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Abstract

A privacy-preserving authentication model called secret handshake was introduced by Bal-
fanz, Durfee, Shankar, Smetters, Staddon, and Wong [1]. It allows two members of a same
group to authenticate themselves secretly to the other whether they belong to a same group
or not, in the sense that each party reveals his affiliation to the other only if the other party
is also a same group member. The previous works focus on the models where each participant
authenticates himself as a member of one group. In this paper, we consider a secret handshake
model with multiple groups. In our model, two users authenticate themselves to the other if
and only if each one’s memberships of multiple groups are equal. We call this model secret
handshake with multiple groups. We also construct its concrete scheme. Our scheme can easily
deal with the change of memberships. Even if a member is added to a new group, or deleted
from the one that he belongs to, it is not necessary to change the memberships for the other
groups that he belongs to.

Keywords: Secret Handshake, Authentication, Privacy, Anonymity.

1 Introduction

1.1 Background

A privacy-preserving authentication model called secret handshake was introduced by Balfanz,
Durfee, Shankar, Smetters, Staddon, and Wong [1]. It allows two members of a same group to
authenticate themselves secretly to the other whether they belong to a same group or not, in the
sense that each party reveals his affiliation to the other only if the other party is also a group
member.

For example, a CIA agent Alice might want to authenticate herself to Bob, but only if Bob
is also a CIA agent. Moreover, if Bob is not a CIA agent, the protocol should not help Bob in
determining whether Alice is a CIA agent or not.

The work of [1] constructed a secret handshake scheme secure under the bilinear Diffie-Hellman
assumption in the random oracle model. Castelluccia, Jarecki, and Tsudik [2] constructed a secret
handshake scheme, which is secure under the computational Diffie-Hellman (CDH) assumption in
the random oracle model, based on an ID-based-like encryption scheme.

The above schemes [1, 2] are based on one-time credentials to achieve the unlinkability, which
means that the attacker cannot specify the user even if he is a participant of the scheme. Without
one-time credentials, Xu and Yung [6] constructed the scheme with the unlinkability.
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Ministry of Education, Culture, Sports, Science, and Technology, 16092206.
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Furthermore, Tsudik and Xu [5] proposed a multi-party secret handshake model. In this model,
with a single run of the protocol, any number of members can authenticate themselves to the others
if and only if all of them belong to a same group. They also modified the unlinkability for the
multi-party secret handshake model, and constructed a concrete scheme satisfying this property.

1.2 Our contribution

The previous works focus on the models where each participant authenticates himself as a member
of one group. In this paper, we consider a secret handshake model with multiple groups, where
two users authenticate themselves to the other if and only if each one’s memberships of the groups
are equal. We call this model secret handshake with multiple groups.

For example, assume that a CIA agent Alice is investigating a gang secretly, and she wants
to meet a CIA colleague who is investigating the same gang, too. She meets a suspicious person,
Bob. She wants to assure that he is both a CIA agent and an investigator of the gang. If he is
not a CIA member or an investigator of the gang, she does not want to tell him either that she is
a CIA member or that she is a investigator of the gang.

We also construct a concrete scheme for secret handshake with multiple groups. Our scheme
can easily deal with the change of memberships. Even if a member is added to a new group, or is
deleted from the one that he belongs to, it is not necessary to change his other memberships.

1.3 Organization

In Section 2, we propose a model of secret handshake with multiple groups. In Section 3, we
present a concrete scheme of this model. In Section 4, we prove that our scheme satisfies the
security requirement under the CDH assumption in the random oracle model.

2 Definition of secret handshake with multiple groups

In this section, we propose a model of secret handshake with multiple groups.

2.1 Model

We adapt the definition of [2] to secret handshake with multiple groups.
In our model, there is a group authority GA for each group. A scheme for secret handshake

with multiple groups consists of four algorithms Setup, CreateGroup, AddMember, and Handshake.

• Setup takes as input the security parameter k and generates the public parameters params
common to all subsequently generated groups.

• CreateGroup is a key generation algorithm executed by GA on input of params, and outputs
the group public key G and the GA’s private key xG.

• AddMember is a protocol executed between a user and the group authority GA of G. The
private input is GA’s private key xG. The common inputs are params, G, and the user’s
identity ID of size regulated by params. Then, the user gets a trapdoor t for the above ID.
The user keeps the trapdoor secret.

• Handshake is the authentication protocol, i.e. the secret handshake protocol itself. It is
executed between players A and B on public inputs IDA, IDB, and params. The private
input of A is (t1, . . . , tn, G1, . . . , Gn), and the private input of B is (t′1, . . . , t′n′ , G′

1, . . . ,
G′

n′). It outputs accept or reject.
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We note that in all secret handshake schemes discussed in this paper the output of the Hand-
shake protocol can be extended to include an authenticated session key along with the “accept”
decision.

2.2 Basic security properties

We also adapt the definition of [2] to secret handshake with multiple groups.
A secret handshake scheme with multiple groups must have the following security properties:

the completeness, the impersonator resistance, and the detector resistance. In some cases, the
unlinkability is preferable.

2.2.1 Completeness

Assume that honest users A, B belonging to the same groups, that is, A belongs to G1, . . . , Gn

and B belongs to G′
1, . . . , G′

n′ , then n = n′ and {G1, . . . , Gn} = {G′
1, . . . , G

′
n′}. If A and B run

Handshake with valid trapdoors for their IDs and group public keys, then both parties output
“accept”.

2.2.2 Impersonator resistance

The impersonator resistance property is violated if an adversary A authenticates himself as a
member of G1, . . . , Gn to an honest user V when A does not belong to at least one of G1, . . . , Gn.
Formally, we say that a secret handshake scheme is impersonator resistant if every polynomially
bounded adversary A has negligible probability of winning in the following game, for any string
IDV :

1. We execute params ← Setup(1k), and (Gi, xi) ← CreateGroup(params) for i = 1, . . . , n.

2. The adversary A, on input (G1, . . . , Gn, IDV ), invokes the AddMember algorithm on any
groups any times. That is, for any bitstring ID and a public key of group G, A can get a
trapdoor t for ID and G.

3. When A is ready for the challenge, A is allowed to choose up to n − 1 groups and receives
these GAs’ private keys xi.

4. A announces a new IDA, which is not included in any of the above queries.

5. A interacts with the honest player V with the Handshake protocol. Common inputs are
(IDA, IDV ), and V ’s private inputs are (Gi, ti) for i = 1, . . . , n.

We say that A wins if V outputs “accept” in the above game.
We note that the above property is rather weak, and that stronger versions of this property are

possible. Namely, the attacker is allowed to run the protocol several times against V , and is able
to invoke the additional AddMember algorithm after each attempt. Also, the attacker is allowed
to ask for trapdoors on additional ID 6= IDA strings during the challenge protocol with V . We
use a simple definition here. It can be shown that our scheme remains secure under these stronger
notions.

2.2.3 Detector resistance

An adversary A violates the detector resistance property if A can decide whether some honest
party V is a member of some groups G1, . . . , Gn when A does not belong to at least one of
G1, . . . , Gn. Formally, we say that a secret handshake scheme is detector resistant if there exists a
probabilistic polynomial-time algorithm SIM , such that any polynomially bounded adversary A
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cannot distinguish between the following two games with probability non-negligibly higher than
1/2, for any target ID string IDV :

Steps 1 to 4 proceed as in the definition of the impersonator resistance, that is, on input
IDV and a randomly generated G1, . . . , Gn, A queries GA on adaptively chosen ID. A is
allowed to choose up to n− 1 groups to receive the GAs’ private keys xi. A announces a new
IDA, which is not included in any of the above queries.

5-1. In game 1, A interacts with the honest player V with the Handshake protocol. the common
input is (IDA, IDV ), and V ’s private inputs are (Gi, ti) for i = 1, . . . , n.

5-2. In game 2, A interacts with SIM on the common input (IDA, IDV ).

6. A can query GA on additional strings ID 6= IDA.

7. A outputs “1” or “2”, making a judgement on which game he saw.

Similarly to the impersonator resistance, stronger notions of the detector resistance are possible.
In particular, the adversary should be able to trigger several executions of the handshake protocol
with player V , and he should be able to replace these instances with those executed with the
legitimate owner of the IDA identity. We use the above weak notion for simplicity, but our scheme
satisfies these stronger notions.

2.2.4 Unlinkability

A potentially desirable property is the unlinkability, which extends privacy protection for group
members by requiring that instances of the handshake protocol performed by the same party
cannot be efficiently linked. This property is violated if after an adversary A interacts with the
honest player V with the Handshake protocol, A can determine the other’s ID when A does not
belong to at least one of G1, . . . , Gn. Formally, we say that a secret handshake scheme is unlinkable
if any polynomially bounded adversary A cannot distinguish between the following two IDs with
probability non-negligibly higher than 1/2, for any string IDV1 , IDV2 :

Steps 1 to 4 proceed as in the definition of the impersonator resistance except for the inputs
on A. On input IDV1 , IDV2 and a randomly generated G1, . . . , Gn, A queries GA on
adaptively chosen ID. A is allowed to choose up to n− 1 groups to receive the GAs’ private
keys xi. A announces a new IDA, which is not included in any the above queries.

5. We choose b ∈ {1, 2} randomly. A interacts with the honest player V with the Handshake
protocol. The common input is (IDA , IDVb

), and V ’s private inputs are (Gi, ti) for
i = 1, . . . , n.

6. The adversary A can query GA on additional strings ID 6= IDA.

7. The adversary A outputs “1” or “2”, making a judgement on whom he interacted with.

3 Concrete scheme

In this section, we construct a concrete scheme for secret handshake with multiple groups. This
four-round scheme satisfies the security properties under the CDH assumption in the random
oracle model. This scheme can be considered as a variant of [2], based on the Schnorr signature
scheme [4] and the ElGamal encryption scheme.
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• Initialize picks the standard discrete logarithm parameters (p, q, g) of security parameter k,
that is, primes p, q of size k, such that g is a generator of a subgroup in Z∗p of order q. Initialize
also defines hash functions H : {0, 1}∗ × 〈g〉 → Zq and H ′ : 〈g〉 → 〈g〉. The hash functions
are modeled as random oracles.

• CreateGroup picks a random private key x ∈ Zq and sets the public group key G = gx. Each
Gi can be represented as a string and we can sort Gi’s lexicographically.

• In AddMember on a public input (G, ID), the GA picks r ∈ Zq randomly, and computes
w = gr and t = xH(ID,w) + r mod q. The user’s outputs are the certificate w and the
trapdoor t.

• Handshake proceeds as follows. Assume that A’s inputs are ID, (Gi, wi, ti) for i = 1, . . . , n
and B’s inputs are ID′, (G′

j , w
′
j , t

′
j) for j = 1, . . . n′ where Gi’s and G′

i’s are sorted lexico-
graphically.

1. B sends (ID′, w′1, . . . , w
′
n′) to A.

If n 6= n′, A outputs reject.

A obtains PK ′
1 = w′1G

H(ID′,w′1)
1 , . . . , PK ′

n′ = w′n′G
H(ID′,w′

n′ )
n .

A picks ma ←R 〈g〉.
A picks c ←R Zq and computes (c1, c2) = (gc,maH

′(PK ′c
1 ) · · ·H ′(PK ′c

n′)).

2. A sends (ID,w1, . . . , wn, c1, c2) to B.
B obtains PK1 = w1G

′H(ID,w1)
1 , . . . , PKn = wnG

H(ID,wn)
n′ .

B picks mb ←R 〈g〉.
B picks c′ ←R Zq and computes (c′1, c

′
2) = (gc′ , mbH

′(PKc′
1 ) · · ·H ′(PKc′

n )).

B computes m = H ′(ct′1
1 )−1 · · ·H ′(c

t′
n′

1 )−1c2 and respb = H ′(m).

3. B sends (c′1, c
′
2, respb) to A.

If respb 6= H ′(ma), A outputs reject.
Otherwise, A computes
m′ = H ′(c′1

t1)−1 · · ·H ′(c′1
tn)−1c′2 and respa = H ′(m′).

4. A sends respa to B.
If respa 6= H ′(mb), B outputs reject.
Otherwise B outputs accept.

3.1 Discussion

Clearly, our scheme does not satisfy the unlinkability. However, by the following extension, this
property can be satisfied. In steps 1 and 2 of Handshake, one can run the protocol using multiple
IDs and certificates. Then, the other picks multiple challenge messages and encrypts them with the
IDs and certificates. After receiving these ciphertexts, he computes the plaintexts and responds
hashed plaintexts. The other authenticates him if he can decrypt one of them. If he can decrypt
none of them, he rejects. We prove this property in section 4.3.

4 Security of our scheme

In this section, we prove that our scheme satisfies the security properties under the CDH assump-
tion in the random oracle model.

It is clear that our scheme satisfies the correctness. That is, if honest users belonging to
the same groups run Handshake with valid trapdoors for their IDs and group public keys, then
Handshake outputs “accept”.
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4.1 Impersonator resistance

Theorem 1. Our scheme is impersonator resistant under the CDH assumption in the random
oracle model.

Proof. We prove this security property by reduction. By using the adversary that attacks this
property with non-negligible probability ε, we construct the adversary A∗ that solves the CDH
problem with non-negligible probability.

The adversary A attacks against an honest user V identified by IDV who is a member of n
groups. We use A as the A and V as the B in the definition of the Handshake. It is not necessary
to consider the other case.

On the input of the Diffie-Hellman challenge (g, ga, gd), A∗ chooses l ∈ {1, . . . , n} and sets
Gl = ga. We assume l = n without loss of generality. A chooses x1, . . . , xn−1 ← Z∗q randomly and
computes G1 = gx1 , . . . , Gn−1 = gxn−1 . A∗ inputs (G1, . . . , Gn, IDV ) to A. Let xn = a.

When A queries ID to the AddMember algorithm of the k-th group, A∗ simulates as follows. If
k 6= n, A∗ actually computes the Schnorr signature on string ID under the GA’s secret key xk and
returns a pair (w, t) such that w = gr and t = xkH(ID, w)+ r. If k = n, A∗ simulates the Schnorr
signature. A∗ picks i, t ←R Z∗q randomly, computes w = gt(Gi

n)−1, sets H(ID, w) = i, and sends
(t, w) to A. Since this pair satisfies the verification equation and i, t are picked at random, A∗
simulates the random oracles.

When A announces that he is ready for the impersonation challenge against V , A is allowed to
choose up to n− 1 groups to receive the GAs’ private keys xi. Since A that receives n− 1 private
keys has the largest probability to success the attack, we can assume that A chooses n− 1 groups.
If A chooses n-th group to receive the private key, A∗ halts. Otherwise, A∗ passes x1, . . . , xn−1.
Then A passes (IDA, w1, . . . , wn) to A∗. In the step 3 of Handshake algorithm, A∗ sets c1 = gd,
c2 ←R 〈g〉 and passes (c1, c2) to A. Assume that, for each k, wk = grk and tk is the trapdoor of A
for the k-th group. In the random oracle model, the probability that A makes the correct answer
resp = H ′(m) without querying m to H ′ such that c2 = mH ′(ct1

1 ) · · ·H ′(ctn
1 ) is negligible. Thus,

in order to compute m, A has to query cti
1 to H ′ for i = 1, . . . , n. Therefore, A can exponentiate

a random element c1 to exponent t1, . . . , tn.
In the above argument, after receiving Schnorr signatures (ti, wi) on A’s choice, A will compute

(wn, ctn
1 ) such that wn = grn and tn = xnH(IDA, wn) + rn for some rn, IDA.

We apply the forking lemma by Pointcheval and Stern [3]. Let TM be a probabilistic polynomial
time Turing machine, given only the public data as input. Let (m,σ1, h, σ2) be a signature in the
forking lemma where h is the hash value of (m,σ1) and σ2 just depends on σ1, the message m,
and h. The forking lemma shows that if TM can find, with non-negligible probability, a valid
signature (m,σ1, h, σ2), then, with non-negligible probability, a replay of this machine, with the
same random tape and a different oracle, outputs two signatures (m,σ1, h, σ2) and (m, σ1, h

′, σ′2)
such that h 6= h′. The forking lemma used in the security proof of the Schnorr signature scheme
shows that if there exists an attacker that breaks the existential unforgeability under an adaptive
chosen message attack with non-negligible probability, then the discrete logarithm in subgroups
can be solved in polynomial time. This means that if two conversations with an adversary and
different random oracles produce the same message and signature, then x = DLg(G) can be
computed.

In our proof, we reduce the the successful attack not to computing discrete logarithms, but
to computing the CDH problem gad. We can consider (IDA, wn,H(IDA, wn), ctn

1 ) as a tuple
(m,σ1, h, σ2) in the forking lemma. Recall that A∗ has set c1 = gd. In the first conversation, A
receives H(IDA, wn) = j and computes

ctn
1 = c

xnH′(IDA,wn)+rn

1

= gd(aj+rn).
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In the second conversation, A receives H(IDA, wn) = j′ and computes

c
t′n
1 = gd(aj′+rn).

After these two conversations, A∗ can compute gad = (ctn
1 /c

t′n
1 )(j−j′)−1

.
Since x1, . . . , xn are chosen randomly, the probability that A does not choose n-th group to

receive the GA’s private key xn is 1/n. If the probability of A to break the impersonator resistance
is ε, the probability that A wins the game twice with the same (IDA, wn) is at least ε2/n2. Then,
A∗ can return the answer to the CDH challenge with probability ε2/(n2qh) where qh is the number
of queries that A makes to the hash function H ′. If the success probability ε is non-negligible, A
is an efficient algorithm, and hence the number of queries qh is polynomial, then the probability
that A∗ can return the correct answer of CDH is non-negligible.

4.2 Detector resistance

Theorem 2. Our scheme is detector resistant under the CDH assumption in the random oracle
model.

Proof. We prove this security property by a similar way as in the proof of the impersonator
resistance. By using an adversary that attacks this property with probability 1/2+ε, we construct
the adversary A∗ that solves the CDH problem with non-negligible probability.

The adversary A attacks against an honest user V identified by IDV , that is a member of n
groups. We use A as the A and V as the B in the definition of the Handshake. It is not necessary
to consider the other case.

A∗ sets the values IDV , x1, . . . , xn−1, G1, . . . , Gn, simulates AddMember algorithm, and sets
the challenge response (c1, c2) as in the proof of the impersonator resistance.

If A distinguishes a conversation with V from a conversation with SIM, he reveals the infor-
mation w1, . . . , wn, (c1, c2) of the groups from the response from V . w1, . . . , wn and c1 are random
values and independent of the group public key. Since the probability that A reveals the informa-
tion without querying m such that c2 = mH ′(ct1

1 ) · · ·H ′(ctn
1 ) is negligible, A has to query c(i) = ct1

1

to H ′ for i = 1, . . . , n. Therefore, A can exponentiate a random element c1 to exponent t1, . . . , tn.
In the above argument, after receiving Schnorr signatures (ti, wi) on A’s choice, A will compute
(wn, ctn

1 ) such that wn = grn and tn = xnH(IDA, wn) + rn for some rn, IDA.
Again, by applying the forking lemma, A∗ can compute gad with non-negligible probability as

in the proof of impersonator resistance.

4.3 Unlinkability

In this section, we prove that the modified scheme satisfies the unlinkability. Therefore, we consider
the modification as discussed in section 3.1. In step 1 and 2 of the Handshake, one can run the
protocol using multiple IDs and certificates. Then, the other picks multiple challenge messages
and encrypts them with the IDs and certificates. After receiving these ciphertexts, he computes
the plaintexts and responds hashed plaintexts. The other authenticates him if he can decrypt one
of them. If he can decrypt none of them, he rejects.

Theorem 3. The modified scheme is unlinkable under the CDH assumption in the random oracle
model.

Proof. We prove this security property by a similar way as in the proof of the impersonator
resistance. By using an adversary that attacks this property with probability 1/2+ε, we construct
the adversary A∗ that solves the CDH problem with non-negligible probability.
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The adversary A attacks against an honest user V identified by IDV1 , that is a member of n
groups. We use A as the A and V as the B in the definition of the Handshake. It is not necessary
to consider the other case.

On the input of the Diffie-Hellman challenge (g, ga, gd), A∗ chooses l ∈ {1, . . . , n} and sets
Gl = ga. We assume l = n without loss of the generality. A chooses x1, . . . , xn−1 ← Z∗q , IDV2 ←
{0, 1}∗ randomly and computes G1 = gx1 , . . . , Gn−1 = gxn−1 . A∗ inputs (G1, . . . , Gn, IDV1 , IDV2)
to A. Let xn = a.

When A queries ID to the AddMember algorithm of the k-th group, A∗ simulates as follows. If
k 6= n, A∗ computes the Schnorr signature on string ID under the GA’s secret key xk and returns
a pair (w, t) such that w = gr and t = xkH(ID, w) + r. If k = n, A∗ simulates the Schnorr
signature. A∗ picks i, t ←R Z∗q randomly, computes w = gt(Gi

n)−1, sets H(ID, w) = i, and sends
(t, w) to A. Since this pair satisfies the verification equation and i, t are picked at random, A∗ can
simulate the random oracles.

When A announces that he is ready for the unlinkability challenge against V , A is allowed
to choose up to n − 1 groups to receive the GAs’ private keys xi. Since A that receives n − 1
private keys has the largest probability to success the attack, we can assume that A chooses
n− 1 groups. If A chooses n-th group to receive the private key, A∗ halts. Otherwise, A∗ passes
two tuples of (IDV1 , wV1

1 , . . . , wV 1
n ) and (IDV2 , wV 2

1 , . . . , wV 2
n ) to A. Then A passes two tuples

of (IDA, w1, . . . , wn) and (ID′
A, w′1, . . . , w

′
n) to A∗. In the step 3 of Handshake algorithm, A∗

sets r ←R {1, 2}, c1r = gd and c2r, c1(3−r), c2(3−r) ←R 〈g〉 and passes these (c1r, c2r), (c1(3−r),
c2(3−r)) to A. Assume that, for each k, wk = grk , w′k = gr′k and tk or t′kis the trapdoor of A
for the k-th group. If A can distinguish a conversation with IDV1 from a conversation with
IDV2 , he reveals the information w1, . . . , wn, w′1, . . . , w

′
n, (c11, c21), (c12, c22) of the IDs from the

response from V . w1, . . . , wn, w′1, . . . , w
′
n, c11, and c12 are random values and independent from

the IDs. The probability that A reveals the information of IDs without querying m such that
c21 = mH ′(ct1

11) · · ·H ′(ctn
11) or m′ such that c22 = m′H ′(ct′1

12) · · ·H ′(ct′n
12) is negligible, A has to query

ct1
11 to H ′ for i = 1, . . . , n or c

t′1
12 to H ′ for i = 1, . . . , n. Therefore, A can exponentiate a random

element c11 to exponent t1, . . . , tn or c22 to exponent t′1, . . . , t
′
n.

In the above argument, after receiving signatures (ti, wi) on IDi on A’s choice, A will compute
a message IDA and its signature (wn, ctn

11) such that wn = grn and tn = xnH(IDA, wn) + rn or
(w′n, c

t′n
12) such that w′n = gr′n and t′n = xnH(ID′

A, w′n) + r′n for some rn, IDA.
Again, by applying the forking lemma, A∗ can compute gad with non-negligible probability as

in the proof of impersonator resistance.

5 Conclusion

We proposed a model for secret handshake with multiple groups, and constructed its concrete
scheme. Our scheme can easily deal with one’s change of membership. Even if a member is added
to a new group, or deleted from the one that he belongs to, it is not necessary to change his other
memberships.

It might be interesting to consider other extensional variations of secret handshake.
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