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Abstract
We propose a simple probability model for MAX-2SAT instances for dis-
cussing the average-case complexity of the MAX-2SAT problem. Our model
is a “planted solution model”, where each instance is generated randomly
from a target solution. We show that for a large range of parameters, the
planted solution (more precisely, one of the planted solution pair) is the
optimal solution for the generated instance with high probability. We then
give a simple linear time algorithm based on a message passing method,
and we prove that it solves the MAX-2SAT problem with high probabil-
ity for random MAX-2SAT instances under this planted solution model for
probability parameters within a certain range.

1 Introduction

We discuss the average-case analysis of the difficulty of MAX-SAT problems. In particular, we
consider the MAX-2SAT problem, the simplest variation of MAX-SAT problems, where input
CNF formulas are restricted to those consisting of only clauses with two literals. MAX-SAT
problems are well-known as typical NP-type hard optimization problems, and it is known that
even the MAX-2SAT problem is NP-hard, though the 2SAT problem is in P. Furthermore, it
is also proved [4] that the MAX-2SAT problem is NP-hard to approximate within a certain
constant approximation ratio. However, it has been shown that some algorithms/heuristics
solve MAX-SAT problems quite well on average: [2, 3], and by standard SAT solvers [5, 14].
Such algorithms may solve MAX-2SAT as well on average. On the other hand, not so much
theoretical investigation has been made for the average-case performance of such algorithms, in
particular, on MAX-2SAT instances, compared with various detail studies on SAT instances.

For discussing the average-case complexity of MAX-2SAT problem, we propose one simple
probability model for generating MAX-2SAT instances, thereby giving one instance distribu-
tion for the MAX-2SAT problem. Our model is one of the planted solution models. That is,
we can guarantee (with high probability) that a planted solution is the optimal solution for a
generated instance.

∗Supported in part by a Grant-in-Aid for Scientific Research on Priority Areas “New Horizons in Computing”
2004-2006.
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We also demonstrate that a simple linear-time algorithm can solve the MAX-2SAT with
high probability when input formulas are given under this distribution with probability pa-
rameters in a certain range. Our parameter range is for a dense regime; we could prove that
our algorithm solves the MAX-2SAT problem with high probability for random formulas with
Ω(n1.5 lnn) clauses. It is an interesting open problem to show some efficient algorithm for
sparse formulas. (Somewhat related result has been shown by Scott and Sorkin [13]. They
studied random 2CSP instances (including 2SAT) and showed, among other results, some de-
terministic algorithm solving MAX-2CSP in polynomial-time on average for random sparse
instances, i.e., formulas with linear number of clauses. The authors ask for algorithms solving
MAX-2SAT on dense instances. But note that our distribution is different the one considered
in their paper.)

We begin by introducing some notions and notations for discussing SAT and MAX-SAT
problems. Throughout this paper, we will use n and m to denote respectively the number of
variables and clauses of a given input Boolean formula. We will use x1, . . . , xn for denoting
Boolean variables. A CNF formula is a conjunction of clauses, a clause is a disjunction literals,
and a literal is either a Boolean variable or its negation. In particular, a 2CNF formula is a
formula defined as a conjunction of clauses of two literals, where each clause is specified as
(xi∨xj), (xi∨xj), (xi∨xj), or (xi∨xj), for some 1 ≤ i ≤ j ≤ n. In this paper, we will assume
that clauses are syntactically one of the above four types; e.g., there is no clause like (xj ∨ xi)
for some i < j. Note that it is possible that a formula has a clause like (xi ∨ xi), (xi ∨ xi),
or (xi ∨ xi). (Since (xi ∨ xi) is semantically the same as (xi ∨ xi), we do not allow clauses of
this type. Thus, there are altogether

(
n
2

)× 4 + 3n = 2n2 +n clauses.) We will use `i to denote
either xi or xi.

An assignment is a function t mapping {x1, . . . , xn} to {−1, +1}; t(xi) = +1 (resp., t(xi) =
−1) means to assign true (resp., false) to a Boolean variable xi. An assignment is also regarded
as a sequence a = (a1, a2, . . . , an) of ±1’s, where ai = t(xi) for each i, 1 ≤ i ≤ n. For a given
CNF formula F , its optimal assignment is an assignment satisfying the largest number of
clauses in F . Now our MAX-2SAT problem is to find, for a given 2CNF formula of the above
syntax, find an optimal assignment for the formula.

We explain our probability model for generating MAX-2SAT instances. This model is
defined as a “planted solution model”, a method for generating a problem instance so that a
target solution, which is also generated in some way, is the answer to this instance (with high
probability). In our model, we generate a sequence a = (a1, . . . , an) uniformly at random;
let a′ be its complement assignment (−a1, . . . ,−an), i.e., an assignment obtained by flipping
the sign of all individual assignments. Then we use a pair of a and a′ as a planted solution
pair. For constructing a formula, we generate each clause satisfied by both assignments with
probability p, and it is added to the formula. Since there are n2 such clauses, the number of
clauses of this type added to the formula is on average pn2. In order to make the formula
unsatisfiable, we also generate each clause that is unsatisfied by a (resp., a′) with probability
r < p. Again on average the formula has rn(n + 1)/2 clauses that are not satisfied by a
(resp., by a′). Hence, the generated formula has on average pn2 + rn(n + 1) clauses and each
assignment of the planted solution pair fails to satisfy rn(n + 1)/2 clauses on average. Note
that under this generation model, every literal appears with the same probability. As stated
below, we prove that if p is large enough, then one of the planted solution pair is indeed the
optimal and no other assignment is as well as this optimal assignment.

Theorem 1. For sufficiently large n, if p = Ω(ln n/n) and p > 3r, then for a randomly
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generated 2CNF formula F from a random planted solution pair, with high probability, one
of the planted solution pair is the optimal assignment of F and no other assignment satisfies
as many clauses as this assignment.

Remark 1. (Alternative Probability Model)
Under the above condition for p, a generated formula has, with high probability, Ω(n log n)
clauses. This condition is necessary for the above probability model, where each clause is
generated independently. On the other hand, for a probability model where the number of
occurrences of each literal is fixed, we can relax this condition and discuss random instances
with O(n) clauses.

Consider, for example, the following distribution. Here we consider all 4n2 possible clauses,
including, e.g., (xi ∨ xj) with i > j and (xi ∨ xi). Consider any p and r so that both pn/2
and rn/2 are integers. Again we assume that a pair of planted solutions is (1, 1, ..., 1) and
(−1,−1, ...,−1). We generate a formula (i.e., a set of clauses) uniformly at random under
the constraint that each literal appears exactly (p + r)n times, pn times in clauses consistent
with both planted solutions and rn times in clauses consistent with only one of the planted
solution pair. More specifically, we use two sequences S1 and S2, where S1 is a sequence of
pn/2 copies of x1, ..., xn and S2 is its random permutation. Then from the first elements in
both sequences in order, we make clauses from corresponding pairs of literals in two sequences.
For example, if S1 = (x1, x1, x2, x2, x3, x3) and S2 = (x3, x2, x2, x1, x3, x1), then we generate
clauses (x1 ∨ x3), (x1 ∨ x2), ..., (x3 ∨ x1). Similarly, by using two sequences consisting of pn/2
copies of x1, ..., xn, we generate clauses of the form (xi ∨xj). On the other hand, by using two
sequences consisting of rn/2 copies of x1, ..., xn and x1, ..., xn respectively, we generate clauses
of the form (xi ∨ xj) and (xi ∨ xj). A formula consisting all these clauses contains each literal
exactly (p + r)n times.

For this probability model, we can show a property similar to the above theorem, with a
condition that p > (2 + ε)r for any ε > 0 and p ≥ cε/n for some constant cε > 0.

Note that the analysis of our algorithm reported in this paper cannot be used for this
probability model. (On the other hand, it is unlikely that our algorithm does not work under
this probability model.) ¤

Next we introduce a simple message passing algorithm, and we show that its one instance,
which runs in time O(n+m), can solve the MAX-2SAT problem correctly with high probability
if input formulas are given by the above planted solution model with parameters p and r within
a certain range.

The idea of the algorithm is simple and intuitively clear. Let F be any 2CNF formula F .
Considers the case that x1 = −1 in the optimal assignment of F . Suppose that there is a
clause (xi ∨ x1) (resp., (xi ∨ x1)) in F , which can be restated as (xi → x1) (resp., xi → x1)).
Thus, in order to satisfy this clause, we must assign −1 to xi (resp., xi). Such “negative
beliefs” are passed to the other literals from x1 following backwards implication edges, i.e.,
directed edges corresponding to implications to x1. Then for each xi, a “belief for xi = +1” is
computed as b(xi)− b(xi), where b(`i) is the sum of (negative) beliefs that literal `i received.
Next from literals with a negative belief, their negative beliefs are sent to the other literals
through implication edges backwards, and then beliefs are updated based on received beliefs.
This process is iterated until the signs of all beliefs get stabled or the number of iterations
reaches to a given time bound MAXSTEP. Finally, an assignment to individual xi is computed
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from the sign of the final belief of xi. The other case that x1 = +1 (i.e., x1 = −1) is equally
considered; we can use one of the outputs satisfying more clauses as a solution.

For our theoretical analysis, we consider a simplified version where MAXSTEP = 2, which
can be implemented to run in O(n + m) steps. Even for this simple version, we prove that it
solves the MAX-2SAT problem with high probability under the planted solution model with
nontrivial parameters p and r.

Theorem 2. For sufficiently large n, if p ≥ 3r and p = Ω(
√

ln n/n), then for a randomly
generated 2CNF formula F from a random planted solution pair, the algorithm yields these
two planted solutions (by executing twice with different beliefs for x1) with high probability.
Remark. The coefficient 3 of the condition p ≥ 3r is not essential, and we can use any
constant larger than 1 here. On the other hand, the condtition p > 3r is needed anyway for
using Theorem 1 to gurantee the optimality of one of the planted solutions. Thus, we use
below the condition p ≥ 3r for the sake of simplicity.

Related Work and Open Problems
There are some proposals of algorithms generating MAX-SAT instances for testing MAX-
SAT algorithms [8, 9, 15]. These algorithms first generate or fix a target assignment and
generate an instance so that this assignment becomes an optimal solution. Thus, they are
regarded as a planted solution model. In fact, our planted solution model is based on the
generation algorithm proposed by Yamamoto [15]. Our improvement here is to introduce a
planted solution pair and generate clauses based on two symmetric planted solutions. This
makes our model much simpler than the one by Yamamoto’s algorithm. Furthermore, we can
guarantee that the occurrence of all literals are statistically the same, which prevents solvers
to use “majority vote” strategy. The same approach has been proposed [1] for generating hard
sat. instances for kSAT problems. The important difference here is the point that inconsistent
clauses are also added with probability r < p. This is for generating unsatisfiable formulas;
otherwise, i.e., if only satisfiable formulas were generated, the problem would be trivially easy
because the 2SAT problem is in P, which is different from the other kSAT problem k ≥ 3. One
open problem here is to extend our approach to MAX-kSAT problems for k ≥ 3.

Our message passing algorithm for MAX-2SAT is motivated by a modified belief prop-
agation algorithm for graph partitioning problems [11]. Recently, Pearl’s belief propagation
[12] has been used for solving several NP-hard problems, e.g., [7]; but it is also reported that
the belief propagation may not be appropriate for solving SAT problems, because the role of
literals in each clause is not symmetric. Here we ignore positive literals (i.e., literals assigned
true) and use messages from only negative literals. On the other hand, while the belief prop-
agation computes messages by some formula based on the underlying probability model, our
algorithm computes messages in a straightforward/naive way. It may be possible to improve
our algorithm by using more careful method for computing messages.

Our theoretical analysis of the algorithm is for a special case where MAXSTEP = 2, i.e.,
the case where only two updating iterations is allowed. It is easy to see that p = Ω(n−1/2),
which is close to the condition of Theorem 2, is necessary; otherwise, a message from x1 (or
x1) cannot reach to the majority of literals. On the other hand, computer experiments show
that by allowing more iterations, e.g., MAXSTEP = 20 (for n = 5000), the algorithm works
well for much smaller p. An important open question is to develop some method for analyzing
the algorithm’s execution for large number of iterations.
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In general, it would be interesting to see whether there is some efficient algorithm that
solves the MAX-2SAT problem on average for much smaller p. It has been known that SAT
problems (under the standard planted solution model) are relatively easy if there are enough
number of clauses, which may be also true for MAX-SAT problems. Under the parameter
range of Theorem 2 (i.e., p = Ω(

√
ln n/n), the number of clauses is on average Θ(n

√
n ln n).

On the other hand, our planted solution model can be used as long as p = Ω(lnn/n), in which
case generated instances have Θ(n ln n) clauses on average. This probability distribution may
be an interesting target for MAX-2SAT algorithms.

Preliminaries: the Chernoff bound
In this paper, we will use the following version of the Chernoff bound, modified from the one
in [6].

Proposition 1.1. Let X1, . . . , Xn be independent random variables such that 0 ≤ Xi ≤ c for
1 ≤ i ≤ n. Let S =

∑
1≤i≤n Xi and µ = E[S]. Then for any ε > 0, we have

Pr[S ≥ (1 + ε)µ ] ≤ exp
(
−ε2µ

3c

)
.

2 A Planted Solution Model for MAX-2SAT

In this section, we define a planted solution model for MAX-2SAT, our probability distribution
on instances of MAX-2SAT. More specifically, for a given n ≥ 1, we describe a way of generating
a 2-CNF formula over n variables x1, . . . , xn.

Consider any assignment (a1, . . . , an), where ai ∈ {−1, +1} for 1 ≤ i ≤ n, to variables
(x1, . . . , xn), and its compliment assignment (−a1, . . . ,−an), i.e., an assignment obtained by
flipping all values of (a1, . . . , an). Such a pair of assignments is used as a planted solution
pair. For any planted solution pair, a clause is called consistent with the planted solution
if it is satisfied by both of two assignments of the planted solution, and it is called partially
inconsistent with the planted solution if it is not satisfied by one of them. (Note that any
clause is satisfied by at least one of the planted solution pair.) Now we generate a 2-CNF
formula as follows: First generate a planted solution pair uniformly at random. Then each
clause of the form (`i ∨ `j), where i ≤ j, is added to the formula, with probability p if it is
consistent with the planted solution and with probability r if it is partially inconsistent with
the planted solution; see below for the case i = j.

Remark 2. Recall that `i denotes a literal either xi or xi. As explained in Introduction, we
consider only clauses of the form (`i∨ `j) for some 1 ≤ i ≤ j ≤ n. For simplifying our analysis,
we define our planted solution model so that clauses (xi ∨ xi) and (xi ∨ xi) are respectively
added to a formula with probability r, whereas a clause (xi ∨xi) is generated with probability
p. Note that clauses like (xi ∨ xi) are satisfied by any solution. Thus, they can be ignored
when discussing the optimality of solutions. ¤

Here in order to simplify our discussion, we will explain with one fixed planted solution, a
pair of all +1 assignment and all −1 assignment, which we call our planted solution pair; we
denote them by a+ and a− respectively. For this solution pair, clauses (xi ∨xj) and (xi ∨xj),
where i ≤ j, are consistent and generated with probability p; on the other hand, clauses
(xi ∨ xj) and (xi ∨ xj) are partially inconsistent and generated with probability r. ¤
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We show below that if p > 3r and p = Ω(lnn/n), then for a randomly generated formula F
under this planted solution model, one of the planted solution pair is the optimal assignment
(and no others) with high probability.

Theorem 2.1. There exists some constant cdist such that for any n ≥ 1 and for any δ >
0, if probability parameters p and r satisfy p > 3r and p ≥ cdist ln(n/δ)/n, then for a
randomly generated formula F under our planted solution model with parameters p and r,
with probability ≥ 1− δ, one of the two planted solution pair is an optimal assignment for F ;
furthermore, there is no optimal assignment other than the planted solution pair.

Proof. Consider p, r, and n satisfying the condition of the theorem. In particular, we consider
below the case where r = p/4, which is intuitively the hardest case; in fact, the case where
r < p/4 can be proved by a similar argument.

Here we explain with our planted solution pair, i.e., a pair of all +1 assignment a+ and
all −1 assignment a− to n variables x1, . . . , xn. Let F be a randomly generated formula for
this planted solution pair. Our goal is to show that, with high probability, either a+ or a−

satisfies the most number of clauses in F , which cannot be achieved by any other assignment.
For our discussion, we consider a directed graph G = (V, E) naturally defined as follows:

V = V+∪V−, where V+ = {v+1, . . . , v+n} and V− = {v−n, . . . , v−1}. E consists of two directed
edges corresponding to a clause (`i∨ `j), where i ≤ j, in F . For example, for a clause (xi∨xj),
E has two directed edges (v−i, v+j) and (v−j , v+i), each of which corresponds to (xi → xj) and
(xj → xi); clauses of the other type define two corresponding directed edges in E similarly.
Note that the obtained graph G may have multiple edges. Recall that we do not consider
clauses like (xi ∨ xi); also as mentioned in the above remark, we ignore clauses like (xi ∨ xi).
Thus, the obtained graph G has no loop edge.

Consider any assignment t to x1, . . . , xn. We regard this also as an assignment to V ;
specifically, for each i ∈ {1, . . . , n}, define t(v+i) = t(xi) and t(v−i) = −t(v+i). In general, an
assignment t to V satisfying t(v−i) = −t(v+i) for all i is called a legal assignment. It is easy to
see that a clause (` ∨ `′) is unsatisfied by t if and only if its two corresponding directed edges
are from a vertex assigned +1 to a vertex assigned −1, which we call unsatisfied edges. That
is, the number of unsatisfied clauses is half of that of the unsatisfied edges. Thus, in order
to prove the theorem, we estimate the number of unsatisfied edges under an arbitrary legal
assignment to V .

First, we estimate the number of unsatisfied edges within G[V+] and G[V−], which are
subgraphs of G induced respectively by V+ and V−, by the well-known fact that a random
graph is almost surely an expander.

A directed graph G′ = (V ′, E′) is said to be a d-expander if for every S ⊂ V ′ with ‖S‖ ≤
‖V ′‖/2, the following holds: ‖E′(S, S)‖ ≥ d‖S‖, and ‖E′(S, S)‖ ≥ d‖S‖, where E′(S, S) is
the set of edges in E′ from vertices in S to vertices in S. We denote by Gn,q a distribution
of graphs G′ = (V ′, E′) over n vertices that are generated as follows: for every ordered pair
(v′i, v

′
j) of distinct vertices, generate a directed edge (v′i, v

′
j) with probability q as an edge of

E′. Recall that when generating a formula F , G[V+] is generated in this way, and so is G[V−].
We here show the following expansion property.

Claim 1. For any n, any δ′ > 0, and any ε′ > 0, if q ≥ (2/ε′2) ln(4en/δ′)/n, then for a random
graph G′ ∈ Gn,q, with probability ≥ 1− δ′, G′ = (V ′, E′) is a (1/2− ε′)qn-expander.
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Proof of the Claim. For any n, δ′ > 0, and ε′ > 0, consider any q satisfying the condition of
the claim. Let S be a subset of V ′ with size at most n/2. Let Bad(S) be an event that S does
not meet the condition of a d-expander with d = (1/2− ε′)qn, i.e., either ‖E′(S, S)‖ < d‖S‖ or
‖E′(S, S)‖ < d‖S‖ holds. We estimate the upper bound of Pr[ |E′(S, S)| < d‖S‖ ]. Note that
the value of Pr[Bad(S)] is at most two times of this value. This is done by using the standard
Chernoff bound in the following way: Fix S ⊂ V ′ such that ‖S‖ ≤ n/2. For all pairs of
u ∈ S and v ∈ S, we introduce independent random variables Yu,v such that Pr[Yu,v = 1] = q
and Pr[Yu,v = 0] = 1 − q. Let Y =

∑
u∈S,v∈S Yu,v; that is, Y = ‖E′(S, S)‖. Note that

E[Y ] = q(n− ‖S‖)‖S‖; hence, we have

E[Y ]− d‖S‖ = q(n− ‖S‖)‖S‖ − d‖S‖
≥ (q(n/2)− d) · ‖S‖ = ε′qn‖S‖ > 0.

Then from the standard Chernoff bound (see, e.g., [6]), it follows

Pr[ Bad(S) ] ≤ 2Pr
[ ∥∥E′ (S, S

)∥∥ < d‖S‖ ]

= 2 Pr[ E[Y ]− Y > E[Y ]− d‖S‖ ]

< 2 exp
(
−(E[Y ]− d‖S‖)2

2E[Y ]

)

≤ 2 exp
(
−(q(n/2)− d)‖S‖)2

2q(n− ‖S‖)‖S‖
)

≤ 2 exp
(
−ε′2qn

2
· ‖S‖

)
.

Since the probability that G′ is not d-expander is the probability that Bad(S) holds for
some S ⊂ V ′, ‖S‖ ≤ n/2, we have

Pr

[⋃

S

Bad(S)

]
≤

∑

S

Pr[Bad(S) ]

≤
n/2∑

s=1

(
n

s

)
2 exp

(
−ε′2qn

2
· s

)

≤
n/2∑

s=1

2
(

en

s
· exp

(
−ε′2qn

2

))s

≤
n/2∑

s=1

2
(

en · exp
(
−ε′2qn

2

))s

.

Then the claim holds because the last one is bounded by δ′, which is argued as follows: From
the assumption that q ≥ (2/ε′2) ln(4en/δ′)/n, we have en · exp(−ε′2qn/2) ≤ δ′/4; hence, we
have

∑
s(en · exp(−ε′2qn/2))s ≤ δ′/2. ¤ (Proof of the Claim)

Since G[V+] (resp., G[V−]) can be regarded as a random graph from Gn,p, and p ≥
c ln(n/δ)/n for some sufficiently large constant c by our assumption, we may assume from
the above claim that G[V+] and G[V−] are (1/2 − ε′)pn-expanders for some ε′, 0 < ε′ < 1/2,
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which will be fixed at the end. That is, for each U ∈ {V+, V−} and for every S ⊂ U , we have

‖E(S,U − S)‖ ≥ (1/2− ε′)pn‖S‖
and
‖E(U − S, S)‖ ≥ (1/2− ε′)pn‖S‖.

Now consider any legal assignment t to V that is different from our two planted solutions.
By h we denote the number of unsatisfied edges of G under t. On the other hand, let h0 =
min{|E ∩ (V+ × V−)|, |E ∩ (V− × V+)|}; that is, h0 is the number of unsatisfied edges by a
better assignment among our two planted solutions. From now on, we estimate h and show
that h > h0 with high probability.

Let A+ and B+ be subsets of V+ assigned +1 and −1 respectively under t; on the other
hand, let A− and B− be subsets of V− assigned −1 and +1 respectively. Note that |A+| = |A−|
and |B+| = |B−|, and let a and b be the number of |A+| and |B+| respectively; we may assume
that a, b ≥ 1. In the case of a ≤ b, we show that

h > ‖E ∩ (V− × V+)‖ (1)

holds with high probability. In the other case, i.e., a ≥ b, we show that h > ‖E ∩ (V+ × V−)‖
holds with high probability. Then we can conclude h > h0. Below we will consider only the
former case, i.e., the case a ≤ b.

For edges in V+ and V−, we see from the above expansion property that the number
of unsatisfied edges in each of V+ and V− is respectively at least (1/2 − ε′)pn · a; that is,
‖E(B+, V+ − B+)‖, ‖E(A−, V− − A−)‖ ≥ (1/2 − ε′)pna. Consider then edges between V+

and V−; here we estimate only the number of unsatisfied edges from V− to V+. Since any
unsatisfied edge is from a +1 vertex to a −1 vertex, unsatisfied edges are those from B− to
B+. Thus, we have h ≥ (1− 2ε′)pna + |E ∩ (B−×B+)|, where we decompose the last term as
follows.

‖E ∩ (B− ×B+)‖ = ‖E ∩ (V− × V+)‖
−‖E ∩ (A− × V+)‖ − ‖E ∩ (B− ×A+)‖

≥ ‖E ∩ (V− × V+)‖
−‖E ∩ (A− × V+)‖ − ‖E ∩ (V− ×A+)‖.

Hence, for our goal (1), it suffices to show that (1−2ε′)pna−‖E∩(A−×V+)‖−‖E∩(V−×A+)‖
is positive. By using a variation of the Chernoff bound (i.e., Proposition 1.1), we can show
(Claim 2) that, with high probability, both ‖E ∩ (A−×V+)‖ and ‖E ∩ (V−×A+)‖ are close to
their expectations; more precisely, they are respectively less than (1 + ε′′)rna. Hence, we have

(1− 2ε′)pna− ‖E ∩ (A− × V+)‖ − ‖E ∩ (V− ×A+)‖
> ((1− 2ε′)p− 2(1 + ε′′)r)na.

Here by letting ε′ = ε′′ = 1/8, we can show that the right-hand side is positive if p > 3r.
Finally we check the probability that the above inequality holds for all assignments. We

know from Claim 1 that ‖E(B+, V+ − B+)‖ + ‖E(A−, V− − A−)‖ < (1 − 2ε′)pna occurs for
some assignment such that a ≤ b is at most 2δ′. On the other hand, from the claim below,
the probability that ‖E ∩ (A− × V+)‖ + ‖E ∩ (V− × A+)‖ ≥ 2(1 + ε′′)rna occurs for some
assignment such that a ≤ b is at most 2δ′′. Thus, by choosing δ′ = δ′′ = δ/8, we can show
that the probability that the above event fails to hold is at most δ/2. Considering the other
case as well, we can conclude that with probability 1− δ, the desired inequality holds for all
assignments. ¤
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Claim 2. We use notations in the above proof. For any n, any δ′′ > 0, and any ε′′ > 0, let
G = (V, E) be a random graph constructed from F generated by our planted solution model
with parameters p and r. If r ≥ (8/ε′′2) ln(2en/δ′′)/n, then the probability that ‖E ∩ (A− ×
V+)‖ ≥ (1 + ε′)rna occurs for some assignment such that a ≤ b is bounded by δ′′. The same
statement also holds for ‖E ∩ (V− ×A+). (The proof is almost the same as Claim 1, and it is
omitted here.)

Remark 3. (Proof for the Alternative Probability Model)
As stated in Remark 1, we can prove somewhat stronger statement for more balanced prob-
ability models. Consider, for example, the one defined in Remark 1. In this case, since we
may assume that the corresponding directed graphs G[V+] and G[V−] are both pn-regular, by
following a standard argument [10] we can show that the desired expander property for these
graphs if p ≥ c/n for sufficiently large c > 0. On the other hand, we know from the assumption
that the number of crossing edges (i.e., ‖E ∩ (A−×V+)‖ and ‖E ∩ (V−×A+)‖ respectively) is
exactly 2rna (for which we do not need any proof like Claim 2). Then by an argument similar
to the above, we can show the corresponding statement if p ≥ (2 + ε)r and p ≥ cε/n, for any
ε > 0 and for some constant cε > 0. ¤

3 A Simple Algorithm

For our probability model for the average-case analysis of MAX-2SAT, we show in this section
that a simple algorithm can solve MAX-2SAT on average when parameters p and r are in a
certain but nontrivial range. The algorithm is a message passing algorithm stated in Figure 1;
this algorithm is motivated by the modified belief propagation algorithm for graph partitioning
problems [11].

We explain the outline of the algorithm1. First define the meaning of symbols used in the
algorithm. The algorithm is executed on a directed graph G = (V, E) that is constructed from
a given formula F in essentially the same way as in the proof of Theorem 2.1. V is a set of
2n vertices vs, s ∈ S = {−n,−(n − 1), . . . ,−1, +1, . . . , +(n − 1), +n}, and E consists of two
directed edges corresponding to each clause (`i∨ `j) of F , where i < j; on the other hand, only
one edge is added to E for each clause of type (xi ∨ xi). Note that graph G has no multiple
edge, while it may have some self-loops. (Cf. In the proof of Theorem 2.1, multiple edges
were allowed; on the other hand, we ignored self-loops.) The algorithm computes a “belief”
b(vs) at each vertex vs, an integral value indicating whether the Boolean variable x|s| should
be assigned true (i.e., +1) or false (i.e., −1). More specifically, for an optimal assignment, the
algorithm suggests, for each xi, to assign xi = +1 if the final value of b(v+i) is positive and
xi = −1 if it is negative. Note that b(v−i) = −b(v+i); we may regard b(v−i) as a belief for xi.

These belief values are initially set to 0 except for one pair of vertices, e.g., v+1 and v−1

that are assigned +1 or −1 initially. In the algorithm of Figure 1, b(v+1) (resp., b(v−1)) is
set to +1 (resp., −1), which considers the case that x1 is true in the optimal assignment.
Clearly we need to consider the other case; that is, the algorithm is executed again with
the initial assignment b(v+1) = −1 and b(v−1) = +1, and one of the obtained assignments
satisfying more clauses is used as an answer. Now consider the execution of the algorithm.
The algorithm updates beliefs based on messages from the other vertices. At each iteration,

1In this section, we will use i and j to denote unsigned (i.e., positive) indices in {1, . . . , n}, whereas s and t
will be used for signed indices in S.
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procedure MPalgo for MAX2-SAT (F );
// An input F = C1 ∧ · · ·Cm is a 2CNF formula over variables x1, . . . , xn.
// Let S = S+ ∪ S−, where S+ = {+1, . . . ,+n} and S− = {−n, . . . ,−1}.
// This is an execution under the assumption that x1 = +1 (i.e., true).
begin

construct G = (V, E),
where V = { vs : s ∈ S }, and E =

⋃
1≤k≤m E(Ck);

set b(vs) to 0 for all s ∈ S;
b(v+1) ← +1; b(v−1) ← −1;
repeat MAXSTEP times do {

for each i ∈ {2, . . . , n} in parallel do {
b(v+i) ←

∑

vs∈N−1(v+i)

min(0, b(vs));

b(v−i) ←
∑

vs∈N−1(v−i)

min(0, b(vs));
— (1)

b(v+i) ← b(v+i)− b(v−i); b(v−i) ← −b(v+i); — (2)
}
if sign(b(vi)) is stabilized for all i ∈ {2, . . . , n}
then break;
// b(v+1) ← 0; b(v−1) ← 0; — (3)

}
output(+1, sign(b(v+2)), . . . , sign(b(v+n)) );

end-procedure

Figure 1: A message passing algorithm for the MAX-2SAT problem

the belief of each vertex v+i (resp., v−i) is recomputed based on the last belief values of its
neighbor vertices. More specifically, if there is an edge from v+i to vs, and b(vs) is negative,
then this negative belief is sent to v+i (from vs) and used for computing the next belief of v+i.
The edge v+1 → vs corresponds to a clause (xi → `|s|) (where `|s| is the literal corresponding
to vs), and the condition that b(vs) < 0 means that the literal `|s| is assigned false (under the
current belief). Thus, in order to satisfy the clause (xi → `|s|), we need to assign false to xi.
This is the reason for the message from vs. Belief b(v+i) at this iteration is defined as the sum
of these messages. It should be remarked here that all belief values are updated in parallel;
that is, updated beliefs are not used when updating the other beliefs in the same iteration,
but those computed at the previous iteration are used. This update is repeated until no belief
value is changed its sign after one updating iteration (in which case we say that sings are all
stabilized) or the number of iterations reaches to a bound MAXSTEP.

This is the outline of our algorithm. There are some remarks on its detail implementation.
First note that it is possible to implement the algorithm on the standard unit cost RAM
model so that each iteration can be done in time O(n + m). For our theoretical analysis, we
use MAXSTEP = 2; that is, beliefs are updated only twice. Furthermore, in order to simplify
our analysis, we assume that statement (2) is executed only after the second iteration, and
that statement (3) is executed. On the other hand, in more practical implementation, we
would run the algorithm with, e.g., MAXSTEP = 20 for better performance. In this case, it is
better (at least from our preliminary experiments) to execute statement (2) at each iteration
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and remove statement (3) as stated in Figure 1.
Now we show that if n is large enough (more precisely, n = Ω(lnn/p2), or equivalently,

p = Ω(
√

ln n/n) and p ≥ 3r, then the algorithm yields a planted solution with high probability.
More precisely, the planted solution that the algorithm gives is the one consistent with the
initial value of b(v+1). Thus, by running the algorithm twice with two different initial values
(i.e., +1 and −1), we can get two planted solutions. As argued in the previous section, if an
input formula F is generated under our planted solution model with parameters p ≥ 3r, then
one of the two planted solutions is an optimal assignment for F with high probability; thus,
by running the algorithm twice with two different initial values, we can obtain the optimal
assignment with high probability.

In the following discussion, we fix n, the number of variables, and fix our planted solution
pair to all +1 (i.e., true) assignment and all −1 (i.e., false) assignment. We consider the
situation where the algorithm is executed with initial values b(v+1) = +1 and b(v−1) = −1;
thus, our goal is to show that the algorithm outputs all +1 assignment. We assume that an
input formula F is randomly generated following our planted solution model for this planted
solution pair with parameters p and r such that p ≥ 3r. Thus, F is a random variable in our
following discussion. Below we introduce some more random variables, all of which depends
on the random variable F .

Let G be a graph constructed from F in the algorithm. For any s and t in S, let Es,t be
a random variable indicating whether there is an edge from vs to vt in G; i.e., Es,t = 1 if the
edge (vs, vt) exists and Es,t = 0 otherwise. From the choice of our planted solution pair and
the definition of the graph G, it is clear that random variables Es,t and Es′,t′ are mutually
independent except that it holds Es,t = E−t,−s, and that Es,t takes either 0 or 1 value as
follows:

Es,t =
{

1, with prob. p,
0, with prob. 1− p.

s.t. sign(s) = sign(t) (2)

and

Es,t =
{

1, with prob. r,
0, with prob. 1− r.

s.t. sign(s) 6= sign(t) (3)

For discussing the status of the algorithm after the first iteration, we consider the following
random variables. (We sometimes need to consider vertices other than v+1 and v−1; for
simplifying our discussion, we will use the following notations: S′+ = {+2, +3, . . . ,+n}, S′− =
{−n, . . . ,−3,−2}.)

W+ = { vs : s ∈ S′+ ∧ b(vs) = −1 }, W− = { vs : s ∈ S′− ∧ b(vs) = −1 },
Y+ = ‖W+‖, and Y− = ‖W−‖.

For the second iteration, we consider random variables Xs’s, where each Xs is the value of b(vs)
after executing statement (1) and before executing statement (2). Each Xs is then expressed
as follows with random variables X+

s and X−
s . Here b(vt) denotes the belief of vt computed at

the first iteration. (Recall that we are considering a slightly modified algorithm, which does
not execute statement (2) in the first iteration.)

X+
s =

∑

+j∈N−1(vs)

b(v+j), X−
s =

∑

−j∈N−1(vs)

b(v−j), and

Xs =
∑

t∈N−1(vs)

b(vt) = X+
s + X−

s .
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Finally, for each i, define Zi = X+i − X−i; this is the final belief b(v+i) computed by the
algorithm. Recall that the algorithm determines an output assignment to xi by the sign of
b(v+i); hence, our goal is to show that every Zi is positive with high probability.

Since all random variables Zi’s follow the same distribution, in the following, we will fix
some i and consider Zi; let s to denote either +i or −i only. Below we state some basic
relations on these random variables, which are clear from our choice and definition.

W+ = S′+ ∩N−1(v−1), W− = S′− ∩N−1(v−1),
X+

s =
∑

+j∈W+

−Es,+j , and X−
s =

∑

−j∈W−

−Es,−j . (4)

We first estimate the expectation of Zi. (Below let n′ denotes n− 1.)

Lemma 3.1. E[Zi ] = (p− r)2n′.

Proof. Consider X+
+i, for example. From (2), (3) and (4), we can easily derive the following.

E[X+
+i] =

∑

+j∈W+

−E[E+i,+j ] =
∑

+j∈W+

−p = − prn′.

The first equation holds because the value of each E+i,+j (where j 6= 1) is independent from
W+, connections from v+j′ to v−1. Similarly, we have

E[X−
+i] = −prn′, E[X+

−i] = −r2n′, and E[X−
−i] = −p2n′.

Hence, we have

E[Zi] =
(

E[X+
+i] + E[X−

+i]
)
−

(
E[X+

−i] + E[X−
−i]

)
= (p− r)2(n− 1). (5)

¤

It follows from this analysis that if p− r is large enough (i.e., p− r > (n− 1)−1/2), then Zi

is positive on average. Then for proving that Zi is positive with high probability it now suffices
to show that their deviation from the average is small with high probability, which is our goal
in the following analysis.

For estimating the probability that Zi deviates from its expectation, we introduce positive
parameters σ1, σ2, γ1, ..., γ4, and consider, for example, the following situation. (The other
cases, which can be analyzed similarly, are omitted here.)

Y+ = E[Y+] + σ1n
′ = (r + σ1)n′, Y− = E[Y−]− σ2n

′ = (p− σ2)n′,

X+
+i = E[X+

+i|Y+ = (r + σ1)n′]− γ1(r + σ1)n′ = − (pr − pσ1 − γ1(r + σ1))n′,

X−
+i = E[X−

+i|Y− = (p− σ2)n′]− γ2(p− σ2)n′ = − (rp + rσ2 − γ2(p− σ2))n′,

X+
−i = E[X+

−i|Y− = (p− σ2)n′] + γ3(p− σ2)n′ = − (p2 + pσ2 + γ3(p− σ2))n′,

X−
−i = E[X−

−i|Y+ = (r + σ1)n′] + γ4(r + σ1)n′ = − (r2 − rσ1 + γ4(r + σ1))n′.

(6)

By ignoring the positive deviation, we can bound Zi as follows under this situation.

Zi ≥ (p− r)2n′ − ((σ1 + σ2)p− σ2r
−γ1(r + σ1)− γ2p− γ3p− γ4(r + σ1))n′.

(7)
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Also for simplifying our argument we consider the case2 that r = p/3. Then in order to show
that Zi > 0 with high probability, it suffices to show that

σ1 <
r

2
, σ2 <

p

2
, (8)

and

max
(

(σ1 + σ2)p, σ2r, γ1(r + σ1), γ2p, γ3p, γ4(r + σ1)
)

<
(p− r)2

6
. (9)

hold with high probability, which is analyzed by the next lemma.

Lemma 3.2. For any δ′ > 0, the probability that some of the bounds of (8) and (9) does not
hold is at most δ′ if

n′ ≥ (c′algo ln(8/δ′))
p2

, (10)

where c′algo is some sufficiently large constant independent from n′ and p.

Proof. A crucial point here is that random variables Es′,t′ and Es′′,t′′ are mutually independent
except that Es′,t′ = E−t′,−s′ for all s′ and t′. Thus, probability analysis for (8) is a straight-
forward application of the standard Chernoff bound. Also it is easy to see that, for example,
variables E+i,+j , +j ∈ S′+, considered for analyzing X+

+i under the condition Y+ = n′(r + σ1)
are mutually independent and independent from this condition (more precisely, independent
from the value of W+). Thus, analysis for (9) is again easy. As one example, we prove here
that the probability that γ1(r +σ1) ≥ (p− r)2/6 is bounded by δ′/8 for n′ and p satisfying the
condition (10) of the lemma.

Precisely speaking, our task is to bound the following probability, for each value W of W+

such that ‖W‖ = (r + σ1)n′.

Pr
[

γ1(r + σ1) ≥ (p− r)2

6

∣∣∣∣ W+ = W

]
.

Recall that γ1 is defined to express X+
+i by X+

+i = −µ−γ1(r +σ1)n′, where µ = −E[X+
+i|Y+ =

(r + σ1)n′]. Also note that µ = −E[X+
+i|W+ = W ] (= p(r + σ1)n′). Thus, we can restate the

above by

Pr
[

X+
+i ≤ −µ− (p− r)2n′

6

∣∣∣∣ W+ = W

]

= Pr


 ∑

+j∈W+

−E+i,+j ≤ −
(

1 +
(p− r)2n′

6µ

)
µ

∣∣∣∣ (∗)



= Pr


 ∑

+j∈W

E+i,+j ≥
(

1 +
(p− r)2n′

6µ

)
µ

∣∣∣∣ (∗)

 ,

2That is, we consider the case that r is largest under our assumption p ≥ 3r, which is intuitively the hardest
case. Technically speaking, though, a bit more careful argument is required when r is much smaller than p
because then Y+ may be too small for using the Chernoff bound. But this case can be handled by using a
bound such as σ1 < p/4 instead of σ1 < r/2 in (8). We leave this analysis to the interest reader.
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where (∗) is event W+ = W . Then since variables E+i,+j are independent (mutually and from
the condition W+ = W ), we can simply use the standard Chernoff bound to get the following
desired bound.

Pr


 ∑

+j∈W

E+i,+j ≥
(

1 +
(p− r)2n′

6µ

)
µ

∣∣∣∣ W+ = W




≤ exp

(
−

(
(p− r)2n′

6µ

)2

· µ

3

)
= exp

(
− (p− r)4n′

3 · 36p(r + σ1)

)

≤ exp
(
−(p− r)4n′

2 · 37pr

)
≤ exp

(
−23p2n′

37

)

≤ exp

(
−23p2

37
· c′algo ln(8/δ′)

p2

)
≤ δ′/8.

Here we use the assumption that r = p/3; the last inequality holds if c′algo is sufficiently large,
i.e., if c′algo ≥ 23 · 37. Similar arguments can be used for the other seven bounds of (8) and (9);
hence, the probability that some of them does not hold is bounded by (δ′/8) · 8 = δ′. ¤

In summary, if all bounds of (8) and (9) hold, then we have Zi > 0, which means that the
algorithm outputs +1 for xi; thus, if the same situation holds for every Zi′ , 2 ≤ i′ ≤ n, then
the algorithm yields all +1 planted solution. Therefore, we have the following theorem.

Theorem 3.3. There exists some constant calgo such that for any δ > 0, if n≥ calgo ln(16n/δ)/p2,
then the algorithm, executed with two different initial values for b(v+1) (resp., b(v−1)), yields
a pair of all +1 and all −1 planted solution with probability 1− δ.
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