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Abstract

We consider the situation for public-key encryption that the adversary knows the random-
ness which was used to compute the ciphertext. In some practical scenarios, there is a possibility
that the randomness is revealed. For example, the randomness used to make a ciphertext may
be stored in insecure memory, or the pseudorandom generator may be corrupted. We first for-
malize the security notion on this situation as “the one-wayness with the randomness revealed.”
In addition to the formalization, we focus on two schemes, the generic chosen-ciphertext secure
encryption method (GEM) and 3-round OAEP, and prove that these two schemes satisfy our
security notions.

Keywords: public-key encryption, randomness, security, one-wayness.

1 Introduction

The classical security requirement of public-key encryption schemes is that it provides privacy
of the encrypted data. Popular formalizations such as one-wayness, indistinguishability, or non-
malleability, under either the chosen plaintext attack or the adaptive chosen ciphertext attack are
directed at capturing various data-privacy requirements. The widely admitted appropriate security
level for public-key encryption is the indistinguishability against the adaptive chosen ciphertext
attack (IND-CCA). Up until now, many public-key encryption schemes have been proposed which
are secure in the sense of IND-CCA.

In Eurocrypt 2001, Canetti and Krawczyk [4] proposed a security model of key-exchange pro-
tocols. The key-exchange protocols allow two parties who share no secret information (or share
short password) to compute a session key via public communication. In the protocol, two parties
usually use two kinds of secret information, that is, the long-term secret-key and the ephemeral
key which is state-specific secret information used within each session. The ephemeral key contains
the randomness which is used in the session, for example. The Canetti–Krawczyk model gives the
adversary the power to reveal the ephemeral key (session-state reveal query) without revealing
the long-term secret key. Session-state reveal queries are motivated by practical scenarios, such
as if the state-specific secret information is stored in insecure memory or if the random-number
generator of a party is corrupted. In both of these cases, as a result of the specific vulnerability,
the adversary might be able to gain access to the ephemeral data. In these scenarios, for exam-
ple, the (standard) signed Diffie–Hellman authenticated key-exchange protocol is not secure, that
is, the adversary can compute the session key (See [11].). Recently, Krawczyk [10] proposed a
key-exchange protocol called HMQV which is secure even if the adversary can make session-state
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reveal queries. Lauter and Mityagin [11] also proposed a key-exchange protocol KEA+ which is
secure against the attack with session-state reveal queries.

As we have seen above, the security for key-exchange protocols in the case that randomness is
revealed was widely studied. In this paper, we consider a similar situation for public-key encryp-
tion, that is, the adversary knows the randomness which was used to compute the ciphertext. In
some practical scenarios, there is a possibility that the randomness is revealed. Similar to the case
of key-exchange protocols, the randomness used to make a ciphertext may be stored in insecure
memory or the pseudorandom generator may be corrupted. Furthermore, the distribution of the
randomness may not be uniform, and has some bias by using a pseudorandom generator. Then,
we may decide the randomness used to compute the ciphertext. (As a research concerning the
randomness of encryption scheme, Bosley and Dodis [3] considered the question whether privacy
for the symmetric-key encryption requires true randomness.)

There are many public-key encryption schemes which are secure in the sense of IND-CPA or
IND-CCA. Unfortunately, many public-key encryption schemes, which satisfy IND-CPA or IND-
CCA, can be broken when the randomness is revealed. For example, consider the encryption
function E(m; r) := (gr,m · yr) of the ElGamal encryption scheme with the public-key y. If
the adversary knows the randomness r of the ciphertext (c1, c2), the adversary easily gets the
plaintext by computing m = c2/yr. We can apply a similar discussion to the Cramer-Shoup
encryption scheme [6] and its variants generated from the general framework proposed by Cramer
and Shoup [7].

We can also see that the Paillier’s encryption scheme [13] is not secure if the randomness
is revealed. The encryption function of the Paillier’s encryption scheme is E(m; r) := (1 +
mN)rN mod N2 where N is the public-key. If the the adversary knows the randomness r of
the ciphertext c, the adversary can get the plaintext by computing m = (T − 1)/N where
T = c/rN mod N2.

Furthermore, some schemes whose security depend on the random oracles can be broken in
the situation that the randomness is revealed, even if the random oracles are used. For example,
consider the Fujisaki-Okamoto conversion. The encryption function of this scheme is defined as
Epk(m; r) := Epub

pk (r; H(r,m))||Esym
G(r)(m) where Epub

pk is a public-key encryption scheme with a
public-key pk, Esym

G(r) is a symmetric-key encryption scheme with the symmetric-key G(r), and G,
H are hash functions (modeled as the random oracles). In this conversion, the randomness r is
encrypted by the public-key encryption scheme, and the plaintext mis masked by the hash value
G(r) of the randomness r. We can easily see that the adversary can compute the plaintext if
the randomness r is revealed. Similarly, we can easily see that REACT [12] and the scheme by
Pointcheval [15] are also not secure if the randomness is revealed.

We next consider OAEP proposed by Bellare and Rogaway [2]. Let ϕpk be a trap-door
permutation and n the length of the plaintext. Then, the encryption function of OAEP is
E(m; r) := ϕpk(s||t) where s = (m||0k) ⊕ G(r), t = r ⊕ H(s). Roughly speaking, Fujisaki,
Okamoto, Pointcheval, and Stern [8] showed that OAEP with a trap-door permutation is secure
in the sense of IND-CCA2 under the assumption that no poly-time algorithm, given c = ϕpk(s||t),
can compute s with non-negligible probability. However, we can see that the above assumption is
not sufficient to prove that OAEP with a trap-door permutation is secure when the randomness
is revealed.

We consider a trap-door permutation ϕ̂pk(x1||x2||x3) := x1||ϕ′pk(x2)||x3 where |x1| = n, |x2| =
k, and ϕ′pk is one-way. We can see that no poly-time algorithm can compute x1||x2 from ϕ̂pk(x1||x2||x3)
with non-negligible probability if k is sufficiently large and ϕ′pk is one-way. That is, OAEP with
ϕ̂pk satisfies IND-CCA2. However, even in this case, if the randomness is revealed, we can de-
crypt the plaintext m without the secret key. We can compute G(r), since the randomness r
is revealed, and compute the most n significant bits of the preimage of c = ϕ̂pk(s||t) where c is
a ciphertext, that is, the most n significant bits of s. Thus, we can compute the plaintext as
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m = [the most n significant bits of G(r)] ⊕ [the most n significant bits of s]. We can apply a sim-
ilar discussion to OAEP+ [16], which satisfies IND-CCA2 if the underlying trap-door permutation
is one-way. That is, OAEP+ can be broken if the randomness is revealed, even if the permutation
is one-way.

In this paper, we first formalize the security notion for public-key encryption in the situation
that the randomness is revealed. The most popular formalization for public-key encryption is
the indistinguishability (IND). However, it is easy to see that the adversary can always win the
IND game when the randomness is revealed. If the adversary has a pair (m0,m1) of messages,
a ciphertext c of either m0 or m1, and a randomness r used to compute c, the adversary can
know which message was encrypted by checking whether c = E(m0; r) or c = E(m1; r). Thus,
the indistinguishability does not fit the situation that the randomness is revealed. In this paper,
we formalize the security notion as “the one-wayness with the randomness revealed.” Roughly
speaking, a public-key encryption scheme satisfies this security if no poly-time algorithm can
decrypt c (without using the secret-key) even if the randomness used to compute c is given to the
algorithm. In particular, we propose three security notions, the one-wayness with the randomness
revealed against the chosen message attack (OWR-CPA), that against the plaintext checking attack
(OWR-PCA), and that against the adaptive chosen ciphertext attack (OWR-CCA).

In addition to the formalization, we also consider the schemes which satisfy our security no-
tions. There might be many such existing schemes, however, in this paper, we focus on two
schemes. One is the generic chosen-ciphertext secure encryption method (GEM) proposed by
Coron, Handschuh, Joye, Paillier, Pointcheval, and Tymen [5]. This is a conversion to transform a
public-key encryption scheme which satisfies the one-wayness against the plaintext checking attack
(OW-PCA) into that which satisfies IND-CCA in the random oracle model. We show that GEM
satisfies OWR-CCA if the underlying scheme satisfies OWR-PCA in the random oracle model.

The other is 3-round OAEP with a trap-door permutation proposed by Phan and Pointcheval [14].
3-round OAEP satisfies IND-CCA in the random oracle model if the underlying trap-door per-
mutation is partial one-way. Furthermore, the scheme does not have the usual redundancy which
OAEP has. We show that this scheme satisfies OWR-CCA if the trap-door permutation is partial
one-way.

The organization of this paper is as follows. In Section 2, we review some definitions. In
Section 3, we formalize the one-wayness with the randomness revealed. In Section 4, we review
GEM and prove that GEM satisfies OWR-CCA if the underlying scheme satisfies OWR-PCA in
the random oracle model. In Section 5, we review 3-round OAEP and prove that 3-round OAEP
with a partial one-way trap-door permutation provides OWR-CCA in the random oracle model.
We conclude in Section 6.

2 Preliminaries

In this paper, we use the following notations. If A is a probabilistic algorithm, then A(x1, x2, . . . , xn; r)
is the output of A on inputs x1, x2, . . . , xn and coins r. We let y ← A(x1, x2, . . . , xn) denote the
experiment of picking r at random and letting y be A(x1, x2, . . . , xn; r). If S is a finite set then
x

R← S is the operation of picking an element uniformly from S. If α is not an algorithm then
x ← α is a simple assignment statement.

We say that the function ε : N→ R+ is negligible (in k) if for every constant c > 0 there exists
an integer k′ such that ε(k) < 1/kc for all k ≥ k′.

2.1 Public-Key Encryption Schemes

In this section, we briefly review the definition of public-key encryption schemes.

Definition 1. A public-key encryption scheme Π = (K, E ,D) consists of three algorithms.
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• The key generation algorithm K is a randomized algorithm that takes as input a security
parameter k and returns a pair (pk, sk) of keys, a public key and a matching secret key.
For given pk, a message space MSPCΠ(pk) and a randomness space RSPCΠ(pk) are uniquely
determined.

• The encryption algorithm E is a randomized algorithm that takes the public key pk and a
plaintext m ∈ MSPCΠ(pk) and returns a ciphertext c, using a random coin r

R← RSPCΠ(pk).

• The decryption algorithm D is a deterministic algorithm that takes the secret key sk and a
ciphertext c and returns the corresponding plaintext m or a special symbol ⊥ to indicate that
the ciphertext is invalid.

2.2 Symmetric-Key Encryption

In this section, we review the definition of symmetric-key encryption schemes.

Definition 2. A symmetric-key encryption scheme SE = (K, E, D) consists of three algorithms.

• The key generation algorithm K is a probabilistic algorithm that takes a security parameter
1k and returns a symmetric key K. For given K, a message space MSPCSE(K) is uniquely
determined.

• The encryption algorithm E is a deterministic algorithm that takes a symmetric-key K and
a message m ∈ MSPCSE(K), and returns a ciphertext c.

• The decryption algorithm D is a deterministic algorithm that takes a symmetric key K and
a ciphertext c, and returns the corresponding plaintext m.

We next review a security notion for symmetric-key encryption, called indistinguishability.
Note that in the following definition we only consider the passive adversary.

Definition 3. Let SE = (K, E, D) be a symmetric-key encryption scheme. Let A be an adversary
that runs in two stages, find and guess. We define the advantage of A via

Advind
SE,A(k) = 2 · Pr[K ← K(1k); (m0,m1, s) ← A(find, k);

b
R← {0, 1}; c ← EK(mb) : A(guess, c, s) = b]− 1.

We require that m0 6= m1 and m0,m1 ∈ MSPCSE(K). We say that SE is secure in the sense of IND
if Advind

SE,A(k) is negligible for any polynomial-time adversary A.

2.3 Families of Trap-Door Permutations

In this section, we review the definitions of families of trap-door permutations and θ-partial one-
wayness.

Definition 4 (Families of Trap-Door Permutations). A family of trap-door permutations T P =
(K,ϕ, ψ) is described as follows. The key generation algorithm K takes as input a security param-
eter 1k and outputs a public key pk and a matching secret key (trap-door) sk. The function ϕpk

is a permutation over DomT P(pk) where DomT P(pk) is uniquely determined by pk, while ψsk is the
inverse permutation of ϕpk, that is, ϕ−1

pk = ψsk.
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Definition 5 (θ-Partial One-Wayness). Let k ∈ N be a security parameter, and 0 < θ ≤ 1 a
constant. Let T P = (K, ϕ, ψ) be a family of trap-door permutations, and A an adversary. We
consider the following experiment:

Experiment Expθ-pow
T P,A(k)

(pk, sk) ← K(1k); x
R← DomT P(pk); y ← ϕpk(x)

x1 ← A(pk, y) where |x1| = dθ · |x|e
if (ϕpk(x1||x2) = y for some x2) return 1 else return 0

Here, “ ||” denotes concatenation. We define the advantage of the adversary via

Advθ-pow
T P,A(k) = Pr[Expθ-pow

T P,A(k) = 1]

where the probability is taken over K, x
R← DomT P(pk), and A. We say that T P is θ-partial

one-way if the function Advθ-pow
T P,A(k) is negligible for any polynomial-time adversary A.

Note that when θ = 1 the notion of θ-partial one-wayness means the standard notion of one-
wayness.

3 The One-Wayness with the Randomness Revealed

In this section, we formalize the one-wayness with the randomness revealed (OWR).

Definition 6 (OWR). Let Π = (K, E ,D) be a public-key encryption scheme. Let Acpa, Apca, Acca

be the adversaries. The adversaries Acpa, Apca, and Acca can access to the oracles Ocpa, Opca, and
Occa, respectively. For atk ∈ {cpa, pca, cca}, we define the advantages of Aatk via

Advowr-atk
Π,Aatk

(k) = Pr[(pk, sk) ← K(1k); m
R← MSPCΠ(pk); c ← Epk(m; r) : AOatk

atk (c, r, pk) = m]

where Ocpa = ε and Occa = Dsk. Opca is the plaintext checking oracle which takes (m, c) as input
and returns 1 if m is a plaintext of c, that is, m = Dsk(c). Otherwise, it returns 0. We require
that Acca never queries the challenge c to Dsk.

We say that Π is secure in the sense of OWR-CPA (resp. OWR-PCA, OWR-CCA) if Advowr-cpa
Π,Acpa

(k)
(resp. Advowr-pca

Π,Apca
(k), Advowr-cca

Π,Acca
(k)) is negligible for any polynomial-time adversary Acpa (resp.

Apca, Acca ).

In the above definition, the adversary gets the randomness r used to compute the ciphertext
c, while in the definition of the standard one-wayness, the adversary never gets the randomness r.

4 GEM and its Security

In this section, we review the generic chosen-ciphertext secure encryption method (GEM) proposed
by Coron, Handschuh, Joye, Paillier, Pointcheval, and Tymen [5], and prove that GEM satisfies
OWR-CCA if the underlying scheme satisfies OWR-PCA in the random oracle model.

4.1 GEM

In this section, we review GEM by Coron, Handschuh, Joye, Paillier, Pointcheval, and Tymen [5].
GEM is a generic conversion to transform a public-key encryption scheme which satisfies the one-
wayness against the plaintext checking attack (OW-PCA) into that which satisfies IND-CCA in
the random oracle model.
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Definition 7 (GEM). Let Π = (K, E ,D) be a public-key encryption scheme where MSPCΠ(pk) =
{0, 1}k+`. Let SE = (K, E, D) be a length-preserving symmetric-key encryption scheme where MSPCSE(K) =
{0, 1}n. Let F, G,H be hash functions. The public-key encryption scheme Π′ = (K′, E ′,D′) of GEM
is as follows. The key generation algorithm K′ is the same as K. The encryption and the decryption
algorithms are as follows.

Algorithm E ′pk(m; (r||u)) Algorithm D′sk(c1, c2)

r
R← {0, 1}`; u

R← RSPCΠ(pk) w ← Dsk(c1)
s ← F (m, r) s||t ← w where |s| = k and |t| = `
w ← s||(r ⊕H(s)) K ← G(w, c1)
c1 ← Epk(w;u) r ← t⊕H(s)
K ← G(w, c1) m ← DK(c2)
c2 ← EK(m) if (s = F (m, r)) then return m
return (c1, c2) else return ⊥

4.2 OWR-CCA security of GEM

In this section, we prove that GEM satisfies OWR-CCA if the underlying scheme satisfies OWR-
PCA in the random oracle model.

Theorem 1. Suppose that there exists the adversary A that breaks the OWR-CCA security of Π′,
within time bound τ , after at most qf , qg, qh, qd queries to the random oracles F , G, H, and the
decryption oracle, respectively, and with advantage Advowr-cca

Π′,A (k) = ε. Then, for all 0 < ν < ε,
there exists

• an adversary C that breaks the indistinguishability of SE within time bound τ and advantage
Advind

SE,C(k) = ν, or

• an adversary B with access to the plaintext checking oracle Opca (responding in time bound
τpca) that breaks the OWR-PCA security of Π within time bound

τ ′ ≤ τ + (qd(qf + qg) + qh)(τpca + O(1)),

after at most
qpca ≤ qd(qf + qg)

queries to Opca, and with success probability

Advowr-pca
Π,B (k) ≥ ε− ν

2
− qf

2`
− qd

(
1
2k

+ qf

(
1
2`

+
1
2k

)
+ ν +

1
2n

)
.

Proof. The proof is similar to that of the IND-CCA security of GEM in [5].
We construct the PCA-adversary B attacking the one-wayness with the randomness revealed

of Π, by using the CCA-adversary A attacking the one-wayness with the randomness revealed of
Π′. The algorithm B is given pk, c∗1 = E(w∗; u∗), and u∗, and trying to compute w∗ as follows.

1. B picks two randomnesses m∗, r∗, and sets K∗ R← K(1k) and c∗2 ← EK∗(m∗).

2. B initializes three lists, called F -List, G-List, and H-List to empty, and sets w̃ ← ⊥.

3. B runs A with the public-key pk, the ciphertext (c∗1, c
∗
2), and the randomness r∗||u∗, and gets

m̃ which is the output of A. Note that B simulates A’s oracles F , G, H, D′sk as described
below, and the value w̃ may be rewrited during the simulation of these oracles.

4. B returns w̃.
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B simulates the random oracles F , G, H, and the decryption oracle as follows.

• When a query (m, r) is made to F , if there exists a pair ((m, r), f) ∈ F -List then we respond
f . Otherwise, if m = m∗ and there exists (s, h) ∈ H-List such that c∗1 = Epk(s||(r ⊕ h);u∗),
we respond s, set w̃ ← s||(r⊕h), and put (r, f) into F -List. Otherwise, we respond a random
string f and put (r, f) into F -List.

• When a query (w, c1) is made to G, if there exists a pair ((w, c1), g) ∈ G-List then we respond
g. Otherwise, if c1 = c∗1 and c∗1 = Epk(w;u∗), we respond g = K∗, set w̃ ← w, and put (s, g)
into G-List. Otherwise, we respond a random string g and put (s, g) into G-List.

• When a query s is made to H, if there exists a pair (t, h) ∈ H-List then we respond h.
Otherwise, we respond a random string h and put (t, h) into H-List.

• When a decryption query (c1, c2) is made, if (c1, c2) = (c∗1, c
∗
2) we reject the query since it is

a challenge ciphertext. Otherwise, we search ((m, r), s) ∈ F -List and (s, h) ∈ H-List such
that Opca((s||(r ⊕ h)), c1) = 1.

– If there exist such pairs, we compute K = G(s||(r ⊕ h), c1), m ← DK(c2), and check
whether s = F (m, r). If the equality holds, we respond m. Otherwise we reject the
query.

– When we cannot find such pairs, if there exists ((w, c1), K) ∈ G-List such thatOpca(w, c1) =
1, we set s||t ← w and compute h ← H(s), m ← DK(c2), and check whether s =
F (m, t⊕ h). If the equality holds, we respond m. Otherwise we reject the query.

Above, the simulation of the random oracles F and G are different as those in the proof of the
IND-CCA security of GEM in [5]. We can simulate these oracles without the plaintext checking
oracle by using the randomness used to compute the challenge ciphertext.

The rest of the proof is almost the same as that of GEM in [5]. That is, we can analyze the
soundness and the success probability of B in a similar way as that in the proof of the IND-CCA
security of GEM, and we have

Advowr-pca
Π,B (k) ≥ ε− ν

2
− qf

2`
− qd

(
1
2k

+ qf

(
1
2`

+
1
2k

)
+ ν +

1
2n

)

where ε = Advowr-cca
Π′,A (k) and ν = Advind

SE,C(k).
Finally, we estimate the total number of calls to Opca and the running time of B, which are

different from those in the proof of IND-CCA security of GEM. In our reduction, we use the
plaintext checking oracle only in the simulation of the decryption oracle, and in this simulation,
we make at most qd(qf + qg) calls since in the worst case we have to call Opca for all elements
in F -List and for all elements in G-List. Therefore, the total number of calls to Opca is bounded
by qpca ≤ qd(qf + qg). From this, we can easily see that the running time of B is bounded by
τ ′ ≤ τ + (qd(qf + qg) + qh)(τpca + O(1)).

5 3-Round OAEP and its Security

In this section, we review 3-round OAEP proposed by Phan and Pointcheval [14], and prove that
3-round OAEP with a partial one-way trap-door permutation provides OWR-CCA in the random
oracle model.
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5.1 3-Round OAEP

In this section, we review 3-round OAEP by Phan and Pointcheval [14]. 3-round OAEP is a novel
construction in order to remove redundancy of (2-round) OAEP. Unlike OAEP, all of the cipher-
texts of 3-round OAEP are valid (which means the encryption function is not only a probabilistic
injection, but also a surjection), and 3-round OAEP does not have the usual redundancy m||0k

which OAEP has. In [14], they proposed 3-round OAEP with any trap-door bijection. Thus,
the domain and the range of the function may be different. We modify their definition to define
3-round OAEP with a trap-door permutation.

Definition 8 (3-round OAEP with a trap-door permutation). 3-round OAEP Π = (K, E ,D) with
a family of trap-door permutations T P = (K,ϕ, ψ) is as follows. The key generation algorithm
K takes a security parameters 1k and 1`, runs the key generation algorithm K(1k, 1`) of T P, and
gets a pair of public and secret keys (pk, sk) for T P, where DomT P(pk) = {0, 1}k+`. Then, the
key generation algorithm K returns a public key pk = (pk, 1k, 1`) and a corresponding secret key
sk = sk. For any pk, the plaintext space MSPCΠ(pk) and the randomness space RSPCΠ(pk) are
{0, 1}` and {0, 1}k, respectively. The encryption and decryption algorithms are as follows. Note
that F : {0, 1}k → {0, 1}`, G : {0, 1}` → {0, 1}k, and H : {0, 1}k → {0, 1}` are hash functions.

Algorithm Epk(m; r) Algorithm Dsk(c)

r
R← {0, 1}k t||u ← ψsk(c) where |t| = k and |u| = `

s ← m⊕ F (r) s ← u⊕H(t)
t ← r ⊕G(s) r ← t⊕G(s)
u ← s⊕H(t) m ← s⊕ F (r)
c ← ϕpk(t||u) return m
return c

Phan and Pointcheval proved that 3-round OAEP with a family of trap-door permutations T P
is secure in the sense of IND-CCA2 if T P is θ-partial one-way where θ = k/(k + `).

5.2 OWR-CCA Security of 3-Round OAEP with a Trap-Door Permutation

In this section, we prove that 3-round OAEP with a partial one-way trap-door permutation provides
OWR-CCA in the random oracle model.

In the proof of IND-CCA2 by Phan and Pointcheval, they showed that the probability that
the adversary asks r∗ is negligible. Then, the adversary cannot get any information about the
message m, since the value F (r∗) cannot be guessed by the adversary. However, in our proof, the
randomness r∗ is revealed to the adversary. Thus, we take different strategy in the proof of the
following theorem.

Theorem 2. For any adversary A attacking the OWR-CCA security of 3-round OAEP ¦ with
T P, and making at most qd queries to the decryption oracle, qf F -oracle queries, qg G-oracle
queries, and qh H-oracle queries, there exists a θ-partial inverting adversary B for T P, such that
for any k, `, and θ = k

k+` ,

Advowr-cca
Π,A (k) ≤ qd(5qg + 3qd + qf + 1) + qg(qf + 1)

2`
+

2qd(3qf + 2qd)
2k

+ 2qh ·Advθ-pow
T P,B(k)

and the running time of B is that of A plus qg · qh · Tϕ + qd · Tlu where Tϕ denotes the time for
evaluating the permutation ϕpk and Tlu denote the time for looking up in a list.

Proof. We define a sequence Game1, Game2, etc., of modified attack games starting from the actual
game Game0. Each of the games operates on the same underlying probability space: the public
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and secret keys of the cryptosystems, the coin tosses of the adversary A, the random oracles F ,
G, and H, and the message and the randomness for the challenge ciphertext.

In the following, all variables with asterisk refer to the challenge ciphertext, and all variables
with no asterisk refer to the decryption queries.

Game0. Game0 is the same as the actual OWR-CCA game. A pair of keys (pk, sk) is generated by
K(1k, 1`), and the CCA-adversary A takes pk = (pk, 1k, 1`), the challenge ciphertext c∗, and
the randomness r∗ where

m
R← {0, 1}`, r∗ R← {0, 1}k, s∗ = m⊕F (r∗), t∗ = r∗⊕G(s∗), u∗ = s∗⊕H(t∗), c∗ = ϕpk(t∗||u∗),

and A outputs m′. In the above experiment, the adversary A can make access to the
random oracles F,G, H, and the decryption oracle Dsk. However, A cannot ask the challenge
ciphertext c∗ to the decryption oracle.
We denote by S0 the event “m′ = m” and use a similar notation Si in each Gamei below.
By definition, we have Pr[S0] = Advowr-cca

Π,A (k).

Remark 1. In the proof of IND-CCA2 by Phan and Pointcheval, they modified the game by setting
r∗ independently of anything else, as well as F (r∗). Furthermore, they bounded the probability that
the adversary asks r∗ by negligible probability in the following games.

However, we cannot use this strategy, since the adversary knows r∗ and we cannot bound the
probability that the adversary asks r∗ . Thus, we take different strategy in the following games.

Game1. We choose two random values s+ R← {0, 1}` and g+ R← {0, 1}k in advance (i.e. before the
adversary A runs), and use s+ and g+ instead of s∗ and G(s∗), respectively. In Game1, we
apply the following special rules.
Note that we set s∗ before choosing m but s∗ and m are still identically distributed as those
in Game0.

R1: We compute the challenge ciphertext c∗ by setting

s∗ ← s+, m ← s∗ ⊕ F (r∗), t∗ ← r∗ ⊕ g+.

R2: Whenever the random oracle G is queried at s∗, the answer is g+.

Since we replace (s∗, G(s∗), m) by a different, but identically distributed (by the definition
of the random oracle G) random variables, we have Pr[S1] = Pr[S0].

Game2. In this game, we drop the rule R2 from Game1. Therefore, g+ is just used for computing
the challenge ciphertext, and if s∗ is queried to G then we respond not g+ but G(s∗) by using
the random oracle G.
Game1 and Game2 may differ if s∗ is queried to G. Let AskG2 denotes the event that, in
Game2, s∗ is queried to G (except by the encryption oracle, for producing the challenge). We
use an identical notation AskGi for each Gamei below. Then, |Pr[S2]− Pr[S1]| ≤ Pr[AskG2].

Game3. We now set t∗ independently of anything else, as well as H(t∗). We choose two random
values t+

R← {0, 1}k and h+ R← {0, 1}` in advance (i.e. before the adversary A runs), and use
t+ instead of t∗, as well as h+ instead of H(t∗). In Game3, we apply the following special
rules. Note that we change the way to compute g+ (but still identically distributed as that
in Game2).

R1′: We compute the challenge ciphertext c∗ by setting

t∗ ← t+, g+ ← t+ ⊕ r∗, u∗ ← s∗ ⊕ h+.
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R2′: Whenever the random oracle H is queried at t+, the answer is h+.

Since we replace the set of elements (t∗,H(s∗), g+) by a different, but identically distributed
(by the definition of the random oracle H) set of random variables, we have Pr[S3] = Pr[S2]
and Pr[AskG3] = Pr[AskG2].

Game4. In this game, we drop the rule R2′ from Game3. Therefore, h+ is just used for computing
the challenge ciphertext, and if t∗ is queried to H then we respond not h+ but H(t∗) by
using the random oracle H.
Game3 and Game4 may differ if t∗ is queried to H. Let AskH4 denotes the event that, in
Game4, t∗ is queried to H (except by the encryption oracle, for producing the challenge). We
use an identical notation AskHi for each Gamei below. Then, |Pr[S4]− Pr[S3]| ≤ Pr[AskH4]
and |Pr[AskG4]− Pr[AskG3]| ≤ Pr[AskH4].

Game5. In this game, we randomly choose u+ R← {0, 1}` and simply set u∗ ← u+, instead of
s∗⊕h+. Since h+ is uniformly distributed over {0, 1}` and not revealed to the adversary, the
distribution of u+ and that of u∗ = s∗⊕h+ in Game4 are identical. Therefore, Pr[S5] = Pr[S4],
Pr[AskG5] = Pr[AskG4], and Pr[AskH5] = Pr[AskH4].
The challenge ciphertext c∗ in this game is computed by

r∗ R← {0, 1}k, s+ R← {0, 1}`, s∗ ← s+, m ← s∗ ⊕ F (r∗)

and
t+

R← {0, 1}k, u+ R← {0, 1}`, t∗ ← t+, u∗ ← u+, c∗ ← ϕpk(t∗||u∗).
Here, s+ is never revealed to the adversary and the distribution of s∗ is independent of the
adversary’s view. Therefore, Pr[AskG5] ≤ (qg + qd)/2`.

Furthermore, the distribution of m = s∗ ⊕ F (r∗) is also independent of the adversary’s view
(even if the adversary knows the values r∗ and F (r∗)(= m ⊕ s∗)). Thus, the best way for
the adversary to guess the plaintext m of c∗ is encrypting some message m̂ ∈ {0, 1}` with
the randomness r∗ and checking whether c∗ = Epk(m̂; r∗) or not. In order to check this
equality, the adversary has to know the hash values G(ŝ) and H(t̂) where ŝ = F (r∗)⊕ m̂ and
t̂ = r∗⊕G(ŝ). Since the adversary and the decryption oracle make at most (qg +qd) G-oracle
queries and (qh + qd) H-oracle queries, the adversary can check the above equality at most
(qh + qd)(qg + qd) times. Thus, the probability Pr[S5] is bounded by (qg + qd)(qf + qd)/2`.
In the following, we modify this game in order to evaluate Pr[AskH5].

Game6. In Game5, when manufacturing the challenge ciphertext, we randomly choose c+ R←
{0, 1}k+`, and simply set c∗ ← c+, ignoring the encryption oracle altogether.
Since ϕpk is a permutation over {0, 1}k+`, and t∗ = t+ and u∗ = u+ are uniformly distributed
over {0, 1}k and {0, 1}`, respectively, the distribution of c∗ = ϕpk(t∗||u∗) is the same as that
of c+. Thus, we have Pr[AskH6] = Pr[AskH5].

Game7. In this game, we simulate the random oracles F, G,H. We use three lists, F -List, G-List,
H-List for simulating the random oracles F , G, and H, respectively. They are initially set
to empty lists.

• When the adversary, the decryption oracle, or the encryption oracle (which makes a
challenge ciphertext) makes a query r ∈ {0, 1}k to F , if there exists a pair (r, f) ∈ F -
List then we respond f . Otherwise, we respond a random string f

R← {0, 1}` and put
(r, f) into F -List.
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• When the adversary or the decryption oracle makes a query s ∈ {0, 1}` to G, if there
exists a pair (s, g) ∈ G-List then we respond g. Otherwise, we respond a random string
g

R← {0, 1}k and put (s, g) into G-List.

• When the adversary or the decryption oracle makes a query t ∈ {0, 1}k to H, if there
exists a pair (t, h) ∈ H-List then we respond h. Otherwise, we respond a random string
h

R← {0, 1}` and put (t, h) into H-List.

Since we can simulate these oracles perfectly, we have Pr[AskH7] = Pr[AskH6].

Game8. We now simulate the decryption oracle by using D-List, which is initially set to empty.
For a decryption query c, if there exists a pair (m, c) ∈ D-List then we respond m as the
plaintext. Otherwise, we simulate the decryption oracle as follows and put (m, c) into D-List:

D-1. We look up for (t, h) ∈ H-List and (s, g) ∈ G-List such that ϕpk(t, s⊕ h) = c. If
the record is found, we define u ← s⊕ h. Otherwise, we set t ← ⊥ and u ← ⊥.

D-2. If (t, h) ∈ H-List and (s, g) ∈ G-List (i.e. the first case in D-1), then we compute

r ← t⊕ g, f ← F (r), and m ← s⊕ f,

and returns m. Otherwise (i.e. the second case in D-1), we choose m
R← {0, 1}` and

returns m.

In addition, we modify the simulation of the random oracle G as follows:

Whenever a pair (s, g) is added to G-List, the following process is executed: for any
(t, h) ∈ H-List and any (m, c) ∈ D-List such that c = ϕpk(t||(h ⊕ s)), we compute
r ← t⊕ g, f ← m⊕ s, and add (r, f) to F -List.

The simulations of the decryption oracle and the random oracle G described above are the
same as those in the proof of IND-CCA2 by Phan and Pointcheval. We prove the following
lemma in Appendix A by a similar way as that in the proof of IND-CCA2 by Phan and
Pointcheval.

Lemma 1.

Pr[AskH7] ≤ qd(2qg + qd)/2` + qd(3qf + 2qd)/2k + Pr[AskH8],

and the running time for simulating the decryption oracle, as well as the random oracles is bounded
by qg ·qh ·Tϕ+qd ·Tlu where Tϕ denotes the time for evaluating the permutation ϕpk and Tlu denotes
the time for looking up in a list.

We now construct an algorithm B attacking θ-partial one-wayness of T P, where θ = k/(k+ `),
by using A against Game8.

1. B takes pk and y∗ where x∗ R← {0, 1}k+` and y∗ = ϕpk(x∗). Then, B runs A against Game8

where c∗ ← y∗ and r∗ ← {0, 1}`.

2. When A terminates, B outputs t
R← {t′|(t′, h′) ∈ H-List}.

Note that B simulates the random oracles and the decryption oracle for A as in Game8 (by using
F -List, G-List, H-List, and D-List). If AskH8 occurs then there exists an element t∗ ∈ {0, 1}k

in H-List such that ϕpk(t∗||u′) = y∗ for some u′ ∈ {0, 1}`. Therefore, we have Pr[AskH8] ≤
qh ·Advθ-pow

T P,B(k).
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In conclusion, we have

Advowr-cca
Π,A (k)

= Pr[S0] = Pr[S1] ≤ Pr[S2] + Pr[AskG2] = Pr[S3] + Pr[AskG3]
≤ Pr[S4] + Pr[AskH4] + Pr[AskG4] + Pr[AskH4]
= Pr[S5] + Pr[AskG5] + 2 · Pr[AskH5]
≤ (qg + qd)(qf + qd)/2` + (qg + qd)/2` + 2 · Pr[AskH5]
= (qg + qd)(qf + qd)/2` + (qg + qd)/2` + 2 · Pr[AskH6]
= (qg + qd)(qf + qd)/2` + (qg + qd)/2` + 2 · Pr[AskH7]
≤ (qg + qd)(qf + qd)/2` + (qg + qd)/2` + 2 · (qd(2qg + qd)/2` + qd(3qf + 2qd)/2k + Pr[AskH8])

≤ qd(5qg + 3qd + qf + 1) + qg(qf + 1)
2`

+
2qd(3qf + 2qd)

2k
+ 2qh ·Advθ-pow

T P,B(k).

We now estimate the running time of B. From Lemma 1, the running time for simulating
the decryption oracle, as well as the random oracles is bounded by qg · qh · Tϕ + qd · Tlu where Tϕ

denotes the time for evaluating the permutation ϕpk and Tlu denotes the time for looking up in a
list. Therefore, the running time of B is bounded by that of A plus qg · qh · Tϕ + qd · Tlu.

6 Concluding Remarks

In this paper, we have considered the security of public-key encryption in the scenario that the
adversary knows the randomness which was used to compute the ciphertext. We have formalized
the security notion for public-key encryption in the situation that the randomness is revealed
as “the one-wayness with the randomness revealed.” We have also shown that GEM satisfies
OWR-CCA if the underlying scheme satisfies OWR-PCA, and 3-round OAEP with a trap-door
permutation satisfies OWR-CCA if the trap-door permutation is partial one-way.

It might be interesting to consider whether other previously proposed encryption schemes are
secure in the sense of OWR-CPA or OWR-CCA. In particular, OAEP or OAEP+ might satisfy
OWR-CPA or OWR-CCA by modifying the assumption on the underlying trap-door permuta-
tion. For example, OAEP might satisfy OWR-CPA or OWR-CCA when the underlying trap-door
permutation satisfies that no poly-time algorithm, given c = φpk(x), can compute the most n
significant bits of x, where n is the length of plaintexts of OAEP.

It might be also interesting to consider that other security notions for public-key encryption,
the anonymity [1], for example, in the situation that the adversary knows the randomness. Fur-
thermore, we can also consider the security notions with respect to the privacy of the randomness.
For example, the adversary cannot find the randomness from the ciphertext, and the adversary
cannot distinguish which randomness was used to compute the ciphertext.
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A Proof of Lemma 1

The following proof is similar to that of IND-CCA2 by Phan and Pointcheval [14]. We define a
sequence Game7.1, Game7.2, etc., of modified attack games starting from the game Game7.

Game7.1. In this game, we simulate the decryption oracle by using D-List which is initially set to
empty.

• When the adversary makes a query c to the decryption oracle, if there exists a pair
(m, c) ∈ D-List then we respond m as the plaintext. Otherwise, we compute the
plaintext as follows and put (m, c) into D-List.

D-1. We first compute t||u ← ψsk(c).
D-2. We next compute

h ← H(t), s ← u⊕ h, g ← G(s), r ← t⊕ g, f ← F (r), m ← s⊕ f,

and return m.

Since we can simulate the decryption oracle perfectly, we have Pr[AskH7.1] = Pr[AskH7].

In the following, we modify the simulation D-2 of the decryption oracle. We consider three cases
with respect to the decryption query c by the adversary. Note that we can distinguish between
the following three cases after computing t||u ← ψsk(c) in the simulation D-1 of the decryption
oracle.

D-2-noT. (t, h) 6∈ H-List, that is, the value t has not been queried to the oracle H.

D-2-TnoS. (t, h) ∈ H-List and (s, g) 6∈ G-List where s = u⊕h, that is, the value t has been
already queried to the oracle H, but the value s = u⊕ h has not been queried to the oracle
G.

D-2-TS. (t, h) ∈ H-List and (s, g) ∈ G-List, that is, the values t and s = u ⊕ h have been
already queried to the oracles H and G, respectively.

In the following, we modify the above decryption process of each case.

Game7.2. In this game, we modify the simulation of the decryption oracle in the case D-2-noT.
That is, we respond the decryption query in the case D-2-noT as follows:

Set h
R← {0, 1}`, s ← u⊕ h, g

R← {0, 1}k, r ← t⊕ g, f ← F (r), m ← s⊕ f.
Add (s, g) to G-List and (t, h) to H-List, and return m.

This makes difference only if s is already in G-List. Since t has not been queried to H in
the case D-2-noT, h = H(t) is uniformly distributed. Therefore, the probability that s has
already been queried to G is (qg + qd)/2`. Summing up for all decryption queries, we get
|Pr[AskH7.2]− Pr[AskH7.1]| ≤ qd(qg + qd)/2`.

Game7.3. In this game, we modify again the simulation of the decryption oracle in the case D-2-
noT by not querying the oracle F :

Set h
R← {0, 1}`, s ← u⊕ h, g

R← {0, 1}k, r ← t⊕ g, f
R← {0, 1}`, m ← s⊕ f.

Add (r, f) to F -List, (s, g) to G-List, and (t, h) to H-List, and return m.

This makes difference only if r is already in F -List. Since g is uniformly distributed, the prob-
ability that r has already been queried to F is (qf + qd)/2k. Summing up for all decryption
queries, we get |Pr[AskH7.3]− Pr[AskH7.2]| ≤ qd(qf + qd)/2k.
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Game7.4. In this game, we modify again the simulation of the decryption oracle in the case D-2-
noT by answering as follows:

Set m
R← {0, 1}`, h

R← {0, 1}`, s ← u⊕ h, g
R← {0, 1}k, r ← t⊕ g, f ← m⊕ s.

Add (r, f) to F -List, (s, g) to G-List, and (t, h) to H-List, and return m.

Here, we first choose m and define f from m, while we first choose f and define m from
f in Game73. Two games Game7.4 and Game7.3 are perfectly indistinguishable and we have
Pr[AskH7.4] = Pr[AskH7.3].

Game7.5. We now modify the simulation of the decryption oracle in the case D-2-TnoS by not
calling either F or G as follows. In the case D-2-TnoS, the adversary asks c = ϕpk(t||u)
such that h = H(t) is known, but s = u⊕ h has never been queried to G.

Set g
R← {0, 1}k, r ← t⊕ g, f

R← {0, 1}`, m ← s⊕ f.
Add (r, f) to F -List and (s, g) to G-List, and return m.

This makes difference only if r is already in F -List. Since g is uniformly distributed (s is not
in G-List), the probability that r has already been queried to F is less than (qf + qd)/2k.
Summing up for all decryption queries, we get |Pr[AskH7.5]− Pr[AskH7.4]| ≤ qd(qf + qd)/2k.

Game7.6. We modify again the simulation of the decryption oracle in the case D-2-TnoS by
answering as follows:

Set m
R← {0, 1}`, g

R← {0, 1}k, r ← t⊕ g, f ← m⊕ s.
Add (r, f) to F -List and (s, g) to G-List, and return m.

Here, we first choose m and define f from m, while we first choose f and define m from f
in Game7.5. Two games Game7.6 and Game7.5 are perfectly indistinguishable and we have
Pr[AskH7.6] = Pr[AskH7.5].

Game7.7. In this game, we do not store either (s, g) in G-List or (r, f) in F -List, in the cases
D-2-noT and D-2-TnoS. Instead of storing these elements, we add some process to the
simulation of the random oracle G.

• In the case D-2-noT, the decryption oracle sets h
R← {0, 1}`, m

R← {0, 1}`, adds (t, h)
to H-List, and returns m.

• In the case D-2-TnoS, the decryption oracle returns m
R← {0, 1}`.

• In addition, whenever a pair (s, g) is added to G-List, the following process is executed:
for any (t, h) ∈ H-List and any (m, c) ∈ D-List such that c = ϕpk(t||(h⊕s)), we compute
r ← t⊕ g, f ← m⊕ s, and add (r, f) to F -List.

Game7.7 and Game7.6 are perfectly indistinguishable unless r is asked to F before s is asked
to G. In fact, if r is asked after s, at the moment that s is asked, by the above simulation,
we will find (t, h) and therefore (r, f) is computed and added to F -List as in the Game7.6.
Until s is asked to G, g is a uniform variable, so is r. Therefore, the probability that r has
been asked to F is qf/2k. Summing up for all decryption queries, we get |Pr[AskH7.7] −
Pr[AskH7.6]| ≤ qd · qf/2k.

Game7.8. In this game, we modify again the simulation of the decryption oracle in the case D-2-
noT. We do not store (t, h) in H-List and just answer m ← {0, 1}` in the case D-2-noT. In
the previous game, for the query h to H, we answer randomly h, so the adversary in the two
games Game7.8 and Game7.7 cannot distinguish the answers of a query to H. Nevertheless,

15



H-List has been changed and therefore, the answer for a query to F can be changed. We
can see that the two games Game7.8 and Game7.7 are perfectly indistinguishable unless s is
asked to G before t is asked to H. In fact, if s is asked to G after t is asked to H, at the
moment that s is asked, by the above simulation, we will find (t, h) and therefore (r, f) is
computed and added in F -List as in the Game7.7.
Until t is asked to H, h is a uniform variable, so is s = u⊕h. Therefore, the probability that
s has been asked to G is qg/2`. Summing up for all decryption queries, we get |Pr[AskH7.8]−
Pr[AskH7.7]| ≤ qd · qg/2`.

Game7.9. We now complete the simulation of the decryption oracle by modifying the case D-2-TS
and the step D-1. We do not ask any query to ψsk in D-1. Intuitively, if both t and s have
been asked, we can easily find them, and can return m. Otherwise, we give a random answer
as in the previous game.

• In D-1, for the decryption query c, we look up for (t, h) ∈ H-List and (s, g) ∈ G-List
such that ϕpk(t, s⊕ h) = c. If the record is found, we define u ← s⊕ h. Otherwise, we
set t ← ⊥ and u ← ⊥.

• In the case D-2-TS, we compute r ← t⊕ g, f ← F (r), and m ← s⊕ f , and return m.

The two games Game7.9 and Game7.8 are perfectly indistinguishable. In fact, in the first case
nothing is modified, and in the second case by making t ← ⊥ and u ← ⊥, the answer of
the decryption oracle for the query c will be a random m as in the previous game. Thus,
Pr[AskH7.9] = Pr[AskH7.8].

Since Game7.9 is identical to Game8, we have

Pr[AskH7]
= Pr[AskH7.1]
≤ qd(qg + qd)/2` + Pr[AskH7.2]
≤ qd(qg + qd)/2` + qd(qf + qd)/2k + Pr[AskH7.3]
= qd(qg + qd)/2` + qd(qf + qd)/2k + Pr[AskH7.4]
≤ qd(qg + qd)/2` + 2qd(qf + qd)/2k + Pr[AskH7.5]
= qd(qg + qd)/2` + 2qd(qf + qd)/2k + Pr[AskH7.6]
≤ qd(qg + qd)/2` + 2qd(qf + qd)/2k + qdqf/2k + Pr[AskH7.7]
≤ qd(qg + qd)/2` + 2qd(qf + qd)/2k + qdqf/2k + qdqg/2` + Pr[AskH7.8]
= qd(qg + qd)/2` + 2qd(qf + qd)/2k + qdqf/2k + qdqg/2` + Pr[AskH7.9]
= qd(2qg + qd)/2` + qd(3qf + 2qd)/2k + Pr[AskH8].

We now estimate the time for simulating the decryption oracle, as well as the random oracles.
The running time for simulating these oracles is bounded by qg · qh ·Tϕ + qd ·Tlu where Tϕ denotes
the time for evaluating the permutation ϕpk and Tlu denotes the time for looking up in a list. We
can indeed perform the simulation granted an additional list GH-List which contains all the tuples
(t, h, s, g, c) where (t, h) ∈ H-List, (s, g) ∈ G-List, and c = ϕpk(t, s⊕ h).
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