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There have been several research works that analyze and optimize programs using
temporal logic. However, no evaluation of optimization time or execution time of these
implementations has been done for any real programming language.

In this paper, we present a system that generates a Java optimizer from speci�cations
in temporal logic. The speci�cation is simpler, and the generated optimizers run more
e�ciently than previously reported work.

We implemented a new model checker for a bidirectional CTL (computation tree logic),
a branching temporal logic. The model checker can check future and past temporal CTL
operators symmetrically without any conversion. We also present a new speci�cation
language based on the bidirectional CTL that can express typical optimization rules very
naturally. By adding rewriting conditions and handling of temporary variables, the system
can perform optimization of Java programs.

So far, a compiler optimizer using temporal logic was assumed to be impractical,
because it consumes too much time. However, with our method, the generated Java
compiler optimizer can compile all seven of the SPECjvm98 benchmarks with a compile
time from 15 seconds to 5 minutes.

We also gained insights into improving existing techniques for decreasing the compi-
lation time and expertise in specifying compiler optimizations.

1 INTRODUCTION

In compiler design, code optimization is one of the most important passes, improving
execution speed and spatial e�ciency of the target code [1] [3].

Current optimizers are almost always implemented by some kind of programming
language. However, the approach of implementing optimizers by CTL (computational
tree logic) [8], a branching temporal logic, has attracted interest in recent years. This
approach has two main advantages.

� The transformations are easier to write and prototype. They can be achieved by
writing several lines of speci�cation language rather than many hundreds of lines of
code. Also, they can be written by developers as well as compiler experts.
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� The transformations can be formally analyzed because they are more simply ex-
pressed.

Compiler optimization by CTL can concisely express a lot of classic optimization by
using the following speci�cation language (conditional rewrite rule), which is denoted as
follows.

I =⇒ I ′ if φ

For example, the rule describing the dead code elimination will be as follows.

x := e =⇒ skip
if AX((AG¬use(v)) ∨ A¬use(v) U def(v))

In our work, we adopt the bidirectional CTL [8] where past temporal operators can be
used symmetrically with future temporal operators. We implemented a new model checker
that can check future and past temporal operators symmetrically. We also propose a
new speci�cation language for writing compiler optimizers that can express optimization
rules very naturally. Compiler optimization using temporal logic was assumed not to be
useful for real-world programming languages because it takes hours for compilation to
be done using the model checker. However, we have improved previous techniques and
have implemented a new Java compiler optimizer that can act very e�ciently, given the
speci�cation of optimization.

Compiler optimization can be described naturally and concisely by using bidirectional
CTL [8].

CTL-FV [10] is a kind of bidirectional CTL proposed by Lacey in which free variables
are introduced. Many traditional program optimization conditions can be described by
CTL-FV. We adopted CTL-FV as a base. However, as described later, Lacey's implemen-
tation is not realistic because it cannot handle all classical optimizations, and binding of
free variables is time consuming.

Ban's methods [2] can also handle past temporal operators by using NCTL [12]. This
method uses 12 conversion rules to convert temporal expressions including past temporal
operators into expressions with only future temporal operators. However, the conversion
process consumes a lot of time, and the model checking is very time consuming because
expressions become longer by conversion. Moreover, there is a limitation with NCTL in
that past temporal operators cannot be written freely.

We implemented a model checker that directly handles bidirectional CTL. Past tem-
poral operators are checked symmetrically with future temporal operators. Because the
process time used to convert to NCTL [12] or µ-calculation is not incurred and the for-
mulas never become more complex because of the elimination of past temporal operators,
our model checker is very e�cient.

As for the description ability of optimization, Ban's [2] and Yamaoka's research [21]
can rewrite only one place corresponding to one condition at a time. Therefore, their
methods cannot handle complex optimizations such as partial redundancy elimination
that rewrite several places at the same time using several conditions. Their work cannot
process edges, either.

Before model checking, free variables must be bound. Therefore when there are a
lot of free variables in the conditional expression, processing time becomes unrealistic.
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Moreover, using the node number of the Kripke structure as in Lacey's speci�cation is a
common drawback of all previous work. This results in a computation time explosion in
most cases. Another drawback of previous work is that the optimization condition cannot
be described naturally when the condition refers to several nodes.

The description in our research does not write the node number of the Kripke structure.
What the model checker calculates is not the instruction of a speci�c number but sets of
instructions that satisfy the same condition. Therefore, it becomes very easy to describe a
complex rewrite rule that rewrites many instructions. Moreover, it can improve e�ciency
because the free variables corresponding to the node number of the Kripke structure are
omitted.

By adding some processing for real-world language features, such as extensions to
handle rewrite rules and temporary variables, we achieved a typical optimizer for a Java
language compiler, the performance of which is now close to the optimizers using tradi-
tional algorithms.

So far, optimizers with temporal logic have been assumed to be impractical because
of the processing time. In our research, the seven SPECjvm98 benchmarks were able to
be optimized in a time ranging from 15 seconds to 5 minutes using the aforementioned
improvement.

Additionally, our optimizer can perform some optimizations that cannot be done with
previous work.

We think that our implementation is the �rst realistic Java compiler optimizer with
temporal logic. Insights into existing problems, and techniques for shortening the opti-
mization time and the recommended style of its speci�cation were acquired.

2 Bidirectional CTL

Bidirectional CTL [8] is one of the temporal logics. In this section, we introduce bidirec-
tional CTL and how it is used in program analysis and transformation.

Bidirectional CTL Bidirectional CTL was �rst proposed in [8]. Past temporal opera-
tors are introduced symmetrically with future temporal operators.

Each point of the temporal structure has two trees, one for the future and the other
for the past. Bidirectional CTL has past temporal operators

←−
A and

←−
E as well as the

usual quanti�ers A and E, made by reversing A and E.
Because past temporal operators can be written and veri�ed symmetrically with future

temporal operators without any limitation, the conciseness and power of the conditional
part, and the e�ciency of its implementation using bidirectional CTL, are excellent.

Syntax The syntax of bidirectional CTL is:
bi-directional CTL formulas 3 φ ::= α | ¬φ | φ1 ∧ φ2

| EXφ | Eφ1Uφ2

| ←−EXφ | ←−Eφ1Uφ2

Other combinations like EFφ, EGφ, AFφ,
←−
AXφ , . . . can be converted into a formula

that uses only the combination of the syntax rules above.
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Semantics The semantics of bidirectional CTL is given on the Kripke structure.
A Kripke structure K is a triple (S, R, L). S is a set of states, R ⊆ S × S is the

transition relation, and L : S → 2Pred is a function that maps each state to a set of
predicates that are true for that state.

A path from s0 in K is the (�nite or in�nite) sequence of states π = (s0, s1, . . .)
such that ∀i ≥ 0 : (si, si+1) ∈ R. A backward path from s0 is a sequence such that
∀i ≥ 0 : (si+1, si) ∈ R.

K, s |= φ denotes that the value of logical formula φ is true in state s in a Kripke
structure K. K can be omitted if it is obvious. Relation |= is de�ned as follows.

s |= α i� α ∈ L(s)

s |= ¬φ i� not s |= φ

s |= φ1 ∧ φ2 i� s |= φ1 and s |= φ2

s |= EXφ i� ∃s′ ; sRs′ and s′ |= φ

s |= ←−
E Xφ i� ∃s′ ; s′Rs and s′ |= φ

s |= Eφ1Uφ2 i� a path s0s1 . . . (s0 = s) starting from s exists, and ∃i ≥ 0; si |= φ2 and
0 ≤ ∀j < i; sj |= φ1

s |= ←−
E φ1Uφ2 i� a backward path s0s−1 . . . (s0 = s) starting from s exists, and ∃i ≤ 0;
si |= φ2 and i < ∀j ≤ 0; sj |= φ1

A bidirectional CTL has two tree structures. One is a CTL tree that is expanded from
the forward transition relation of the Kripke structure, and the other one is a

←−−−
CTL tree

that is expanded from the backward transition relation of the Kripke structure.
The left-hand side of Figure 1 shows a �nite Kripke structure. The bidirectional CTL

(in�nite) tree expanded from it is shown on the right-hand side of the �gure. For starting

state S0, the CTL tree is shown in solid lines, and the
←−−−
CTL tree is shown in dotted lines.

How to use Bidirectional CTL for the purposes of program analysis and trans-

formation The task of program optimization can be divided into �where� and �what�
stages of the transformation are to be performed. As for the judgment for �where� the
transformations should be performed, temporal logic is very natural because di�erent
states of the Kripke model made from the program can hold properties that are satis�ed
for each state. Model checking can be done to check these properties for the Kripke struc-
ture. Once the optimizer has decided where to apply a particular transformation, rewrite
rules that specify what to do with the instructions can be applied.

3 Control Flow Model

Syntax of program Here we assume a simple language with no procedure.
π = read X; I1; I2; . . . Im−1; write Y
Here, I1; I2; . . .　 are instructions. Including the �rst read instruction and the last

write instruction, the instructions are labeled by n ∈ Nodeπ = {0, 1, 2, . . . , m}.
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Figure 1: Kripke structure (left) and its bidirectional CTL (in�nite) trees (right) for S0

The BNF of the instructions is as follows.
I ::= skip | X := E | if X goto n else n | goto n
E ::= X | E O E
O ::= + | − | ∗ | / | . . .
X ::= variable
n ::= 1 | 2 | 3 | . . . | m

We de�ne the control �ow model as the Kripke structure of the program.

Control Flow Model The control �ow model of code π is de�ned as a triple M(π) =
(Nodesπ,→π, Lπ). Nodesπ is the set of labels of instructions. The relation → is de�ned
as follows.

n1 →π n2 i�
(In1 ∈ X := E, skip, read X) ∧ n2 = n1 + 1
∨(In1 = goto n ∧ n2 = n)
∨(In1 = if X goto n else n′ ∧ (n2 = n ∨ n2 = n′))
∨(In1 = write Y ∧ n2 = n1)

Lπ(n) is de�ned as follows for n ∈ Nodesπ.

Lπ(n) = {stmt(In)}⋃ {def(X) | In is of the form X := E or read X}⋃ {use(X) | In is of the form Y := E with X in E,
In = if X goto n else n′, or
In = write X}⋃ {trans(E) | E is an expression in π
and for all X in vars(E),
In is not of the form : X := E ′ or read X}
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⋃ {entry(n) | n is an entry of a program}⋃ {exit(n) | n is an exit of a program}

Figure 2: Example of code and its control �ow model (L(n) is omitted)

The Lπ(n) corresponding to the code and control �ow model shown in �gure 2 is as
follows.

L(0) = {stmt(readN), def(N), trans(N − 1) . . .}
L(1) = {stmt(X := 0), def(X), trans(N) . . .}

. . .
L(8) = {stmt(writeX), use(X) . . .}

4 Bidirectional Model Checker

This section describes the bidirectional model checker implemented in our work.
The bidirectional model checker is an extension of model checkers used in previous

work. Checking the future temporal logic operations is calculated from the CTL tree
by the algorithm described in Ban's work [2]; however, checking past temporal logic

operations is calculated from a
←−−−
CTL tree in a symmetric fashion to that of the future

operators by simply reversing the direction.

Analysis of Bidirectional CTL Formula A bidirectional CTL formula can be ex-
pressed by a tree structure, which we call the CTL syntax tree (note that it is di�erent
from the CTL tree). The leaves of the tree are atomic predicates.

Figure 3 (right) shows the syntax tree of the CTL formula of �gure 3 (left). Table 1
shows the partial formulas corresponding to each node of the bidirectional CTL syntax
tree.
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Figure 3: Bidirectional CTL syntax tree

node no. node op child node corresponding partial formula

1 ¬ 2 ¬(E¬def(i0)U
←−
AX(use(i0)))

2 EU 3 4 E¬def(i0)U
←−
AX(use(i0))

3 ¬ 5 ¬def(i0)

4
←−
AX 6

←−
AX(use(i0))

5 ap def(i0) def(i0)
6 ap use(i0) use(i0)

Table 1: CTL syntax tree nodes and partial formulas of Fig. 3

Model Checking of Bidirectional CTL Each partial formula φn should be calculated
to know whether it is satis�ed at each state s. Namely, if we denote the truth value of
partial formula φn at state si by label(φn, si), we calculate the truth value of these labels
as follows.

label(φn, si) = true i� si |= φn

For that purpose, for each state s of the Kripke structure and for each φn, a bottom-up
calculation is done from the leaves to the root of the CTL syntax tree.

Because the results of the model checking will be used in the following rewriting
process, the results needed in the rewriting process are stored in a data structure during the
model checking. This data structure is a set corresponding to the nodes of the bidirectional
CTL syntax tree.

Computational Complexity of Model Checking Let n1 be the number of instruc-
tions , which represents the size of the program, and let n2 be the number of nodes of
a bidirectional CTL syntax tree, which represents the size of the CTL formula. Because
model checking calculates truth values at every state of every node of the CTL syntax
tree, the computational complexity of model checking is O(n1×n2). It is proportional to
the size of the program and the bidirectional CTL syntax tree.
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5 The Speci�cation Language for Optimization

This section describes a language that can be used to specify optimizing transformations.
The language is very simple, but it can express many standard compiler optimizations
naturally.

5.1 Composition of the Speci�cation for Optimization

The speci�cation of optimization consists of three parts: MATCH, CONDITION, and
PROCESS.MATCH denotes the strategy of restricting variables in conditional formu-
las subject to model checking. It speci�es the pattern of instructions in the program where
the condition is to be checked. Variables and expressions appearing in it must be bound to
speci�c program variables or expressions before the condition is checked. CONDITION
is the conditions of optimization written in bidirectional CTL, which should be satis�ed
if the instructions are to be optimized. PROCESS speci�es what kind of transformation
is to be performed on the instructions when they satisfy the conditional formulas in the
CONDITION. The optimization description is as follows. Detailed explanations can be
found in [5].

MATCH

<variable> := <expression>
CONDITION

point_<string> : <CTL formula>
edge_<string> : point_<string> → point_<string>
PROCESS

point_<string> : <Comand> <instruction>
point_<string> : Replace <expression> → <expression>
edge_<string> : EdgeSplit <instruction>

The MATCH part speci�es the form of instructions that are the target of optimization.
It binds meta variables written in the CONDITION part (free variables) to variables or
expressions in the program. For example, when MATCH contains v := b, instructions in
the program will be the target of optimization if its right-hand side is an expression with
binary operator. A variable is denoted as v, and an expression with binary operator is
denoted as b. As a result, z := x + y is the target and x := y is not the target. When
z := x + y is the target of optimization, free variables {v, b} in the rule are bound to the
target instruction as follows.

{v 7→ z, b 7→ x + y}

Thus, binding all combinations of variables and expressions is avoided.
In the CONDITION part, conditional formulas and partial formulas can be written.

point_<string> and edge_<string> are called (patial)fomulanames. The conditional
formulas and the partial formulas can be given names expressing their meaning and cannot
be written recursively. Conditional formulas are the conditions that must hold when an
optimizing transformation is to be performed. Conditional formulas are named so that
they can be referred to in the PROCESS part.
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When a conditional formula is long and di�cult to understand, it can be written by
subdividing it into several partial formulas, which are also given names. When the names
of partial formulas appear in a conditional expression, they are substituted iteratively into
the partial formulas that they represent before model checking.

Conditions about edges can also be written. They are called edge conditions. The
edge condition is not related to the CTL tree. It indicates the edge from a node to another
node, both satisfying the conditions written. It is calculated as a result of model checking
of nodes.

The PROCESS part states how to process the instructions or edges that satisfy the
conditional formulas in the CONDITION part. The names written before the �:� corre-
spond to the names before the �:� in the CONDITION part.

A line beginning with“ point_<string>:” transforms an instruction, and a line
beginning with“ edge_<string>:”transforms an edge. Commands that transform in-
structions are: InsertBefore, InsertAfter, Delete, and Replace, and the only command
processing edges is EdgeSplit. Every command acts literally as is written; for example,
InsertBefore inserts an instruction before another instruction. The Replace command
acts to

Replace expression → expression

and replaces part of the expression appearing before the �→� symbol by the expression
appearing after �→� in an instruction.

Instructions or expressions can contain temporary variables when they are written in
the PROCESS part, but they cannot contain temporary variables in the CONDITION
part.

The (patial) fomula name (i.e. the name before �:�) of a formula in the condition or
process part is di�erent from the number associated with an instruction, i.e. the node
number of the Kripke structure, in previous work. In our system, the (patial) fomula name
is not a free variable 1 or the node number of the Kripke structure and need not be bound
before use. The (patial) fomula name represents the set of instructions satisfying the
same conditional formula. Similarly, what the model checker calculates is not a speci�c
instruction but a set of instructions satisfying the conditional formula. As a result, it
becomes very easy to describe the process of rewriting many instructions that satisfy
several conditional formulas at the same time. Moreover, e�ciency can be improved
because free variables for instruction number are now omitted. This is one of the main
di�erences from previous research.

The following is the example of our speci�cation language for dead code elimination.

MATCH

v := e
CONDITION

point_delete : AX((AG¬use(v)) ∨ A¬use(v) U def(v))
PROCESS

point_delete : Delete v := e

1In this paper, free variables denote free variables of logical formulas. They should not be confused

with variables in programs.
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There are two free variables {v, e} in the above speci�cation.
However, there would be three free variables {n, v, e} if we used the speci�cation found

in previous work such as Lacey's, as follows:

n : v := e =⇒ skip
if n |= AX((AG¬use(v))) ∨ A¬use(v) U def(v))

Processing time can be greatly improved by decreasing the number of free variables
because free variables greatly in�uence the e�ciency of the system (see section 6).

5.2 Formalization of Optimization with Our Speci�cation Lan-

guage in Bidirectional CTL

This section describes the formalization of compiler optimization using our speci�cation
language.

In our research, we can write a speci�cation language in two ways. One is based on
the meaning of optimization written in bidirectional CTL similar to previous work, the
other is based on the data�ow equations.

5.2.1 Formalization by Describing CTL Formulas Based on the Condition of

Optimization

This is the same as the formalization in previous work, but it is necessary to take fea-
tures and e�ciency into consideration when dealing with a real-world language. The
speci�cation for dead code elimination mentioned above can be referred to as an example.

5.2.2 Formalization by Describing CTL Formulas Based on the Data�ow

Equation

The crucial connection between model checking and data�ow analysis was made by Ste�en
[17] [18].

Complex optimization like partial redundancy elimination is needed for real optimizing
compilers. Many conditional formulas are necessary to specify it. The system must rewrite
a set of instructions that satisfy the same conditional formula at the same time. Writing
speci�cations in CTL from scratch considering the meaning and condition of optimization
is di�cult.

For such complex optimizations, speci�cations based on the data�ow equation are
much easier than writing them from scratch. Partial redundancy elimination has been
investigated for many years, and many algorithms exist. We adopted the method of
Paleri [14] and formalized it very easily. Optimality of computation after transformation
is proved in his paper. The speci�cation for partial redundancy elimination is given in
the Appendix. In general, data�ow equations containing mutually recursive equations
can be solved using a general algorithm by iterating until data�ow values such as AV IN0,
AV OUT0, AV IN1, AV OUT1, AV IN2 . . ., etc. converge. However model checking of CTL
formulas cannot repeat until the values converge. Therefore in our speci�cation in CTL
formulas, we have slightly modi�ed the original data�ow equations to avoid repeating
calculations, carefully preserving their semantics [5].
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6 Free Variables

In this section, we will discuss the binding of free variables and its computational com-
plexity.

A free variable is a variable that appears in a conditional formula that is not yet
bound to a speci�c variable or expression of program. The use of free variables was �rst
introduced into CTL in Lacey's thesis [10] and is called CTL-FV. It is used to prove full
semantics preservation of some classical compiler optimizations. However, the proof is
done by hand.

Free variables must be bound to actual variables or expressions in the program before
handling the program. As an example, consider a speci�cation as follows (note that it is
not a formula for any optimization).

point_process: AX((AG¬use(e)) ∨ A¬use(v) U def(v))

The free variables in this formula are {v, e}. If the variables and expressions of the
program are {x, y, z, a + b, x + y,−z}, the domains of free variables will be as follows.

v 7→ {x, y, z . . .}
e 7→ {a + b, x + y,−z . . .}

As a result the binding will be as follows.
{v → x, e → a + b}
{v → x, e → x + y}
{v → x, e → −z}
{v → y, e → a + b}
. . .
Because model checking is done on each of these combinations, the number of free

variables greatly in�uences processing time, i.e. the optimization time of the system.

Computational Complexity of Free Variable Binding

Let

n : number of free variables in conditional formulas

m : number of objects that can be the target of binding of free variables in conditional
formulas, such as variables or expressions in the program

Then,
the computational complexity is O(mn).
CTL-FV has been adopted by most previous work, as well as ours, and it seems very

convenient and expressible. However, as mentioned above, binding of free variables will
cause exponential computational complexity. Therefore, introducing free variables needs
to be avoided as much as possible in practical compiler optimizers.

In our research, we try to formalize optimizations so that all the free variables can be
bound at the MATCH stage. However, the question of how to make a compiler optimizer
in CTL without free variables is the subject of future research that we are planning.
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7 Compiler Optimizer with Bidirectional CTL

Our compiler optimizer with bidirectional CTL is composed of three parts: the prepro-
cessing part, the model checker, and the rewrite part. The preprocessing part binds free
variables in the conditional formulas to the variables or expressions in the program after
reading the source program and transforming it into a kind of 3-address intermediate
code. The model checker calculates the points and edges of the program that satisfy the
conditional formulas. The rewrite part applies optimizing rewrite rules to the result of
the model checking part, and outputs the optimized program. Figure 4 is the outline of
our optimization system.

Figure 4: Outline of the optimization system

The system works within Soot [19], a Java optimization framework used as an environ-
ment for development and testing of new optimization processing. The new optimization
process is added as a new phase to the existing optimizers of Soot.

Figure 5 is an example of model checking. The source program (left) is optimized
using the CTL syntax tree (right), which is made from the CTL formula (center). The
nodes of the CTL syntax tree can hold names of formulas or partial formulas if necessary.
The result of model checking will be put into sets corresponding to such (patial) fomula
names e.g. point_a in the right �gure.

Figure 6 is an example of rewriting for partial redundancy elimination using the result
of model checking. The program before optimization is shown on the left-hand side, and
the program after optimization is shown on the right-hand side.

8 Experiments

We built a system by extending some parts of the implementation of Ban [2].
Our experimental data were acquired by using the seven benchmarks of SPECjvm98

[16] and Okumura's Java code [13].

Experimental Environment The experimental environment is as follows.
CPU: Celeron 2 GHz
Memory: 512 MB
Soot: version 2.2.0
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Figure 5: Model checking

Figure 6: Example of rewriting

JDK version: 1.5.0_06-b05
JVM options: -Xint -Xms128m -Xmx128m (to exclude the in�uence of JIT and the mem-
ory)
Optimization applied by our system:
Partial redundancy elimination (includes common subexpression elimination and loop in-
variant code motion), copy propagation (includes constant propagation), dead code elim-
ination.
Optimization applied by Soot (for comparison):
common subexpression elimination, partial redundancy elimination, copy propagation,
constant propagation and folding, conditional branch folding, dead assignment elimina-
tion, unreachable code elimination, unconditional branch folding, and unused local elimi-
nation.

Processing Time of Optimization The optimization time for the SPECjvm98 bench-
mark by our optimizer is shown in Table 2, and the optimization time for Okumura's Java
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code is indicated in Table 3.

test code compile time
200_check 20
201_compress 29
202_jess 123
209_db 15
213_javac 219
227_mtrt 160
228_jack 316

Table 2: The optimization time of the SPECjvm98 benchmark (unit: second)

We see that the optimization time of our system is from several seconds to several
minutes. It is slow compared to common compilers that take from milliseconds to sev-
eral seconds. However, optimizations using temporal logic are generally slow because of
traversal and searches on all instructions, and there seems to be no other choice for the
moment.

test code compile time
PiByMachin 0.8
CubeRoot 1.5
Cardano 7.1
CountingSort 2.5
NQueens 3.7
Jacobi 48.6
LogE 20.4
Fibonacci 1.4
Exp 12.1

Table 3: The optimization time of Okumura's Java code (unit: second)

Comparison of Execution Time Figure 7 and Figure 8 show the comparison of ex-
ecution times of the object code before and after optimization (execution time without
optimization is normalized to 1). Optimization by our system has a modest e�ect, al-
though our optimization implements only a part of the optimization applied in Soot, and
there is a few program where our technique beat Soot. What in�uences the e�ect of
optimization will be discussed in section 9.1.

In 202_jess of the SPECjvm98 benchmarks, more than a 10% improvement is achieved
by our system.

Comparison with Lacey's work Lacey did not give the data of the optimization time
and the execution time, so we cannot make comparisons.
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Figure 7: E�ect of optimization for SPECjvm98 benchmark

Figure 8: E�ect of optimization for Okumura's Java code

Comparison with Ban's work The characteristic feature of Ban's work is to enable
the handling of the limited past temporal operations in NCTL [12] by rewriting the
formulas to contain only future temporal operators. This is needed to handle, e.g. copy
propagation. Therefore, we compared the optimization time of copy propagation.

Figure 9 shows the result of comparison (Ban's optimization time is normalized to 1).
The optimization time of our optimizer is about 15% to 30% of Ban's and is very short.

Example of Optimization Time Explosion Caused by Free Variables Figure 10
shows an example of optimization time explosion caused by free variables. We described
the speci�cation of copy propagation as an example using di�erent CTL formulas, one with
2 free variables (left bar) and the other with 4 free variables (right bar). Optimization time
increased from 20 seconds to 59 minutes, showing the dramatic increase in computational
cost when the number of free variables is increased by two.
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Figure 9: Optimization time of our system compared with Ban's work

Figure 10: Example of optimization time explosion (Vertical axis: second)

9 Discussion and Future Work

To our knowledge, our system is the �rst system that can make optimizers for real Java
programs from speci�cations in bidirectional CTL by using a model checker. Our main
purpose is to clarify the possibility and problems of this approach and to consider how to
overcome the problems. Consequently, there are many items for consideration about the
current system in this section.

9.1 Consideration and Discussion

This section gives several considerations and discussions about our system and related
work.

9.1.1 Expressive Power of CTL

Optimization can be speci�ed easily and concisely in several lines by CTL, but the ex-
pressive power of CTL formula is inferior to common optimization algorithms in some
cases, e.g. when we need to describe detailed processing or when the algorithm cannot be
represented by �rst-order logic.

When we want to specify detailed processing in CTL, formulas will become long and
tedious, and the proof of the correctness of the formulas will become very di�cult. For

16



instance, �Partial redundancy elimination should not be done when moving a computation
from a path that is not executed very often to a path that is executed often, because it
will have a negative e�ect.�, or �Copy propagation shall be done only when the original
instruction can become dead code.� . . . are di�cult to describe in CTL formulas.

Moreover, optimization that uses complex algorithms cannot be described, for instance,
conditional constant propagation [20] is a complex algorithm that uses a table instead of
a data�ow equation. We have to describe it as �The result of the model checking is not
directly applied. The result should be remembered until the system arrives at a certain
state.� However, this is di�cult to express in a �rst-order logic.

9.1.2 E�ciency of The Compiler Optimizer

Binding of free variables greatly in�uences the e�ciency of the system as mentioned in
section 6. Moreover, model checking is an exhaustive algorithm. Therefore, its e�ciency
is inferior to that of common algorithm-based compiler optimizers.

9.1.3 E�ectiveness of Optimization

Because our target is Java programs, moving instructions cannot cross an exception.
Instructions that may cause run-time exceptions like array indexing, division and the
mod (remainder) operation etc. must all be excluded from optimization too.

In Soot, there is a graph called Brief-Graph that shows the control �ow graph of the
program directly. On the other hand, there is a graph called Complete-Graph where in
addition to edges in the control �ow graph, edges are drawn from all instructions enclosed
by the �try� instruction to the �catch� instruction (bold lines).

An example of optimization of these graphs is shown in Figure 11. When partial
redundancy elimination (PRE) is applied to the program shown in the left-hand �gure
using Brief-Graph, the result is as shown in the central graph. However, when it is
done using Complete-Graph, redundancy cannot be eliminated because of the obstruction
caused by the exception as shown in the graph at the right. This is because the movement
of x+y will be given up in the algorithm of a conservative partial redundancy elimination
because it in�uences the paths indicated by bold lines.

The problem of exception obstruction such as code moves that cannot cross an excep-
tion exists not only in our research but also in common Java optimizers [19].

9.2 Future Work

This section presents some possible future directions of research. The possibilities can be
divided into two categories: improving optimization time and improving the e�ciency of
optimized programs.

9.2.1 Reducing Optimization Time

It will be possible to introduce binary decision diagrams (BDD), partial evaluation or
some other technology to make model checking faster.

Free variables need to be reduced or eliminated as much as possible because binding
of free variables greatly a�ects processing (optimization) time. The following program is
an example illustrating the reduction of free variable binding and model checking.
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Figure 11: Obstruction of optimization by exceptions

1: x := 100;
2: y := 1;
3: z := 2;
4: w := 3;
5: x := w + 1;
6: z := x + y;
. . .

� Model checking can be omitted if it is not necessary. For example, if the target of
copy propagation is x in �6: z := x + y�, instructions before statement 5, such as
statement 1, need not be checked because x is assigned in �5: x := w + 1�.

� Binding can be omitted if the target is not on the path related to the temporal
formula. For example, checking instructions on the past paths can be omitted if the
bidirectional CTL formula includes only future temporal operators. Instructions far
away from the next instruction can be omitted if the temporal operator is AX or
EX. In our experiment, when this technique is applied to the dead code elimination
(which only includes future temporal operators), processing time is reduced to about
1/3.

9.2.2 Improving the E�ciency of the Optimized Program

To improve the e�ectiveness of optimization, overcoming the obstruction of optimization
caused by exceptions and detailed analysis of loops, for statements, goto statements, etc.,
will be necessary. The analysis of exceptions by CTL may be considered. Specifying
complex optimization such as conditional constant propagation [20] with CTL is also our
future work.

Furthermore, implementing a model checker with bidirectional CTL∗ [7], which is more
expressive than bidirectional CTL, can also be considered. We are planning to carry out
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the above in the future.

10 Related Work

The crucial connection between model checking and program analysis was made by Cousot
[4].

Lacey et al. [10] introduced a temporal logic named CTL-FV that can use free vari-
ables in predicates and past temporal operators in addition to the original CTL. Many
traditional optimizations can be done by specifying the condition in CTL-FV and specify-
ing the rewriting of instructions using the result. The papers [9] [11] describe the proposal
and prove the correctness of some traditional optimization formulas by hand. The thesis
[11] describes the detail of the technique. However, as for implementation, it just explains
that they solved the problem by �nding the �xed point after converting it into the µ-
calculus. Moreover, the formulas that have been proven in the thesis are only a part of
the optimization that can be done by real-world optimizers. No experimental data such as
optimization time are given, so we think that implementation with a real-world program
has not been done previously.

Yamaoka et al. [21] have implemented an optimizer with CTL using the existing model
checker SMV [15], but it can only deal with dead code elimination because only future
temporal operators are allowed.

Ban's research [2] is able to treat the NCTL [12] including the past temporal operator
in a limited form, by using 12 conversion equations, but it consumes time to remove past
temporal operators, and the formulas become very long after conversion. As a result, the
model checking time is considerable. Moreover, only the dead code elimination and copy
propagation can be done because it can rewrite only one instruction corresponding to one
condition in the optimization speci�cation.

Note that in almost all the past research, the node number of the Kripke structure
corresponding to an instruction should be written in the speci�cation. This will contribute
to the binding explosion problem mentioned before.

Experimental data on optimization time and execution time of optimized code using
the benchmarks are not presented in any previous work.

11 Conclusion

The main contribution of our research is as follows.

� We implemented a very e�cient model checker that directly handle the bidirectional
CTL. It does not convert into µ-calculus and does not perform any other conversion.

� We proposed a transformation language that is very expressible. As a result, even
complex optimization formulas that can deal with real-life optimization can be writ-
ten very naturally and easily.

� We developed a practical Java optimizer using bidirectional CTL that has a modest
e�ect.

19



� It is the �rst time that experimental data on optimization time and the e�ect of
optimization has been measured using the benchmarks and the test programs in our
research. Most optimizations are approaching practicality.

� Moreover, some problems of optimization by CTL were clari�ed through this expe-
rience.

We think that these data and experiences are signi�cant and valuable in this �eld and
can contribute to future research work.

We plan to solve the existing problems and improve the performance toward a more
realistic optimizer.
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Appendix Speci�cation of Partial Redundancy Elimi-

nation

MATCH

v := e
CONDITION

point_comp : use(e) ∧ trans(e)

point_avin :
←−
AX(

←−
A trans(e) U use(e))

point_avout : point_comp ∨ (point_avin ∧ trans(e))
point_antout : AX(A trans(e) U use(e))
point_antin : point_comp ∨ (point_antout ∧ trans(e))
point_safein : point_avin ∨ point_antin
point_safeout : point_avout ∨ point_antout
point_spavin : point_safein ∧←−E X(

←−
E (trans(e) ∧ (point_safeout)) U use(e))
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point_spavout : point_safeout ∧ (point_comp ∨ (point_spavin ∧ trans(e)))
point_spantout : point_safeout ∧ EX(E (trans(e) ∧ (point_safein)) U use(e))
point_spantin : point_safein ∧ (point_comp ∨ (point_spantout ∧ trans(e)))
point_insert : point_comp ∧ ¬point_spavin ∧ point_spantout
point_replace : (point_comp ∧ point_spavin) ∨ (point_comp ∧ point_spantout)
point_edge1 : point_spavin ∧ point_spantin
point_edge2 : ¬point_spavout
edge_split : point_edge1 → point_edge2
PROCESS

point_insert : InsertBefore temp := e
edge_split : EdgeSplit temp := e
point_replace : replace e → temp
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