
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: Computer Science

ISSN 1342-2812

Public-Key Encryption with Masking

Ryotaro Hayashi and Keisuke Tanaka

August 2006, C–226

Public-Key Encryption with Masking

Ryotaro Hayashi and Keisuke Tanaka

Dept. of Mathematical and Computing Sciences
Tokyo Institute of Technology

W8-55, 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552, Japan
{hayashi9, keisuke}@is.titech.ac.jp

August 21, 2006

Abstract

Timed-release encryption, first mentioned by May [12] and discussed by Rivest, Shamir,
and Wanger [15], is a cryptographic primitive which enables us to “send a message into the
future.”

We take a simple approach, called public-key encryption with masking, in order to
realize this requirement. In our model, the sender first encrypts a plaintext and “masks”
the ciphertext, then send it the receiver. Given a masked ciphertext, not only the person
who does not have a secret key but also the secret-key holder (the receiver) cannot know
the plaintext underlying the masked ciphertext. If the sender wants the receiver to decrypt
the ciphertext, the sender makes some actions to reveal the mask of the masked ciphertext.
Then, the secret-key holder can decrypt the unmasked ciphertext. However, the person who
does not have a secret key cannot still get any information about the plaintext underlying
the unmasked ciphertext. Moreover, the sender cannot change the message underlying the
(un)masked ciphertext after sending the masked ciphertext.

In this paper, we formalize the model of public-key encryption with masking, and also
propose its concrete scheme.

Keywords: timed-release encryption, public-key encryption, OAEP, one-time pad.

1 Introduction

Timed-Release Encryption. Timed-release encryption is a cryptographic primitive which
enables us to “send a message into the future.” One way to do this is to encrypt a message such
that the receiver cannot decrypt the ciphertext until some specific time in the future. Such
a primitive would have many applications such as electronic auctions, key escrow, scheduled
payment methods, sealed-bid auctions, lotteries, etc. This idea was first mentioned by May [12]
and then discussed in detail by Rivest, Shamir, and Wanger [15].

The previously proposed schemes fall into two categories, the time-lock puzzle approach [15,
1, 4, 11, 8, 9] and the time-server-based approach [12, 15, 13, 3, 10, 14, 16, 5]. In the time-
lock puzzle approach, the sender encrypts a message and the receiver needs to perform non-
parallelizable computation to decrypt it. This approach does not require a trusted third party.
However, it turns out to be computationally expensive for the receiver, and the time when
the receiver decrypts the ciphertext depends on the receiver’s computational power. Thus, the
sender cannot control when the receiver decrypts the ciphertext in the sense of the absolute time
(e.g. 21:59, August 18, 2006 GMT). In the time-server-based approach, the sender encrypts
a message such that the receiver needs some secret value, published by a trusted agent on
the target date, in order to decrypt the ciphertext. Although this approach requires the

1

trusted third party, the sender can control the absolute time when the receiver can decrypt
the ciphertext.
Public-Key Encryption with Masking. In this paper, we take another approach to
realize this requirement. In the time-server-based approach, as mentioned above, once the
sender sends a ciphertext to the receiver, the sender does not have to do anything, since the
receiver can decrypt the ciphertext by using the receiver’s secret key and the secret information
published by the trusted agent. However, in some applications, it is natural and useful that
the sender makes some actions to the receiver when the sender wants the receiver to decrypt
the ciphertext. That is, we consider the following model.

• The sender first encrypts a plaintext and “masks” the ciphertext, then send it the receiver.
Given a masked ciphertext, not only the person who does not have a secret key but also
the secret-key holder (the receiver) cannot know the plaintext underlying the masked
ciphertext.

• If the sender wants the receiver to decrypt the ciphertext, the sender makes some actions
to reveal the mask of the masked ciphertext. Then, the secret-key holder can decrypt
the unmasked ciphertext. However, the person who does not have a secret key cannot
still get any information about the plaintext underlying the unmasked ciphertext.

• The sender cannot change the message underlying the (un)masked ciphertext after send-
ing the masked ciphertext.

In this model, the sender can control the time when the receiver can decrypt the message
after the sender sends the ciphertext. This property seems useful in the situation that the time
when the ciphertext is decrypted depends on some circumstances.

Furthermore, in this model, the sender can cancel to open the message which the receiver
has already received. For example, let us consider the paper review process. The author
encrypts the paper and sends it to the reviewers by the deadline. The reviewers cannot read
the paper until the review process begins. Then, the author opens the paper to the reviewer
when the review process begins. Here, suppose that the author who has submitted the paper
finds some mistake in the paper, and wants to withdraw the paper before the deadline. Then,
in our model, the author can withdraw the submission without revealing the content of the
paper to anyone, including the reviewers. In addition to this property, it is preferable that the
author cannot change the content of the paper after the deadline.

In this paper, in order to realize the above idea, we propose a special type of public-key
encryption, called public-key encryption with masking. A public-key encryption scheme with
masking consists of three algorithms, that is, a key generation algorithm K, an encryption-and-
masking algorithm EM, and a decryption algorithm D for unmasked ciphertexts. The sender
computes a masked ciphertext c and an unmasking information r̃ by using the algorithm
EM. Given only a masked ciphertext c, the receiver cannot know the plaintext underlying
c. Once the receiver gets the unmasking information r̃, the secret-key holder can decrypt the
unmasked ciphertext. However, the person who does not have a secret key cannot still decrypt
the unmasked ciphertext even if the person knows r̃. Note that we do not require the trusted
third party.

We also formalize the security properties for public-key encryption with masking. As
mentioned above, we require the following properties.

Security Property 1. Given a masked ciphertext c, not only the person who does not have
a secret key but also the secret-key holder cannot still get any information about the
plaintext underlying the masked ciphertext.

2

Security Property 2. Given an unmasked ciphertext (c, r̃), which contains a masked cipher-
text c and an unmasking information r̃, the person who does not have a secret key cannot
get any information about the plaintext underlying the unmasked ciphertext.

We formalize the security properties 1 and 2 as “indistinguishability of masked ciphertexts”
and “indistinguishability of unmasked ciphertexts,” respectively. These properties are derived
naturally from the standard property of the indistinguishability of ciphertexts.

Moreover, we formalize the following security property, called “binding.” This property
claims that the sender cannot change the message underlying the (un)masked ciphertext after
sending the masked ciphertext c.

Security Property 3. The sender cannot produce one masked ciphertext c and two unmask-
ing informations r̃0, r̃1 such that two unmasked ciphertexts, (c, r̃0) and (c, r̃1), are valid,
and the plaintexts of these two unmasked ciphertexts are different.

The Constructions of Public-Key Encryption with Masking. It seems possible to
construct a public-key encryption scheme with masking by combining a public-key encryption
scheme with a commitment scheme. For example, the sender first encrypts a message by using
the receiver’s public key, and commit the ciphertext. Then, only the receiver can decrypt
the ciphertext if the sender opens the commitment. However, we require some efficient string
commitment scheme in order to construct such a scheme. Furthermore, it is not clear that
this scheme is secure even if we combine a secure public-key encryption scheme with a secure
commitment scheme.

It also seems possible to construct a public-key encryption scheme with masking by using
a multiple encryption scheme, that is, we employ two pairs of public and secret keys. For
example, the sender first encrypts a message by using the receiver’s public key, and encrypts
the resulting ciphertext by the sender’s public key. If the sender opens the sender’s public
key, the receiver can decrypt the ciphertext. However, it is not clear that this scheme satisfies
the security properties for public-key encryption with masking. Note that multiple encryption
schemes are not always secure even if the basic encryption schemes are secure [17]. Furthermore,
in this scheme, the sender has to reveal the secret key to (at least) the receiver, and the cost
for key generation is required for each run of the protocol. The computational cost for the
multiple encryption is basically twice as the basic encryption scheme.

Thus, in order to construct efficient schemes for public-key encryption with masking, we
have to consider how to mask the ciphertext reasonably. One standard way to mask some
data is using one-time pad. That is, we employ a (standard) public-key encryption scheme and
apply a one-time pad to the plaintext or the ciphertext of the scheme. However, these schemes
do not satisfy the security properties (See Section 4.).

In this paper, we also propose a concrete public-key encryption scheme with masking based
on OAEP (Bellare and Rogaway [2], Fujisaki, Okamoto, Pointcheval, and Stern [6, 7]). In our
scheme, we apply the one-time pad neither to the plaintext nor the ciphertext of OAEP, but
to the randomness of OAEP (See Section 5). We prove that our scheme satisfies the three
security properties described above in the random oracle model.
Organization. In Section 2, we review the definitions of families of trap-door permutations
and partial one-wayness. In Section 3, we propose the definition of public-key encryption with
masking and its security properties. In Section 4, we consider two trivial constructions of
public-key encryption with masking, and point out their weakness. In Section 5, we propose
a concrete scheme based on OAEP for public-key encryption with masking, and prove its
security.

3

2 Preliminaries

In this paper, we use the following notations. If A is a probabilistic algorithm, then A(x1, x2, . . . , xn; r)
is the result of running A on inputs x1, x2, . . . , xn and coins r. We let y ← A(x1, x2, . . . , xn)
denote the experiment of picking r at random and letting y be A(x1, x2, . . . , xn; r). If S is a
finite set then x

R← S is the operation of picking an element uniformly from S. If α is not an
algorithm then x ← α is a simple assignment statement.

We say that the function ε : N → R+ is negligible (in k) if for every constant c > 0 there
exists an integer k′ such that ε(k) < 1/kc for all k ≥ k′.

2.1 Families of Trap-Door Permutations

In this section, we review the definitions of families of trap-door permutations and θ-partial
one-wayness.

Definition 1 (Families of Trap-Door Permutations). A family of trap-door permutations T P =
(K,F, F−1) is described as follows.

• The key generation algorithm K takes as input a security parameter 1k and outputs
a public key pk and a matching secret key (trap-door) sk. For given pk, the domain
Dom(pk) and the range Rng(pk) of the permutation are uniquely determined where
Dom(pk) = Rng(pk).

• The evaluation algorithm F is a deterministic algorithm that takes a public key pk and
an element x ∈ Dom(pk) and returns an element y ∈ Rng(pk). We require that Fpk is
bijective for any pk, that is, Fpk is a permutation over Dom(pk) for any pk.

• The inversion algorithm F−1 is a deterministic algorithm that takes a secret key sk and
an element y ∈ Rng(pk) and returns an element x ∈ Dom(pk). We require that for any
(pk, sk) ← K(1k) and x ∈ Dom(pk), if y = Fpk(x) then x = F−1

sk (y).

Definition 2 (θ-Partial One-Wayness). Let k ∈ N be a security parameter, and 0 < θ ≤ 1 a
constant. Let T P = (K,F, F−1) be a family of trap-door permutations, and A an adversary.
We consider the following experiment:

Experiment Expθ-pow
T P,A(k)

(pk, sk) ← K(1k); x
R← Dom(pk); y ← Fpk(x)

x1 ← A(pk, y) where |x1| = dθ · |x|e
if (Fpk(x1||x2) = y for some x2) return 1 else return 0

Here, “ ||” denotes concatenation. We define the advantage of the adversary via

Advθ-pow
T P,A(k) = Pr[Expθ-pow

T P,A(k) = 1]

where the probability is taken over K, x
R← Dom(pk), and A. We say that T P is θ-partial

one-way if the function Advθ-pow
T P,A(k) is negligible for any poly-time adversary A.

Note that when θ = 1 the notion of θ-partial one-wayness coincides with the standard
notion of one-wayness.

3 Public-Key Encryption with Masking

In this section, we propose the definition of public-key encryption with masking and its security
properties.

4

3.1 The Definition of Public-Key Encryption with Masking

We propose the definition of public-key encryption with masking as follows.

Definition 3. A public-key encryption scheme PEM = (K, EM,D) with masking consists of
three algorithms.

• The key generation algorithm K is a randomized algorithm that takes as input a security
parameter 1k and returns a pair (pk, sk) of keys, a public key and a matching secret key.
We note that for given pk, the message space MSPC(pk) is uniquely determined.

• The encryption and masking algorithm EM is a randomized algorithm that takes a public
key pk and a plaintext m ∈ MSPC(pk), and returns a masked ciphertext c and some
unmasking information r̃. We call the pair (c, r̃) an unmasked ciphertext.

• The decryption algorithm D (for unmasked ciphertexts) is a deterministic algorithm that
takes a secret key sk and an unmasked ciphertext (c, r̃), and returns the corresponding
plaintext m or a special symbol ⊥ to indicate that the unmasked ciphertext (c, r̃) is invalid.

We require that, for any k ∈ N, if (pk, sk) ← K(1k), m ∈ MSPC(pk), and (c, r̃) ← EMpk(m),
then m = Dsk(c, r̃).

It is easy to see that we can use a public-key encryption scheme with masking as a (standard)
public-key encryption scheme if we always use a pair (c, r̃) for a standard ciphertext.

3.2 Security Properties of Public-Key Encryption with Masking

We define security properties with respect to public-key encryption with masking.

Indistinguishability of Masked Ciphertexts. First, we formalize the security notion
called “indistinguishability of masked ciphertexts.” This security notion captures the property
that, given a masked ciphertext, not only the person who does not have a secret key but also
the secret-key holder cannot get any information about the plaintext underlying the masked
ciphertext. In the following definition, the adversary gets not only the public key but also the
corresponding secret key.

Definition 4. Let PEM = (K, EM,D) be a public-key encryption scheme with masking. Let
b ∈ {0, 1} and k ∈ N. Let A = (A1, A2) be an adversary that runs in two stages. Note that
si is the state information. It contains pk,m0,m1, and so on. We consider the following
experiment:

Experiment Expind-mc-b
PEM,A (k)

(pk, sk) ← K(1k); (m0,m1, si) ← A1(pk, sk); (c, r̃) ← EMpk(mb); d ← A2(c, si)
return d

Note that m0,m1 ∈ MSPC(pk). We define the advantage via

Advind-mc
PEM,A(k) =

∣∣∣Pr[Expind-mc-1
PEM,A (k) = 1]− Pr[Expind-mc-0

PEM,A (k) = 1]
∣∣∣.

We say that a public-key encryption scheme PEM with masking meets IND-MC if the function
Advind-mc

PEM,A(k) is negligible for any poly-time adversary A.

5

Indistinguishability of Unmasked Ciphertexts. Second, we formalize the security no-
tion called “indistinguishability of unmasked ciphertexts.” This security notion captures the
property that, given an unmasked ciphertext, the person who does not have a secret key cannot
get any information about the plaintext underlying the unmasked ciphertext.

Definition 5. Let PEM = (K, EM,D) be a public-key encryption scheme with masking. Let
b ∈ {0, 1} and k ∈ N. Let Acpa = (Acpa

1 , Acpa
2), Acca = (Acca

1 , Acca
2) be adversaries that run in

two stages and where Acca has access to the decryption oracle Dsk(·). For atk ∈ {cpa, cca},
we consider the following experiment:

Experiment Expind-umc-atk-b
PEM,Aatk (k)

(pk, sk) ← K(1k); (m0,m1, si) ← Aatk
1 (pk); (c, r̃) ← EMpk(mb); d ← Aatk

2 ((c, r̃), si)
return d

Note that m0,m1 ∈ MSPC(pk). Above it is mandated that Acca
2 never queries the challenge (c, r̃)

to the decryption oracle Dsk(·). For atk ∈ {cpa, cca}, we define the advantage via

Advind-umc-atk
PEM,Aatk (k) =

∣∣∣Pr[Expind-umc-atk-1
PEM,Aatk (k) = 1]− Pr[Expind-umc-atk-0

PEM,Aatk (k) = 1]
∣∣∣.

We say that a public-key encryption scheme PEM with masking meets IND-UMC-CPA (respec-
tively IND-UMC-CCA) if the function Advind-umc-cpa

PEM,Acpa (k) (resp. Advind-umc-cca
PEM,Acca (k)) is negligible

for any poly-time adversary Acpa (resp. Acca).

The difference between the definitions of IND-MC and IND-UMC is as follows. The adver-
sary in the IND-MC game has not only a public key but also a secret key, while the adversary
in the IND-UMC game has only a public key. The adversary in the IND-UMC game gets the
unmasking information r̃, while the adversary in the IND-MC game cannot get it. We cannot
generally say that IND-MC implies IND-UMC, or vice versa.

Binding. Finally, we formalize the security notion called “binding.” This security notion
captures the property that the sender cannot produce one masked ciphertext c and two un-
masking informations r̃0, r̃1 such that two unmasked ciphertexts, (c, r̃0) and (c, r̃1), are valid,
and the two corresponding plaintexts are different.

Definition 6. Let PEM = (K, EM,D) be a public-key encryption scheme with masking. Let
b ∈ {0, 1} and k ∈ N. Let Acpa, Acca be adversaries where Acca has access to the decryption
oracle Dsk(·). For atk ∈ {cpa, cca}, we consider the following experiment:

Experiment Expbind-atk
PEM,Aatk(k)

(pk, sk) ← K(1k); (c, r̃0, r̃1) ← Aatk(pk); m0 ← Dsk(c, r̃0); m1 ← Dsk(c, r̃1)
if ((m0 6= ⊥) ∧ (m1 6= ⊥) ∧ (m0,m1 ∈ MSPC(pk)) ∧ (m0 6= m1))
then return 1 else return 0

For atk ∈ {cpa, cca}, we define the advantage via

Advbind-atk
PEM,Aatk(k) = Pr[Expbind-atk

PEM,Aatk(k) = 1].

We say that a public-key encryption scheme PEM with masking meets BIND-CPA (respectively
BIND-CCA) if the function Advbind-cpa

PEM,Acpa(k) (resp. Advbind-cca
PEM,Acca(k)) is negligible for any

poly-time adversary Acpa (resp. Acca).

Remark 1. In our model, we only consider the situation that the sender first sends the masked
ciphertext c to the receiver, and reveals the unmasking information r̃ later on. That is, we

6

do not consider the situation that only the unmasking information is sent to the receiver (the
secret-key holder). Therefore, in our formalization, we do not define the security notion “in-
distinguishability of unmasking informations” which captures that the unmasking information
r̃ leaks some information about the plaintext to the secret-key holder.

Although we do not define such a security notion, the unmasking information r̃ of our
proposed scheme in Section 5 does not leak any information about the plaintext, since r̃ is a
random string and is independent of any other information.

Remark 2. We have defined the indistinguishability of masked ciphertexts and the binding. If
the scheme satisfies these two security notions, it assures that the third party (i.e. neither the
sender nor the receiver) who eavesdrops a masked ciphertext c cannot compute an unmasking
information r̃′ such that (c, r̃′) is a valid unmasked ciphertext (i.e. Dsk(c, r̃′) ∈ MSPC(pk)).

If the third party can compute the unmasking information r̃′ such that Dsk(c, r̃′) = m, then
the scheme does not satisfy IND-MC. If the third party can compute an unmasking information
r̃′ such that Dsk(c, r̃′) = m′ 6= m (m′ ∈ MSPC(pk)) in the CPA setting (respectively in the CCA
setting), then the scheme does not satisfy BIND-CPA (resp. BIND-CCA).

4 The Weakness on Trivial Constructions

In this section, we consider the trivial constructions of public-key encryption with masking by
simply applying the one-time pad to the plaintext or the ciphertext. Although they seem to
be secure, we point out that these schemes do not satisfy the security properties.

Let Π be a standard public-key encryption scheme. It consists of three algorithms, that is,
the key generation algorithm Key, the encryption algorithm Enc, and the decryption algorithm
Dec. For simplicity, we assume that the message space and the ciphertext space are {0, 1}p

and {0, 1}q, respectively.

4.1 The One-Time Pad for Ciphertexts

One standard way to mask the data is using the one-time pad. It seems good to apply the
one-time pad to the ciphertext of a standard public-key encryption scheme. Thus, we can
define the encryption algorithm EMpk with masking as

Algorithm EMpk(m) : r̃
R← {0, 1}q; c ← Encpk(m)⊕ r̃; return (c, r̃).

The secret-key holder can decrypt the unmasked ciphertext (c, r̃) by computing Decsk(c⊕ r̃).
It is easy to see that this scheme satisfies IND-MC, since r̃ is a perfect one-time pad. We

can also prove that this scheme meets IND-UMC-CPA if Π satisfies IND-CPA.
However, this scheme does not meet IND-UMC-CCA even if Π meets IND-CCA. Sup-

pose that the challenge for the adversary for the IND-UMC-CCA game is (c, r̃) where c =
Encpk(mb) ⊕ r̃. Then, the adversary can ask (c ⊕ r̃′, r̃ ⊕ r̃′) to the decryption oracle where
r̃′ ∈ {0, 1}p, and can get the plaintext mb underlying the challenge unmasked ciphertext.
Therefore, the adversary always wins the IND-UMC-CCA game.

Moreover, this scheme does not satisfy BIND-CPA even if Π satisfies IND-CCA. In the
BIND-CCA game, the adversary chooses m0,m1 (m0 6= m1) from {0, 1}p, and computes c′0 ←
Encpk(m0) and c′1 ← Encpk(m1). Then, the adversary chooses r̃0 ∈ {0, 1}q, computes c ←
c′0 ⊕ r̃0 and r̃1 ← c′1 ⊕ c, and outputs (c, r̃0, r̃1). Since Decsk(c ⊕ r̃0) = Decsk(c′0) = m0 and
Decsk(c⊕ r̃1) = Decsk(c′1) = m1, this adversary always wins the BIND-CPA game.

7

4.2 The One-Time Pad for Plaintexts

We can also apply the one-time pad to the message. That is, first we mask the message with
some random string, then encrypt it. We can define the encryption algorithm EMpk with
masking as

Algorithm EMpk(m) : r̃
R← {0, 1}p; c ← Encpk(m⊕ r̃); return (c, r̃).

The secret-key holder can decrypt the unmasked ciphertext (c, r̃) by computing Decsk(c)⊕ r̃.
We can see that this scheme satisfies IND-MC, since r̃ is a perfect one-time pad. We can

also prove that this scheme meets IND-UMC-CPA if Π satisfies IND-CPA.
However, this scheme does not meet IND-UMC-CCA even if Π meets IND-CCA. Suppose

that the challenge for the adversary for the IND-UMC-CCA game is (c, r̃) where c = Encpk(mb⊕
r̃). Then, the adversary can ask (c, r̃ ⊕ r̃′) to the decryption oracle where r̃′ ∈ {0, 1}p. If the
answer of the decryption oracle is m′, this means that m′ = Decsk(c) ⊕ r̃′. Therefore, the
adversary can compute mb as mb = Decsk(c) ⊕ r̃ = m′ ⊕ r̃′ ⊕ r̃, and can always win the
IND-UMC-CCA game.

In addition, this scheme does not meet BIND-CPA even if Π meets IND-CCA, similar
to the previous scheme. In the BIND-CCA game, the adversary chooses m0,m1 (m0 6= m1)
from {0, 1}p and r̃0 ∈ {0, 1}p. Then, the adversary computes r̃1 = m0 ⊕ r̃0 ⊕ m1 and c ←
Encpk(m0 ⊕ r̃0), and outputs (c, r̃0, r̃1). Since Decsk(c) ⊕ r̃0 = (m0 ⊕ r̃0) ⊕ r̃0 = m0 and
Decsk(c)⊕ r̃1 = (m0 ⊕ r̃0)⊕ r̃1 = m1, this adversary always wins the BIND-CPA game.

5 A Concrete Scheme based on OAEP

In this section, we propose a scheme based on OAEP for public-key encryption with masking,
and prove its security.

5.1 Our Proposed Scheme

We now describe our proposed public-key encryption scheme with masking. We apply the
one-time pad not to the plaintext or to the ciphertext of OAEP, but to the randomness of
OAEP.

Definition 7. Our proposed public-key encryption scheme PEM = (K, EM,D) with masking
is as follows. Let k, k0, and k1 be security parameters such that k0 + k1 < k. This defines an
associated plaintext-length n = k − k0 − k1. Let T P = (K, F, F−1) be a family of trap-door
permutations such that Dom(pk) = {0, 1}k for any pk. The key generation algorithm K takes as
input a security parameter 1k, runs the key generation algorithm of T P as (pk, sk) ← K(1k),
and outputs the public key pk and the secret key sk. The other algorithms are as follows. Let
G : {0, 1}k0 → {0, 1}k−k0 and H : {0, 1}k−k0 → {0, 1}k0 be hash functions. Note that [x]`

denotes the ` most significant bits of x, and [x]`′ denotes the `′ least significant bits of x.

Algorithm EMpk(m) Algorithm Dsk(c, r̃)

r, r̃
R← {0, 1}k0 s ← [F−1

sk (c)]n+k1 ; t ← [F−1
sk (c)]k0

s ← (m||0k1)⊕G(r ⊕ r̃) r ← t⊕H(s)
t ← r ⊕H(s) m ← [s⊕G(r ⊕ r̃)]n; p ← [s⊕G(r ⊕ r̃)]k1

c ← Fpk(s||t) if (p = 0k1) z ← m else z ←⊥
return (c, r̃) return z

We compute G(r ⊕ r̃) in the encryption-and-masking algorithm and the decryption algo-
rithm of our scheme, while G(r) is computed in the encryption and decryption algorithms of
OAEP.

8

5.2 Security

In the following, we show that our proposed scheme meets IND-MC, IND-UMC-CCA, and
BIND-CCA.

First, we prove that our scheme provides IND-MC.

Theorem 1. For any poly-time algorithm A making at most qG queries to G, Advind-mc
PEM,A(k) ≤

2qG/2n+k1.

Proof. Assume that the challenge for the adversary is c where

b
R← {0, 1}, r, r̃

R← {0, 1}k0 , s = (mb||0k1)⊕G(r ⊕ r̃), t = r ⊕H(s), c = Fpk(s||t).

We define the event AskR as “the adversary makes a query r∗ ∈ {0, 1}k0 to G such that
(m0||0k1)⊕G(r∗) = s or (m1||0k1)⊕G(r∗) = s.” Then the advantage of the adversary can be
written as

Advind-mc
PEM,A(k)

= |Pr[AskR] · (Pr[Expind-mc-atk-1
PEM,A (k) = 1|AskR]− Pr[Expind-mc-atk-0

PEM,A (k) = 1|AskR])
+Pr[¬AskR] · (Pr[Expind-mc-atk-1

PEM,A (k) = 1|¬AskR]− Pr[Expind-mc-atk-0
PEM,A (k) = 1|¬AskR])|

≤ Pr[AskR] + |Pr[Expind-mc-atk-1
PEM,A (k) = 1|¬AskR]− Pr[Expind-mc-atk-0

PEM,A (k) = 1|¬AskR]|.

First, we evaluate the probability Pr[AskR]. Since F is a permutation and the adversary
has a secret-key sk, she knows the values s and t such that c = Fpk(s||t), and she can compute
r = H(s)⊕ t. Furthermore, the adversary knows m0 and m1.

However, the values (pk, sk),m0,m1, s, t, r does not restrict the range of r∗ such that
(m0||0k1) ⊕ G(r∗) = s or (m1||0k1) ⊕ G(r∗) = s. That is, even if the adversary knows the
values (pk, sk),m0,m1, s, t, r, the probability that the adversary asks r′ ∈ {0, 1}k0 to G such
that (m0||0k1) ⊕ G(r′) = s or (m1||0k1) ⊕ G(r′) = s is 2/2n+k1 , since G is the random oracle.
Therefore, Pr[AskR] ≤ 2qG/2n+k1 .

Next, we consider the situation that ¬AskR holds. If ¬AskR holds, then the adversary does
not know the value G(r⊕ r̃) which was used for computing the challenge. Then, the adversary
cannot gain any advantage in the experiment without asking r ⊕ r̃ to G. Since it does not
depend on the value b ∈ {0, 1}, we have

Pr[Expind-mc-atk-1
PEM,A (k) = 1|¬AskR] = Pr[Expind-mc-atk-0

PEM,A (k) = 1|¬AskR] =
1
2
.

Hence, we have Advind-mc
PEM,A(k) ≤ 2qG/2n+k1 for any poly-time adversary A.

Second, we prove that our scheme provides IND-UMC-CCA.

Theorem 2. For any adversary A attacking the IND-UMC-CCA security of our scheme PEM
with T P, and making at most qD queries to decryption oracle, qG G-oracle queries, and qH

H-oracle queries, there exists a θ-partial inverting adversary B for T P, such that for any
k, k0, k1, and θ = k−k0

k ,

Advind-umc-cca
PEM,A (k) ≤ qG + qD + qDqG

2k0−1
+

qD

2k1−1
+ 2qH ·Advθ-pow

T P,B(k)

and the running time of B is that of A plus qD · qG · qH · (TF + O(1)) where TF denotes the
time for evaluating the permutation F .

9

Proof. The proof of the IND-UMC-CCA security for our scheme is similar to that of the
IND-CCA security for OAEP by Fujisaki, Okamoto, Pointcheval, and Stern [7]. We define a
sequence Game1, Game2, etc., of modified attack games starting from the actual game Game0.
Each of the games operates on the same underlying probability space: the public and secret
keys of the cryptosystems, the coin tosses of the adversary A, the random oracles G and H
and the hidden bit b for the challenge.

In the following, all variables with asterisk refer to the challenge unmasked ciphertext, and
all variables with no asterisk refer to the decryption queries.

Game0. A pair of keys (pk, sk) is generated by K(1k), and the adversary A1 takes pk and
outputs two messages (m0,m1) and the state information si. Then, the adversary A2

takes si and the challenge unmasked ciphertexts (c∗, r̃∗) where b
R← {0, 1} and

r∗, r̃∗ R← {0, 1}k0 , s∗ = (mb||0k1)⊕G(r∗ ⊕ r̃∗), t∗ = r∗ ⊕H(s∗), c∗ = Fpk(s∗||t∗),
and A2 outputs d. In the above experiment, the adversary A can make access to the ran-
dom oracles G,H, and the decryption oracle Dsk. However, A2 cannot ask the challenge
unmasked ciphertext (y∗, r̃∗) to the decryption oracle.
We denote by S0 the event “d = b” and use a similar notation Si in any Gamei below.
By definition, we have Pr[S0] = 1/2 + ε/2 where ε = Advind-umc-cca

PEM,A (k).

Game1. We choose three random values r+ R← {0, 1}k0 , r̃+ R← {0, 1}k0 , and g+ R← {0, 1}k−k0 in
advance (i.e. before the adversary A1 runs), and use r+, r̃+, and g+, instead of r∗, r̃∗,
and G(r∗ ⊕ r̃∗) respectively. In Game1, we apply the following special rules.

R1: We compute the challenge unmasked ciphertext (c∗, r̃∗) by setting

r∗ ← r+, r̃∗ ← r̃+, and s∗ ← (mb||0k1)⊕ g+.

R2: Whenever the random oracle G is queried at r+ ⊕ r̃+, the answer is g+.

Since we replace a triplet of elements (r∗, r̃∗, G(r∗ ⊕ r̃∗)) by a different, but identically
distributed (by the definition of the random oracle G), set of random variables, we have
Pr[S1] = Pr[S0].

Game2. In this game, we drop the rule R2 from Game1. Therefore, g+ is just used for com-
puting the challenge unmasked ciphertext, and if r∗⊕ r̃∗ is queried to G then we respond
not g+ but G(r∗ ⊕ r̃∗) by using the random oracle G. Then, g+ is never revealed to the
adversary and the input (c∗, r̃∗) to A2 follows a distribution that does not depend on b.
Therefore, we have Pr[S2] = 1/2.
One may note that Game1 and Game2 may differ if r∗ ⊕ r̃∗ is queried to G. Let AskG2

denotes the event that, in Game2, r∗⊕ r̃∗ is queried to G (except by the encryption oracle,
for producing the challenge). We use an identical notation AskGi for any Gamei below.
Then, |Pr[S2]− Pr[S1]| ≤ Pr[AskG2].

Game3. We now define s∗ independently of anything else, as well as H(s∗). We choose two
random values s+ R← {0, 1}k−k0 and h+ R← {0, 1}k0 in advance (i.e. before the adversary
A1 runs), and use s+ instead of s∗, as well as h+ instead of H(s∗). In Game3, we apply
the following special rules. Note that we change the way to compute g+ (but identically
distributed as that in Game2).

R1′: We compute the challenge unmasked ciphertext (c∗, r̃∗) by setting

s∗ ← s+, g+ ← (mb||0k1)⊕ s+, t∗ ← r∗ ⊕ h+.

10

R2′: Whenever the random oracle H is queried at s+, the answer is h+.

Since we replace the set of elements (s∗,H(s∗), g+, b) by a different, but identically dis-
tributed (by the definition of the random oracle H), set of random variables, we have
Pr[AskG3] = Pr[AskG2].

Game4. In this game, we drop the rule R2′ from Game3. Therefore, h+ is just used for com-
puting the challenge unmasked ciphertext, and if s∗ is queried to H then we respond not
h+ but H(s∗) by using the random oracle H.
One may note that Game3 and Game4 may differ if s∗ is queried to H. Let AskH4 denotes
the event that, in Game4, s∗ is queried to H (except by the encryption oracle, for pro-
ducing the challenge). We use an identical notation AskHi for any Gamei below. Then,
|Pr[AskG4]− Pr[AskG3]| ≤ Pr[AskH4].
Furthermore, r∗ = t∗ ⊕ h+ is uniformly distributed, and independent of the adversary’s
view, since h+ is never revealed. Therefore, r∗⊕ r̃∗ is also independent of the adversary’s
view, and we have Pr[AskG4] ≤ (qG + qD)/2k0 , where qG and qD denote the number of
queries asked to G and that asked to the decryption oracle, respectively.

Game5. In Game5, in order to evaluate AskH4, we again modify the previous game. That
is, when manufacturing the challenge unmasked ciphertext, we randomly choose c+ R←
{0, 1}k, and simply set c∗ ← c+, ignoring the encryption oracle altogether.
Since F is a permutation, and s∗ = s+ and t∗ = h+ ⊕ r+ are uniformly distributed over
{0, 1}k−k0 and {0, 1}k0 , respectively, the distribution of c∗ = Fpk(s∗||t∗) is the same as
that of c+. Thus, we have Pr[AskH5] = Pr[AskH4].

In the following, we deal with the random oracles and the decryption oracle.

Game6. In this game, we do not use the random oracles G,H, and simulating these oracles. We
use two lists, G-List and H-List, for simulating the random oracles G and H, respectively,
both are initially set to empty list.

• When the adversary or the decryption oracle makes a query γ ∈ {0, 1}k0 to G, if
there exist a pair (γ,Gγ) ∈ G-List then we respond Gγ . Otherwise, we respond a

random string Gγ
R← {0, 1}k−k0 and put (γ,Gγ) into the G-List.

• When the adversary or the decryption oracle makes a query δ ∈ {0, 1}k−k0 to H, if
there exist a pair (δ,Hδ) ∈ H-List then we respond Hδ. Otherwise, we respond a
random string Hδ

R← {0, 1}k0 and put (δ,Hδ) into the H-List.

Since we can simulate the random oracles perfectly, we have Pr[AskH6] = Pr[AskH5].

Game7. We make the decryption oracle reject any unmasked ciphertext (c, r̃) such that the
corresponding value r⊕r̃ has not been previously queried to G by the adversary (i.e. there
exists no element (γ, Gγ) ∈ G-List such that (r⊕ r̃) = γ). This makes a difference only if
(c, r̃) is a valid unmasked ciphertext, while G(r⊕ r̃) has not been asked. Since G(r⊕ r̃) is
uniformly distributed, the equation [s⊕G((r⊕ r̃))]k1 = 0k1 holds with probability 1/2k1 .
Summing up for all decryption queries, we get |Pr[AskH7]− Pr[AskH6]| ≤ qD/2k1 .

Game8. We now make the decryption oracle reject any unmasked ciphertext (c, r̃) such that the
corresponding value s has not been previously queried to H by the adversary. (i.e. there
exists no element (δ,Hδ) ∈ H-List such that s = δ). This makes a difference only if (c, r̃)
is a valid unmasked ciphertext, and r⊕ r̃ has been queried to G, while H(s) has not been
asked. Since r = H(s) ⊕ t is uniformly distributed, r ⊕ r̃ is also uniformly distributed.
Thus, r ⊕ r̃ has been queried to G with probability less than qG/2k0 (note that in the

11

previous game, the decryption oracle makes no additional query to G). Summing up for
all decryption queries, we get |Pr[AskH8]− Pr[AskH7]| ≤ qDqG/2k0 .

Game9. We replace the decryption oracle by the plaintext extractor described as follows.

Plaintext extractor. The plaintext extractor takes an unmasked ciphertext (c, r̃) and
two lists, G-List and H-List. Then, for each (γ, Gγ) ∈ G-List and (δ,Hδ) ∈ H-List,
the plaintext extractor checks whether

c = Fpk(δ||(γ ⊕ r̃ ⊕Hδ)) and [δ ⊕Gγ]k1 = 0k1 .

If both equations hold, the plaintext extractor outputs [δ ⊕Gγ]n. If no such pair is
found, the plaintext extractor outputs ⊥.

If the adversary has made queries r ⊕ r̃ and s to G and H, respectively, then the plain-
text extractor can decrypt the unmasked ciphertext correctly. Therefore, Pr[AskH9] =
Pr[AskH8].

We now construct an algorithm B attacking θ-partial one-wayness of T P by using A against
Game9.

1. B takes pk and y∗ where y∗ = Fpk(x∗) and x∗ R← {0, 1}k, and runs A against Game9

where c∗ ← y∗.

2. When A terminates, B outputs δ′ R← {δ|(δ,Hδ) ∈ H-List}.
Note that B simulates the random oracles and the decryption oracle for A as in Game9 (by
using G-List, H-List, and the plaintext extractor). We also note that the distribution of c∗ in
Game9 is the same as that of y∗. If AskH9 holds then there exists an element s∗ = [x∗]k−k0 in
H-List such that Fpk(x∗) = y∗. Therefore, we have Pr[AskH9] ≤ qH ·Advθ-pow

T P,B(k).
In conclusion, we have

1
2
·Advind-umc-cca

PEM,A (k) = |Pr[S2]− Pr[S0]| ≤ Pr[AskG2] ≤ Pr[AskG4] + Pr[AskH4]

≤ qG + qD

2k0
+ Pr[AskH6] ≤ qG + qD

2k0
+

qD

2k1
+ Pr[AskH7]

≤ qG + qD

2k0
+

qD

2k1
+

qDqG

2k0
+ Pr[AskH8]

≤ qG + qD + qGqG

2k0
+

qD

2k1
+ qH ·Advθ-pow

T P,B(k).

We now estimate the running time of B. It is the running time of A plus that of the
plaintext extractor. For each decryption query (c, r̃), the plaintext extractor has to look at all
pairs (γ, Gγ) ∈ G-List, and (δ,Hδ) ∈ H-List, and to compute Fpk(δ||(γ ⊕ r̃ ⊕Hδ)). Therefore,
the running time of B is bounded by that of A plus qD · qG · qH · (TF +O(1)) where TF denotes
the time for evaluating the permutation F .

Remark 3. The reduction cost of our scheme in the proof of Theorem 2 and that of OAEP
in [7] are different with respect to the running time. This is because the difference of the
running time of the plaintext extractor.

In the proof of the IND-CCA2 security for OAEP, Fujisaki, Okamoto, Pointcheval, and
Stern defined the plaintext extractor for OAEP. In order to run the plaintext extractor for
OAEP, it is sufficient to compute the value Fpk(δ||(γ ⊕ Hδ)) for every (γ, Gγ) ∈ G-List and
(δ,Hδ) ∈ H-List. Therefore, the running time of the plaintext extractor is bounded by qG ·
qH · (TF + O(1)) where TF is the time for evaluating the trap-door permutation.

12

In the proof for our scheme, in order to run the plaintext extractor for our scheme, we have
to compute Fpk(δ||(γ ⊕ r̃ ⊕ Hδ)) for every (γ, Gγ) ∈ G-List, (δ,Hδ) ∈ H-List, and r̃ queried
to the decryption oracle. Thus, the running time of the plaintext extractor is bounded by
qD · qG · qH · (TF + O(1)).

Finally, we show that our scheme provides BIND-CCA.

Theorem 3. For any poly-time algorithm Acca making at most qG queries to G, and qD queries
to the decryption oracle,

Advbind-cca
PEM,Acca(k) ≤ qG(qG − 1) + 1 + qD

2k1
+

qDqG

2k0
.

In order to prove this theorem, we first show that our scheme meets BIND-CPA. Then, we
show that if our scheme meets BIND-CPA then it also meets BIND-CCA.

First, we show that our scheme meets BIND-CPA.

Lemma 1. For any poly-time algorithm Acpa making at most qG queries to G, Advbind-cpa
PEM,Acpa(k) ≤

(qG(qG − 1) + 1)/2k1.

Proof. Assume that the output of the adversary is (c, r̃0, r̃1). Then, the values s, t, r such that
c = Fpk(s||t) and r = t ⊕H(s) are uniquely determined since F is a permutation. Therefore,
the adversary wins the game if and only if these values satisfy

(m0||0k1)⊕G(r ⊕ r̃0) = (m1||0k1)⊕G(r ⊕ r̃1) = s

for some m0, m1 ∈ MSPC(pk) (m0 6= m1).
We define the event AskR2 as “the adversary makes two queries r∗, r∗∗ ∈ {0, 1}k0 to G such

that (m0||0k1) ⊕ G(r∗) = (m1||0k1) ⊕ G(r∗∗) = s for some m0,m1 ∈ MSPC(pk) (m0 6= m1).”
Then the advantage of the adversary can be written as

Advbind-cpa
PEM,Acpa(k)

= Pr[AskR2] · Pr[Expbind-cpa
PEM,Acpa(k) = 1|AskR2] + Pr[¬AskR] · Pr[Expbind-cpa

PEM,Acpa(k) = 1|¬AskR2]
≤ Pr[AskR2] + Pr[Expbind-cpa

PEM,Acpa(k) = 1|¬AskR2].

First, we evaluate the probability Pr[AskR2]. In order to satisfy (m0||0k1) ⊕ G(r∗) =
(m1||0k1) ⊕ G(r∗∗) = s for some m0 6= m1, it is necessary that r∗ 6= r∗∗ and the k1 least
significant bits of G(r∗) are equal to those of G(r∗∗).

Assume that the adversary makes qG queries g1, · · · , gqG to G. Without loss of generality,
we assume that gj 6= gj′ for any j, j′ ∈ {1, · · · , qG}.

Then, for every j ∈ {2, · · · , qG}, we have that Pr[the k1 least significant bits of G(gj) are
equal to those of G(gi) for some 0 ≤ i < j] ≤ (j − 1)/2k1 , since G is the random oracle.
Therefore, Pr[AskR2] ≤ (1 + 2 + · · ·+ (qG − 1))/2k1 = qG(qG − 1)/2k1 .

Next, we consider the situation that ¬AskR2 holds. We have

Pr[Expbind-cpa
PEM,Acpa(k) = 1|¬AskR2]

= Pr[(m0||0k1)⊕G(r ⊕ r̃0) = (m1||0k1)⊕G(r ⊕ r̃1) = s
for some m0, m1 ∈ MSPC(pk) (m0 6= m1)|¬AskR2]

≤ Pr[the k1 least significant bits of G(r ⊕ r̃0) are equal to those of G(r ⊕ r̃1)|¬AskR2].

If ¬AskR2 holds, the adversary does not know either the value G(r⊕ r̃0) or the value G(r⊕ r̃1)
where (c, r̃0, r̃1) is the output of the adversary. Therefore, the probability that the k1 least
significant bits of G(r⊕ r̃0) are equal to those of G(r⊕ r̃1) is bounded by 1/2k1 , since G is the
random oracle. Therefore, Pr[Expbind-cpa

PEM,Acpa(k) = 1|¬AskR2] ≤ 1/2k1 .

Hence, we have Advbind-cpa
PEM,Acpa(k) ≤ qG(qG − 1)/2k1 + 1/2k1 = (qG(qG − 1) + 1)/2k1 for any

poly-time adversary Acpa.

13

Next, we show that if our scheme meets BIND-CPA then it also meets BIND-CCA.

Lemma 2. For any adversary Acca attacking the BIND-CCA security of our scheme PEM,
and making at most qD queries to decryption oracle, qG G-oracle queries, and qH H-oracle
queries, there exists a BIND-CPA adversary Acpa of PEM making at most qG G-oracle queries
and qH H-oracle queries, such that for any k, k0, k1,

Advbind-cca
PEM,Acca(k) ≤ qD

2k1
+

qDqG

2k0
+ Advbind-cpa

PEM,Acpa(k)

and the running time of Acpa is that of Acca plus qD · qG · qH · (TF + O(1)) where TF denotes
the time for evaluating the permutation F .

Proof. The proof is similar to that for Theorem 2. We define a sequence Game′1, Game′2,
and Game′3, of modified attack games starting from the actual game Game′0. Each of the
games operates on the same underlying probability space: the public and secret keys of the
cryptosystems, the coin tosses of the adversary Acca, the random oracles G and H.

We define two lists, G-List and H-List. G-List contains of all pairs (γ, Gγ) where γ is a query
to G by the adversary, and Gγ is the corresponding answer of G. Similarly, H-List contains of
all pairs (δ,Hδ) where δ is a query to H by the adversary, and Hδ is the corresponding answer
of H.

In the following, all variables with asterisk refer to the output of the adversary, and all
variables with no asterisk refer to the decryption queries.

Game′0. A pair of keys (pk, sk) is generated by K(1k), and the adversary Acca takes pk and
outputs (c∗, r̃∗0, r̃

∗
1). In the above experiment, the adversary Acca can make access to the

random oracles G,H, and the decryption oracle Dsk.
We denote by S′0 the event “(m∗

0 6= ⊥) ∧ (m∗
1 6= ⊥) ∧ (m∗

0,m
∗
1 ∈ MSPC(pk)) ∧ (m∗

0 6= m∗
1)”

where m∗
0 ← Dsk(c∗, r̃∗0) and m∗

1 ← Dsk(c∗, r̃∗1). We use a similar notation S′i in any
Game′i below. By definition, we have Pr[S′0] = Advbind-cca

PEM,Acca(k).

Game′1. We make the decryption oracle reject any unmasked ciphertext (c, r̃) such that the
corresponding value r ⊕ r̃ has not been previously queried to G by the adversary (i.e.
there exists no element (γ, Gγ) ∈ G-List such that (r⊕ r̃) = γ). By the similar discussion
as that in Game7 in the proof of Theorem 2, we have |Pr[S′1]− Pr[S′0]| ≤ qD/2k1 .

Game′2. We now make the decryption oracle reject any unmasked ciphertext (c, r̃) such that
the corresponding value s has not been previously queried to H by the adversary. (i.e.
there exists no element (δ,Hδ) ∈ H-List such that s = δ). By the similar discussion as
that in Game8 in the proof of Theorem 2, we have |Pr[S′2]− Pr[S′1]| ≤ qDqG/2k0 .

Game′3. We replace the decryption oracle by the plaintext extractor. The definition of the
plaintext extractor is the same as that in Game9 in the proof of Theorem 2. By the
similar discussion as that in Game9 in the proof of Theorem 2, we have Pr[S′3] = Pr[S′2].

We now construct an algorithm Acpa attacking the BIND-CPA security by using Acca

against Game′3.

1. Acpa takes pk and runs Acca(pk) against Game′3 where,

• if Acca makes a query γ to G, Acpa makes a query γ to its own oracle G, and gets
an answer Gγ . Then, Acpa responds Gγ to Acca and puts (γ, Gγ) to G-List, and
similarly, Acpa responds H-oracle query from Acca and make H-List.

2. When Acca outputs (c, r̃0, r̃1) then Acpa outputs (c, r̃0, r̃1).

14

Note that Acpa simulates the decryption oracle for Acca as in Game′3 (by using G-List, H-List,
and the plaintext extractor). We can easily see that Pr[S′3] = Advbind-cpa

PEM,Acpa(k).
In conclusion, we have

|Advbind-cca
PEM,Acca(k)−Advbind-cpa

PEM,Acpa(k)|
= |Pr[S′3]− Pr[S′0]| ≤ |Pr[S′2]− Pr[S′1]|+ |Pr[S′1]− Pr[S′0]| ≤

qD

2k1
+

qDqG

2k0
.

We can bound the running time of Acpa by that of Acca plus qD · qG · qH · (TF +O(1)) where
TF denotes the time for evaluating the permutation F , by the similar discussion as that in the
proof of Theorem 2.

From Lemmas 1 and 2, we get the claimed result in Theorem 3.

References

[1] Bellare, M., and Goldwasser, S. Encapsulated Key Escrow. Technical Report
MIT-LCS-TR-688, Massachusetts Institute of Technology, 1996. Online available at
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-688.pdf.

[2] Bellare, M., and Rogaway, P. Optimal Asymmetric Encryption – How to Encrypt
with RSA. In Advances in Cryptology – EUROCRYPT ’94 (Perugia, Italy, May 1994),
A. De Santis, Ed., vol. 950 of LNCS, Springer-Verlag, pp. 92–111.

[3] Blake, I. F., and Chan, A. C.-F. Scalable, Server-Passive, User-Anonymous Timed
Release Public Key Encryption from Bilinear Pairing. IACR Cryptology ePrint Archive,
http://eprint.iacr.org/2004/211.pdf, 2004.

[4] Boneh, D., and Naor, M. Timed Commitments. In Advances in Cryptology – CRYPTO
2000 (Santa Barbara, California, USA, August 2000), M. Bellare, Ed., vol. 1880 of LNCS,
Springer-Verlag, pp. 236–254.

[5] Cheon, J. H., Hopper, N., Kim, Y., and Osipkov, I. Authenticated Key-Insulated
Public-Key Encryption and Time-Release Cryptography. In Financial Cryptography – FC
2006 (Anguilla, British West Indies, February 2006).

[6] Fujisaki, E., Okamoto, T., Pointcheval, D., and Stern, J. RSA-OAEP is Secure
under the RSA Assumption. In Advances in Cryptology – CRYPTO 2001 (Santa Bar-
bara, California, USA, August 2001), J. Kilian, Ed., vol. 2139 of LNCS, Springer-Verlag,
pp. 260–274.

[7] Fujisaki, E., Okamoto, T., Pointcheval, D., and Stern, J. RSA-OAEP is Secure
under the RSA Assumption. Journal of Cryptology 17, 2 (2004), 81–104.

[8] Garay, J. A., and Jakobsson, M. Timed Release of Standard Digital Signatures. In
Financial Cryptography – FC 2002 (Southampton, Bermuda, March 2002), M. Blaze, Ed.,
vol. 2357 of LNCS, Springer-Verlag, pp. 168–182.

[9] Garay, J. A., and Pomerance, C. Timed Fair Exchange of Standard Signatures.
In Financial Cryptography – FC 2003 (Guadeloupe, French West Indies, January 2003),
R. N. Wright, Ed., vol. 2742 of LNCS, Springer-Verlag, pp. 190–207.

[10] Hwang, Y. H., Yum, D. H., and Lee, P. J. Timed-Release Encryption with Pre-open
Capability and Its Application to Certified E-mail System. In Zhou et al. [18], pp. 344–358.

15

[11] Mao, W. Timed-Release Cryptography. In Selected Areas in Cryptography (SAC 2001)
(Toronto, Ontario, Canada, August 2001), S. Vaudenay and A. M. Youssef, Eds., vol. 2259
of LNCS, Springer-Verlag, pp. 342–358.

[12] May, T. Timed-Release Crypto. manuscript, 1993.

[13] Mont, M., Harrison, K., and Sadler, M. The HP Time Vault Service: Innovat-
ing the way confidential information is disclosed at the Right Time. HP Lab. Report,
http://www.hpl.hp.com/techreports/2002/HPL-2002-243.pdf, 2002.

[14] Nali, D., Adams, C. M., and Miri, A. Time-Based Release of Confidential Information
in Hierarchical Settings”. In Zhou et al. [18], pp. 29–43.

[15] Rivest, R. L., Shamir, A., and Wagner, D. A. Time-lock
puzzles and timed-release crypto. Technical Report MIT/LCS/TR-
684, Massachusetts Institute of Technology, 1996. Online available at
http://theory.lcs.mit.edu/ rivest/RivestShamirWagner-timelock.ps.

[16] Yoshida, M., Mitsunari, S., and Fujiwara, T. A Timed-Release Key Management
Scheme for Backward Recovery. In Information Security and Cryptology - ICISC 2005
8th International Conference (Seoul, Korea, December 2005), D. Won and S. Kim, Eds.,
vol. 3935 of Lecture Notes in Computer Science, Springer-Verlag, pp. 3–14.

[17] Zhang, R., Hanaoka, G., Shikata, J., and Imai, H. On the Security of Multiple
Encryption or CCA-security + CCA-security = CCA-security? In PKC 2004 – 7th
International Workshop on Theory and Practice in Public Key Cryptography (Singapore,
March 2004), F. Bao, R. H. Deng, and J. Zhou, Eds., vol. 2947 of LNCS, Springer-Verlag,
pp. 360–374.

[18] Zhou, J., Lopez, J., Deng, R. H., and Bao, F., Eds. Information Security, 8th
International Conference, ISC 2005 (Singapore, September 2005), vol. 3650 of Lecture
Notes in Computer Science, Springer.

16

