. Apply the inverse Fourier transformation F−1
m to the

first register. Meanwhile, assume that we can perform the Fourier transformation exactly. The
total system then becomes

1√
m

m−1∑

r=0

|r〉|Φσ
π,s〉 =

1
m

∑
r,t

ωst
m|r〉|σπt〉.

(D2’) Apply π to the content of the second register from the right r times. The state of the total
system now becomes

1
m

∑
r,t

ωst
m|r〉|σπr+t mod m〉.

(D3’) Apply the Fourier transformation Fm to the first register and we obtain the state

1
m

∑
r,t

1√
m

m−1∑

r′=0

ωrr′
m |r′〉ωst

m|σπr+t mod m〉

=
1

m3/2

∑

r,r′,t

ωst+rr′
m |r′〉|σπr+t mod m〉

=
1

m3/2

∑
r,t

ωs(r+t)
m |s〉|σπr+t mod m〉+

1
m3/2

∑

r,t,r′ 6=s

ωst+rr′
m |r′〉|σπr+t mod m〉

=
1√
m

m−1∑

t=0

ωst
m|s〉|σπt〉 = |s〉|Φσ

π,s〉.

(D4’) Finally, measure the first register in the computational basis and output the result s in Zm.
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The error probability of the above algorithm depends only on the precision of the Fourier transfor-
mation over Zm. As shown in [28], the quantum Fourier transformation can be implemented with
exponentially-small error probability by the approximated quantum Fourier transformation. There-
fore, the theorem follows. 2

Similar to QSCDff , the average-case hardness of QSCDcyc coincides with its worst-case hardness.

Theorem 4.4 Let k be any polynomial. Assume that there exists a polynomial-time quantum al-
gorithm A that solves k-QSCDcyc with non-negligible advantage for a uniformly random π ∈ Km

n ;
namely, there exist two numbers s, s′ ∈ Zm and a polynomial p such that, for infinitely many numbers
n ∈ N, ∣∣∣∣Pr

π,A
[A(ρ(s)

π (n)⊗k(n)) = 1]− Pr
π,A

[A(ρ(s′)
π (n)⊗k(n)) = 1]

∣∣∣∣ >
1

p(n)
,

where π is chosen uniformly at random from Km
n . Then, there exists a polynomial-time quantum

algorithm B that solves k-QSCDcyc with non-negligible advantage.

Proof. Applying a uniformly random permutation τ ∈ Sn to |Φσ
π,s〉 from its right side and we

obtain the state

1√
m

m−1∑

t=0

ωst
m|σπtτ〉 =

1√
m

m−1∑

t=0

ωst
m|σττ−1πtτ〉 =

1√
m

m−1∑

t=0

ωst
m|στ(τ−1πτ)t〉.

Note that 1
n!

∑
σ∈Sn

|Φστ
τ−1πτ,s〉〈Φστ

τ−1πτ,s| is an average-case instance of QSCDcyc since τ−1πτ is dis-
tributed uniformly at random over Km

n . The rest of the proof follows by an argument similar to the
proof of Theorem 2.2. 2

We want to show a quantum algorithm that generates the quantum state ρ
(s)
π efficiently from π

and s. This generation algorithm will be used to generate encryption keys in our QSCDcyc-based
multi-bit quantum PKC.

Lemma 4.5 (ρ(s)
ı -Generation Algorithm) There exists a polynomial-time quantum algorithm

that generates ρ
(s)
π for any s ∈ Zm and any π ∈ Km

n with exponentially-small error probability.

Proof. The construction is based on a straightforward generalization of the ρ+
π -generation algo-

rithm. We use the approximated Fourier transformation [28] instead of the Hadamard transformation.
Note that the Fourier transformation Fπ over the cyclic group {id, π, π2, ..., πm−1} can be efficiently
approximated from π by an argument similar to the proof of Lemma 3.1 using the approximated
Fourier transformation. Such approximation enables us to perform with exponentially-small error
probability the following transformation:

Fπ|πs〉 =
1√
m

m−1∑

t=0

ωst
m|πt〉.

Since the initial state |πs〉 can be easily generated from π, we immediately obtain the approximation
of Fπ|πs〉. By applying a uniformly-random permutation σ ∈ Sn to the resulting state from the left,
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we obtain the desired state ρ
(s)
π with exponentially-small error probability. 2

Toward the end of this section, we present our multi-bit quantum PKC.
[Key transmission phase]

(A1’) Bob chooses a decryption key π uniformly at random from Km
n .

(A2’) Bob generates the series (ρ(0)
π , ..., ρ

(m−1)
π ) of his encryption keys.

(A3’) Alice obtains the entire encryption keys from Bob.
[Message transmission phase]

(A4’) Alice picks up ρ
(s)
π for her message s ∈ Zm and sends ρ

(s)
π back to Bob.

(A5’) Bob decrypts Alice’s encrypted message using his decryption key π.

By choosing cycles one by one sequentially, we can perform Step (A1’). The ρ
(s)
π -generation algorithm

of Lemma 4.5 immediately implements Step (A2’). Note that Alice can encrypt her message s simply
by choosing ρ

(s)
π from the series (ρ(0)

π , ..., ρ
(m−1)
π ) of Bob’s encryption keys. Finally, the generalized

distinguishing algorithm in Theorem 4.3 achieves Step (A5’).
A major drawback of our multi-bit encryption scheme is that Bob needs to send Alice all the

encryption keys (ρ(0)
π , ..., ρ

(m−1)
π ) simply because of the lack of a sophisticated converting algorithm

among different encryption keys without knowing a hidden decryption key π. For comparison, recall
the conversion algorithm for the QSCDff -based single-bit encryption scheme. This conversion algo-
rithm utilizes the “parity” of σ and σπ to invert their phase without using any information on π.
More precisely, the algorithm implements the homomorphism f from Sn to {+1,−1} ∼= Z/2Z satisfy-
ing that f(σ) = +1 (−1, resp.) if σ is even (odd, resp.). Unfortunately, the same algorithm fails for
QSCDcyc . This is seen as follows. Let us assume, to the contrary, that there exists a homomorphism
g mapping Sn to {1, ωm, ..., ωm−1

m } (∼= Z/mZ). The fundamental homomorphism theorem implies that
Sn/Ker(g) ∼= Z/mZ; namely, there exists an isomorphism from σKer(g) to g(σ) for every σ ∈ Sn.
Note that Ker(g) is a normal subgroup in Sn. It is known that such a normal subgroup in Sn equals
either the trivial group {id} or the alternation group An. Apparently, there is no isomorphism between
{σAn : σ ∈ Sn} and Z/mZ nor isomorphism between {σ : σ ∈ Sn} and Z/mZ if n > 4 and n ≥ m > 2.
This contradicts our assumption.

5 Concluding Remarks

The computational distinction problem QSCDff has useful properties to design a quantum PKC whose
security is guaranteed by the computational intractability of GA. Although GA is reducible to QSCDff ,
there seems a large gap between the hardness of GA and that of QSCDff because all the combinatorial
structures of input graphs in GA are completely lost in QSCDff . It is therefore pressing to find a nice
classical problem (for instance, the problems of finding a centralizer or finding a normalizer [33]) which
almost matches the computational hardness of QSCDff . Since no fast quantum algorithm is known for
QSCDff , discovering such an algorithm may require new tools and novel proof techniques in quantum
complexity theory. Besides our quantum states {ρ+

π (n), ρ−π (n)} in QSCDff , it is imperative to search
for other simple quantum states whose computational indistinguishability is helpful to construct a
more secure cryptosystem.
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Similar to QSCDff , QSCDcyc owns useful cryptographic properties for which we have built a multi-
bit quantum PKC. It is unfortunate that the intractability of QSCDcyc and therefore the security of
our multi-bit quantum PKC are not yet clear. If one proves that the worst-case hardness of QSCDcyc

is lower-bounded by, for instance, the hardness of GA, then our multi-bit quantum PKC might find
more practical use.
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Appendix: Reduction from GA to UniqueGAff

In this Appendix, we prove Lemma 2.6. Earlier, Köbler et al. [30] proved the polynomial-time Turing
equivalence between GA and UniqueGA. We first review their reduction and then explain how to
modify it to obtain the reduction from GA to UniqueGAff . Note that the reduction from UniqueGAff

to GA is trivial.
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We begin with a technical tool and notations necessary to describe the reduction of Köbler et al.
The reduction of Köbler et al. uses a technical tool called a label to distinguish each node of a given
graph G from the others. The label j attached to node i consists of two chains, one of which is of
length 2n + 3 connected to node i and the other is of length j connected to the n + 2-nd node of the
first chain. (See Figure 2.)
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j

1n + 1n +

i

j

1n + 1n +

Figure 2: label

Note that the total size of the label j is 2n + j + 3. Let G[i] denote the graph obtained from G by
attaching label 1 to node i. Similarly, G[i1,...,ij ] is defined as the graph with labels 1, ..., j respectively
attached to nodes i1, ..., ij . Note that any automorphism of G[i] maps the node i into itself and that
any label adds no new automorphism into the modified graph. Let Aut(G) be the automorphism
group of the graph G and let Aut(G)[1,...,i] be the point-wise stabilizer of {1, ..., i} in Aut(G), i.e.,
Aut(G)[1,...,i] = {σ ∈ Aut(G) : ∀j ∈ {1, ..., i}[σ(j) = j]}.

Köbler et al. proved the following theorem. For our later use, we give its proof.

Theorem 5.1 [30, Theorem 1.31] GA is polynomial-time Turing reducible to UniqueGA.

Proof. Given an oracle O for UniqueGA, the following algorithm solves GA in polynomial time.
Let G be any given instance of GA.

(U1) Repeat (U2)-(U3) for each i starting with n down to 1.
(U2) Repeat (U3) for each j ranging from i + 1 to n.
(U3) Invoke O with input graph G[1,...,i−1,i] ∪G[1,...,i−1,j]. If the outcome of O is YES, output YES

and halt.
(U4) Output NO.

If G is an “YES” instance, there is at least one non-trivial automorphism. Take the largest
number i ∈ {1, ..., n} such that there exists a number j ∈ {1, ..., n} and a non-trivial automor-
phism π ∈ Aut(G)[1,...,i] for which π(i) = j and i 6= j. We claim that there is exactly one such
non-trivial automorphism. This is seen as follows. First, note that Aut(G)[1,...,i−1] is expressed as
Aut(G)[1,...,i−1] = π1Aut(G)[1,...,i] + · · · + πdAut(G)[1,...,i]. For any two distinct cosets πsAut(G)[1,...,i]

and πtAut(G)[1,...,i] and for any two automorphisms σ ∈ πsAut(G)[1,...,i] and σ′ ∈ πtAut(G)[1,...,i], it
holds that σ(i) 6= σ′(i). Since |Aut(G)[1,...,i]| = 1 and there exists the unique coset πkAut(G) such
that σ(i) = j for any σ ∈ πkAut(G) by the definition of i, we obtain |πkAut(G)[1,...,i]| = 1. This im-
plies that the non-trivial automorphism π is unique. Note that the unique non-trivial automorphism
interchanges two subgraphs G[1,...,i−1,i] and G[1,...,i−1,j]. Therefore, the above algorithm successfully
outputs YES at Step (U3).

On the contrary, if G is a “NO” instance, then for every distinct i and j, the modified graph has
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no non-trivial automorphism. Thus, the above algorithm correctly rejects such a graph G. 2

Finally, we describe the reduction from GA to UniqueGAff by slightly modifying the reduction
given in the above proof.

Lemma 5.2 GA is polynomial-time Turing reducible to UniqueGAff .

Proof. We only need to change the number of nodes to invoke oracle UniqueGAff in (U3). For such
a change, we first modify the size of each label. Since the number m of all nodes G[1,...,i−1,i]∪G[1,...,i−1,j]

is even, if there is no k such that m = 2(2k + 1) then we add one more node appropriately to the
original labels. We then attach our modified labels of length 2n + i + 4 and 2n + j + 4 to nodes i and
j, respectively. Obviously, this modified graph satisfies the promise of UniqueGAff . Our algorithm
therefore works correctly for any instance of GA. 2
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