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Abstract

The cryptographic protocol known as the combined scheme allows users to decrypt cipher-
texts and create signatures using the same key. In this paper, we model ID-based combined
schemes. Many ID-based encryption schemes and ID-based signature schemes are proposed.
Most of them are based on bilinear maps. Although it seems possible to combine these schemes,
there is no security definition for the combination. We propose a model for this combinations,
and define the security condition.

As an additional property, a definition for the key privacy of encryption schemes is proposed.
In the combined scheme, the same private key is used for the decryption and the signing. To
protect the owner’s privacy, both the encryption scheme and the signature scheme must satisfy
the key privacy condition. When combining them, the encryption scheme should not degrade
the key privacy of the signature scheme, and vice versa. We propose a key privacy condition for
ID-based signature schemes. We then modify this notion to ID-based combined schemes. We
construct a concrete scheme and prove that this scheme satisfies these security requirements.

Furthermore, we discuss several related topics. First, we propose a definition for the key
privacy of a non-ID-based combined scheme, and prove that the prior scheme satisfies this
property with a short modification. We also propose an ID-based combined scheme with
multiple-receiver encryption scheme. We prove the security of this concrete scheme.

Keywords: Combined scheme, ID-based encryption, ID-based signature, key privacy.

1 Introduction

Identity based scheme

In 1984, Shamir [26] asked for identity (ID)-based encryption and signature schemes to simplify
key management procedures of certificate-based public key infrastructures. Since then, several
ID-based encryption schemes and signature schemes have been proposed. In 2001, Boneh and
Franklin [9] proposed a practical ID-based encryption scheme. Their scheme was based on bilinear
maps, and many schemes based on this scheme were then proposed.

Baek, Safavi-Naini, and Susilo [2] proposed a multi-receiver ID-based encryption scheme. This
scheme is more efficient than re-encrypting a message n times using Boneh and Franklin’s scheme.
The ID-based signcryption scheme [3, 24] creates a ciphertext which includes a signature of the
plaintext. Boyen’s ID-based signcryption scheme [11] is as compact and as efficient as taking each
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scheme separately. Smart [27] proposed an authenticated key agreement scheme. The notion of
the ID-based encryption scheme was modified to the hierarchical ID-based encryption by Gentry
and Silverberg [20], and Horwits and Lynn [23]. In an ID-based encryption scheme, the public key
generator has to generate a private key for every identity. In a hierarchical ID-based encryption
scheme, this workload is reduced by delegating the private key generation task to lower level
entities.

One open problem that Boneh and Franklin [9] asked is the construction of an ID-based en-
cryption scheme without random oracles. Boneh and Boyen [6] proposed a scheme which satisfies
a weaker security notion without random oracles. This weaker security notion was proposed by
Canetti, Halevi, and Kats [14]. In this model, an attacker chooses an identity which he attacks
before it activated. Later Boneh and Boyen [7] modified the prior scheme to satisfy the full identity
security without random oracles. In this model, an attacker can choose the target identity in a
challenge phase. This notion is the security which was proposed originally. Independently from
Boneh and Boyen [7], Waters [28] constructed a scheme which is secure without random oracles.
Gentry [18] proposed a scheme which is also secure without random oracles, and is more efficient
than these schemes. Canetti et al. [14] also proposed a conversion from a weaker security ID-based
encryption scheme to a CCA-secure public key encryption scheme. Since this conversion does
not change the model, it could be used to construct a CCA-secure public key encryption scheme
without random oracles.

In addition to their obvious privacy benefits, there has been interest in the anonymity of ID-
based encryption schemes, which is also called key privacy. This property was first observed by
Boneh, Crescenzo, Ostrovsky, and Persiano [8], and later formalized by Abdalla, Bellare, Catalano,
Kiltz, Khono, Lange, Malone-Lee, Neven, Paillier, and Shi [1]. Boyen [11] noticed the anonymity
of Boneh and Franklin’s scheme. An anonymous hierarchical ID-based encryption scheme was
proposed by Boyen and Waters [12]. Their scheme is the first hierarchical ID-based scheme whose
anonymity is proven without random oracles.

Paterson [25], Hess [22], and Cha and Cheon [15] proposed ID-based signature schemes. In an
aggregate signature scheme [10], multiple signatures can be aggregated into a compact aggregate
signature, even if these signatures are on different documents and were produced by different
signers. Gentry and Ramzan [19] proposed an identity-based aggregate signature scheme. In
this scheme, the verifier needs only a description of who signed what and the single public key
of a private key generator. Bellare, Neven, and Namprempre [5] demonstrated that ID-based
signature schemes can be constructed from any PKI-based signature scheme. Galindo, Herranz,
and Kiltz [17] proposed a generic conversion from any public key signature scheme to an ID-based
signature scheme which preserves its additional property.

Combined scheme

Public key systems supporting both encryption and signature generation with a single private key
per user model a public key in a constrained environment that can afford only a single key per
user. These systems are combinations of encryption and signature schemes, so they are called
combined schemes. The user is required both to sign and to decrypt with this single secret key.
This constraint may help an attack on the combined scheme to obtain more information than an
individual attack on each scheme separately. An attack on the encryption scheme may use some
information obtained from the signature scheme, and an attack on the signature scheme may use
some information obtained from the encryption scheme.

Haber and Pinkas [21] analyzed the security of some combination of some encryption schemes
and some signature schemes. Diament, Lee, Keromytis, and Yung [16] modeled the combined
scheme and defined the security for this model. They constructed a concrete scheme, and proved
the security.
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Key privacy for signatures

Public key encryption provides data confidentiality to many kinds of applications. Bellare, Boldyreva,
Desai, and Pointcheval [4] introduced public key encryption with key privacy and formalized it.

On signer privacy, however, it is generally unclear and doubtful whether a signature scheme
alone can guarantee the anonymity of the signer. Several techniques to convert an encryption
scheme to a key privacy enabled version were proposed by Bellare et al. [4], however, these tech-
niques cannot be simply applied to digital signature schemes to convert them to an anonymous
version. Yang, Wong, Deng, and Wang [29] proposed the first formal definition of the signer
anonymity for digital signatures and constructed concrete schemes.

Our contribution

In this paper, we propose an ID-based combined scheme. Many ID-based encryption schemes
and ID-based signature schemes exist. Most of them are based on bilinear maps. Although it
seems possible to combine these schemes, there are no security definition for the combination.
We propose the first definition for it, which is a modification of the security definition of the
non-ID-based combined scheme proposed by Diament et al. [16].

Secondly, we propose a definition for the key privacy of an ID-based signature scheme. Similarly
to the non-identity based signature scheme, we define key privacy as the impossibility of an attacker
to identify the key. For the choice of the target IDs, both adaptive and selective games can be
defined. In an adaptive game, the attacker can choose the target ID when it outputs the ID with
a message and a forged signature. In a selective game, the attacker fixes the target ID before it
interacts with the oracles. In this paper, we adopt the adaptive game and show that the signature
scheme by Cha and Cheon [15] satisfies this definition.

Furthermore, we propose a key privacy definition for the ID-based combined scheme. The
combined scheme allows users to decrypt ciphertexts and create signatures using the same key. To
protect the owner’s privacy, both the encryption scheme and the signature scheme must satisfy
the key privacy condition. When combining them, the encryption scheme should not degrade the
key privacy of the signature scheme, and vice versa. Intuitively, the adversary should not be able
to distinguish the key even if he is allowed to access the decryption oracle and signature oracle
and even if he receives both a ciphertext and a signature as challenges. We define the key privacy
when no attacker can distinguish between two IDs. We construct a concrete scheme combined the
encryption scheme of Boneh and Franklin [9] with the signature scheme by Cha and Cheon [15].
Cha and Cheon insisted that their scheme can share the parameters, but no security argument
was given. We prove that this scheme satisfies these security properties.

Organization

The organization of this paper is as follows. In section 2, we define the computational assumptions
on which the security of concrete schemes is based. In section 3, we modify the notion of key
privacy to ID-based signature schemes, and prove the key privacy for the signature scheme by
Cha and Cheon [15]. In section 4, we model the ID-based combined scheme, construct a concrete
scheme, and prove its security. This security definition includes the key privacy for ID-based
combined schemes. In section 5, we discuss the key privacy for combined schemes. In section 6,
we prove the security of a particular combination, which is composed from an ID-based combined
scheme with multiple-receivers and the ID-based signature scheme by Cha and Cheon [15].

2 Computational assumptions

In this section, we review the bilinear maps and the related computational assumptions on which
the security of our concrete schemes are based.
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Definition 1 (The discrete logarithm problem). Let G be a group of prime order q. Let P be a
generator of G, and a an element of Zq. The discrete logarithm (DL) problem is given (P, aP ), to
compute a.

We say that the DL problem is hard when there is no probabilistic polynomial-time attacker
A that solves the DL problem with non-negligible probability.

Definition 2 (The computational Diffie-Hellman problem). Let G be a group of prime order q.
Let P be a generator of G, and a and b elements of Zq. The computational Diffie-Hellman (CDH)
problem is given (P, aP, bP ), to compute abP .

We say that the CDH problem is hard when there is no probabilistic polynomial-time attacker
A that solves the CDH problem with non-negligible probability.

Definition 3 (The decisional Diffie-Hellman problem). Let G be a group of prime order q. Let P
be a generator of G, and a, b, and c elements of Zq. The decisional Diffie-Hellman (DDH) problem
is given (P, aP, bP, cP ), to decide whether ab ≡ c mod q.

We say that the DDH problem is hard when there is no probabilistic polynomial-time attacker
A that solves the DDH problem with a non-negligible probability strictly greater than 1/2. We
call a tuple (P, aP, bP, cP ) valid if ab ≡ c mod q.

Definition 4 (The gap Diffie-Hellman problem). Let G be a group of prime order q. Let P be
a generator of G. Let a, b, and c be elements of Zq. The gap Diffie-Hellman (GDH) problem is
given (P, aP, bP ), to solve the CDH problem with the help of a DDH oracle that is able to decide
whether or not a tuple (P, a′P, b′P, c′P ) is valid.

We say that the GDH problem is hard when there is no probabilistic polynomial-time attacker
A that solves the GDH problem with non-negligible probability.

Definition 5 (Bilinear maps). Let G,F be groups of the same prime order q. A function ê :
G×G → F with the following three properties is a bilinear map. (i) Bilinear: For any P1, P2 ∈ G,
and a, b ∈ Zq, ê(aP1, bP2) = ê(P1, P2)ab. (ii) Non-degenerate: If P is a generator of G, then ê
does not map (P, P ) to the unit element in F . (iii) Computable: For all P1, P2 ∈ G, the map
ê(P1, P2) is efficiently computable.

According to the property (ii), if P is a generator of G, then ê(P, P ) is a generator of F .
We review the problem associated with the bilinear maps.

Definition 6 (The computational bilinear Diffie-Hellman problem). Let G,F be groups of the
same prime order q. Let P be a generator of G. Let ê : G × G → F be a bilinear map. Let a,
b, and c be elements of Zq. The computational bilinear Diffie-Hellman (CBDH) problem is given
(P, aP, bP, cP ), to compute ê(P, P )abc.

We say that the CBDH problem is hard when there is no probabilistic polynomial-time attacker
A that solves the CBDH problem with non-negligible probability.

Definition 7 (The decisional bilinear Diffie-Hellman problem). Let G,F be groups of the same
prime order q. Let P be a generator of G. Let ê : G ×G → F be a bilinear map. Let a, b, and c be
elements of Zq, and h an element of F . The decisional bilinear Diffie-Hellman (DBDH) problem
is given (P, aP, bP, cP, h), to decide whether or not ê(P, P )abc = h.

We say that the DBDH problem is hard when there is no probabilistic polynomial-time attacker
A that solves the DBDH problem with a non-negligible probability strictly greater than 1/2. We
call a tuple (P, aP, bP, cP, h) valid if ê(P, P )abc = h.
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Definition 8 (The gap bilinear Diffie-Hellman problem). Let G,F be groups of the same prime
order q. Let P be a generator of G. Let ê : G × G → F be a bilinear map. Let a, b, and c be
elements of Zq. The gap bilinear Diffie-Hellman (GBDH) problem is given (P, aP, bP, cP ), to solve
the CBDH problem with the help of a DBDH oracle that is able to decide whether or not a tuple
(P, a′P, b′P, c′P, h) is a valid DBDH tuple.

We say that the GBDH problem is hard when there is no probabilistic polynomial-time attacker
A that solves the GBDH problem with non-negligible probability.

3 Key privacy for ID-based signature schemes

In this section, we define the key privacy for ID-based signature schemes. This notion comes from
the definition of the key privacy for encryption schemes [29]. We prove that the ID-based signature
scheme by Cha and Cheon [15] satisfies this definition.

3.1 Model for ID-based signature schemes

First, we define the model for the ID-based signature scheme. In this model, there are a private
key generator (PKG) and some users. Each user has an identity ID and a corresponding private
key obtained from the private key generator.

Definition 9. An ID-based signature scheme consists of four algorithms IDSig = (KeyGen, Ex-
tract, Sign, Verify) as follows.

• The private key generator’s key generation algorithm KeyGen: The private key generator runs
this algorithm to generate a private key generator’s master key and a common parameter,
denoted by mkPKG and cpPKG, respectively. Note that cpPKG is published publicly while
mkPKG is kept secret.

• The private key generator’s private key extraction algorithm Extract: Given an identity ID
received from a user and the private key generator’s master key mkPKG as input, the private
key generator runs this algorithm to generate a private key associated with ID, denoted by
skID. We denote skID = Extract(mkPKG, ID).

• The signature algorithm Sign: Given the signer’s private key skID, the private key generator’s
common parameter cpPKG, and a message M as input, the signer runs this algorithm to
create a signature σ. We denote σ = Sign(cpPKG, skID,M).

• The verification algorithm Verify: Receiving a message M , a signature σ, and an iden-
tity ID, the receiver checks the validity of the signature. If it is a valid tuple, it pro-
duces an accept symbol accept. Otherwise, it produces a reject symbol reject. We denote
Verify(cpPKG, ID,M, σ) = accept or reject.

In a standard public key encryption scheme, the capability to recover plaintexts from cipher-
texts is due to the secret key. A standard encryption scheme is said to respect key privacy if the
ciphertexts do not reveal their ownership. Which means that the attacker cannot discover the
ownership for fixed public keys even if he possesses all the information except for the secret keys.
However, in an ID-based encryption scheme, this can be done not only with the knowledge of the
secret key but also the master key. Using the master key, the attacker can compute the secret key
for any identity. Thus, the security condition should ensure the secrecy of the master key. The
key privacy is defined as the incapability of an attacker to identify the ownership of a ciphertext
for any identity without the knowledge of the corresponding secret keys.

We adapt this notion to the key privacy for ID-based signature schemes. Yang et al. [29] defined
the key privacy for standard signature schemes as the incapability of an attacker to discover the
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generator of a signature. This notion can be modified for the ID-based signature scheme. We
define the key privacy for ID-based signature schemes in Definition 10. Intuitively, the adversary
should not be able to distinguish between two IDs in the following game even if he is allowed to
access the extraction oracle and the signature oracle.

Definition 10. The ID-based signature scheme IDSig is ID-IK-CMA secure if no PPT adversary
A has a non-negligible advantage against a challenger in the following game.

1. The adversary A is given the common parameter cpPKG.

2. A is allowed to query the signature oracle and the extraction oracle adaptively. The sig-
nature oracle receives an identity ID and a message M and returns the signature σ =
Sign(cpPKG, skID, M). The extraction oracle receives an identity ID and returns the corre-
sponding secret key SID.

3. When A announces to the challenger that he is ready, he outputs two target identities, ID0

and ID1. The challenger then tosses a random coin t ∈ {0, 1}, chooses a message M ′ ∈ M
randomly, and creates the signature σ′ = Sign(cpPKG, skIDt ,M

′), which he sends to A.

4. A continues querying to the signature oracle and the extraction oracle adaptively. He is not
allowed to query either ID0 or ID1 from the extraction oracle.

5. At the end of the game, A outputs a bit t′. A wins if t′ = t.

A’s advantage is defined as Adv =
∣∣Pr[t′ = 1|t = 1] − Pr[t′ = 1|t = 0]

∣∣. The probability is taken
over the coin tosses of both A and the challenger, including the coin toss for t.

3.2 Cha and Cheon’s scheme

In this section, we review the ID-based signature scheme proposed by Cha and Cheon [15] and
prove that this scheme satisfies the ID-IK-CMA security notion. We make a short modification
for the latter argument. In the original scheme, all the computation is done within the group G.
The original security is based on the hardness of the GDH problem in G. We involve a bilinear
map ê : G × G → F and check whether ê(aP, bP ) = ê(P,Q) instead of solving the DDH problem
(P, aP, bP, Q).

In this setting, there are a public key generator PKG and some users. This ID-based signature
scheme IDSig consists of the following four algorithms (KeyGen, Extract, Sign, Verify).

• KeyGen: The algorithm chooses two groups G = 〈P 〉 and F of the same prime order q.
It constructs a bilinear map ê : G × G → F . It chooses s ∈ Z∗q uniformly at random and
computes Ppub = sP . Also, it selects hash functions HID : {0, 1}∗ → G, H1 : {0, 1}∗×G → Zq.
The system parameter is (P, Ppub, ê, HID,H1). The master key is s. We remark that these
hash functions will be viewed as random oracles in our security proof.

• Extract: Given an identity ID, the algorithm computes SID = sHID(ID) and outputs it as
the private key associated to ID. We remark that HID(ID) plays the role of the associated
public key.

• Sign: Given a secret key SID and a message m, the algorithm picks a random number r ∈ Zq

and outputs a signature σ = (U, V ) where U = rHID(ID), V = (r + H1(m,U))SID.

• Verify: To verify a signature σ = (U, V ) of a message m for an identity ID, the algorithm
checks whether ê(Ppub, U + H1(m, U)HID(ID)) ?= ê(P, V ). If this equation holds, it returns
accept. Otherwise, it returns reject.
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Theorem 1. The ID-based signature scheme IDSig is ID-IK-CMA secure assuming the hardness
of the DL problem for G in the random oracle model.

The proof is shown in Appendix A.

4 ID-based combined scheme

In this section, we define the model for the ID-based combined scheme. Its security definition
includes the notion of the key privacy of the ID-based combined scheme. We prove that an ID-
based scheme which combines the encryption scheme by Boneh and Franklin [9] and the signature
scheme by Cha and Cheon [15] satisfies these security properties.

4.1 Model for the ID-based combined scheme

Here we define the model for the ID-based combined scheme. In this model, there are a private
key generator (PKG) and some users. Each user has an identity ID and a corresponding private
key obtained from the private key generator.

Definition 11. An ID-based combined scheme consists of six algorithms IDComb = (KeyGen,
Extract, Encrypt, Decrypt, Sign, Verify) as follows.

• The private key generator’s key generation algorithm KeyGen: The private key generator runs
this algorithm to generate a private key generator’s master key and a common parameter,
denoted by mkPKG and cpPKG, respectively. Note that cpPKG is published publicly while
mkPKG is kept secret.

• The private key generator’s private key extraction algorithm Extract: Given an identity ID
received from a user and the private key generator’s master key mkPKG as input, the private
key generator runs this algorithm to generate a private key associated with ID, denoted by
skID. We denote skID = Extract(mkPKG, ID).

• The encryption algorithm Encrypt: Given an identity ID of the receiver, the private key
generator’s common parameter cpPKG, and a plaintext M as input, the sender runs this
algorithm to generate a ciphertext C which is an encryption of M under ID. We denote
C = Encrypt(cpPKG, ID,M).

• The decryption algorithm Decrypt: Given the receiver’s private key skID, the private key
generator’s common parameter cpPKG, and a ciphertext C as input, the receiver runs this
algorithm to get a decryption D, which is either a certain plaintext or a reject symbol reject.
We denote D = Decrypt(cpPKG, skID, C).

• The signature algorithm Sign: Given the signer’s private key skID, the private key generator’s
common parameter cpPKG, and a message M as input, the signer runs this algorithm to
create a signature σ. We denote σ = Sign(cpPKG, skID,M).

• The verification algorithm Verify: Receiving a message M , a signature σ, and an identity ID,
the receiver checks the validity of the signature. If it is a valid tuple, it produces an accept
symbol accept. Otherwise, it produces reject. We denote Verify(cpPKG, ID, M, σ) = accept
or reject.

Here we define the security for the ID-based combined scheme. The user is required both to sign
and to decrypt with a single secret key. This constraint may help an attack on the combined scheme
to obtain more information than an individual attack on each scheme separately. An attack on the
encryption scheme may use some information obtained from the signature scheme, and an attack on
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the signature scheme may use some information obtained from the encryption scheme. Intuitively,
we say the scheme is secure if there is no adversary which can neither distinguish ciphertexts nor
forge a signature, even if it can choose which one to attack and access the extraction oracle, the
decryption oracle, and the signature oracle.

Definition 12. The ID-based combined scheme IDComb is ID-IND-EUF secure if no PPT adver-
sary A has a non-negligible advantage against a challenger in the following joint ID-IND-EUF
game.

1. The adversary A is given the common parameter cpPKG.

2. A is allowed to query the decryption oracle, the signature oracle, and the extraction oracle
adaptively. The decryption oracle receives an identity ID and a ciphertext C and returns
the corresponding plaintext D = Decrypt(cpPKG, skID, C). The signature oracle receives an
identity ID and a message M and returns the signature σ = Sign(cpPKG, skID, M). The
extraction oracle receives an identity ID and returns the corresponding secret key SID.

3. When A announces to the challenger that he is ready, A chooses either an IND-CCA chal-
lenge or an EUF-CMA challenge. If A chooses an IND-CCA challenge, he outputs a target
identity ID′ and two plaintexts M0,M1. The challenger tosses a random coin t ∈ {0, 1},
computes a ciphertext C ′ = Encrypt(cpPKG, ID′,Mt), and sends C ′ to A. If A chooses an
EUF-CMA challenge, he continues this game.

4. A continues querying from the decryption, the signature, and the extraction oracles adap-
tively. If he chooses the IND-CCA challenge, he is neither allowed to query the tuple (ID′, C ′)
from the decryption oracle nor ID′ from the extract oracle.

5. In the end of the game, A outputs an answer. In the case of the IND-CCA challenge, he
outputs a bit t′. A wins if t′ = t. In the case of the EUF-CMA challenge, he outputs an
identity ID′, a message M ′, and a signature σ′. A wins if (ID′,M ′) is not asked to the
signature oracle, and if Verify(cpPKG, ID′,M ′, σ′) = accept.

Next, we define the key privacy for the ID-based combined scheme. The combined scheme
allows users to decrypt ciphertexts and create signatures using the same key. To protect the
owner’s privacy, the encryption scheme and the signature scheme must satisfy the key privacy
condition. When combining them, the encryption scheme should not degrade the key privacy of
the signature scheme, and vice versa. Intuitively, the adversary should not be able to distinguish
the key even if he is allowed to access the decryption oracle and the signature oracle and even if he
receives both a ciphertext and a signature as challenges. We define the key privacy for ID-based
scheme when no attacker can distinguish the key in this game.

Definition 13. The ID-based combined scheme IDComb is ID-IK secure if no PPT adversary A
has a non-negligible advantage against a challenger in the following game.

1. The adversary A is given the common parameter cpPKG.

2. A is allowed to query to the decryption oracle, the signature oracle, and the extraction oracle
adaptively. The decryption oracle receives an identity ID and a ciphertext C and returns
the corresponding plaintext D = Decrypt(cpPKG, skID, C). The signature oracle receives an
identity ID and a message M and returns the signature σ = Sign(cpPKG, skID, M). The
extraction oracle receives an identity ID and returns the corresponding secret key SID.

3. When A announces to the challenger that he is ready, A outputs two target identities and a
plaintext (ID0, ID1,ME). The challenger tosses a random coin t ∈ {0, 1} and computes a
ciphertext C ′ = Encrypt(cpPKG, IDt,ME). The challenger also chooses a message MS ∈ M
randomly and creates the signature σ′ = Sign(cpPKG, skIDt ,MS). A receives C ′ and σ′.
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4. A continues querying from the decryption oracle, the signature oracle, and the extraction
oracle adaptively. He is not allowed to query the tuple (ID0, C

′) or (ID1, C
′) to the decryption

oracle, or ID0 or ID1 from the extract oracle.

5. At the end of the game, A outputs a bit t′. A wins if t′ = t.

A’s advantage is defined as Adv =
∣∣Pr[t′ = 1|t = 1] − Pr[t′ = 1|t = 0]

∣∣. The probability is taken
over the coin tosses of both A and the challenger, including the coin toss for t.

4.2 Concrete scheme

We construct a concrete ID-based combined scheme and prove that this scheme satisfies the ID-
IND-EUF security and the ID-IK security. This scheme is a combination of the identity-based
encryption scheme proposed by Boneh and Franklin [9] and the identity-based signature scheme
proposed by Cha and Cheon [15].

Let IDEnc be the encryption scheme proposed by Boneh and Franklin, IDSig the signature
scheme proposed by Cha and Cheon, and IDComb our ID-based combined scheme.

In this setting, there are a public key generator PKG and some users. Our ID-based combined
scheme IDComb consists of the following six algorithms (KeyGen, Extract, Encrypt, Decrypt, Sign,
Verify).

• KeyGen: The algorithm chooses two groups G = 〈P 〉 and F of the same prime order q.
It constructs a bilinear map ê : G × G → F . It chooses s ∈ Z∗q uniformly at random and
computes Ppub = sP . Also, it selects hash functions HID : {0, 1}∗ → G, H1 : {0, 1}∗×G → Zq,
H2 : F → {0, 1}n, H3 : {0, 1}n×{0, 1}n → Zq, H4 : {0, 1}n → {0, 1}n. The system parameter
is (P, Ppub, ê, HID,H1,H2,H3,H4). The master key is s. We remark that these hash functions
will be viewed as random oracles in our security proof.

• Extract: Given an identity ID, the algorithm computes SID = sHID(ID) and outputs it as
the private key associated to ID. We remark that HID(ID) plays the role of the associated
public key.

• Encrypt: Given the receiver’s identity ID and a message m ∈ {0, 1}n, the algorithm chooses
τ ∈ {0, 1}n at random, and computes

r = H3(τ, m), U = rP, V = τ ⊕H2(ê(HID(ID), Ppub)r),W = m⊕H4(τ).

The ciphertext is C = (U, V,W ).

• Decrypt: Given a ciphertext C = (U, V, W ) for the identity ID, the algorithm computes

τ = V ⊕H2(ê(SID, U)),m = W ⊕H4(τ).

It checks whether U
?= H3(τ, m). If this equation holds, it returns m as the plaintext.

Otherwise, it returns reject.

• Sign: Given a secret key SID and a message m, the algorithm picks a random number r ∈ Zq

and outputs a signature σ = (U, V ) where U = rHID(ID), V = (r + H1(m,U))SID.

• Verify: To verify a signature σ = (U, V ) of a message m for an identity ID, the algorithm
checks whether ê(Ppub, U + H1(m, U)HID(ID)) ?= ê(P, V ). If this equation holds, it returns
accept. Otherwise, it returns reject.

Therefore, IDEnc = (KeyGen, Extract, Encrypt, Decrypt), IDSig = (KeyGen, Extract, Sign,
Verify).
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4.3 Security analysis

The security of IDEnc in the presence of IDSig: IDComb does not compromise the security of IDEnc.

Proposition 14. Let H1 be a random oracle from {0, 1}∗ × G to Zq. Let A be an adversary
that has non-negligible advantage ε against IDEnc of IDComb with unlimited access to H1 and the
signature oracle for IDSig. Then, there is an algorithm B that has non-negligible advantage ε′

against IDEnc.

The proof is shown in Appendix B.
The security of IDSig in the presence of IDEnc: IDComb does not compromise the security of

IDSig.

Proposition 15. Let H2 be a random oracle from F to {0, 1}n, H3 a random oracle from {0, 1}n×
{0, 1}n to Zq, H4 a random oracle from {0, 1}n to {0, 1}n. Let A be an adversary that has non-
negligible advantage ε against IDSig of IDComb with unlimited access to H2,H3,H4 and a decryption
oracle for IDEnc. Then, there is an algorithm B that has non-negligible advantage ε′ against IDSig.

The proof is shown in Appendix C.
As a result, we can show the security of IDComb.

Theorem 2. IDComb is ID-IND-EUF secure by assuming the hardness of the CBDH problem for
ê : G × G → F in the random oracle model.

This proof is shown in Appendix D.

Theorem 3. The ID-based combined scheme IDComb is ID-IK secure by assuming the hardness of
the CBDH problem for ê : G × G → F in the random oracle model.

The proof is shown in Appendix E.

5 The key privacy for combined schemes

In this section, we define the key privacy for the non-ID-based combined schemes. We define the
key privacy when no attacker can distinguish the key in this game.

In our combined scheme, two keys are involved in the encryption scheme. Differently from a
single-key combined scheme, there are some variations for the requirements for the key privacy.
Some people want to protect key information from leaking from both the ciphertexts and the
signature. In some cases, protecting one key information from leaking can be required. We classify
these security properties to three settings: (i) the key privacy for two keys, (ii) the key privacy
for the decryption and signature key, and (iii) the key privacy for the recovery key. We define
the key privacy for two keys, and show the alternations for the others. We make a small change
for the combined scheme proposed by Diament et al. [16] and prove that this scheme satisfies the
key privacy for two keys.

5.1 Model definitions

Definition 16. A combined scheme is a tuple of six algorithms denoted by Σ = (K, E ,D,R,S,V):

• The key generation algorithm K takes a security parameter k as an input, and produces a pair
(e, d) of corresponding public and private keys. We write K(k) = (e, d). Let K(k) = (f, g) be
another key pair in the following.

• The encryption algorithm E takes public encryption keys e and f , and a plaintext m ∈ M
(where M is the message space) as inputs, and produces a ciphertext c ∈ C (where C is the
ciphertext space). We write Ee,f (m) = c.
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• The decryption algorithm D takes a private key d, a public key f, and a cipher text c ∈ C as
inputs, and produces a plaintext m ∈M or a reject symbol reject. We write Dd,f (c) = m.

• The recovery algorithm R takes a public key e, a private key g, and a ciphertext c ∈ C as
inputs, and produces a plaintext m ∈M or reject. We write Re,g(c) = m.

• The signature algorithm S takes a private key d and a message m ∈ M as inputs, and
produces a signature σ ∈ {0, 1}∗. We write Sd(m) = σ.

• The verification algorithm V takes a public key e, a message m, and a signature σ as inputs,
and produces either an accept symbol accept or reject. We write Ve(m,σ) = accept or reject.

Next, we define the key privacy for two keys. We consider this key privacy as the key privacy
for the combined scheme.

Definition 17. Let Σ = (K, E ,D,R,S,V) be a combined scheme and k a security parameter of Σ.
Σ satisfies the key privacy if for all sufficiently large k, no PPT adversary A can win the following
game with a probability non-negligibly larger than 1/2. This game is simulated by a challenger.

1. The challenger runs K(k) four times and receives four pairs of public and private keys. The
challenger makes two pairs of public keys (pk0, pk′0) and (pk1.pk′1) and gives A them with
public parameters.

2. A is allowed to make queries to oracles. The decryption oracle for (sk0, pk′0) receives a
ciphertext c and returns a plaintext m = Dsk0,pk′0(c). The recovery oracle for (pk0, sk

′
0)

receives a ciphertext c and returns a plaintext m = Rpk0,sk′0(c). The decryption oracle for
(sk1, pk′1) receives a ciphertext c and returns a plaintext m = Dsk1,pk′1(c). The recovery oracle
for (pk1, sk

′
1) receives a ciphertext c and returns a plaintext m = Rpk1,sk′1(c). The signature

oracle for sk0 receives a message m and returns a signature σ = Ssk0(m). The signature
oracle for sk1 receives a message m and returns a signature σ = Ssk1(m).

3. When A is ready for the challenge, A passes a message me. The challenger tosses a random
coin t ∈ {0, 1}, then uniformly picks a message ms ∈ M. Set c′ = Epkt,pk′t(me), σ′ =
Spkt(ms). A receives c′ and σ′.

4. A can still adaptively make queries to the oracles except for the challenge ciphertext c′ to the
decryption and the recovery oracles.

5. At the end of the game, A outputs a bit t′. A wins if t′ = t.

A’s advantage is defined as Adv =
∣∣Pr[t′ = t] − 1

2

∣∣. The probability is taken over the coin
tosses of both A and the challenger, including the coin toss for t.

The modification for the key privacy for the decryption and signature key is as follows: In the
step 1 of the game, the challenger runs K(k) three times. The challenger makes two pairs of public
keys (pk0, pk′0) and (pk1, pk′1) such that pk′0 = pk′1.

In the same way, the modification for the key privacy for the recovery key is as following: In
the step 1 of the game, the challenger runs K(k) three times. The challenger makes two pairs of
public keys (pk0, pk′0) and (pk1, pk′1) such that pk0 = pk1.

5.2 Security analysis for our combined scheme

In this section, we introduce a combined scheme Σ modified from the combined scheme proposed
by Diament et al. [16]. This modification is to just omit the public key of the recovery person from
the ciphertext, which is the term “u2” in the original scheme. A scheme which has public keys
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in the ciphertext cannot be anonymous. We assume that during the legitimate decryption and
the recovery operation, they are aware of the receivers. This modification has no impact for the
security for the combined scheme which was defined as “CCA-CMA security”. Thus Σ satisfies
this security, too. The message space M is {0, 1}n, the security parameter is n′. b2 is the length
of the bit-representation of a point in G2.

Key Generation: Groups G1,G2 with a same prime order q, a bilinear map 〈·, ·〉 : G1×G1 → G2,
and a random element P ∈ G1 are chosen. Choose a random x ∈ Zq. The public key is xP together
with hash functions Hx : G2 → {0, 1}n, G : {0, 1}n → {0, 1}n, F : {0, 1}4n+b2 → {0, 1}n′ , and
I : {0, 1}n → G1. The private key is x. Let (yP, y) be another pair of public and private keys.

Encryption: The input is a plaintext m ∈ {0, 1}n. The encryption algorithm chooses a random
element r ∈ Zq, a random element ρ ∈ {0, 1}n, and computes u1 = rP, u2 = ρ⊕Hx(〈xP, yP 〉r), u3 =
m⊕G(ρ), and u4 = F (ρ,m, u2, u3, 〈xP, yP 〉r). The ciphertext is (u1, u2, u3, u4).

Decryption: Given a ciphertext (u1, u2, u3, u4), the decryption algorithm computes u2⊕Hx(〈u1, yP 〉x) =
ρ and G(ρ)⊕ u3 = m. Then it checks that u4 = F (ρ,m, u2, u3, 〈u1, yP 〉x), and if u4 is correct, the
algorithm outputs m. Otherwise, it outputs reject.

Recovery: Given a ciphertext (u1, u2, u3, u4), the recovery algorithm computes u2⊕Hx(〈u1, xP 〉y) =
ρ and G(ρ)⊕ u3 = m. Then it checks that u4 = F (ρ,m, u2, u3, 〈u1, xP 〉y), and if u4 is correct, the
algorithm outputs m. Otherwise, it outputs reject.

Signature: The input is a private signature key x ∈ Zq and a message m ∈ {0, 1}n. The
signature algorithm calculates σ = xI(m). The signature is σ.

Verification: Given a public key xP and a pair of a message and a signature pair (m,σ), the
verification algorithm verifies that 〈P, σ〉 = 〈xP, I(m)〉.
Proposition 18. The combined scheme Σ satisfies the key privacy for the combined scheme as-
suming the CBDH problem is hard in the random oracle model.

The proof is shown in Appendix F.

6 ID-based combined scheme with multiple-receivers

In this section, we construct a combined scheme of the multi-receiver identity-based encryption
scheme proposed by Baek, Safavi-Naini, and Susilo [2] and the identity-based signature scheme
proposed by Cha and Cheon [15]. We prove the security of this scheme.

6.1 Model definitions for ID-based combined schemes with multiple-receivers

We adapt the definitions for multi-receivers identity-based encryption schemes originally presented
by Baek et al. [2]. In this model, there is a private key generator and some users. Each user has an
identity ID and a corresponding private key obtained from the private key generator. Note that
in the multi-receiver identity-based encryption setting, either a single message or multiple message
can be encrypted. In this paper, we assume that a single message is encrypted.

Definition 19. An ID-based combined scheme with multiple-receivers consists of six algorithms
MIDComb = (KeyGen, Extract, Encrypt, Decrypt, Sign, Verify) as follows.

• The private key generator’s key generation algorithm KeyGen: The private key generator runs
this algorithm to generate a private key generator’s master key and a common parameter,
denoted by mkPKG, and cpPKG, respectively. Note that cpPKG is published publicly while
mkPKG is kept secret.

• The private key generator’s private key extraction algorithm Extract: Given an identity ID
received from a user and the private key generator’s master key mkPKG as input, the private
key generator runs this algorithm to generate a private key associated with ID, denoted by
skID. We write skID = Extract(mkPKG, ID).
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• The encryption algorithm Encrypt: Given multiple identities (ID1, . . . , IDn) of the receivers,
the private key generator’s common parameter cpPKG, and a plaintext M as input, the
sender runs this algorithm to generate a ciphertext C which is an encryption of M under
(ID1, . . . , IDn). We write C = Encrypt(cpPKG, (ID1, . . . , IDn),M).

• The decryption algorithm Decrypt: Given the receiver’s private key skIDi, the private key
generator’s common parameter cpPKG, and a ciphertext C as input, the receiver numbered
i runs this algorithm to get a decryption D, which is either a certain plaintext or a reject
symbol reject. We write D = Decrypt(cpPKG, skIDi , C).

• The signature algorithm Sign: Given the signer’s private key skID, the private key generator’s
common parameter cpPKG, and a message M as input, the signer runs this algorithm to
create a signature σ. We write σ = Sign(cpPKG, skID,M).

• The verification algorithm Verify: Receiving a message M , a signature σ, and an identity ID,
the receiver checks the validity of the signature. If it is a valid tuple, it produces an accept
symbol accept. Otherwise, it produces reject. We write Verify(cpPKG, ID,M, σ) = accept or
reject.

Definition 20. The ID-based combined scheme with multiple-receivers MIDComb is MID-IND-EUF
secure if no PPT adversary A has a non-negligible advantage against a challenger in the following
joint MID-IND-EUF game.

1. The adversary A is given the common parameter cpPKG, then it outputs the target identities
(ID1, . . . , IDn).

2. A is allowed to query to the decryption, the signature, and the extract oracles adaptively.
The i-th decryption oracle receives a ciphertext C and returns the decryption of IDi, D =
Decrypt(cpPKG, skIDi , C). The i-th signature oracle receives a message M and returns the
signature σ = Sign(cpPKG, skIDi , M). The extract oracle receives an identity ID and returns
the corresponding secret key SID. It is not allowed to query the target identities to the extract
oracle.

3. When A announces to the challenger that it is ready for the challenge, A chooses either an
IND-CCA challenge or an EUF-CMA challenge. If A chooses an IND-CCA challenge, it
outputs two plaintexts M0,M1. The challenger tosses a random coin t ∈ {0, 1}, compute a
ciphertext C ′ = Encrypt(cpPKG, (ID1, . . . , IDn),Mt), and returns C to A. If A chooses an
EUF-CMA challenge, it continues this game.

4. A continues querying to the decryption, the signature, and the extract oracles adaptively. If
it chooses the CCA challenge, it is not allowed to query the challenge C ′ to the decryption
oracles.

5. In the end of the game, A outputs the answer. In the case of the CCA challenge, a bit t′.
A wins if t′ = t. In the case of the CMA challenge, an identity IDi, a message M ′, and a
signature σ′. A wins if IDi is one of the IDs output in step1, and if M ′ is not asked to the
i-th signature oracle, and if Verify(cpPKG, IDi,M

′, σ′) = accept.

6.2 Concrete scheme

We construct a concrete ID-based combined scheme with multiple-receivers. This scheme is a
combination of the multi-receiver identity-based encryption scheme proposed by Baek et al. [2]
and the identity-based signature scheme proposed by Cha and Cheon [15]. In Baek’s setting,
either a single message or multiple message can be encrypted. In this paper, we assume that a
single message is encrypted to broadcast to the multiple receivers.
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Let MIDEnc be the encryption scheme proposed by Baek et al., IDSig the signature scheme
proposed by Cha and Cheon, and MIDComb our ID-based combined scheme with multiple-receivers.

In this setting, there are a public key generator PKG and some users. Our ID-based combined
scheme MIDComb consists of the following six algorithms (KeyGen, Extract, Encrypt, Decrypt, Sign,
Verify).

• KeyGen: Choose two groups G = 〈P 〉 and F of the same prime order q. Construct a bilinear
map ê : G × G → F . Choose Q ∈ G uniformly at random. Choose s ∈ Z∗q uniformly at
random and compute Ppub = sP . Also, select a hash function HID : {0, 1}∗ → G, H1 :
{0, 1}∗×G → Zq, H2 : F → {0, 1}k1 , H3 : F×{0, 1}k1×G×· · ·×G×F×{0, 1}k1 → {0, 1}k2 .
The system parameter is (P, Ppub, ê, Q,HID,H1,H2,H3). The master key is s. We remark
that these hash functions will be viewed as random oracles in our security proof.

• Extract: Given an identity ID, the algorithm computes SID = sHID(ID) and outputs it as
the private key associated to ID. We remark that HID(ID) plays the role of the associated
public key.

• Encrypt: Given multiple identities (ID1, . . . , IDn) of the receivers and a plaintext m ∈
{0, 1}k1 , choose R ∈ F and r ∈ Zq at random. Let L be the list of the receivers and
computes

U = rP, V1 = rHID(ID1) + rQ, . . . , Vn = rHID(IDn) + rQ,

W1 = ê(Q,Ppub)rR, W2 = m⊕H2(R), τ = H3(R,m, U, V1, . . . , Vn, W1,W2,L).

The ciphertext is C = (U, V1, . . . , Vn,W1,W2,L, τ).

• Decrypt: Given a ciphertext C for some IDi, i ∈ {1, . . . , n}, parse C as (U, V1, . . . , Vn,W1,W2,L, τ).
Using L, find the appropriate Vi. Then, subsequently compute

R =
ê(U, SIDi)
ê(T, Vi)

,m = W2 ⊕H2(R).

Check whether τ
?= H3(R, M,U, V1, . . . , Vn,W1,W2,L). If this equation holds, return m as

a plaintext. Otherwise, return reject.

• Sign: Given a secret key SID and a message m, pick a random number r ∈ Zq and output a
signature σ = (U, V ) where U = rHID(ID), V = (r + H1(m,U))SID.

• Verify: To verify a signature σ = (U, V ) of a message m for an identity ID, check whether
ê(Ppub, U+H1(m,U)HID(ID)) ?= ê(P, V ). If this equation holds, it returns accept. Otherwise,
it returns reject.

Therefore, MIDEnc = (KeyGen, Extract, Encrypt, Decrypt), IDSig = (KeyGen, Extract, Sign,
Verify).

6.3 Security analysis

The security of MIDEnc in the presence of IDSig: MIDComb does not compromise the security of
MIDEnc.

Proposition 21. Let H1 be a random oracle from {0, 1}∗ × G to Zq. Let A be an adversary
that has non-negligible advantage ε against MIDEnc of MIDComb with unlimited access to H1 and
a signature oracle for IDSig. Then, there is an algorithm B that has non-negligible advantage ε′

against MIDEnc.
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The proof is shown in Appendix G.
The security of IDSig in the presence of MIDEnc: MIDComb does not compromise the security

of IDSig.

Proposition 22. Let H2 be a random oracle from F to {0, 1}k1, H3 a random oracle from F ×
{0, 1}k1 × G × · · · × G × F × {0, 1}k1 to {0, 1}k2. Let A be an adversary that has non-negligible
advantage ε against IDSig of MIDComb with unlimited access to H2,H3 and a decryption oracle for
IDSig. Then, there is an algorithm B that has non-negligible advantage ε′ against IDSig.

The proof is shown in Appendix H.
As a result, we can show the security of MIDComb.

Proposition 23. MIDComb is MID-IND-EUF secure assuming the hardness of the GBDH problem
for ê : G × G → F in the random oracle model.

This proof is shown in Appendix I.

7 Conclusion

We proposed the definition of the key privacy for ID-based signature schemes, the model for ID-
based combined scheme. The notion of the key privacy can be modified to the combined schemes,
and we showed a concrete scheme. In addition to these discussions, we modeled the key privacy for
non-ID-based combined schemes, the security for ID-based combined scheme with multiple-receiver
encryption scheme. We reviewed or constructed concrete schemes for each model and proved the
security of these schemes.
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A Proof of Theorem 1

Proof. We prove this security by reduction. Let A be an adversary that breaks the ID-IK-CMA
security of IDSig, then we construct an adversary B that solves the discrete logarithm problem
in G. Let A(Di) = t be an experiment where A outputs (ID0, ID1) and receives a signature
σ = Sign(sk IDj ,M) in the challenge phase, then A outputs t as the answer. Let AdvA be A’s
advantage. For any identity ID′,

AdvA =
∣∣Pr[A(ID0) = 1]− Pr[A(ID1) = 1]

∣∣
≤ ∣∣Pr[A(ID0) = 1]− Pr[A(ID′) = 1]

∣∣ +
∣∣Pr[A(ID1) = 1]− Pr[A(ID′) = 1]

∣∣.

Since A’s advantage is non-negligible, A distinguishes the game A(ID0) from A(ID′) or the
game A(ID1) from A(ID′) with non-negligible probability. Without loss of generality, we can
assume that A distinguishes the game A(ID1) from A(ID′).

B is given (P, aP ) as the input of the DL problem. B sets Ppub = aP and sends (q,G,F , ê, P, Ppub,HID,H1)
to A where HID and H1 are random oracles controlled by B.

• HID queries: HID is a random oracle controlled by B. B keeps a list of tuples, HID-list. When
A issues a query qi to HID, B checks to see if qi is on the list. If qi appears in a tuple (qi, ii, ri),
then B responds with HID(qi) = ii. Otherwise, B picks a random ri ∈ Zq. B adds the tuple
(qi, riP, ri) to the HID-list, and responds with Hx(qi) = riP .
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• H1 queries: H1 is a random oracle controlled by B. B keeps a list of tuples, H1-list. When
A issues a query qi to H1, B checks to see if qi is on the list. If qi appears in a tuple (qi, ii),
then B responds with H1(qi) = ii. Otherwise, B picks a random ri ∈ Zq. B adds the tuple
(qi, ri) to the H1-list, and responds with H1(qi) = ri.

• Extract queries: A queries IDi to the extract oracle to receive the corresponding secret key
SIDi . B checks if IDi is on the HID-list. If IDi appears in a tuple (IDi, ii, ri), then B
computes SIDi = riaP and responds SIDi . Otherwise, B picks a random ri ∈ Zq. B adds
the tuple (IDi, riP, ri) to the HID-list, and responds with SID = riaP .

• Signature queries: When A issues a signature query (IDi,mi), B picks r1, r2 ∈ Zq randomly,
and sets Ui = r1P − r2HID(ID), Vi = r1Ppub . B checks if qi = (mi, Ui) is on the H1-list. If qi

appears on the list, B halts. Otherwise, B adds the tuple (qi, r2) to the H2-list, and responds
σ = (Ui, Vi).

When A announces that it is ready for the challenge, A outputs two target IDs (ID0, ID1). B
chooses x, y ∈ Zq randomly, sets U ′ = xHID(ID1), V ′ = yHID(ID1), and sends (U ′, V ′) to A as its
challenge.

In the end, A outputs the answer t′. A signature (U, V ) is computed U = rHID(ID), V =
(r + H1(m, U))SID. As r is selected from Zp randomly, this U is distributed uniformly in G.
Since we assumed that H1 is a random oracle, V = rSID + H1(m, U)SID is distributed uniformly
in G. Therefore, any signature (U, V ) is independent of the corresponding message and identity
without querying (m,U) to H1. Thus, the probability that A answers the correct answer without
querying the corresponding (m,U ′) to H1 is negligible. B picks a tuple (qi, ri) from H1 such that
qi = (m,U ′) randomly. This ri satisfies the following equation.

V ′ = yHID(ID1) = (x + H(m,U ′))SID1

= (x + ri)aHID(ID1)

The answer of the DL problem can be computed

a = y(x + ri)−1.

Let qS be the number of the signature queries, and qH1 the number of the H1 queries. Let
QH1 be the event that A issues the above query (qi, ri) to H1. A distinguishes the game A(ID1)
from A(ID′) with non-negligible probability ε =

∣∣Pr[A(ID1) = 1] − Pr[A(ID′) = 1]
∣∣. From the

above argument, if A never issues a correct query for H1, then the probability that A answers the
correct answer is at most 1/2. Therefore,

∣∣Pr[A(ID1) = 1|¬QH1 ]− Pr[A(ID′) = 1|¬QH1 ]
∣∣ = 0.

ε =
∣∣Pr[A(ID1) = 1]− Pr[A(ID′) = 1]

∣∣
≤ ∣∣Pr[A(ID1) = 1|QH1 ] Pr[QH1 ]− Pr[A(ID′) = 1|QH1 ] Pr[QH1 ]

∣∣
+

∣∣Pr[A(ID1) = 1|¬QH1 ] Pr[¬QH1 ]− Pr[A(ID′) = 1|¬QH1 ] Pr[¬QH1 ]
∣∣

=
∣∣Pr[A(ID1) = 1|QH1 ]− Pr[A(ID′) = 1|QH1 ]

∣∣Pr[QH1 ]
≤ Pr[QH1 ]

B halts if the message m and U created in the signature queries are already asked to H1. The
random values r1, r2 are chosen uniformly from Zq, so U is created uniformly random in G. The
probability that B halts during the simulation of the signature oracle is at most qS+qH1

|G| . Let ε′ be

the success probability that B solves DL probability. Then, ε′ ≥ 1
qH1

(
1− qS+qH1

|G|
)

ε. qS and qH1

are polynomial but |G| is not, so ε′ is non-negligible. Therefore, B can solve the DL problem with
non-negligible probability.
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B Proof of Proposition 14

Proof. Given an adversary A that breaks the indistinguishability of IDEnc when used together
with IDSig with non-negligible probability ε, we construct an adversary B that breaks the indis-
tinguishability of IDEnc alone.

Algorithm B is given (q,G,F , ê, P, Ppub,HID,H2,H3,H4), and B sends (q,G,F , ê, P, Ppub,HID,H1,H2, H3,H4)
to A where H1 is a random oracle controlled by B.

• H1 queries: H1 is a random oracle controlled by B. B keeps a list of tuples, H1-list. When
A issues a query qi to H1, B checks to see if qi is on the list. If qi appears in a tuple (qi, ii),
then B responds with H1(qi) = ii. Otherwise, B picks a random ri ∈ Zq. B adds the tuple
(qi, ri) to the H1-list, and responds with H1(qi) = ri.

• Signature queries: When A issues a signature query (IDi,mi), B picks r1, r2 ∈ Zq randomly,
and sets Ui = r1P − r2HID(ID), Vi = r1Ppub . B checks if qi = (mi, Ui) is on the H1-list. If qi

appears on the list, B halts. Otherwise, B adds the tuple (qi, r2) to the H2-list, and responds
σ = (Ui, Vi).

A’s view of the ciphertext is identical to that of a real ciphertext. Thus, if B does not halt, its
probability of success in breaking the signature scheme is unchanged. Let qS be the number of the
signature queries, and qH1 the number of the H1 queries. B halts if the message m and U created
in the signature queries is asked to H1. The random values r1, r2 are chosen uniformly from Zq,
so U is created uniformly random in G. The probability that B halts during the simulation of the
signature oracle is at most qS+qH1

|G| . The success probability that B breaks the indistinguishability of

IDEnc is ε′ ≥ ε
(
1− qS+qH1

|G|
)
. qS and qH1 are polynomial but |G| is not, so ε′ is non-negligible.

C Proof of Proposition 15

Proof. Given an adversary A that breaks the unforgeability of IDSig when used together with
IDEnc, we construct an adversary B that breaks the unforgeability of IDSig alone.

Algorithm B is given (q,G,F , ê, P, Ppub,HID,H1), and B sends (q,G,F , ê, P, Ppub,HID,H1,H2,H3,H4)
to A where H2,H3, and H4 are random oracles controlled by B.

• H2 queries: H2 is a random oracle controlled by B. B keeps a list of tuples, H2-list. When
A issues a query qi to H2, B checks to see if qi is on the list. If qi appears in a tuple (qi, ii),
then B responds with H2(qi) = ii. Otherwise, B picks a random ri ∈ {0, 1}n. B adds the
tuple (qi, ri) to the H2-list, and responds with H2(qi) = ri.

• H3 queries: H3 is a random oracle controlled by B, too. B keeps a list of tuples, H3-list.
When A issues a query qi to H3, B checks to see if qi is on the list. If qi appears in a tuple
(qi, ii), then B responds with H3(qi) = ii. Otherwise, B picks a random ri ∈ Zq. B adds the
tuple (qi, ri) to the H3-list, and responds with H3(qi) = ri.

• H4 queries: H4 is a random oracle controlled by B, too. B keeps a list of tuples, H4-list.
When A issues a query qi to H4, B checks to see if qi is on the list. If qi appears in a tuple
(qi, ii), then B responds with H4(qi) = ii. Otherwise, B picks a random ri ∈ {0, 1}n. B adds
the tuple (qi, ri) to the H4-list, and responds with H4(qi) = ri.

• Decryption queries: A allows to access the decryption oracles using SID. B responds as
follows when A queries Ci = (U, V,W ) to the decryption oracle using SID, B checks if the
tuple (τ,m) that satisfies H3(τ, m)P = U is on the H3-list. If it is not on the list, B responds
reject. Otherwise, sets h2 = τ ⊕ V , h4 = m ⊕ W , checks if (qi, h2) is on the H2-list, and
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if (τ, h4) is on the H4-list. If the both pairs appear on the lists, B responds m. If τ is not
queried to the H4, B adds the tuple (τ, h4) to the H4-list, and responds m. Otherwise, B
responds reject.

A’s view of the signature is identical to that of a real signature, and thus its probability of success
in breaking the encryption scheme is unchanged, ε′ = ε.

D Proof of Theorem 2

Proof. This proof is trait-forward. We prove this security by the reduction.
Let A be an adversary that breaks the ID-IND-EUF security of IDComb. A breaks the indistin-

guishability or the existential unforgeability of IDComb. From Lemma 14 and Lemma 15, we can
construct an attacker A′ that breaks the indistinguishability of IDEnc alone or A′′ that breaks the
existential unforgeability of IDSig alone with non-negligible probability. The security of IDEnc
is proved by Boneh and Franklin [9], and by using A′, the CBDH problem can be solved. The
security of IDSig is proved by Cha and Cheon [15]. By using A′′, the CDH problem in G can
be solved. Which means that on input of (P, aP, bP ), abP can be computed. The answer of the
CBDH problem is computed by ê(P, P )abc = ê(abP, cP ).

E Proof of Theorem 3

Proof. Let A be an adversary that breaks the ID-IK security of IDComb. Let A(i, j) = t be an
experiment where A outputs (ID0, ID1,m) and receives an ciphertext C ′ = Encrypt(IDi,m) and a
signature σ = Sign(sk IDj ,MS) in the challenge phase, then A outputs t as the answer. Let AdvA
be A’s advantage. Then,

AdvA =
∣∣Pr[A(0, 0) = 1]− Pr[A(1, 1) = 1]

∣∣
≤ ∣∣Pr[A(0, 0) = 1]− Pr[A(0, 1) = 1]

∣∣ +
∣∣Pr[A(0, 1) = 1]− Pr[A(1, 1) = 1]

∣∣. (1)

Before proving Theorem 3, we introduce the following two propositions.

Proposition 24. Assume that A distinguishes the key between the experiments A(0, 0) and A(0, 1)
with non-negligible probability, then there is an adversary B which breaks the key privacy of IDSig
with non-negligible probability.

Proof. (of Proposition 24.) Given an adversary A distinguishes the key between the experiments
A(0, 0) and A(0, 1), we construct an adversary B which breaks the key privacy of IDSig with
non-negligible probability.

Algorithm B is given (q,G,F , ê, P, Ppub,HID,H1), and B sends (q,G,F , ê, P, Ppub,HID,H1,H2,H3,H4)
to A where H2,H3, and H4 are random oracles controlled by B.

• H2 queries: H2 is a random oracle controlled by B. B keeps a list of tuples, H2-list. When
A issues a query qi to H2, B checks to see if qi is on the list. If qi appears in a tuple (qi, ii),
then B responds with H2(qi) = ii. Otherwise, B picks a random ri ∈ {0, 1}n. B adds the
tuple (qi, ri) to the H2-list, and responds with H2(qi) = ri.

• H3 queries: H3 is a random oracle controlled by B, too. B keeps a list of tuples, H3-list.
When A issues a query qi to H3, B checks to see if qi is on the list. If qi appears in a tuple
(qi, ii), then B responds with H3(qi) = ii. Otherwise, B picks a random ri ∈ Zq. B adds the
tuple (qi, ri) to the H3-list, and responds with H3(qi) = ri.
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• H4 queries: H4 is a random oracle controlled by B, too. B keeps a list of tuples, H4-list.
When A issues a query qi to H4, B checks to see if qi is on the list. If qi appears in a tuple
(qi, ii), then B responds with H4(qi) = ii. Otherwise, B picks a random ri ∈ {0, 1}n. B adds
the tuple (qi, ri) to the H4-list, and responds with H4(qi) = ri.

• Decryption queries: A allows to access the decryption oracles using SID. B responds as
follows when A queries Ci = (U, V,W ) to the decryption oracle using SID, B checks if the
tuple (τ,m) that satisfies H3(τ, m)P = U is on the H3-list. If it is not on the list, B responds
reject. Otherwise, sets h2 = τ ⊕ V , h4 = m ⊕ W , checks if (qi, h2) is on the H2-list, and
if (τ, h4) is on the H4-list. If the both pairs appear on the lists, B responds m. If τ is not
queried to the H4, B adds the tuple (τ, h4) to the H4-list, and responds m. Otherwise, B
responds reject.

When A announces that it is ready for the challenge, A outputs two target IDs and a plaintext
(ID0, ID1,m). B then outputs (ID0, ID1) to its challenge oracle and receives a signature σ. B
computes C = Encrypt(ID0,m), and sends (C, σ) to A as its challenge.

A’s view of the signature is identical to that of a real signature, and thus its probability of
success to distinguish the key is unchanged. Therefore, AdvB = AdvA.

Proposition 25. Assume that A distinguishes the key between the experiments A(0, 1) and A(1, 1)
with non-negligible probability, then there is an adversary C which breaks the key privacy of IDEnc
with non-negligible probability.

Proof. (of Proposition 25.) Given an adversary A distinguishes the key between the experiments
A(0, 1) and A(1, 1), we construct an adversary C which breaks the key privacy of IDEnc with
non-negligible probability.

Algorithm C is given (q,G,F , ê, P, Ppub,HID,H2,H3,H4), and C sends (q,G,F , ê, P, Ppub,HID, H1,H2,H3,H4)
to A where H1 is a random oracle controlled by C.

• H1 queries: H1 is a random oracle controlled by C. C keeps a list of tuples, H1-list. When
A issues a query qi to H1, C checks to see if qi is on the list. If qi appears in a tuple (qi, ii),
then C responds with H1(qi) = ii. Otherwise, C picks a random ri ∈ Zq. C adds the tuple
(qi, ri) to the H1-list, and responds with H1(qi) = ri.

• Signature queries: When A issues a signature query (IDi,mi), C picks r1, r2 ∈ Zq randomly,
and sets Ui = r1P − r2HID(ID), Vi = r1Ppub . C checks if qi = (mi, Ui) is on the H1-list. If qi

appears on the list, C halts. Otherwise, C adds the tuple (qi, r2) to the H2-list, and responds
σ = (Ui, Vi).

When A announces that it is ready for the challenge, A outputs two target IDs and a plaintext
(ID0, ID1,m). C then outputs (ID0, ID1,m) to its challenge oracle and receives a ciphertext C.
C chooses a message m′ ∈ {0, 1}n randomly, computes σ = Sign(ID1, m

′), and sends (C, σ) to A
as its challenge.

A’s view of the ciphertext is identical to that of a real ciphertext. Thus, if C does not halt, its
probability of success to distinguish the key is unchanged. Let qS be the number of the signature
queries, and qH1 the number of the H1 queries. C halts if the message m and U created in the
signature queries are asked to H1. The random values r1, r2 are chosen uniformly from Zq, so
U is created uniformly random in G. The probability that C halts during the simulation of the
signature oracle is at most qS+qH1

|G| . The success probability that C breaks the indistinguishability

of IDEnc is AdvC ≥ AdvA
(
1− qS+qH1

|G|
)
. qS and qH1 are polynomial but |G| is not, so AdvC is

non-negligible.
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The rest of the proof of Theorem 3 is as follows. Assume that there exist an attacker A which
breaks the key privacy of IDComb with non-negligible probability. Using the above equation 1,
there exists an adversary B which breaks the key privacy of IDEnc or an adversary C which breaks
the key privacy of IDSig. The key privacy of IDEnc is proved by Abdalla et al. [1]. Using this
proof, the CBDH problem can be solved with non-negligible probability. The key privacy of IDSig
is proved in Section 3. This proof showed the construction of an adversary to solve the DL problem
in G. This means that on the input of (P, aP ), a ∈ Zq can be computed. Using this adversary, the
CBDH problem can be solved by ê(P, P )abc = ê(bP, cP )a.

Therefore, we can solve the CBDH problem with non-negligible probability.

F Proof of Proposition 18

Proof. Given an adversary A that attacks the key privacy of Σ, we construct an adversary B that
solves CBDH problem.

Algorithm B is given (P, aP, bP, cP ), and chooses random elements x, y ∈ Zq. B chooses
a random t ∈ {0, 1}, and sets t̃ = 1 − t, pkt = aP, pk′t = bP, pkt̃ = xP, pk′

t̃
= yP . B sends

(P, (pk0, pk′0), (pk1, pk′1),Hx, G, F, I) to A where Hx, G, F, I are random oracles controlled by B.

• Hx queries: Hx is a random oracle controlled by B. B keeps a list of tuples, Hx-list. When
A issues a query qi to Hx, B checks to see if qi is on the list. If qi appears in a tuple (qi, ii),
then B responds with Hx(qi) = ii. Otherwise, B picks a random ri ∈ {0, 1}n. B adds the
tuple (qi, ri) to the Hx-list, and responds with Hx(qi) = ri.

• G queries: G is a random oracle controlled by B, too. B keeps a list of tuples, G-list. When
A issues a query qi to G, B checks to see if qi is on the list. If qi appears in a tuple (qi, ii),
then B responds with G(qi) = ii. Otherwise, B picks a random ri ∈ {0, 1}n. B adds the
tuple (qi, ri) to the G-list, and responds with G(qi) = ri.

• F queries: F is a random oracle controlled by B, too. B keeps a list of tuples, F -list. When
A issues a query qi to F , B checks to see if qi is on the list. If qi appears in a tuple (qi, ii),
then B responds with F (qi) = ii. Otherwise, B picks a random ri ∈ {0, 1}n′ . B adds the
tuple (qi, ri) to the F -list, and responds with F (qi) = ri.

• I queries: I is a random oracle controlled by B, too. B keeps a list of tuples, I-list. When A
issues a query qi to I, B checks to see if qi is on the list. If qi appears in a tuple (qi, ii, ri),
then B responds with I(qi) = ii. Otherwise, B picks a random ri ∈ Zq. B adds the tuple
(qi, riP, ri) to the I-list, and responds with I(qi) = riP .

• Decryption and recovery queries: A allows to access the decryption oracles using (sk0, pk′0)
and (sk1, pk′1), and the recovery oracles using (pk0, sk

′
0) and (pk1, sk

′
1). B responds as follows

when A issues the decryption query Ci = (u1, u2, u3, u4). If A queries to the recovery oracles,
B responds the same way to the each decryption oracle. If A queries to the decryption oracle
using (skt̃, pk′

t̃
), B decrypts Ci with the secret key x, and responds the plaintext. If A queries

to the decryption oracle using (skt, pk′t), B checks if the tuple (qi, u4) is on the F -list. If it is
on the list, sets g = R which is the last term of qi. Otherwise, picks a random g ∈ G2. B then
checks if (g, hi) is on the Hx-list. If hi appears on the list, B computes ρ = u2⊕hi. Otherwise,
B picks hi ∈ {0, 1}n randomly, add (g, hi) to the Hx-list, and computes ρ = u2⊕hi. B checks
if (ρ, j) is on the G-list. If j appears on the list, B computes m = u3⊕ j. Otherwise, B picks
j ∈ {0, 1}n randomly, add (ρ, j) to the G-list, and computes m = u3 ⊕ j. If the (qi, u4) was
not on the Hx-list, add ((ρ,m, u2, u3, g), u4) to the Hx-list. B responds m as the decryption
of Ci.
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• Signature queries: When A issues a signature query to the signature oracle using skt̃, B
creates the signature with the secret key x, and return the signature. When A issues a
signature query m to the signature oracle using skt, B checks if (m, ii, ri) is on the I-list. If
it appears on the list, B computes σ = riaP . Otherwise, picks a random ri ∈ Zq, adds the
tuple (m, riP, ri) to the I-list, and computes σ = riaP . B responds σ.

When A is ready for the challenge, A outputs a target plaintext m to the challenge oracle. B
then chooses a random r′ ∈ Zq and computes the signature σ′ = r′P . B sets u1 = cP and choose
randomly u2, u3 ∈ {0, 1}n, u4 ∈ {0, 1}n′ . The challenge ciphertext C is (u1, u2, u3, u4). B returns
(C, σ′) as a challenge.

In the end, A outputs an answer t′. Since A can win the game with non-negligible probability,
it creates the queries associated to the challenges. With probability 1/2, assume that it revealed
the key information from the ciphertext. In this case, A queries 〈u1, bP 〉a = 〈cP, bP 〉a = 〈P, P 〉abc

or 〈u1, aP 〉b = 〈cP, aP 〉b = 〈P, P 〉abc to the Hx-list. B picks (qi, hi) from the Hx-list randomly,
and outputs qi as the answer of the CBDH problem. Otherwise, assume that it revealed the
key information form the signature. In this case, A queries m′ such that the equation 〈P, σ′〉 =
〈Ppub, I(m′)〉 holds. Let I(m′) = r′′. From this equation, 〈P, σ′〉 = 〈aP, r′′P 〉 = 〈P, P 〉ar′′ . Thus
a = r′ · r′′−1 and 〈P, P 〉abc = 〈bP, cP 〉r′·r′′−1

. B picks (qi, ii, ri) from the I-list randomly, and
outputs 〈bP, cP 〉r′·r′′−1

as the answer of the CBDH problem.
Let QHx be the event that A issues a query including 〈P, P 〉abc to Hx, QI the event that A

issues a query I(m′) = r′′P to I. Let qh the number of the queries to Hx, qI the number of the
queries to I. A wins this game with non-negligible advantage ε = Pr[t′ = t] − 1

2 . In the random
oracle mode, if A never issues a correct query for Hx and I, then the decryption of the ciphertext
and the message for the signature is independent from the ciphertext and the signature. Therefore,
Pr[t′ = t|¬QHx ∧ ¬QI ] = 1

2 .

Pr[b′ = b] ≤ Pr[t′ = t|QHx ] Pr[QHx ] + Pr[t′ = t|QI ] Pr[QI ] + Pr[t′ = t|¬QHx ∧ ¬QI ]

≤ Pr[QHx ] + Pr[QI ] +
1
2

The probability ε′ that B produces the correct answer is 1
2

(
Pr[QHx ]

qH
+ Pr[QI ]

qI

)
. Then,

ε′ =
1
2

(
Pr[QHx ]

qH
+

Pr[QI ]
qI

)

≥ 1
2(qH + qI)

(Pr[QHx ] + Pr[QI ])

≥ 1
2(qH + qI)

ε.

Thus, B answers the CBDH problem with non-negligible probability.

G Proof of Proposition 21

Proof. Given an adversary A that attacks MIDEnc when used together with IDSig, we construct
an adversary B attacking MIDEnc alone.

Algorithm B is given (q,G,F , ê, P, Q, Ppub,HID,H2,H3), and B sends
(q,G,F , ê, P,Q, Ppub,HID,H1,H2, H3) to A where H1 is a random oracle controlled by B.

• H1 queries: H1 is a random oracle controlled by B. B keeps a list of tuples, H1-list. When
A issues a query qi to H1, B checks to see if qi is on the list. If qi appears in a tuple (qi, ii),
then B responds with H1(qi) = ii. Otherwise, B picks a random ri ∈ Zq. B adds the tuple
(qi, ri) to the H1-list, and responds with H1(qi) = ri.
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• Signature queries: When A issues a signature query (IDi,m), B picks random r1, r2 ∈ Zq,
and sets Ui = r1P − r2HID(IDi), Vi = r1P . B checks if qj = (mi, Ui) is on the H1-list. If qj

appears on the list, B halts. Otherwise, B adds the tuple (qj , r2) to the H2-list, and responds
σ = (Ui, Vi).

A’s view of the ciphertext is identical to that of a real ciphertext, and thus if B does not halt, its
probability of success in breaking the signature scheme is unchanged. Let qS be the number of the
signature queries, and qH1 the number of the H1 queries. B halts if the message m and U created
in the decryption queries is asked to H1. The random values r1, r2 are chosen uniformly from Zq,
so U is created uniformly random in G. The probability that B halts during the simulation of the
signature oracle is at most qS+qH1

|G| . The success probability of B is ε′ ≥ ε
(
1− qS+qH1

|G|
)
. qS and

qH1 are polynomial but |G| is not, so ε′ is non-negligible.

H Proof of Proposition 22

Proof. Given an adversary A that attacks IDSig when used together with MIDEnc, we construct
an adversary B attacking IDSig alone.

Algorithm B is given (q,G,F , ê, P, Ppub,HID,H1), and choose a random element Q ∈ G. B
sends (q,G,F , ê, P, Q, Ppub,HID,H1,H2,H3) to A where H2,H3 are random oracles controlled by
B.

• H2 queries: H2 is a random oracle controlled by B. B keeps a list of tuples, H2-list. When
A issues a query qi to H2, B checks to see if qi is on the list. If qi appears in a tuple (qi, ii),
then B responds with H2(qi) = ii. Otherwise, B picks a random ri ∈ {0, 1}k1 . B adds the
tuple (qi, ri) to the H2-list, and responds with H2(qi) = ri.

• H3 queries: H3 is a random oracle controlled by B, too. B keeps a list of tuples, H3-list.
When A issues a query qi to H3, B checks to see if qi is on the list. If qi appears in a tuple
(qi, ii), then B responds with H3(qi) = ii. Otherwise, B picks a random ri ∈ {0, 1}k2 . B adds
the tuple (qi, ri) to the H3-list, and responds with H3(qi) = ri.

• Decryption queries: B responds as follows whenA issues the decryption query Ci = (U, V1, . . . ,
Vn,W1,W2,L, τ). B checks if the tuple (qi, τ) is on the H3-list. If it is on the list, sets g = R
which is the first term of qi. Otherwise, pick a random g ∈ F . B then checks if (g, hi) is
on the H2-list. If hi appears on the list, B computes m = W2 ⊕ hi. Otherwise, B picks
hi ∈ {0, 1}k1 randomly, add (g, hi) to the H2-list, and computes m = W2 ⊕ hi. If the (qi, τ)
was not on the H3-list, add ((R,m, U, V1, . . . , Vn, W1,W2,L), τ) to the H3-list. B responds
m as the decryption of Ci.

A’s view of the signature is identical to that of a real signature, and thus its probability of success
in breaking the encryption scheme is unchanged, ε′ = ε.

I Proof of Proposition 23

Proof. This proof is strait-forward. We prove this security by the reduction.
Let A an adversary that attacks the MID-IND-EUF security of MIDComb. A breaks the in-

distinguishability or the existential unforgeability of MIDComb. From Lemma 21 and Lemma 22,
we can construct an attacker A′ that breaks the indistinguishability of MIDEnc alone or A′′ that
breaks the existential unforgeability of IDSig alone with non-negligible probability. The security
of MIDEnc is proved by Baek et al. [2], and by using A′, the GBDH problem can be solved. The
security of IDSig is proved by Cha and Cheon [15]. By using A′′, the CDH problem in G can be
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solved. Which means that on inputs of (P, aP, bP ), abP can be solved. The answer of the GBDH
problem is computed by ê(P, P )abc = ê(abP, cP ).
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