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Abstract

In this paper, we introduce a new notion of conditional converge cast (CCC), such that
we append the conditional property to converge cast. Additionally, we generalize the three
primitives with conditional property, conditional oblivious transfer (COT), conditional oblivious
cast (COC), and CCC.

CCC is a three-party protocol which involves two senders S0 and S1 and a receiver R. S0

owns a secret x and a message m0, and S1 y and m1. In a CCC protocol for the predicate
Q (Q-CCC), S0 and S1 send their messages to R in a masked form. R obtains the message
depending on the value of Q(x, y), i.e. R obtains m0 if Q(x, y) = 0 and m1 otherwise. Besides,
the secrets x and y cannot be revealed to R or the other sender. We propose a CCC protocol
for “equality” predicate with an additively homomorphic encryption scheme.

Additionally, we extend 1-out-of-2 COT/COC/CCC to 1-out-of-n COT/COC/CCC. In
1-out-of-2 protocols, a sender or senders send two messages to a receiver or receivers. In 1-out-
of-n protocols, a sender or senders send n messages, where n = 2l for some l. We provide the
consecutive definitions and the concrete protocols for 1-out-of-n COT/COC/CCC protocols.
We prove that our protocols are secure under the security of 1-out-of-2 protocols.

Keywords: conditional oblivious transfer, conditional oblivious cast, converge cast.

1 Introduction

Oblivious transfer (OT) is an important primitive proposed by Rabin [8], and it is used in many
cryptographic protocols. OT involves two parties, the sender and the receiver. The sender sends
a bit to the receiver and the receiver obtains it with probability 1/2. As the primitives for three
parties with similar property to OT, oblivious cast (OC) and converge cast (CC) were presented
by Fitzi, Garay, Maurer, and Ostrovsky [6]. OC involves one sender and two receivers, and CC
two senders and one receiver. In an OC protocol, the sender sends a message and exactly one of
the receivers obtains it. In a CC protocol, the senders send their own messages and the receiver
obtains one of the massages. As well as in OT, unnecessary information cannot be revealed to
other parties in both protocols.

OT was developed to various types, such as 1-out-of-2 OT (OT1
2) [5], 1-out-of-n OT (OT1

n) [2],
k-out-of-n OT (OTk

n) [7], conditional OT (COT) [4], strong COT (SCOT) [1], conditional OC
(COC) [3], 1-out-of-2 COC (COC1

2) [3], etc. In a Q-COT protocol which is COT with the condi-
tional predicate Q, the sender owns a secret x and a message m, and the receiver owns a secret y
such that the receiver obtains m from the sender if and only if the condition Q(x, y) is evaluated as
true. In a Q-SCOT protocol, the sender sends two messages m0 and m1, and the receiver obtains
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mQ(x,y). SCOT has 1-out-of-2 property, and suffices our security notion as COT1
2. COC and COC1

2

are constructed similarly to COT and SCOT, but the two secrets x and y are prepared to two
receivers, respectively.

In this paper, we introduce liberally two notions, conditional converge cast (CCC) and 1-
out-of-n COT/COC/CCC (COT1

n/COC1
n/CCC1

n). CCC is the protocol such that we append the
conditional property to CC for generalization. CC involves two senders S0 and S1 and a receiver R,
where S0 and S1 own their messages m0 and m1, respectively. R obtains exactly one of the messages
with probability 1/2 after running the protocol without having the other message revealed. S0

obtains no information about S1’s message, and vice versa. S0 and S1 also obtain no information
which message is received. We append the conditional property to CC by the predicate Q. In a
Q-CCC protocol, S0 and S1 have their secrets x and y, respectively, and R obtains mQ(x,y) after
running the protocol. R still obtains no information about the other message, and S0 obtains
no information about S1’s message, and vice versa. S0 and S1 also obtain no information which
message is received. Additionally, we introduce the new security that the sender’s secret cannot be
revealed to the other sender or the receiver. This notion implies the receiver’s security, since if one
of the senders obtains any idea of Q(x, y) then he has some information about the other’s secret.
In addition, we introduce new protocols COT1

n, COC1
n, and CCC1

n, which are the generalization
of 1-out-of-2 protocols. COT1

2 and COC1
2 were presented in the previous works, and CCC1

2 is
provided in this paper, since CCC has 1-out-of-2 property consequently. We construct 1-out-of-n
protocols from 1-out-of-2 ones with the technique in [7].

2 Preliminaries

In this section, we provide some necessary terminology and notation. We start with basic notations,
then we provide an additively homomorphic encryption scheme.

2.1 Basic Notions and Model

We use standard notations and conventions for writing probabilistic algorithms and experiments.
An algorithm is a Turing machine. An efficient algorithm is an algorithm running in probabilistic
polynomial time. An interactive Turing machine is a probabilistic algorithm with an additional
communication tape. A set of interactive Turing machines is an interactive protocol. If A is a
probabilistic algorithm, then y ← A(x1, x2, . . . , ) is the experiment of obtaining y by running A
on inputs (x1, x2, . . .), where the probability space is given by the random coins of algorithm A.
Similarly, the notation t ← (A(x), B(y))(z) denotes the probabilistic experiment of running an
interactive protocol (A,B), where x is A’s input, y is B’s input, z is an input common to A and
B, and t is a transcript of the communication between A and B during such an execution. If S is
a finite set, then x← S is the operation of picking an element uniformly from S. If α is neither an
algorithm nor a set, then x ← α is a simple assignment statement. If A is an interactive Turing
machine, then A ← x (i) denotes a communication sending x to A, and x ← A (i) denotes a
communication receiving x from A, where (i) denotes the i-th phase of the communication. If Π
is an interactive protocol and P is its participant, then ΠP ← x (i) denotes running a protocol
with x as P ’s input, and x ← ΠP (i) denotes that P obtains x as a result of running a protocol,
where (i) denotes the i-th phase of the communication. If v1, . . . , vn are variables, then 〈v1, . . . , vn〉
denotes the random ordered vector.

By Pr[R1, . . . , Rn : E] we denote the probability of event E, after the execution of probabilistic
experiments R1, . . . , Rn. Let a ⊕ b be the string obtained as the bitwise logical xor of strings
a and b. Let a||b be the string obtained by concatenating strings a and b. We say a function
f : N → R is negligible in n if for every positive polynomial p there exists an N , such that for
all n > N , f(n) < 1/p(n). We say a probability is overwhelming in n if it is negligible different
from 1. Let {Xn}n∈N and {Yn}n∈N be distribution ensembles. We say {Xn}n∈N and {Yn}n∈N
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are computationally indistinguishable if for any polynomial-time probabilistic Turing machine D,
|PrD(Xn)−PrD(Yn)| < ε(n) is negligible in n where PrD(Xn) is the probability that D accepts x
chosen according to the distribution Xn. We call {Xn}n∈N and {Yn}n∈N are statistically indistin-
guishable if

∑
α |Pr[Xn = α]− Pr[Yn = α]| is negligible.

We are working in a setting with two, or three participants, who use randomness in their
computation. We denote the view of a party P executing a protocol Π with a party P1, . . . , Pn on
respective inputs x and x1, . . . , xn by VIEWΠ

P (x, x1, . . . , xn). We note that VIEWΠ
P (x, x1, . . . , xn)

is a random variable over the random coins of P and P1, . . . , Pn−1. We stress that although our
constructions and analysis are presented for a fixed security parameter k, we have in mind their
asymptotic notions. Therefore, for example, when talking about a view of a party VIEWΠ

P (x, y),
we mean an ensemble {VIEWΠ

P (x, y)}k of views. We denote statistical indistinguishability of
ensembles of random variables X and Y by X

s≡ Y and their computational indistinguishability
by X

c≡ Y .

2.2 Additively Homomorphic Encryption Scheme

Our constructions use a semantically secure additively homomorphic encryption scheme. An en-
cryption scheme (G,E, D) is additively homomorphic if for any m0 and m1, D(E(m0)⊗E(m1)) =
D(E(m0 + m1)), where ⊗ is an operation defined on the image of E and + is on the domain. The
Paillier encryption scheme [9] is additively homomorphic as follows:

– G(1k) = (p, q, N, α, g), where N = pq is a k-bit number, p and q are two large primes, and g
is an integer of order αN mod N2 for some integer α. Let pk = (g, N), sk = lcm(p−1, q−1).

– E(m) = gmrN mod N2, where m ∈ ZN , r ∈R Zn.

– D(c) = L(cλ(N) mod N2)

L(gλ(N) mod N2)
, where L(u) = u−1

N .

For any m0,m1, pk = (g, N), sk = lcm(p − 1, q − 1), the operation E(m0) ⊗ E(m1) is additively
homomorphic since

D(E(m0)⊗ E(m1)) = D((gm0rN
0 )(gm1rN

1 ))
= D(gm0+m1(r0r1)N ))
= D(E(m0 + m1))

We can compute E(cm) from E(m) via O(log c) repeated additions for a constant c, since we can
compute E(2m) easily. For example, we can compute E(19m) by calculating E((2[log 19] + 3)m) =
E((24 + 3)m) = E(2m)4 ⊗ E(3m). For ease and clarity, we use + and − as operations on the
image of E corresponding to operations on the domain. Note that the Paillier encryption scheme
is semantically secure [9].

3 Definition

In this section, we provide formal definitions for a CCC protocol, and 1-out-of-n COT/COC/CCC
protocols which are the natural extensions of 1-out-of-2 COT/COC/CCC protocols, respectively.

3.1 Conditional Converge Cast

Informally speaking, Q-CCC is a three party protocol with two senders S0, S1 who have messages
m0,m1 and secrets x, y, respectively, and one receiver R. Q-CCC has two following properties:

– Correctness: R obtains m1 from S1 if Q(x, y) = 1, and m0 otherwise.
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– Sender’s security: R obtains exactly one message from either S0 or S1. After running the
protocol, x is kept secret from S1 and R, and y is kept secret from S0 and R.

The definition for Q-CCC1
2 is as follows.

Definition 3.1 (Q-CCC). Let k be the security parameter. Let S0, S1 and R be all polynomial-
time probabilistic Turing machines (PPTMs), and Q the predicate computable in polynomial time.
Let m0 and x be the message and the secret of S0, and m1 and y those of S1. Let 〈S0, S1, R〉(·) be
the communication transcript. We say that a three-party interactive protocol Π = (S0, S1, R) is a
secure Q-CCC protocol if it satisfies the following requirements:

1. Correctness:

(a) For any x, y, m0,m1 from appropriate domains with Q(x, y) = 0, the following proba-
bility is overwhelming in k:

– Pr [ tr ← 〈S0(m0, x), S1(m1, x), R()〉(1k) : R(1k, tr) = m0 ]

(b) For any x, y, m0,m1 from appropriate domains with Q(x, y) = 1, the following proba-
bility is overwhelming in k:

– Pr [ tr ← 〈S0(m0, x), S1(m1, x), R()〉(1k) : R(1k, tr) = m1 ]

2. Sender’s security:

(a) (R obtains essentially no information other than the transferred message.) There exists
a simulator SimR, such that for any x, y, m0,m1 from appropriate domains,

– if Q(x, y) = 0 then {SimR(m0,⊥,⊥)}k s≡ {VIEWΠ
R((m0, x), (m1, y),⊥)}k

– if Q(x, y) = 1 then {SimR(⊥,m1,⊥)}k s≡ {VIEWΠ
R((m0, x), (m1, y),⊥)}k

(b) (S0 and S1 obtain no efficiently computable information about other’s input.) There
exists simulators SimS0 ,SimS1, such that for any x, y, m0,m1 from appropriate domains,

– {SimS0((m0, x),⊥,⊥)}k c≡ {VIEWΠ
S0

((m0, x), (m1, y),⊥)}k
– {SimS1(⊥, (m1, y),⊥)}k c≡ {VIEWΠ

S1
((m0, x), (m1, y),⊥)}k

3.2 1-out-of-n COT/COC/CCC

We define COT1
n as the natural extension of COT1

2. A sender sends n messages to a receiver and
the receiver obtains the message depending on the result of the predicate with the sender’s secret
and the receiver’s one. We consider a message index as a l-bit string or n = 2l. COT1

n has l
predicates, and the sender and the receiver have l secrets, respectively. It is the same in COC
and CCC. We can obtain k-out-of-n COT/COC/CCC protocols from 1-out-of-n ones trivially by
running the protocol k times.

Definition 3.2 (Q-COT1
n). Let k be the security parameter. Let S and R be all polynomial-

time probabilistic Turing machines (PPTMs) and Q = (Q1, . . . , Ql) the predicates (n = 2l). Let
m = (m1, . . . , mn) and x = (x1, . . . , xl) be the messages and the secrets of S, and y = (y1, . . . , yl)
the secrets of R. Let 〈S,R〉(·) be the communication transcript. We say that a two-party interactive
protocol Π = (S,R) is a secure Q-COT1

n protocol if it satisfies the following requirements:

1. Correctness:

For any m,x, y from appropriate domains with l-bit string i = Q1(x1, y1) · · ·Ql(xl, yl),
the following probability is overwhelming in k:

– Pr [ tr ← 〈S(m,x), R(y)〉(1k) : R(y, 1k, tr) = mi ]
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2. Sender’s security:

(R obtains essentially no information other than the transferred message.) There exists
a simulator SimR, such that for any m,x, y with l-bit string i = Q1(x1, y1) · · ·Ql(xl, yl)
from appropriate domains,

– {SimR(mi, y)}k s≡ {VIEWΠ
R((m,x), y)}k

3. Receiver’s security:

(S obtains no efficiently computable information about y.) There exists a simulator
SimS, such that for any m,x, y from appropriate domains,

– {SimS((m,x),⊥)}k c≡ {VIEWΠ
S ((m,x), y)}k

Definition 3.3 (Q-COC1
n). Let k be the security parameter. Let S,R0 and R1 be all polynomial-

time probabilistic Turing machines (PPTMs), and Q = (Q1, . . . , Ql) the predicates (n = 2l). Let
m = (m1, . . . , mn) be the messages. Let x = (x1, . . . , xl) and y = (y1, . . . , yl) be the secrets of
R0 and R1, respectively. Let 〈S,R0, R1〉(·) be the communication transcript. We say that a three-
party interactive protocol Π = (S,R0, R1) is a secure Q-COC1

n protocol if it satisfies the following
requirements:

1. Correctness:

For any m,x, y from appropriate domains with l-bit string i = Q1(x1, y1) · · ·Ql(xl, yl),
the following probability is overwhelming in k:

– Pr [ tr ← 〈S(m), R0(x), R1(y)〉(1k) : R0(x, 1k, tr) = R1(y, 1k, tr) = mi ]

2. Sender’s security:

(R0 and R1 obtain essentially no information other than the transferred message.)
There exist simulators SimRj , such that for any m,x, y with l-bit string i =
Q1(x1, y1) · · ·Ql(xl, yl) from appropriate domains,

– {SimR0(mi, x,⊥)}k s≡ {VIEWΠ
R0

(m,x, y)}k
– {SimR1(mi,⊥, y)}k s≡ {VIEWΠ

R1
(m,x, y)}k

3. Receiver’s security:

(a) (S obtains no efficiently computable information about x and y.) There exists a simu-
lator SimS, such that for any m,x, y from appropriate domains,

– {SimS(m,⊥,⊥)}k c≡ {VIEWΠ
S (m,x, y)}k

(b) (R0 and R1 obtains no efficiently computable information about the other’s secret.)
There exist simulators SimR0 and SimR1, such that for any m,x, y from appropriate
domains,

– {SimR0(m,x,⊥)}k c≡ {VIEWΠ
R0

(m,x, y)}k
– {SimR0(m,x,⊥)}k c≡ {VIEWΠ

R0
(m,x, y)}k

Definition 3.4 (Q-CCC1
n). Let k be the security parameter. Let S0, S1 and R be all polynomial-

time probabilistic Turing machines (PPTMs), and Q = (Q1, . . . , Ql) the predicates (n = 2l). Let
m = (m1, . . . , mn/2),m′ = (mn/2+1, . . . , mn),x = (x1, . . . , xl) and y = (y1, . . . , yl) be the messages
and the secrets of S0 and S1, respectively. Let 〈S0, S1, R〉(·) be the communication transcript. We
say that a three-party interactive protocol Π = (S0, S1, R) is a secure Q-CCC1

n protocol if it satisfies
the following requirements:
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1. Correctness:

For any m, , m′, x, y from appropriate domains with i = Q1(x1, y1) · · ·Ql(xl, yl), the
following probability is overwhelming in k:

– Pr [ tr ← 〈S0(m,x), S1(m′, y), R()〉(1k) : R(1k, tr) = mi ]

2. Sender’s security:

(a) (R obtains essentially no information other than the transferred message.) There exists
a simulator SimR, such that for any m,x, y with l-bit string i = Q1(x1, y1) · · ·Ql(xl, yl)
from appropriate domains,

– {SimR(mi)}k s≡ {VIEWΠ
R((m,x), (m′, y),⊥)}k

(b) (S0 and S1 obtain no efficiently computable information about the other’s secret.) There
exist simulators SimS0 ,SimS1, such that for any m,x, y from appropriate domains,

– {SimS0((m,x),⊥,⊥)}k c≡ {VIEWΠ
S0

((m,x), (m′, y),⊥}k
– {SimS1(⊥, (m′, y),⊥)}k c≡ {VIEWΠ

S1
((m,x), (m′, y),⊥}k

4 Constructions

We provide a CCC protocol for “equality” and 1-out-of-n setting COT/COC/CCC protocols. In
order to compute the predicate, we use the Paillier encryption scheme [9] as an additively homo-
morphic encryption scheme. We use 1-out-fo-2 setting COT/COC/CCC protocols for construction
of 1-out-of-n COT/COC/CCC ones.

4.1 1-out-of-2 EQ-CCC

In order to compare x and y, we use an additively homomorphic encryption scheme. We mask
m1 with r(x − y) via an additively homomorphic encryption, where r is a random number. We
prepare a flag per bit whose value depends on the bitwise comparison of x with y. The value is
a random number if the result of the comparison is “equal”, and 0 otherwise. We compute the
messages up to the number of bit-length of x or y, where each message generated by masking of
m0 with such a flag.

4.1.1 Construction

Let M be the message space of the Paillier encryption scheme (G,E,D), i.e. M = ZN=pq where
p < q for ease and clarity. Let M ′ be the message space which suffices the following. For any
m ∈M ′, m||0k is the element of M . Let (m0, x) be the message and the secret of S0, and (m1, y)
those of S1, where m0,m1 ∈M ′, |x| = |y| = n and n is smaller than the bit length of p. xi and yi

denote the i-th bit of x and y. We construct a EQ-CCC1
2 protocol Π = (S0, S1, R) as follows:

Algorithm S0(m0, x, 1k)
pk, M ← R (0)
(M1, Y1, . . . , Yn)← S1 (1)
Ceq ←M1

for(i = 1, i ≤ n, i + +){
Di ← Epk(xi)− Yi, D

′
i ← Epk(xi) + Yi − Epk(1)

E0 ← Epk(0), Ei ← 2Ei−1 + Di
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ri ←M, r′i ←M

Ceq ← Ceq + riDi

Ci ← Epk(m0||0k) + r′i(Ei −Di + D′
i)

}
R← (Ceq, 〈C1, . . . , Cn〉) (2)
return ⊥

Algorithm S1(m1, y, 1k)
pk, M ← R (0)
S0 ← (Epk(m1||0k), Epk(y1), . . . , Epk(yn)) (1)
return ⊥

Algorithm R(1k)
pk, sk ← G(12k)
S0, S1 ← pk, M (0)
(C0, C1, . . . , Cn)← S0 (2)
for(i = 0, i ≤ n, i + +){

ai||bi ← Dsk(Ci) (bi is k bit)
if bi = 0k then return ai

}
return ⊥

In the algorithm S0 we calculate following variables via additively homomorphic encryption.

Dsk(Di) := di = xi − yi

Dsk(D′
i) := d′i = xi + yi − 1

Dsk(Ei) := ei = 2ei−1 + di where e0 = 0

Dsk(Ceq) := ceq = m1||0k +
n∑

i=1

ridi

Dsk(Ci) := ci = m0||0k + r′i(ei − di + d′i)

If xi = yi, di = 0 and d′i = ±1; otherwise, di = ±1 and d′i = 0. Let l be the rightmost different bit
between x and y. We have ei = 0 if i < l, 0 < |ei| < p if i > l, and ei = di if i = l.

4.1.2 Security proof

The interactive protocol Π = (S0, S1, R) is a secure CCC protocol against the semi-honest (honest-
but-curious) senders and the malicious receiver, assuming semantic security of the employed en-
cryption scheme.

Correctness

(a) Assume that Q(x, y) = 0: Let l be the index of the first different bit of x and y. In the
algorithm S0, we see that dl = el and d′l = 0, hence cl = m0||0k. R verifies ciphertexts from a
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younger index to an elder one, hence R returns m0 when “if ai 6= m0 then bi 6= 0” holds for any i
which is smaller than the index of the correct ciphertext Epk(cl).

First, we consider the value of Ceq. In the algorithm S0, ri is uniformly picked from M and
di = xi − yi = ±1, and thus ceq is also uniformly distributed on M . Therefore, in the algorithm
R, the probability that “b0 = 0 and a0 6= m0” is 2−k(1 − 2−k). Next, we consider the values of
Ci (1 ≤ i ≤ n). In the algorithm S0, r′i is uniformly picked from M. Because |x| and |y| is smaller
than the bit length of p, GCD(ei − di + d′i, N) = 1, hence r′i(ei − di + d′i) is uniformly distributed
on M . Therefore, the probability that “bi = 0 and ai 6= m0” is 2−k(1 − 2−k). The worst case is
that the last element of 〈C1, . . . , Cn〉 is Epk(cl). From the above discussion, we have

Pr [ tr ← 〈S0(m0, x), S1(m1, x), R()〉(1k) : R(1k, tr) = m0 ]
> (1− 2−k(1− 2−k))n > 1− ε(k)

(b) Assume that Q(x, y) = 1: In the algorithm S0, since di = 0 for any i (1 ≤ i ≤ n), we have
ceq = m1||0k. Therefore, R returns m1 with probability 1.

Sender’s security

(a) Security against the receiver: The view of R is VIEWΠ
R((m0, x), (m1, y),⊥) =

(C0, C1, . . . , Cn).
Assume that Q(x, y) = 0. As we showed above, one element of (C1, . . . , Cn) is Epk(m0||0k), and

others are all uniformly distributed on M . Therefore, we can construct the simulator as follows:

Algorithm SimR(m0)
for(i = 1, i ≤ n, i + +){

ri ←M

}
return (Epk(r1), 〈Epk(m0||0k), Epk(r2), . . . , Epk(rn)〉)

The output of SimR(m0) is statistically indistinguishable from the view of R.
Assume that Q(x, y) = 1. As we showed above, ci (1 ≤ i ≤ n) are all uniformly distributed on

M . Therefore, we can construct the simulator as follows,

Algorithm SimR(m1)
for(i = 1, i ≤ n, i + +){

ri ←M

}
return (Epk(m1), 〈Epk(r1), . . . , Epk(rn)〉)

The output of SimR(m0) is statistically indistinguishable from the view of R.

(b) Security against the sender: The view of S0 is (m0, x, M1, Y1, . . . , Yn, r1, . . . , rn, r′1, . . . , r
′
n).

The simulator SimS0((x,m0),⊥,⊥) has m0 and x as the input, and ri and r′i is uniformly distributed
on M. For M1, Y1, . . . , Yn we construct the simulator as follows,

Algorithm SimS0((x,m0),⊥,⊥)
r ←M

M ′
1 ← Epk(r)

for(i = 1, i ≤ n, i + +){
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ai ←M, bi ←M, ci ←M

Y ′
i ← Epk(ai)

}
return (m0, x, M ′

1, Y
′
1 , . . . , Y

′
n, b1, . . . , bn, c1, . . . , cn)

bi, ci and ri, r
′
i are all uniformly distributed on M . It follows directly that there is no efficient

distinguisher between M1, Y1, . . . , Yn and M ′
1, Y

′
1 , . . . , Y

′
n from the semantic security of the employed

encryption scheme.

4.2 1-out-of-n Q-COT

Our construction of a COT1
n protocol uses the secure COT1

2 one as a special case of COT1
n one.

For example, a SCOT protocol [1] suffices our security notions as COT1
2.

4.2.1 Construction

Let Q1, . . . , Ql be the predicates and Q = (Q1, . . . , Ql). Let Qi-COT1
2 = (Si, Ri) be a secure COT1

2

protocol with the security parameter k. We construct a Q-COT1
2l protocol with Q1-COT1

2,. . .,Ql-
COT1

2. Let M be the message space of COT1
2, and M ′ the message space which suffices the

following. For any K ∈ M ′, 0||K and 1||K is the element of M . Let m = (m1, . . . , mn) be the
messages from M , and x = (x1, . . . , xl) and y = (y1, . . . , yl) the secrets of S and R, respectively,
from the domain of the secrets of Qi-COT1

2. We construct a Q-COT1
n protocol Π = (S,R) as

follows:

Algorithm S(m,x, 1k)
for(i = 1, i ≤ l, i + +){

K0
i ←M ′,K1

i ←M ′

Qi-COT1
2Si ← (0||K0

i , 1||K1
i , xi) (1)

}
for(i = 1, i ≤ n, i + +){

ci ← mi ⊕
l⊕

j=1

K
ij
j where ij denotes j−th bit of i

}
R← (c1, . . . , cn) (2)
return ⊥

Algorithm R(y, 1k)
for(i = 1, i ≤ l, i + +){

Qi-COT1
2Ri ← yi (1)

ki ← Qi-COT1
2Ri (1)

Ii||KIi
i ← ki (Ii is 1 bit)

}
(c1, . . . , cn)← S (2)

return cI ⊕
l⊕

j=1

K
Ij

j where Ij denotes j−th bit of I

The complexity of the whole protocol is log n invocations of the COT1
2 protocol.

9



4.2.2 Security proof

The interactive protocol Π is a secure COT1
n protocol against the semi-honest (honest-but-curious)

sender and the malicious receiver.

Correctness Let νi be the success probability of Qi-COT1
2. R obtains the correct message if

and only if all Qi-COT1
2 is successful.

Pr [ tr ← 〈S(x,m), R(y)〉(1k) : R(y, 1k, tr) = mi ] =
n∏

i=1

νi > 1− ε(k)

Sender’s security We denote the view of R by (y, c, a) where y = (y1, . . . , yn), c = (c1, . . . , cn),
and a = (a1, . . . , al) are the views of Ri. Because of the sender’s security of Qi-COT1

2, for all
i (1 ≤ i ≤ l) there exists a simulator which simulates the view of Ri, i.e.

{SimRi(KQi(xi,yi)
i , yi)}k s≡ {VIEWQi-COT1

2

Ri ((K0
i ,K1

i , xi), yi)}k
We construct the simulator SimR(mQ(x,y), y) as follows:

Algorithm SimR(mQ(x,y), y)
for(i = 1, i ≤ l, i + +){

ri ←M, c′i ←M

a′i ← SimRi(ri, yi)
}
c′ ← (c′1, . . . , c

′
n)

a′ ← (a′1, . . . , a
′
n)

return (y, c′, a′)

We show that there is no efficient distinguisher between (y, c, a) and (y, c′, a′). The elements of c
and c′ are all uniformly distributed on M , hence there are statistically indistinguishable. a and a′

are statistically indistinguishable because of the sender’s security of Qi-COT1
2.

Receiver’s security We denote the view of S by (m,x, K, a) where m = (m1, . . . , mn), x =
(x1, . . . , xl), K = ((K0

1 ,K1
1 ), . . . , (K0

l ,K1
l )), and a = (a1, . . . , al) are the views of Si. Because of

the receiver’s security of Qi-COT1
2, for all i (1 ≤ i ≤ l) there exists a simulator which simulates

the view of Si, i.e.

{SimSi((K0
i ,K1

i , xi),⊥)}k c≡ {VIEWQi-COT1
2

Si ((K0
i ,K1

i , xi), yi)}k
We construct the simulator SimS((m,x),⊥) as follows,

Algorithm SimS((m,x),⊥)
for(i = 1, i ≤ l, i + +){

r0
i ←M, r1

i ←M

a′i ← SimSi((r0
i , r

1
i , xi),⊥)

}
K ′ ← (r0

1, r
1
1), . . . , (r

0
l , r

1
l )

a′ ← a′1, . . . , a
′
l

return (m,x, K ′, a′)

10



The elements of K and K ′ are all uniformly distributed on M , hence they are computationally
indistinguishable. Suppose that there exists a efficient distinguisher between (m,x, K, a) and
(m,x, K ′, a′), we can construct the adversary who breaks the receiver’s security of Qi-COT1

2. Let
A,B be PPTMs, where A attacks the receiver’s security of Qi-COT1

2, and B distinguishes a from
a′ in probability ν and in efficient time t. The construction is as follows,

Algorithm A(x)
r1, . . . , rn − 1←M.

b← B(〈x, r1, . . . , rn−1〉)
return b

B distinguishes the tuple of n distributions with probability ν, thus A distinguishes x with prob-
ability at least ν/n in time t. If ν is not negligible then it contradicts the receiver’s security of
Qi-COT1

2.

4.3 1-out-of-n Q-COC

Our construction of a COC1
n protocol uses the secure COC1

2 one as a special case of COC1
n one.

For example, a COC1
2 protocol [3] suffices our security notions.

4.3.1 Construction

Let Q1, . . . , Ql be the predicates, and Q = (Q1, . . . , Ql). Let Qi-COC1
2 = (Si, Ri

0, R
i
1) be a secure

COC1
2 protocol with the security parameter k. We construct a Q-COC1

2l protocol, with Q1-
COC1

2,. . .,Ql-COC1
2. Let M be the message space of COC1

2, and M ′ the message space which
suffices the following. For any K ∈M ′, 0||K and 1||K is the element of M . Let m = (m1, . . . , mn)
be the messages from M , and x = (x1, . . . , xl) and y = (y1, . . . , yl) the secrets of R0 and R1,
respectively, from the domain of the secrets of Qi-COC1

2. We construct a Q-COC1
n protocol

Π = (S,R0, R1) as follows:

Algorithm S(m, 1k)
for(i = 1, i ≤ l, i + +){

K0
i ←M ′,K1

i ←M ′

Qi-COC1
2Si ← (0||K0

i , 1||K1
i , xi) (1)

}
for(i = 1, i ≤ n, i + +){

ci ← mi ⊕
l⊕

j=1

K
ij
j where ij denotes j−th bit of i

}
R0, R1 ← (c1, . . . , cn) (2)
return ⊥

Algorithm R0(x, 1k)
for(i = 1, i ≤ l, i + +){

Qi-COC1
2Ri

0
← xi (1)

ki ← Qi-COC1
2Ri

0
(1)

Ii||KIi
i ← ki (Ii is 1 bit)
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}
(c1, . . . , cn)← S (2)

return cI ⊕
l⊕

j=1

K
Ij

j where Ij denotes j−th bit of I

Algorithm R1(y, 1k)
for(i = 1, i ≤ l, i + +){

Qi-COC1
2Ri

1
← yi (1)

ki ← Qi-COC1
2Ri

1
(1)

Ii||KIi
i ← ki (Ii is 1 bit)

}
(c1, . . . , cn)← S (2)

return cI ⊕
l⊕

j=1

K
Ij

j where Ij denotes j−th bit of I

The complexity of the whole protocol is log n invocations of the COC protocol12.

4.3.2 Security proof

The interactive protocol Π is a secure COT1
n protocol against the semi-honest (honest-but-curious)

sender and the malicious receivers.

Correctness Let νi be the success probability of Qi-COC1
2. R0 and R1 obtain the correct

message if and only if all Qi-COC1
2 is successful.

Pr [ tr ← 〈S(m), R0(x), R1(y)〉(1k) : R0(x, 1k, tr) = R1(y, 1k, tr) = mi ] =
n∏

i=1

νi > 1− ε(k)

Sender’s security We denote the views of R0 and R1 by (x, c, a) and (y, c, b), respectively,
where x = (x1, . . . , xn), y = (y1, . . . , yn), c = (c1, . . . , cn) and a = (a1, . . . , al), b = (b1, . . . , bl) are
the views of Ri

0, R
i
1, respectively. Because of the sender’s security of Qi-COC1

2, for all i (1 ≤ i ≤ l)
there exists simulators which simulate the views of Ri

0, R
i
1, respectively, i.e.

{SimRi
0
(KQi(xi,yi)

i , xi)}k s≡ {VIEWQi-COT1
2

Ri
0

((K0
i ,K1

i ), xi, yi)}k
{SimRi

1
(KQi(xi,yi)

i , yi)}k s≡ {VIEWQi-COT1
2

Ri
1

((K0
i ,K1

i ), xi, yi)}k

We construct the simulator SimR0(mQ(x,y), y) and SimR0(mQ(x,y), y) as follows:

Algorithm SimR0(mQ(x,y), x)
for(i = 1, i ≤ l, i + +){

ri ←M, c′i ←M

a′i ← SimRi
0
(ri, xi)

}
c′ ← (c′1, . . . , c

′
n)

a′ ← (a′1, . . . , a
′
l)

12



return (x, c′, a′)

Algorithm SimR1(mQ(x,y), y)
for(i = 1, i ≤ l, i + +){

ri ←M, c′i ←M

b′i ← SimRi
1
(ri, yi)

}
c′ ← (c′1, . . . , c

′
n)

b′ ← (b′1, . . . , b
′
l)

return (y, c′, b′)

We just show that there is no efficient distinguisher between (x, c, a) and (x, c′, a′), since the same
can be said for (y, c, b) and (y, c′, b′). The elements of c and c′ are all uniformly distributed on M ,
hence there are statistically indistinguishable. Because of the receiver’s security of Qi-COC1

2, a
and a′ are statistically indistinguishable.

Receiver’s security

(a) Security against the sender: We denote the view of S by (m,K, a) where m =
(m1, . . . , mn), K = ((K0

1 ,K1
1 ), . . . , (K0

l ,K1
l )), and a = (a1, . . . , al) are the views of Si. Because of

the receiver’s security of Qi-COC1
2 against the sender, for all i (1 ≤ i ≤ l) there exists a simulator

which simulates the view of Si, i.e.

{SimSi((K0
i ,K1

i ),⊥,⊥)}k c≡ {VIEWQi-COT1
2

Si ((K0
i ,K1

i ), xi, yi)}k
We construct the simulator SimS((m,x),⊥) as follows:

Algorithm SimS(m,⊥,⊥)
for(i = 1, i ≤ l, i + +){

r0
i ←M, r1

i ←M

a′i ← SimSi((r
0
i , r

1
i ),⊥,⊥)

}
K ′ ← (r0

1, r
1
1), . . . , (r

0
l , r

1
l )

a′ ← a′1, . . . , a
′
l

return (m,x, K ′, a′)

The elements of K and K ′ are all uniformly distributed on M , hence they are computationally
indistinguishable. a and a′ are computationally indistinguishable because of the receiver’s security
of Qi-COC1

2. We can show this by exactly the same technique as we showed in the receiver’s
security of COT1

n.

(b) Security against the receiver: We can show this by exactly the same process as the re-
ceiver’s security against the sender.

4.4 1-out-of-n Q-CCC

Our construction of a CCC1
n protocol uses the secure CCC one as a special case of CCC1

n one,
since CCC provides 1-out-of-2 property.
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4.4.1 Construction

Let Q1, . . . , Ql be the predicates, and Q = (Q1, . . . , Ql). Let Qi-CCC= (Si
0, S

i
1, R

i) be a se-
cure CCC protocol with the security parameter k. We construct a Q-CCC1

2l protocol, with Q1-
CCC,. . .,Ql-CCC. Let M be the message space of CCC, and M ′ the message space which suffices
the following. For any K ∈M ′, 0||K and 1||K is the element of M . Let m = (m1, . . . , mn/2),m′ =
(mn/2+1, . . . , mn),x = (x1, . . . , xl), and y = (y1, . . . , yl) be the messages and the secrets of S0, S1,
respectively. The messages are from M and the secrets from the domain of the secrets of Qi-CCC.
We construct a Q-CCC1

n protocol Π = (S0, S1, R) as follows:

Algorithm S0(m,x, 1k)
for(i = 1, i ≤ l, i + +){

K0
i ←M ′

Qi-CCCSi
0
← (0||K0

i , xi) (1)

}
S1 ← (K0

1 , . . . , K0
l ) (2)

(K1
1 , . . . , K1

l )← S1 (2)
for(i = 1, i ≤ n/2, i + +){

ci ← mi ⊕
l⊕

j=1

K
ij
j where ij denotes j−th bit of i

}
R← (c1, . . . , cn/2) (3)
return ⊥

Algorithm S1(m′, y, 1k)
for(i = 1, i ≤ l, i + +){

K1
i ←M ′

Qi-CCCSi
1
← (1||K1

i , yi) (1)

}
S0 ← (K1

1 , . . . , K1
l ) (2)

(K0
1 , . . . , K0

l )← S0 (2)
for(i = n/2 + 1, i ≤ n, i + +){

ci ← mi ⊕
l⊕

j=1

K
ij
j where ij denotes j−th bit of i

}
R← (cn/2 + 1, . . . , cn) (4)
return ⊥

Algorithm R(y, 1k)
for(i = 1, i ≤ l, i + +){

Qi-CCCRi ← yi (1)
ki ← Qi-CCCRi (1)
Ii||KIi

i ← ki (Ii is 1 bit)
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}
(c1, . . . , cn/2)← S0 (3)
(cn/2+1, . . . , cn)← S1 (4)

return cI ⊕
l⊕

j=1

K
Ij

j where Ij denotes j−th bit of I

The complexity of the whole protocol is log n invocations of the 1-out-of-2 CCC protocol.

4.4.2 Security proof

The interactive protocol Π is a secure CCC1
n protocol against the semi-honest (honest-but-curious)

senders and the malicious receiver.

Correctness Let νi be the probability that Qi-CCC successfully conclude. R obtains the correct
message if and only if all the Qi-CCC protocol is successful.

Pr [ tr ← 〈S0(x,m), S1(y, m′), R()〉(1k) : R(1k, tr) = mi ] =
n∏

i=1

νi > 1− ε(k)

Sender’s security

(a) Security against the receiver: We denote the view of R by (c, a) where c = (c1, . . . , cn),
and a = (a1, . . . , al) are the views of Ri. Because of the sender’s security of Qi-CCC, for all
i (1 ≤ i ≤ l) there exists a simulator which simulates the view of Ri, i.e.

{SimRi(KQi(xi,yi)
i )}k s≡ {VIEWQi-COT1

2

Ri ((K0
i , xi), (K1

i , yi),⊥)}k
We construct the simulator SimR(mQ(x,y), y) as follows:

Algorithm SimR(mQ(x,y))
for(i = 1, i ≤ l, i + +){

ri ←M, c′i ←M

a′i ← SimRi(ri)
}
c′ ← (c′1, . . . , c

′
n)

a′ ← (a′1, . . . , a
′
n)

return (c′, a′)

We show that there is no efficient distinguisher between (c, a) and (c′, a′). The elements of c and
c′ are all uniformly distributed on M , hence there are statistically indistinguishable. Because of
the sender’s security of Qi-CCC1

n a and a′ are statistically indistinguishable.

(b) Security against the sender: We denote the views of S0 and S1 by (m,x, K0, a) and
(m′, y, K1, b), respectively where m = (m1, . . . , mn/2), m′ = (mn/2+1, . . . , mn), x = (x1, . . . , xl),
y = (y1, . . . , yl), K0 = (K0

1 , . . . , K0
l ), K1 = (K1

1 , . . . , K1
l ), and a = (a1, . . . , al), b = (b1, . . . , bl) are

the views of Si
0, S

i
1, respectively. Because of the sender’s security of Qi-CCC, for all i (1 ≤ i ≤ l)

there exists simulators which simulate the views of Si
0, S

i
1, respectively, i.e.

{SimSi
0
((K0

i , xi),⊥,⊥)}k c≡ {VIEWQi-COT1
2

Si
0

((K0
i , xi), (K1

i , yi),⊥)}k
{SimSi

1
(⊥, (K1

i , yi),⊥)}k c≡ {VIEWQi-COT1
2

Si
1

((K0
i , xi), (K1

i , yi),⊥)}k

15



We construct the simulator SimS0((m,x),⊥,⊥) and SimS1(⊥, (m′, y),⊥) as follows,

Algorithm SimS0((m,x),⊥,⊥)
for(i = 1, i ≤ l, i + +){

ri ←M

a′i ← SimSi
0
((ri, xi),⊥,⊥)

}
K ′ ← r1, . . . , rl

a′ ← a′1, . . . , a
′
l

return (m,x, K ′, a′)

Algorithm SimS1(⊥, (m′, y),⊥)
for(i = 1, i ≤ l, i + +){

ri ←M

b′i ← SimSi
1
(⊥, (ri, yi),⊥)

}
K ′′ ← r1, . . . , rl

b′ ← b′1, . . . , b
′
l

return (m,x, K ′, b′)

We just show that there is no efficient distinguisher between (m,x, K0, a) and (m,x, K ′, a′), since
the same can be said for (m′, y, K1, b) and (m′, y, K ′′, b′). The elements of K0 and K ′ are all
uniformly distributed on M , hence they are computationally indistinguishable. a and a′ are
computationally distinguishable because of the receiver’s security of Qi-CCC. We can show this
by exactly the same technique as we showed in receiver’s security of COT1

n.

5 Conclusion

We introduce a new notion of conditional converge cast, such that we append the conditional prop-
erty to converge cast, and new notions of 1-out-of-n conditional oblivious/converge transfer/cast,
which are the generalization of 1-out-of-2 protocols. The definitions of these notions are given. We
also provide an implementation for these notions.
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