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Abstract. Bellare, Boldyreva, Desai, and Pointcheval [2] proposed a new security requirement of
encryption schemes called “key-privacy” or “anonymity.” It asks that an encryption scheme provides
privacy of the key under which the encryption was performed. That is, if an encryption scheme
provides the key-privacy, then the receiver is anonymous from the point of view of the adversary.
They formalized the property of anonymity, and this can be considered under either the chosen
plaintext attack or the adaptive chosen ciphertext attack, yielding two notions of security, IK-CPA
and IK-CCA. (IK means “indistinguishability of keys.”)
In this paper, we propose the notion of plaintext awareness in the two-key setting, called PATK. We
say that a public-key encryption scheme Π is secure in the sense of PATK if Π is secure in the sense
of IK-CPA and there exists a knowledge extractor for PATK. There are some differences between the
definition of knowledge extractor for PA in [3] and that for PATK. We also prove that if a public-key
encryption scheme is secure in the sense of PATK, then it is also secure in the sense of IK-CCA. Since
it looks much easier to prove that a public-key encryption scheme is secure in the sense of PATK
than to prove directly that it is secure in the sense of IK-CCA, the notion of PATK is useful to prove
the anonymity property of public-key encryption schemes.
We also propose the first generic conversion for the anonymity, that is, we prove that the public-key
encryption scheme derived from the Fujisaki-Okamoto conversion scheme, where the basic public-key
encryption scheme is secure in the sense of IK-CPA, is secure in the sense of IK-CCA in the random
oracle model.
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1 Introduction

1.1 Background

The classical security requirement of public-key encryption schemes is that it provides privacy of
the encrypted data. Popular formalizations such as indistinguishability (IND) or non-malleability
(NM), under either the chosen plaintext attack (CPA) or the adaptive chosen ciphertext attack
(CCA) are directed at capturing various data-privacy requirements.

The widely admitted appropriate security level for public-key encryption is the indistinguisha-
bility against the adaptive chosen ciphertext attack (IND-CCA). A promising way to construct
such a public-key encryption scheme is to convert it from primitives which are secure in a weaker
sense such as one-wayness (OW), IND-CPA, etc.

Bellare and Rogaway [5] proposed a generic and simple conversion scheme from a one-way
trapdoor permutation into a public-key encryption scheme. The scheme created in this way is
called OAEP. Fujisaki, Okamoto, Pointcheval, and Stern [16] proved that OAEP with a partial
one-way trapdoor permutation is secure in the sense of IND-CCA. The OAEP conversion has
several variants, such as SAEP [6], OAEP+ [26], etc.

Fujisaki and Okamoto [15] proposed a simple conversion scheme from weak public-key and
symmetric-key encryption schemes into a public-key encryption scheme which is secure in the
sense of IND-CCA. This scheme was used to construct the identity-based encryption scheme
proposed by Boneh and Franklin [7]. Pointcheval [24] proposed a similar conversion scheme.



Recently, many conversion schemes which depend on gap problems [22], such as, REACT [21],
GEM [9], and the schemes in [10], are proposed.

The public-key encryption schemes derived from the conversion schemes [5, 16, 6, 26, 15, 24,
21, 9, 10] described above meet not only IND-CCA, but also the notion of plaintext awareness
(PA). The notion of PA is first proposed by Bellare and Rogaway [5] and refined by Bellare,
Desai, Pointcheval, and Rogaway [3] which is, roughly speaking, that nobody can produce a new
ciphertext without knowing the plaintext. We say that a public-key encryption scheme is secure
in the sense of PA if it is secure in the sense of IND-CPA and there exists a knowledge extractor
which is a formalization of the above property. In [3], they proved that PA implies IND-CCA.
Since it looks much easier to prove that a public-key encryption scheme is secure in the sense
of PA than to prove directly it is secure in the sense of IND-CCA, the notion of PA is useful to
prove the security of public-key encryption schemes.

Recently, Bellare and Palacio [4] discussed the problem of defining the notion of plaintext-
awareness without random oracles and of achieving its concrete schemes.

On the other hand, the notion of PA might be too strong. The schemes described above get a
redundant construction. In [23, 11], the conversion schemes without redundancy were proposed.
They are secure in the sense of IND-CCA, but does not meet PA. Fujisaki [14] introduced another
security notion, called plaintext simulatability (PS). It implies IND-CCA, similar to PA, however,
it is a properly weaker notion than PA.

In 2001, Bellare, Boldyreva, Desai, and Pointcheval [2] proposed a new security requirement
of encryption schemes called “key-privacy” or “anonymity.” It asks that an encryption scheme
provides (in addition to privacy of the data being encrypted) privacy of the key under which
the encryption was performed. That is, if an encryption scheme provides the key-privacy, then
the receiver is anonymous from the point of view of the adversary. They formalized the property
of anonymity. This can be considered under either the chosen plaintext attack or the adaptive
chosen ciphertext attack, yielding two notions of security, IK-CPA and IK-CCA. (IK means
“indistinguishability of keys.”)

In addition to the notion of key-privacy, they provided the RSA-based anonymous encryp-
tion scheme, RSA-RAEP, which is a variant of RSA-OAEP (Bellare and Rogaway [5], Fujisaki,
Okamoto, Pointcheval, and Stern [16]). Recently, Hayashi, Okamoto, and Tanaka [17] proposed the
RSA-based anonymous encryption scheme by using the RSACD function. Hayashi and Tanaka [18]
constructed the RSA-based anonymous encryption scheme by using the sampling twice technique.

1.2 Our Contribution

In this paper, we propose the notion of plaintext awareness in the two-key setting, called PATK.
We say that the public-key encryption scheme Π is secure in the sense of PATK if Π is secure in
the sense of IK-CPA and there exists a knowledge extractor for PATK. There are some differences
between the definition of a knowledge extractor for PA in [3] and that for PATK (See Section 4).
We can see that if there exists a knowledge extractor K for PATK of Π, then we can use K as a
knowledge extractor for PA of Π. That is, if the public-key encryption scheme Π is secure in the
sense of PATK and IND-CPA, then Π is secure in the sense of PA. However, it is not clear that
we can use the knowledge extractor for PA of Π as that for PATK of Π.

We also prove that if a public-key encryption scheme is secure in the sense of PATK, then
it is also secure in the sense of IK-CCA. Since it looks much easier to prove that a public-key
encryption scheme is secure in the sense of PATK than to prove directly that it is secure in the
sense of IK-CCA, the notion of PATK is useful to prove the anonymity property of public-key
encryption schemes.

We also propose the first generic conversion scheme for the anonymity from IK-CPA to IK-
CCA. We employ the Fujisaki-Okamoto conversion scheme [15]. The public-key encryption scheme
derived from their conversion scheme is secure in the sense of IND-CCA in the random oracle



model when it consists of a public-key encryption scheme Πpub and a symmetric-key encryption
scheme Πsym where

– Πpub is γ-uniform (γ < 1) and secure in the sense of OW, and
– Πsym is secure in the sense of find-guess (FG).

We prove that the scheme derived from the Fujisaki-Okamoto conversion scheme with the above
two and the following two assumptions is secure in the sense of IK-CCA in the random oracle
model.

– In Πpub, the message space and the randomness space are common to each user (each public-
key).

– Πpub is secure in the sense of IK-CPA.

We can get the public-key encryption scheme which is secure in the sense of IND-CCA and
IK-CCA if we assume the above four conditions.

The organization of this paper is as follows. In Section 2, we review the definitions of public-
key encryption and symmetric-key encryption. In Section 3 we review the security definitions
for public-key encryption and symmetric-key encryption. In Section 4, we propose the notion of
plaintext awareness in the two-key setting (PATK), and prove that PATK implies IK-CCA. In
Section 5, we review the conversion scheme to IND-CCA proposed by Fujisaki and Okamoto [15].
In Section 6, we propose a generic conversion scheme for the anonymity. More precisely, we prove
that the public-key encryption scheme derived from the Fujisaki-Okamoto conversion scheme,
where the basic public-key encryption scheme is secure in the sense of IK-CPA, is secure in the
sense of IK-CCA in the random oracle model. We conclude in Section 7.

2 Preliminaries

In this paper, we use the following notations. If A is a probabilistic algorithm, then A(x1, x2, . . . , xn; r)
is the result of running A on inputs x1, x2, . . . , xn and coins r. We let y ← A(x1, x2, . . . , xn) de-
note the experiment of picking r at random and letting y be A(x1, x2, . . . , xn; r). If S is a finite
set then x

R← S is the operation of picking an element uniformly from S. If α is not an algorithm
then x ← α is a simple assignment statement.

2.1 Public-Key Encryption

In this section, we review the definition of public-key encryption schemes.
In this paper, we mainly consider the anonymity property of encryption schemes proposed

in [2]. It asks that the encryption provide (in addition to privacy of the data being encrypted)
privacy of the key under which the encryption was performed. In a heterogeneous public-key
environment, encryption will probably fail to be anonymous for trivial reasons. For example,
different users might be using different cryptosystems, or, if the same cryptosystem, have keys of
different lengths. To avoid this problem, we employ some common parameter called common key
in the definition of encryption schemes, similar to that in [2]. Then, the public key pk includes
the corresponding common key I and other information for each user.

Definition 1. A public-key encryption scheme with common-key generation Π = (G,K, E ,D)
consists of four algorithms.

– The common-key generation algorithm G(1k) takes as input a security parameter 1k and re-
turns some common key I.

– The key generation algorithm K(I) is a randomized algorithm that takes as input a common key
I and returns a pair (pk, sk) of keys, a public key and a matching secret key. For given pk, the
message space MSPC(pk) and the randomness space COINS(pk) of Π are uniquely determined.



– The encryption algorithm Epk(m; r) is a randomized algorithm that takes a public key pk and
a plaintext m ∈ MSPC(pk), and returns a ciphertext c, using random coin r ∈ COINS(pk).

– The decryption algorithm Dsk(c) is a deterministic algorithm that takes a secret key sk and a
ciphertext c, and returns the corresponding plaintext m or a special symbol ⊥ to indicate that
the ciphertext c is invalid.

We require that, for any k ∈ N, if I ← G(1k), (pk, sk) ← K(I), m ∈ MSPC(pk), and c ← Epk(m),
then m = Dsk(c).

2.2 Symmetric-Key Encryption

In this section, we review the definition of symmetric-key encryption schemes.

Definition 2. A symmetric-key encryption scheme Π = (E ,D) consists of two algorithms.

– The encryption algorithm Ex(m) is a deterministic algorithm that takes a symmetric-key
x ∈ KSPC(k) and a message m ∈ MSPC(k), and returns a ciphertext c. Note that KSPC(k)
and MSPC(k) are the key space and the message space for k, respectively. They are uniquely
determined by a security parameter 1k.

– The decryption algorithm Dx(c) is a deterministic algorithm that takes a symmetric key x and
a ciphertext c, and returns the corresponding plaintext m.

We require that, for any k ∈ N, if x ∈ KSPC(k), m ∈ MSPC(k), and c ← Ex(m), then m = Dx(c).

3 Security Definitions

In this section, we review the security definitions for public-key encryption and symmetric-key
encryption schemes.

3.1 Public-Key Encryption

γ-uniformity We review a property of public-key encryption, called γ-uniformity, following [15].

Definition 3 (γ-uniformity). Let Π = (G,K, E ,D) be a public-key encryption scheme. We say
that Π is γ-uniform, if, for any I ← G(1k), (pk, sk) ← K(I), m ∈ MSPC(pk), and y ∈ {0, 1}∗,

Pr[r R← COINS(pk) : y = Epk(x; r)] < γ.

One-Wayness We review a weak security notion for public-key encryption, called one-wayness,
following [15].

Definition 4 (OW). Let Π = (G,K, E ,D) be a public-key encryption scheme. Let A be an
adversary. We define the advantage of A via

Advow
Π,A(k) = Pr[I ← G(1k); (pk, sk) ← K(I); m

R← MSPC(pk); c ← Epk(m) : A(c, pk) = m].

We say that A is a (t, ε)-adversary for Π in the sense of OW if A runs in at most time t and
archives Advow

Π,A(k) ≥ ε. We say that Π is (t, ε)-secure in the sense of OW if there is no (t, ε)-
adversary for Π in that sense.



Anonymity In 2001, Bellare, Boldyreva, Desai, and Pointcheval [2] proposed a new security re-
quirement of encryption schemes called “key-privacy” or “anonymity.” It asks that an encryption
scheme provides (in addition to privacy of the data being encrypted) privacy of the key under
which the encryption was performed. That is, if an encryption scheme provides the anonymity,
then the receiver is anonymous from the point of view of the adversary. In [2], they also formalized
the property of “anonymity.” Similar notions had been proposed Abadi and Rogaway [1], Fis-
chlin [13], Camenisch and Lysyanskaya [8], Sako [25], and Desai [12], however, the adaptive chosen
ciphertext attack does not seem to have been considered before in the context of key-privacy. The
definition by Bellare, Boldyreva, Desai, and Pointcheval [2] can be considered under either the
chosen plaintext attack or the adaptive chosen ciphertext attack, yielding two notions of security,
IK-CPA and IK-CCA. (IK means “indistinguishability of keys.”) We describe the definition of
the anonymity, following [2].

Definition 5 (IK-CPA, IK-CCA [2]). Let Π = (G,K, E ,D) be a public-key encryption scheme.
Let Acpa and Acca be adversaries that run in two stages, find and guess. The adversaries Acpa and
Acca have access to some oracles Ocpa and Occa, respectively. For atk ∈ {cpa, cca}, we define the
advantages of Aatk via

Advik-atk
Π,Aatk

(k) = 2 · Pr[I ← G(1k); (pk0, sk0), (pk1, sk1) ← K(I);

(m, si) ← AOatk
atk (find, pk0, pk1); b

R← {0, 1}; c ← Epkb
(m) : AOatk

atk (guess, c, si) = b]− 1

where Ocpa = ε and Occa = (Dsk0 ,Dsk1). Note that si is the state information. It contains the
public keys pk0, pk1, the message m, and so on. We require that m ∈ MSPC(pk0)∩ MSPC(pk1). We
also require that Acca never queries the challenge c to either Dsk0 or Dsk1 in the guess stage.

We say that Acpa is a (t, ε)-adversary for Π in the sense of IK-CPA if Acpa runs in at most
time t and achieves Advik-cpa

Π,Acpa
(k) ≥ ε.

Similarly, we say that Acca is a (t, qd, ε)-adversary for Π in the sense of IK-CCA if Acca runs
in at most time t, makes a total number of qd queries to decryption oracles Dsk0 and Dsk1, and
achieves Advik-cca

Π,Acca
(k) ≥ ε.

We say that Π is (t, ε)-secure (respectively (t, qd, ε)-secure) in the sense of IK-CPA (resp.
IK-CCA) if there is no (t, ε)-adversary (resp. (t, qd, ε)-adversary) for Π in the corresponding
sense.

Anonymity in the Random Oracle Model. We can consider the definition of the anonymity in the
random oracle model in a similar way as that in the standard model described above.

We define Ω as the map family from an appropriate range. The domain and range depend
on the underlying encryption scheme. Even if we choose two random functions that have distinct
domains and distinct ranges respectively, we just write the experiment, for convenience, as G, H ←
Ω, instead of preparing two map families.

In the random oracle model, we begin the experiment of Aatk described above (which defines
advantage) by H ← Ω. Then, we add the random oracle H to both Ocpa and Occa, and allow
that for i ∈ {0, 1}, Epki and Dski may depend on H (which we write EH

pki
and DH

ski
, respectively).

We define the adversaries in a similar way as those in the standard model, that is, we define a
(t, qh, ε)-adversary in the sense of IK-CPA in the random oracle model and a (t, qh, qd, ε)-adversary
in the sense of IK-CCA in the random oracle model where the adversary makes at most qh queries
to H.

We say that Π is (t, qh, ε)-secure (respectively (t, qh, qd, ε)-secure) in the sense of IK-CPA
(resp. IK-CCA) in the random oracle model if there is no (t, qh, ε)-adversary (resp. (t, qh, qd, ε)-
adversary) for Π in the corresponding sense in the random oracle model.



3.2 Symmetric-Key Encryption

Find-Guess We review a security notion for symmetric-key encryption, called find-guess (FG),
following [15].

Definition 6 (FG). Let Π = (E ,D) be a symmetric-key encryption scheme. Let A be an adver-
sary that runs in two stages, find and guess. We define the advantage of A via

Advfg
Π(k) = 2 · Pr[x R← KSPC(k); (m0,m1, si) ← A(find, k);

b
R← {0, 1}; c ← Ex(mb) : A(guess, c, si) = b]− 1.

We require that m0 6= m1 and m0,m1 ∈ MSPC(k).
We say that A is a (t, ε)-adversary for Π in the sense of FG if A runs in at most time t and

achieves Advfg
Π,A(k) ≥ ε.

We say that Π is (t, ε)-secure in the sense of FG if there is no (t, ε)-adversary for Π in the
sense of FG.

4 Plaintext Awareness in the Two-Key Setting

In this section, we propose the notion of plaintext awareness in the two-key setting (PATK), and
prove that PATK implies IK-CCA.

We describe the definition of plaintext awareness in the two-key setting.

Definition 7 (Plaintext Awareness in the two-key setting and Knowledge Extractor
for PATK). Let Π = (G,K, E ,D) be a public-key encryption scheme. Let B and K be algorithms,
called an adversary for PATK and a knowledge extractor for PATK, respectively. They work in
the random oracle model as follows:

– B is a (qh, qe)-adversary for PATK that takes two public-keys pk0, pk1 and an index i ∈ {0, 1},
and makes at most qh queries to H and qe queries to the encryption oracles, EH

pk0
and EH

pk1
.

B finally outputs c 6∈ C, where
• TH denotes the set of all pairs of a B’s query and the corresponding answer from H, and
• C denotes the set of all answers from EH

pk0
and EH

pk1
. (Note that C does not contain an

information of which encryption oracle responded.)
We write this experiment as (TH , C, c, pki) ← run B

H,EH
pk0

,EH
pk1 (pk0, pk1, i).

– Knowledge extractor K for PATK takes (TH , C, c, pki) and outputs a string m.

For any k ∈ N and i ∈ {0, 1}, we define

Succpatk
K,B,Π,i(k) = Pr[H ← Ω; I ← G(1k); (pk0, sk0), (pk1, sk1) ← K(I);

(TH , C, c, pki) ← run B
H,EH

pk0
,EH

pk1 (pk0, pk1, i) : K(TH , C, c, pki) = DH
ski

(c)].

We say that K is a (tKETK, λ, qh, qe)-knowledge extractor for PATK of Π if for any (qh, qe)-
adversary Band i ∈ {0, 1}, K runs in at most time tKETK and achieves Succpatk

K,B,Π,i(k) ≥ λ.
We say that Π is (tcpa, tKETK, qh, qe, ε, λ)-secure in the sense of PATK if Π is (tcpa, qh, ε)-

secure in the sense of IK-CPA, and there exists a (tKETK, λ, qh, qe)-knowledge extractor K for
PATK of Π.

There are some differences between the definition of PA in [3] and that of PATK (For the com-
parison of the definitions, we describe the definitions of the indistinguishability and the plaintext
awareness in Appendix ??.). First, the adversary B in our definition receives two public keys and
two encryption oracles, while the adversary in the definition of PA receives one public key and
one encryption oracle. Second, we define the success probability of B for any index i ∈ {0, 1}.



This indicates under which key, pk0 or pk1, the knowledge extractor K for PATK should decrypt
c. Third, in the definition of PA, the list C contains the answers (ciphertexts) from only one
encryption oracle EH

pk. When we prove that PA implies IND-CCA, C plays an important role,
that is, C contains the challenge ciphertext of IND-CCA game to give it to the adversary B for
PA. In our definition, if we use C to prove that PATK implies IK-CCA, C has to contain the
challenge ciphertext of IK-CCA game and the challenge ciphertext is encrypted by either pk0 or
pk1. Therefore, in our definition, we define that the list C consists of the answers (ciphertexts)
from both EH

pk0
and EH

pk1
.

It is easy to see that if there exists a knowledge extractor K for PATK of Π, then we can use
K as a knowledge extractor for PA of Π. That is, if the public-key encryption scheme Π is secure
in the sense of PATK and IND-CPA, then Π is secure in the sense of PA. However, it is not clear
that we can use the knowledge extractor for PA of Π as that for PATK of Π. The difficulty of
proving this seems to depend on the third difference described above.

We prove the following theorem.

Theorem 1. If the public encryption scheme Π is (tcpa, tKETK, qh, 1, ε, λ)-secure in the sense of
PATK, then Π is (tcca, qh, qd, ε

′)-secure in the sense of IK-CCA where

tcca = tcpa − qd · tKETK and ε′ = ε + 2qd · (1− λ).

Proof. In [3], Bellare, Desai, Pointcheval, and Rogaway proved that PA implies IND-CCA. We
prove Theorem 1 in a similar way.

Let Acca be an (tcca, qh, qd, ε)-adversary of Π in the sense of IK-CCA. We construct an adver-
sary Acpa of Π in the sense of IK-CPA by using Acca.

We construct the algorithm Acpa as follows. Note that Acpa simulates Acca’s oracles H, Dsk0 ,
and Dsk1 as described below.

1. Acpa initializes two lists, TH and C to empty.
2. Acpa(find, pk0, pk1) runs Acca as (m, si) ← Acca(find, pk0, pk1) and outputs (m, si).

3. Acpa receives a challenge ciphertext ĉ = EH
pkb

(m) where b
R← {0, 1}.

4. Acpa(guess, ĉ) runs Acca as d ← Acca(guess, ĉ) and outputs d.

Acpa simulates Acca’s oracle as follows:

– When Acca makes a query h to H, Acpa makes a query h to its oracle H and obtains an answer
H(h). Then, Acpa returns H(h) to Acca and puts (h,H(h)) into the list TH .

– When Acca makes a decryption query c to DH
ski

, Acpa runs the knowledge extractor K as
follows.
• In the find stage, Acpa runs K as m ← K(TH , ε, c, pki) and returns m to Acca.
• In the guess stage, Acpa runs K as m ← K(TH , ĉ, c, pki) and returns m to Acca.

To guarantee that the knowledge extractor K for PATK outputs a correct answer (a corre-
sponding plaintext m or an invalid symbol ⊥), for j ∈ {1, 2, · · · , qd} we construct the adversary
Bj for PATK as follows. Note that Bj simulates Acca’s oracles H, Dsk0 , and Dsk1 as described
below. Note that Bj(pk0, pk1, i) returns some value and halts when Acca makes its j-th decryption
query.

1. Bj initializes two lists, TH and C to empty.
2. Bj runs Acca as (m, si) ← Acca(find, pk0, pk1).

3. Bj picks a random bit b
R← {0, 1} and makes an oracle query as ĉ ← EH

pkb
(m).

4. Bj runs Acca(guess, ĉ). (Note that Bj is sure to halt before Acca outputs d. See below.)

Bj(pk0, pk1, i) simulates Acca’s oracle as follows:



– When Acca makes a query h to H, Acpa makes a query h to its oracle H and obtains an answer
H(h). Then, Acpa returns H(h) to Acca and puts (h,H(h)) into the list TH .

– When Acca makes a j′-th decryption query c to DH
ski

, Acpa runs the knowledge extractor K
as follows.
• In the find stage, if j′ = j then Bj returns c and halts; otherwise, Acpa runs K as m ←

K(TH , ε, c, pki) and returns m to Acca.
• In the guess stage, if j′ = j then Bj returns c and halts; otherwise, Acpa runs K as

m ← K(TH , ĉ, c, pki) and returns m to Acca.

Since j ≤ qd and Acca makes at most qd queries to the decryption oracles, Bj is sure to output c
and halt before Acca outputs d in the guess stage.

We analyze the success probability of Acpa. We have that for any j ∈ {1, 2, · · · , qd} the

distribution of (TH , C, c, pki) ← run B
H,EH

pk0
,EH

pk1
j (pk0, pk1, i) where

H ← Ω; I ← G(1k); (pk0, sk0), (pk1, sk1) ← K(I)

and the distribution of the j-th input for K in the above adversary Acpa is identical. Therefore,

Pr[Acpa(find, pk0, pk1) = Acca(find, pk0, pk1)] ≥ 1− qfind
d · (1− λ)

and
Pr[Acpa(guess, c, (si, TH)) = Acca(guess, c, si)

|Acpa(find, pk0, pk1) = Acca(find, pk0, pk1)] ≥ 1− (qd − qfind
d ) · (1− λ)

where qfind
d is a number of decryption queries of Acca in the find stage. Hence, ε′ ≥ ε− 2qd(1−λ).

It is easy to see that the running time of Acpa is less than tcca + qd · tKETK.

5 Fujisaki–Okamoto Conversion

In this section, we review the conversion proposed by Fujisaki and Okamoto [15].
Let Πpub = (Gpub,Kpub, Epub,Dpub) be a public-key encryption scheme and let Πsym =

(Esym,Dsym) be a symmetric-key encryption scheme. Let G : MSPCpub → KSPCsym and H :
MSPCpub × MSPCsym → COINSpub be hash functions.

A public-key encryption scheme Πhy = (Ghy,Khy, Ehy,Dhy) derived from the Fujisaki-Okamoto
conversion is as follows:

– Common key generation and key generation: Ghy and Khy are the same as Gpub and Kpub,
respectively.

– Encryption:
Ehy

pk (m;σ) = Epub
pk (σ; H(σ,m)) || Esym

G(σ)(m)

where COINShy = MSPCpub and MSPChy = MSPCsym.
– Decryption:

Dhy
sk (c1||c2) =

{
m̂ if c1 = Epub

pk (σ̂;H(σ̂, m̂))
⊥ otherwise

where σ̂ ← Dpub
sk (c1) and m̂ ← Dsym

G(σ̂)(c2).

Fujisaki and Okamoto showed that the public-key encryption scheme Πhy is secure in the sense
of IND-CCA in the random oracle model when

– Πpub is γ-uniform (γ < 1) and secure in the sense of OW, and
– Πsym is secure in the sense of FG.



6 Generic Conversion for the Anonymity

In this section, we propose the generic conversion for the anonymity, that is, we prove that the
public-key encryption scheme derived from the Fujisaki-Okamoto conversion with the following
assumptions is secure in the sense of IK-CCA in the random oracle model.

– Πpub use the common message space MSPCpub(I) and the common randomness space COINSpub(I)
as the message space MSPCpub(pk) and the randomness space COINSpub(pk), respectively, for
any public key pk outputted by K(I),

– Πpub is secure in the sense of IK-CPA,
– Πpub is γ-uniform (γ < 1) and secure in the sense of OW, and
– Πsym is secure in the sense of FG.

Since these conditions are sufficient that Πhy meets IND-CCA, we can get a public-key encryption
scheme which is secure in the sense of IND-CCA and IK-CCA in the random oracle model when
we assume the above four conditions.

IK-CPA Security. We prove the following lemma with respect to the anonymity property.

Lemma 1. Let Πpub be a public-key encryption scheme where Πpub uses the common mes-
sage space MSPCpub(I) and the common randomness space COINSpub(I) as the message space
MSPCpub(pk) and the randomness space COINSpub(pk), respectively, for any public key pk out-
putted by K(I).

Suppose that Πpub is (t1, ε1)-secure in the sense of IK-CPA, and (t2, ε2)-secure in the sense
of OW. Let `2 be the size of MSPCsym. Then, Πhy is (t, qg, qh, ε)-secure in the sense of IK-CPA in
the random oracle model, where t = min{t1, t2} − poly(`2) and ε = ε1 + 2(qg + qh) · ε2.
Remark 1. Note that IK-CPA does not imply OW. For example, let Π = (G,K, E ,D) be a public-
key encryption scheme which is secure in the sense of IK-CPA. Then, consider the public-key
encryption scheme Π ′ whose encryption algorithm is defined as E ′pk(m) := Epk(m)||m. We can
easily see that Π ′ meets IK-CPA, and does not meet OW.

Proof. Suppose that A is a (t, qg, qh, ε)-adversary for Πhy in the sense of IK-CPA in the random
oracle model. We show that there exists a (t1, ε1)-adversary B for Πpub in the sense of IK-CPA
and a (t2, ε2)-adversary C for Πpub in the sense of OW, where t = min{t1, t2} − poly(`2) and
ε = ε1 + 2(qg + qh) · ε2.

We construct the adversaries B and C by using the adversary A. B and C have to simulate
the random oracles G and H for A. We describe how to simulate the random oracles in both B
and C. We use the lists TG and TH which are initially empty lists.

– The simulation of G. For a query σ, if there exist an entry (σ′, g′) ∈ TG such that σ = σ′, it
returns g′ to A. Otherwise, it picks a string g

R← KSPCsym(k), returns g to A, and puts (σ, g)
on the list TG.

– The simulation of H. For a query (σ,m), if there exist an entry (σ′,m′, h′) ∈ TH such that
σ = σ′ and m = m′, it returns h′ to A. Otherwise, it picks a string h

R← COINSpub(I), returns
h to A, and puts (σ,m, h) on the list TH .

We construct the adversary B in the sense of IK-CPA as follows.

Algorithm B(find, pk0, pk1) Algorithm B(guess, c, si′)
(m, si) ← A(find, pk0, pk1) x

R← KSPCsym(k)

σ
R← MSPCpub(I) c′ ← c||Esym

x (m)
si′ ← (si,m) b′ ← A(guess, c, si)
return (σ, si′) return b′



We construct the adversary C in the sense of OW as follows.

Algorithm C(c, pk)
(pk′, sk′) ← Kpub(I)

d
R← {0, 1}; pkd ← pk; pk1−d ← pk′

(m, si) ← A(find, pk0, pk1)

b
R← {0, 1}; x

R← KSPCsym(k); c′ ← c||Esym
x (m)

b′ ← A(guess, c′)
σ̂

R← {σ′|(σ′, g′) ∈ TG or (σ′,m′, h′) ∈ TH}
return σ̂

It is easy to see that the running times of B and C is at most that of A plus the time for computing
Esym

x (m), that is, t1, t2 < t + poly(`2).
We analyze the advantages of B and C. We define the following events.

– AskA = [A asks σ to the oracle G or asks (σ,m) to the oracle H where the challenge ciphertext
is c′ = Epub

pkb
(σ;H(σ,m))||Esym

G(σ)(m).]
– SuccA = [G,H ← Ω; I ← Ghy(1k); (pk0, sk0), (pk1, sk1) ← Khy(I);

(m, si) ← AG,H(find, pk); b
R← {0, 1}; c′ ← Ehy

pkb
(m) : AG,H(guess, c′, si) = b]

– SuccB = [I ← Gpub(1k); (pk0, sk0), (pk1, sk1) ← Kpub(I);
(σ, si) ← B(find, pk); b

R← {0, 1}; c ← Epub
pkb

(σ) : B(guess, c, si) = b]

– SuccC = [I ← Gpub(1k); (pk, sk) ← Kpub(I); σ
R← MSPCpub(pk)

c ← Epub
pk (σ) : C(c, pk) = σ]

In the experiment of B, if the event ¬AskA holds, the view of A simulated in B is identical
to the real A’s view. Therefore, Pr[SuccB] ≥ Pr[SuccA|¬AskA] · Pr[¬AskA].

In the experiment of C, if the event AskA holds, there exist a string σ such that c = Epub
pkb

(σ)
in {σ′|(σ′, g′) ∈ TG or (σ′,m′, h′) ∈ TH} and C can output the correct answer with probability at
least 1/(qG + qH). Furthermore, if b = d holds, the probability that C asks such σ is the same
as the probability that the real A asks such σ. Therefore, Pr[SuccC] ≥ Pr[b = d]× Pr[SuccC|b =
d] ≥ 1/(2(qG + qH)) · Pr[AskA].

Hence, we have

Pr[SuccA] = Pr[SuccA|¬AskA] · Pr[¬AskA] + Pr[SuccA|AskA] · Pr[AskA]
≤ Pr[SuccA|¬AskA] · Pr[¬AskA] + Pr[AskA]
≤ Pr[SuccB] + 2(qG + qH) · Pr[SuccC].

Since ε = 2·Pr[SuccA]−1, ε1 = 2·Pr[SuccB]−1, and ε2 = Pr[SuccC], we have ε ≤ ε1+(qG+qH)·ε2.

Knowledge Extractor for PATK. We show the existence of the knowledge extractor for PATK of
our scheme.

Though we mentioned that we could not use the knowledge extractor for PA directly as that
for PATK, fortunately, we can use the knowledge extractor for PA as that for PATK in the case
of the Fujisaki-Okamoto conversion.

We show the following lemma.

Lemma 2. Suppose that Πpub is γ-uniform and (t2, ε2)-secure in the sense of OW. Suppose that
Πsym is (t3, ε3)-secure in the sense of FG. Let `1 and `2 be the sizes of MSPCpub and MSPCsym,
respectively. Then, there exist a (t, λ, qg, qh, qe)-knowledge extractor K for PATK of Πhy such that
t = (qg + qh) · poly(`1 + `2) and λ = 1− 2qe · ε2 − 2ε3 − γ − 2−`2.



Proof. The construction of the knowledge extractor for PATK is the same as that for PA in [15].
We first describe the knowledge extractor K(TG, TH , C, c, pk) as follows. Here, let TG = {(σi, gi)|i =
1, . . . , qg} and TH = {(σ′j ,mj , hj)|j = 1, . . . , qh}.
1. Set two empty lists, S1 and S2.
2. Find all elements in TH such that c1 = Epub

pk (σ′j , hj) and put them into list S1. If S1 = ∅, then
output ⊥.

3. For every (σ′j ,mj , hj) ∈ S1, find all elements in TG such that σi = σ′j and put them (i.e.
(σ′j ,mj , hj)||(σi, gi)’s) into S2. If S2 = ∅, then output ⊥.

4. Check in S2 if there exists a (σ′j ,mj , hj)||(σi, gi) such that c2 = Esym
gi (mj). If it exists in S2,

then output mj otherwise output ⊥.

This protocol runs in (qg + qh) · poly(`1 + `2).
Next, we examine the advantage of the knowledge extractor for PATK. We define the following

events.

– Inv0 is true if there exists (c∗1, c
∗
2) ∈ C and (σi, gi) ∈ TG or (σj ,mj , hj) ∈ TH such that

σi = Dpub
sk0

(c∗1) or σj = Dpub
sk0

(c∗1).
– Inv1 is true if there exists (c∗1, c

∗
2) ∈ C and (σi, gi) ∈ TG or (σj ,mj , hj) ∈ TH such that

σi = Dpub
sk1

(c∗1) or σj = Dpub
sk1

(c∗1).
– Inv = Inv0 ∨ Inv1.
– p(S1) true if S1 6= ∅.
– p(S2) true if S2 6= ∅.
– Find is true if there exists a (σ′j ,mj , hj)||(σi, gi) in S2 such that c2 = Esym

gi (mj).
– Fail is true if “the output of knowledge extractor K for PATK” 6= Dhy

sk (c1, c2).

We further define the following events:

‘1′ = Inv.
‘00′ = ¬Inv ∧ ¬p(S1).
‘010′ = ¬Inv ∧ p(S1) ∧ ¬p(S2).
‘0110′ = ¬Inv ∧ p(S1) ∧ p(S2) ∧ ¬Find.
‘0111′ = ¬Inv ∧ p(S1) ∧ p(S2) ∧ Find.

We have

Pr[Fail] = Pr[Fail|1] · Pr[1] + Pr[Fail|00] · Pr[00] + Pr[Fail|010] · Pr[010]
+ Pr[Fail|0110] · Pr[0110] + Pr[Fail|0111] · Pr[0111]

≤ Pr[1] + Pr[Fail|00] + Pr[Fail|010] + Pr[Fail|0110] + Pr[Fail|0111]
= Pr[1] + Pr[Fail|00] + Pr[Fail|010].

We prove the following claim.

Claim. Pr[1] ≤ 2qe · ε2.

Proof. We first consider Pr[Inv0]. For any i ∈ {0, 1}, when the adversary B makes a query m to the
encryption oracle Ehy

pki
, the oracle picks random coins σ and returns (Epub

pki
(σ,H(σ,m))||Esym

G(σ)(m))
to B. B makes at most qe to the encryption oracles. Therefore, Pr[Inv0] ≤ qe · ε2. Similarly, we
have Pr[Inv1] ≤ qe · ε2. Hence, Pr[1] = Pr[Inv] ≤ 2qe · ε2

The proofs of the following claims are the same as those in [15].

Claim. Pr[Fail|00 ≤ γ.

Claim. Pr[Fail|010] ≤ 2ε3 + 2−`2 .



Therefore, Pr[Fail] ≤ 2qe · ε2 + γ + 2ε3 + 2−`2 . Hence,

λ = 1− Pr[Fail] ≥ 1− (2qe · ε2 + γ + 2ε3 + 2−`2).

From Theorem 1 and Lemmas 1 and 2, we have the following theorem.

Theorem 2. Let Πpub be a public-key encryption scheme where Πpub uses the common mes-
sage space MSPCpub(I) and the common randomness space COINSpub(I) as the message space
MSPCpub(pk) and the randomness space COINSpub(pk) for any public key pk outputted by K(I),
respectively.

Suppose that Πpub is γ-uniform, (t1, ε1)-secure in the sense of IK-CPA, and (t2, ε2)-secure
in the sense of OW. Suppose that Πsym is (t3, ε3)-secure in the sense of FG. Let `1 and `2 be
the sizes of MSPCpub and MSPCsym, respectively. Then, Πhy is (t, qg, qh, qd, ε)-secure in the sense
of IK-CCA in the random oracle model where t = min{t1, t2} − (qg + qh) · poly(`1 + `2). and
ε = ε1 + 2(qg + qh)ε2 + 2qd(2ε2 + 2ε3 + γ + 2−`2).

7 Concluding Remarks

In this paper, we have proposed the notion of plaintext awareness in the two-key setting, called
PATK, and proved that if a public-key encryption scheme is secure in the sense of PATK, then
it is also secure in the sense of IK-CCA. Since it looks much easier to prove that a public-key
encryption scheme is secure in the sense of PATK than to prove directly that it is secure in the
sense of IK-CCA, the notion of PATK is useful to prove the anonymity property of public-key
encryption schemes. The previously proposed public-key encryption schemes in [2, 17, 18] which
are based on RSA-OAEP and secure in the sense of IK-CCA seem to meet PAKE.

We have also proposed the first generic conversion scheme for the anonymity from IK-CPA
to IK-CCA. More precisely, we have proved that the public-key encryption scheme derived from
the Fujisaki-Okamoto conversion scheme, where the basic public-key encryption scheme is secure
in the sense of IK-CPA, is secure in the sense of IK-CCA in the random oracle model.

It might be interesting to consider the definition of the plaintext awareness in the two-key
setting without random oracles and the schemes in the standard model which meet the plaintext
awareness in the two-key setting.
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A Indistinguishability and Plaintext Awareness

A.1 Indistinguishability

In this section, we describe the definition of the indistinguishability of ciphertexts, following [15].

Definition 8 (IND-CPA, IND-CCA). Let Π = (G,K, E ,D) be a public-key encryption scheme.
Let Acpa and Acca be adversaries that run in two stages, find and guess. The adversaries Acpa and



Acca have access to some oracles Ocpa and Occa, respectively. For atk ∈ {cpa, cca}, we define the
advantages of Aatk via

Advind-atk
Π,Aatk

(k) = 2 · Pr[I ← G(1k); (pk, sk) ← K(I); (m0,m1, si) ← AOatk
atk (find, pk);

b
R← {0, 1}; c ← Epk(mb) : AOatk

atk (guess, c, si) = b]− 1

where Ocpa = ε and Occa = Dsk. Note that si is the state information. It contains the public key
pk, the messages m0 and m1, and so on. We require that m0 6= m1 and m0,m1 ∈ MSPC(pk). We
also require that Acca never queries the challenge c to Dsk in the guess stage.

We say that Acpa is a (t, ε)-adversary for Π in the sense of IND-CPA if Acpa runs in at most
time t and achieves Advind-cpa

Π,Acpa
(k) ≥ ε.

Similarly, we say that Acca is a (t, qd, ε)-adversary for Π in the sense of IND-CCA if Acca runs
in at most time t, asks at most qd queries to decryption oracle Dsk, and achieves Advind-cca

Π,Acca
(k) ≥ ε.

We say that Π is (t, ε)-secure (respectively (t, qd, ε)-secure) in the sense of IND-CPA (resp.
IND-CCA) if there is no (t, ε)-adversary (resp. (t, qd, ε)-adversary) for Π in the corresponding
sense.

Indistinguishability in the Random Oracle Model. We can consider the definition of the indistin-
guishability in the random oracle model in a similar way as that in the standard model described
above.

We define Ω as the map family from an appropriate range. The domain and range depend
on the underlying encryption scheme. Even if we choose two random functions that have distinct
domains and distinct ranges respectively, we just write the experiment, for convenience, as G, H ←
Ω, instead of preparing two map families.

In the random oracle model, we begin the experiment of Aatk described above (which defines
advantage) by H ← Ω. Then, we add the random oracle H to both Ocpa and Occa, and allow
that Epk and Dsk may depend on H (which we write EH

pk and DH
sk, respectively).

We define the adversaries in a similar way as those in the standard model, that is, we define
a (t, qh, ε)-adversary in the sense of IND-CPA in the random oracle model and a (t, qh, qd, ε)-
adversary in the sense of IND-CCA in the random oracle model where the adversary makes at
most qh queries to H.

We say that Π is (t, qh, ε)-secure (respectively (t, qh, qd, ε)-secure) in the sense of IND-CPA
(resp. IND-CCA) in the random oracle model if there is no (t, qh, ε)-adversary (resp. (t, qh, qd, ε)-
adversary) for Π in the corresponding sense in the random oracle model.

A.2 Knowledge Extractor and Plaintext Awareness

The notion of knowledge extractor and plaintext awareness for a public-key encryption scheme is
defined in [5, 3]. We describe the definitions by Bellare, Desai, Pointcheval, and Rogaway [3].

Definition 9 (Knowledge Extractor and Plaintext Awareness). Let Π = (G,K, E ,D) be
a public-key encryption scheme. Let B and K be algorithms, called adversary and knowledge
extractor, respectively. They work in the random oracle model as follows:

– B is a (qh, qe)-adversary that takes a public-key pk and makes queries at most qh and qe times
to the random oracle H and the encryption oracle EH

pk, respectively. B finally outputs c 6∈ C,
where
• TH denotes the set of all pairs of B’s queries and the corresponding answers from H,
• C denotes the set of all answers from EH

pk.

We write the above experiment as (TH , C, c, pk) ← run BH,EH
pk(pk).

– Knowledge extractor K takes (TH , C, c, pk) and output a string m.



For any k ∈ N, we define

Succpa
K,B,Π(k) = Pr[H ← Ω; I ← G(1k); (pk, sk) ← K(I);

(TH , C, c, pk) ← run BH,EH
pk(pk) : K(TH , C, c, pk) = DH

sk(c)].

We say that K is a (tKE, λ, qh, qe)-knowledge extractor for PA of Π if for any (qh, qe)-adversary
B, K runs in at most time tKE and achieves Succpa

K,B,Π(k) ≥ λ.
We say that Π is (tcpa, tKE, qh, qe, ε, λ)-secure in the sense of PA if Π is (tcpa, qh, ε)-secure in

the sense of IND-CPA, and there exists a (tKE, λ, qh, qe)-knowledge extractor K for PA of Π.

Bellare, Desai, Pointcheval, and Rogaway [3] showed that if the public-key encryption scheme is
secure in the sense of PA, then it is also secure in the sense of IND-CCA.


