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Abstract

Steganography is the science of sending messages hidden in harmless communications over
a public channel so that an adversary eavesdropping on the channel cannot even detect the
presence of the hidden messages. In this paper, we formalize and propose a steganographic
signature scheme. We define the security condition of steganographic signature, the stegano-
graphic security and the unforgeability. We construct a steganographic signature scheme, and
we show that our proposed steganographic signature scheme with the extended Schnorr signa-
ture scheme is steganographically secure and unforgeable.

Keywords: Digital signature, Steganography

1 Introduction

Steganography is the science of sending messages hidden in harmless communications over a public
channel so that an adversary eavesdropping on the channel cannot even detect the presence of the
hidden messages. Public-key steganography is the protocol which allows two parties, who have
never met or exchanged a secret, to send hidden messages over a public channel so that an adversary
cannot even detect that these hidden messages are being sent.

Public-key steganography with a passive adversary was formalized by von Ahn and Hopper [7].
They defined the security notion which was the analogue of a cryptosystem with the security
against the chosen-plaintext attack. They constructed the stegosystem which satisfied this notion.
Backes and Cachin [1] formalized public-key steganography with an active adversary. They defined
the security notion against such an adversary. A stegosystem which satisfies this notion is called
steganographically secure against the adaptive chosen-covertext attack (SS-CCA). Analogously to
the standard cryptographic notion of a chosen-ciphertext attack, this seems to be the most general
type of attack possible on a system for steganography. They also defined a relaxed notion of the
security, against the replayable adaptive chosen-covertext attack (SS-RCCA). They showed that
an SS-RCCA stegosystem could be constructed from any RCCA-secure [2] public-key cryptosystem
whose ciphertexts were pseudorandom. Hopper [3] constructed an SS-CCA stegosystem, which re-
lied on the existence of public-key encryption schemes which satisfied the indistinguishability from
random bits under the chosen-ciphertext attack. They showed the existence of such encryption
schemes under the Decisional Diffie-Hellman assumption.

In this paper, we propose a steganographic signature scheme. We consider the following sce-
nario. By signing the message, there is a possibility that only the signature is removed and only
the message is used. Furthermore, the third party’s signature might be applied. We can prevent
such situations if the signature seems a message and be mingled with other messages, and only
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the signer knows where to be hidden it. By making the signed message be kept by the court, we
can show that it is a work of the signer. It can be used for the copyright protection.

We propose the definition of steganographic signature. We also define the security of stegano-
graphic signature, the steganographic security and the unforgeability. Generally, digital signatures
should be unforgeable. In addition to the unforgeability, steganographic signatures should be in-
distinguishable from messages so that an eavesdropper cannot detect the presence of the hidden
signature.

In this paper, we also propose a steganographic signature scheme by modifying public-key
steganography schemes. In order to construct it satisfying the steganographic security, we define
the security notion of digital signature. It implies the following property: for a value, it is indis-
tinguishable a random value from the signature for a message which consists of the concatenation
the value and randomly chosen message. We show that the extended Schnorr signature scheme [9]
satisfies this notion, and our proposed steganographic signature scheme with the extended Schnorr
signature scheme is steganographically secure and unforgeable.

We give preliminaries in section 2. We propose definitions and the security properties for
steganographic signature in section 3. We construct a steganographic signature scheme in section
4. We show that our proposed steganographic signature scheme with the extend Schnorr signature
scheme is steganographically secure and unforgeable in section 5. We give the conclusion in section
6.

2 Preliminaries

A function µ : N → [0, 1] is said to be negligible if for every c > 0, for all sufficiently large n,
µ(n) < 1

nc . We denote the length (in bits) of a string or an integer s by |s|. The concatenation
of a string s1 and a string s2 is denoted by s1||s2. The assignment a||lb = c means that a is the
first l bits of c and b is the remaining |c| − l bits of c. We assume the existence of efficient and
unambiguous pairing and un-pairing operations, so (s1, s2) is not the same as s1||s2.

We denote the uniform distribution on k bit strings by Uk. We denote the complement of
an event V in some probability spaces by V. We denote the minimum entropy of a probabil-
ity distribution D with finite support X by H∞(D) = minx∈X

{
log2

1
PrD[x]

}
. For a probability

distribution D, we denote by x ← D the action of drawing a sample x according to D. We
denote the statistical difference between distributions D and E , with finite the support X, by
‖D − E‖ = 1

2

∑
x∈X |PrD[x]− PrE [x]|.

A family F of functions X → Y is called strongly universal [8] if for all distinct x1, x2 ∈ X
and all y1, y2 ∈ Y which are not necessarily distinct, exactly |F |/|Y |2 functions in F take x1 to y1

and x2 to y2.

2.1 Digital Signature

Definition 1 (digital signature). A digital signature scheme SD is a triple of probabilistic algo-
rithms denoted by (G,S,V).

• G: The key generation algorithm G is a randomized algorithm. On input a security parameter
1k, G returns a pair of (pk, sk). pk and sk are public and secret keys, respectively.

• S: The signing algorithm S is a (possibly randomized) algorithm. On input 1k, a message
m, and the secret key sk, S returns a signature σ for m.

• V: The verification algorithm V is a deterministic algorithm. On input 1k, a message m,
the public key pk, and a candidate signature σ for m, V returns 1 if σ is the valid signature
for m. Otherwise, V returns 0.
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(Correctness.) We require that V(1k,m, pk,S(1k,m, sk)) = 1 for any (pk, sk) ← G(1k) and m
in the message space (in this paper, we denote the message space by M).

Unforgeability. Let SD = (G,S,V) be a digital signature scheme. Let A be an adversary. A
plays a game as follows:

1. A is given pk.

2. A queries messages to the signing oracle S, and receives the corresponding signatures, adap-
tively.

3. A finally outputs (m∗, σ∗). If A has not queried m∗ and V(1k,m∗, pk, σ∗) = 1, then A wins.

We denote the event that A wins this game by WIN(A, k), where k is the security parameter. We
define A’s advantage against SD by

Advucma
SD (A, k) = Pr[WIN(A, k)],

where (pk, sk) ← G(1k). We say that SD is existentially unforgeable under the chosen message
attack (EUF-CMA) if for every probabilistic polynomial adversary A, Advucma

SD (A, k) is negligible
in k.

2.2 Pseudorandom Generators

Let G : {0, 1}k → {0, 1}l(k) be a function which is computable in polynomial time and k < l(k).
We define a distinguishing game by an adversary A and a challenger. We consider the experiments
Expi

PRG for i ∈ {0, 1} as follows:

Exp0
PRG

1. The challenger chooses x ← Uk and computes z = G(x) . Then the challenger
passes z to A.

2. A outputs a bit d.

3. Return d.

Exp1
PRG

1. The challenger chooses z ← Ul(k). Then the challenger passes z to A.

2. A outputs a bit d.

3. Return d.

We define A’s advantage against G by

Advprg
G,A(k) = |Pr[Exp0

PRG(A) = 1]− Pr[Exp1
PRG(A) = 1]|,

We also define A’s insecurity of G by InSecprg
G (t, k) = maxA∈A(t){Advprg

G,A(k)}, which A(t) is a
set of adversaries in running time t. We say that G is a pseudorandom generator if for every
probabilistic polynomial adversary A, Advprg

G,A(k) is negligible in k.
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2.3 Channels

We follow previous works [4, 5, 7, 1, 3] about steganography in modeling the communication
between two parties by a channel. We define a channel C as a family of probability distributions
on documents from a set D, indexed by sequences h ∈ D∗ where D∗ = D ×D × · · ·. A channel
implicitly specifies an indexed distribution on sequences of ` documents － given an index h, draw
d1 ← Ch, d2 ← C(h,d1), . . ., d` ← C(h,d1,...,d`−1). We call the index h the history and we label
this distribution on sequences by C`

h. A history h = (d1, d2, . . . , d`) is called legal if for all i,
PrC(d1,...,di−1)

[di] > 0. A channel is always informative if for every legal history h, H∞(C`
h) = Ω(`).

A channel is efficiently sampleable if there is an efficiently computable algorithm channel such that
channel(h,Uk) and Ch are computationally indistinguishable.

3 Steganographic Signature

In this section, we propose the definition and the security properties for steganographic signature.
We first define the steganographic signature scheme.

Definition 2 (steganographic signature). A steganographic signature scheme is a triple of proba-
bilistic algorithms denoted by (SG,SS,SV).

• SG: The key generation algorithm SG is a randomized algorithm. On input a security
parameter 1k, SG returns a key pair (pk, sk).

• SS: The signing algorithm SS is a (possibly randomized) algorithm. On input 1k, a message
m, a history h, and the secret key sk, SS returns a signature σ for m.

• SV: The verification algorithm SV is a deterministic algorithm. On input 1k, a message m,
a history h, the public key pk, and a candidate signature σ for m, SV returns 1 if σ is the
valid signature for m. Otherwise, SV returns 0.

(Correctness.) We require that SV(1k,m, h, pk,SS(1k,m, h, sk)) = 1 for any (pk, sk) ←
SG(1k), m ∈M, and legal history h.

We next define the security for steganographic signature.

Steganographic security. Let SSD = (SG,SS,SV) be a steganographic signature scheme and
`∗ the function which implies the length of the signature. We define a distinguishing game under
the chosen message-and-history attack against SSD by an adversary W and a challenger. We
consider the experiments Expi

CMHA for i ∈ {0, 1} as follows:

Exp0
CMHA

1. W is given pk.

2. W produces a history h∗ and passes h∗ to the challenger. The challenger chooses
m∗ ∈ M randomly and computes σ∗ = SS(m∗, h∗, sk). Then the challenger
passes σ∗ to W .

3. W outputs a bit d.

4. Return d.

Exp1
CMHA

1. W is given pk.
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2. W produces a history h∗ and passes h∗ to the challenger. The challenger samples
σ∗ ← C`∗

h∗ . Then the challenger passes σ∗ to W .

3. W outputs a bit d.

4. Return d.

In the above experiments, W can make access to the signing oracle SS. We define W ’s advantage
against SSD with respect to C by

Advscmha
SSD,C,W (k) = |Pr[Exp0

CMHA(W (pk)) = 1]− Pr[Exp1
CMHA(W (pk)) = 1]| ,

where (pk, sk) ← SG(1k). We also define the insecurity of SSD with respect to C by

InSecscmha
SSD,C(t, q, µ, c, l∗, k) = max

W∈W(t,q,µ,c,l∗)

{
Advscmha

SSD,C,W (k)
}

,

where W(t, q, µ, c, l∗) is the set of adversaries that make q signing queries of total length
µ and c challenge queries in running time t, and l∗ = |m∗|. We say that SSD
is (t, q, µ, c, l∗, k, ε)-steganographically secure under the chosen message-and-history attack if
InSecscmha

SSD,C(t, q, µ, c, l∗, k) ≤ ε. We say that SSD is steganographically secure under the cho-
sen message-and-history attack (SS-CMHA) if for every probabilistic polynomial adversary W ,
Advscmha

SSD,C,W (k) is negligible in k.

Unforgeability. Let SSD = (SG,SS,SV) be a steganographic signature scheme and C a channel.
Let W be an adversary. W plays a game as follows:

1. W is given pk.

2. W queries pairs of the message and the history to the signing oracle SS, and receives the
corresponding signatures, adaptively.

3. W finally outputs (m∗, h∗, σ∗). If W has not queried m∗ and SV(1k,m∗, h∗, pk, σ∗) = 1, then
W wins.

We denote the event that W wins this game by sWINC(W,k), where k is the security parameter.
We define W ’s advantage against SSD with respect to C by

Advucmha
SSD,C(W,k) = Pr[sWINC(W,k)],

where (pk, sk) ← SG(1k). We say that SSD is existentially unforgeable under the chosen
message-and-history attack (EUF-CMHA) if for every probabilistic polynomial adversary W ,
Advucmha

SSD,C(W,k) is negligible in k.

4 The Construction of Steganographically-Secure and Unforge-
able Scheme

In this section, we show how to construct the scheme with the steganographic security. We first
define the security notion for digital signature called the indistinguishability from random bits
under the chosen-message attack(IND$-CMA). Then, we construct the steganographic signature
scheme by using a digital signature scheme. We employ the idea for constructing the public-key
steganography by Hopper [3]. We show that our scheme is steganographically secure if the under-
lying digital signature scheme satisfies IND$-CMA. We also show that our scheme is unforgeable if
the underlying digital signature scheme satisfies EUF-CMA.
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4.1 The Indistinguishability from Random Bits

In this section, we define the security notion for digital signature called the indistinguishability
from random bits under the chosen-message attack(IND$-CMA).

Let SD be a digital signature scheme and k a security parameter. Let ` be the function which
implies the length of the signature. We define a distinguishing game under the chosen-message
attack against SD by an adversary A and a challenger. We consider the experiments Expi

CMA

for i ∈ {0, 1} as follows:

Exp0
CMA

1. A is given pk.

2. A produces u∗ ∈ {0, 1}k and passes u∗ to the challenger. The challenger chooses
m∗ ∈M randomly and computes σ∗ = S(u∗||m∗, sk). Then the challenger passes
σ∗ to A.

3. A outputs a bit d.

4. Return d.

Exp1
CMA

1. A is given pk.

2. A produces u∗ ∈ {0, 1}k and passes u∗ to the challenger. The challenger chooses
σ∗ ← U`. Then the challenger passes σ∗ to A.

3. A outputs a bit d.

4. Return d.

In the above experiments, A can make access to the signing oracle S. We define A’s CMA advantage
against SD by

Advicma
SD,A(k) = |Pr[Exp0

CMA(A(pk)) = 1]− Pr[Exp1
CMA(A(pk)) = 1]| ,

where (pk, sk) ← G(1k). We also define the CMA insecurity of SD by

InSecicma
SD (t, q, µ, c, l∗, k) = max

A∈A(t,q,µ,c,l∗)

{
Advicma

SD,A(k)
}

,

where A(t, q, µ, c, l∗) is the set of adversaries, that make q signing queries of total length µ and
c challenge queries in running time t, and l∗ = |m∗|. We say that SD is (t, q, µ, c, l∗, k, ε)-
indistinguishable from random bits under the chosen-message attack if InSecicma

SD (t, q, µ, c, l∗, k) ≤ ε.
We say that SD is indistinguishable from random bits under the chosen-message attack (IND$-
CMA) if for every probabilistic polynomial adversary A, Advicma

SD,A(k) is negligible in k.

4.2 The Construction

In this section, we construct the steganographic signature scheme by using a standard digital
signature scheme. We employ the idea for constructing the public-key steganography by Hopper [3].

Hopper proposed the deterministic way to hide uniformly chosen bits, which we denote DEn-
code. Let F be a strongly universal family of hash functions D → {0, 1} and f ∈ F . We assume
that C is always informative and efficiently sampleable.
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Procedure DEncode:
Input: bits c1, . . . , cl, history h, bound k, random values r1, . . . , rlk ∈ {0, 1}k

Let ι = 1; for i = 1, . . . , l do
Let j = 0;
repeat:

compute si = channel((h, s1...i−1), rι); increment j, ι
until f(si) = ci or j > k

Output: s1, s2, . . . , sl

We now propose the steganographic signature scheme by using the standard digital signature
scheme.

Definition 3. Our proposed steganographic signature scheme SSD = (SG,SS,SV) is as follows.
Let SD = (G,S,V) be a digital signature scheme. Let G : {0, 1}k → {0, 1}k×lk be a hush function.
Let F be a strongly universal family of hash functions D → {0, 1} and f ∈ F . We assume that C
is always informative and efficiently sampleable.

The key generation algorithm SG is the same as G. The signing and verification algorithms
are as follows:

Algorithm SS:
Input: m, h, sk
Choose u ← Uk

Compute σ = S(u||m, sk)
Output: DEncode(σ||u, h, k, G(u))

Algorithm SV:
Input: m, σ1, . . . , σl, h, pk
Compute σ||l−ku = f(σ1)|| · · · ||f(σl)
If σ1|| · · · ||σl 6= DEncode(σ||u, h, k,G(u)), d = ⊥.
Otherwise, d = V(u||m, pk, σ)
Output: d

We show that our scheme is steganographically secure if SD satisfies IND$-CMA and G is a
pseudorandom generator.

Theorem 4. Let f be a function in F and let ε = maxh∈H
{

2−H∞(Ck
h)/2

}
= 2−Ω(k). Then

InSeccmha
SSD,C(t, q, µ, c, l, k) ≤ InSecicma

SD (t′, q, µ′, c, l, k) + cInSecprg
G (t′, k) + c{`(l + k) + k}ε,

where t′ ≤ t + O(lk) and µ′ ≤ µ + qk.

Proof. Let W be an adversary in W(t, q, µ, c, l) who breaks the steganographic security of SSD.
We consider the case that c = 1. Let (pk, sk) be public and secret keys generated by SG(1k). We
consider the experiments Expi for i ∈ {1, 2, 3, 4, 5} as follows:

Expi

1. W is given pk.

2. W produces h∗. The challenger gives σ∗i to W .

3. W outputs a bit d.

4. Return d.
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In the above experiments, W can make access to the signing oracle SS. We define σi for i ∈
{1, 2, 3, 4, 5} as follows:

• σ∗1 ← C`(l+k)+k
h∗

• σ∗2 = DEncode(û, h∗, k, Uk×lk),
where û ← U`(l+k)+k

• σ∗3 = DEncode(u′||u∗, h∗, k, Uk×lk),
where u′ ← U`(l+k), u∗ ← Uk

• σ∗4 = DEncode(u′||u∗, h∗, k, G(u∗)),
where u′ ← U`(l+k), u∗ ← Uk

• σ∗5 = DEncode(SS(u∗||m)||u∗, h∗, k, G(u∗)),
where u∗ ← Uk

Let Advi
W (k) = |Pr[Expi+1(W (pk)) = 1]− Pr[Expi(W (pk)) = 1]|. Note that

Advscmha
SSD,C,W (k) =

∣∣∣Pr[Exp5(W (pk)) = 1]− Pr[Exp1(W (pk)) = 1]
∣∣∣

≤
4∑

i=1

∣∣∣Pr[Expi+1(W (pk)) = 1]− Pr[Expi(W (pk)) = 1]
∣∣∣

= Adv1
W (k) + Adv2

W (k) + Adv3
W (k) + Adv4

W (k).

Thus we proceed to bound Advi
W (k) for i ∈ {1, 2, 3, 4}. Hopper [3] proved that Adv1

W (k) ≤
{`(l + k) + k}ε and Adv3

W (k) ≤ InSecprg
G (t′, k). The distribution of û is identical with that of

u′||u∗. Therefore Adv2
W (k) = 0.

We prove that Adv4
W (k) ≤ InSecicma

SD (t′, q, µ′, 1, l∗, k). We construct an adversary A attacking
the indistinguishability from random bits of SD by using W .

A takes a public key pk where (pk, sk) ← G(1k) and passes it to W . If W makes a signing
query (m,h), A chooses u ← Uk. A queries u||m to A’s signing oracle and receives σa which
is a signature for u||m. A computes σb = DEncode(σa||u, h, k, G(u)) and returns σb to W . In
the challenge phase, W outputs h∗ as its challenge. A chooses u∗ ← Uk and outputs u∗ as its
challenge. Then, A is given the challenge σ∗a and returns σ∗b = DEncode(σ∗a||u∗, h∗, k,G(u∗)) to W .
A continues to respond signing queries of W as before.

Finally, if W outputs a bit d, A outputs the same bit d.
Notice that when A is given a signature of u∗||m∗ (m∗ is chosen randomly), A perfectly sim-

ulates Exp5 for W . Therefore Pr[Exp0
CMA(A(pk)) = 1] = Pr[Exp5(W (pk)) = 1]. On the

other hand, when A is given a random string, A perfectly simulates Exp4 for W . Therefore
Pr[Exp1

CMA(A(pk)) = 1] = Pr[Exp4(W (pk)) = 1]. Then we have that

Adv4
W (k) =

∣∣Pr[Exp5(W (pk)) = 1]− Pr[Exp4(W (pk)) = 1]
∣∣

=
∣∣Pr[Exp0

CMA(A(pk)) = 1]− Pr[Exp1
CMA(A(pk)) = 1]

∣∣
= Advicma

SD,A(k).

We can consider the case that c > 1 by applying the hybrid arguments to the analysis of Adv1
W (k)

and Adv3
W (k), and get the claimed result.

We show that our scheme is unforgeable if SD satisfies EUF-CMA.

Theorem 5. Let SD be a digital signature scheme and SSD our proposed steganographic signature
scheme with SD. If SD satisfies EUF-CMA, then SSD satisfies EUF-CMHA.
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Proof. We assume that SSD does not satisfy EUF-CMHA. Then, a probabilistic polynomial ad-
versary W that can forge a steganographic signature exists. We construct an adversary A that
forges a signature of SD by using W .

A takes a public key pk where (pk, sk) ← G(1k) and passes it to W . If W makes a signing
query (m, h), A chooses u ← Uk. A queries u||m to A’s signing oracle and receives σ which is a
signature for u||m. A computes σ′ = DEncode(σ||u, h, k, G(u)) and returns σ′ to W .

W outputs (m∗, h∗, σ∗) where σ∗ = σ∗1|| · · · ||σ∗z . A computes σ̂ = f(σ∗1)|| · · · ||f(σ∗z) and parses
σ̂ = σ̃||u∗ where |u∗| = k. A outputs (u∗||m∗, σ̃). By construction, σ̃ is a valid signature for
u∗||m∗. Therefore, SD does not satisfy EUF-CMA.

5 A Concrete Scheme Based on the Extended Schnorr Signature
Scheme

In this section, we review the extended Schnorr signature scheme [9]. This is almost the same as
the original Schnorr signature scheme [6]. In the extended Schnorr signature scheme, we expand
the signature space. The public key contains an additional parameter b ∈ N which decides the
extended space of signatures.

5.1 The Extended Schnorr Signature Scheme

Let k be a security parameter. The public key pk consists of a set of the group parameters
I = (p, q, g,G, R), an element y ∈ G, and b ∈ N. The secret key sk is an element x ∈ Zq such
that y = gx mod p. The values p and q are large primes such that q|p − 1. G is a subgroup in
Z∗p of order q and g is a generator of G such that computing discrete logarithms in G is difficult.
R : {0, 1}∗ → {0, 1}k is a hash function where 2k < q. The value b is a parameter such that 2b is
(k + 1) bits longer than q. Let n be the largest number such that nq < 2b.

Signing algorithm. On input a message m ∈ M and the secret key x, S(m, x) is
computed as follows:

1. Choose w ∈ Zq randomly and compute t = gw mod p.

2. Compute r = R(t,m) and s = w − xr mod q.

3. Choose λ ∈ {0, 1, . . . , n− 1} randomly and compute s′ = s + λq.

The signature for m is r||s′.
Verification algorithm. To verify a signature r||s′ for message m with the public
key (I, y, b), compute s = s′ mod q and t = gsyr mod p and output 1 if r = R(t,m).
Otherwise, output 0.

We can easily see that if the original Schnorr signature scheme satisfies EUF-CMA, then the
extended Schnorr signature scheme also satisfies EUF-CMA.

5.2 A Steganographic Signature Scheme

We show that the extended Schnorr signature scheme satisfies IND$-CMA in the random oracle
model. We denote what challenge query of the adversary of IND$-CMA was limited to one time
by IND$-CMA1. We first show that the extended Schnorr signature scheme satisfies IND$-CMA1
in the random oracle model, and next show that IND$-CMA1 ⇒ IND$-CMA.

Theorem 6. Let SD be the extended Schnorr signature scheme and (pk, sk) =
(((p, q, g, G,R), y, b), x). We assume that R is a random oracle. Then, SD satisfies IND$-CMA1.
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Proof. Let A be a probabilistic polynomial adversary of SD. We assume that A queries to the
signing oracle S qS times and to a random oracle R qR times. We consider the experiments Expi

ES

for i ∈ {1, 2, 3, 4, 5, 6} as follows:

Expi
ES

1. A is given pk.
2. A produces u∗ ∈ {0, 1}k and passes u∗ to the challenger. The challenger gives

ri||s′i to A.
3. A outputs a bit d.
4. Return d.

We define ri||s′i for i ∈ {1, 2, 3, 4, 5, 6} as follows:

• r1||s′1: The challenger chooses m ∈ M randomly, w ∈ Zq randomly, and computes t = gw

mod p. The challenger computes r1 = R(u∗||m, t) and s1 = w − xr1 mod q. The challenger
chooses λ ∈ {0, 1, . . . , n − 1} randomly and computes s′1 = s1 + λq. Then the challenger
makes r1||s′1.

• r2||s′2: The challenger chooses m ∈ M randomly, w ∈ Zq randomly, and computes t = gw

mod p. The challenger chooses r2 ← Uk and computes s2 = w − xr2 mod q. The challenger
chooses λ ∈ {0, 1, . . . , n − 1} randomly and computes s′2 = s2 + λq. Then the challenger
makes r2||s′2.

• r3||s′3: The challenger chooses m ∈ M randomly, w ∈ Zq randomly, and computes t = gw

mod p. The challenger chooses r3 ← Uk and computes s3 = w − xr3 mod q. The challenger
chooses λ ∈ {0, 1, . . . , n − 1} randomly and computes s′3 = s3 + λq. Then the challenger
makes r3||s′3.

• r4||s′4: The challenger chooses m ∈ M randomly. The challenger chooses r4 ← Uk and
s4 ∈ Zq randomly. The challenger computes w = s4 + xr4 mod q and t = gw mod p. The
challenger chooses λ ∈ {0, 1, . . . , n − 1} randomly and computes s′4 = s4 + λq. Then the
challenger makes r4||s′4.

• r5||s′5: The challenger chooses m ∈ M randomly. The challenger chooses r5 ← Uk, s′5 ∈
{0, 1, . . . , nq − 1} randomly, and computes s5 = s′5 mod q. The challenger computes w =
s5 + xr5 mod q and t = gw mod p. Then the challenger makes r5||s′5.

• r6||s′6: The challenger chooses m ∈M randomly. The challenger chooses r6 ← Uk, s′6 ← Ub,
and computes s6 = s′6 mod q. The challenger computes w = s6 + xr6 mod q and t = gw

mod p. Then the challenger makes r6||s′6.
In the above experiments, A can make access to the signing oracle S and a random oracle R.
However, there is a following restriction in Exp2

ES: if A queries (u∗||m, t) to R, R returns r2

rather than R(u∗||m, t).
Let Advi

A(k) = |Pr[Expi
ES(A(pk)) = 1]− Pr[Expi+1

ES (A(pk)) = 1]|. Note that A’s advantage
is |Pr[Exp1

ES(A(pk)) = 1]− Pr[Exp6
ES(A(pk)) = 1]|. Then,

Advicma
SD,A(k) =

∣∣∣Pr[Exp1
ES(A(pk)) = 1]− Pr[Exp6

ES(A(pk)) = 1]
∣∣∣

=
∣∣∣

5∑

i=1

(
Pr[Expi

ES(A(pk)) = 1]− Pr[Expi+1
ES (A(pk)) = 1]

)∣∣∣

≤
5∑

i=1

∣∣∣Pr[Expi
ES(A(pk)) = 1]− Pr[Expi+1

ES (A(pk)) = 1]
∣∣∣

= Adv1
A(k) + Adv2

A(k) + Adv3
A(k) + Adv4

A(k) + Adv5
A(k).

10



We bound Advi
A(k) for i ∈ {1, 2, 3, 4, 5}. A’s condition given in Exp2

ES is identical with that in
Exp1

ES. Therefore Adv1
A(k) = 0. Exp3

ES is identical with Exp2
ES if A does not query (u∗||m, t)

to R. We denote the event that A queries (u∗||m, t) to R by E. Then

Adv2
A(k) =

∣∣∣Pr[Exp2
ES(A(pk)) = 1]− Pr[Exp3

ES(A(pk)) = 1]
∣∣∣

=
∣∣∣
(

Pr[E] Pr[Exp2
ES(A(pk)) = 1 | E] Pr[E] Pr[Exp2

ES(A(pk)) = 1 | E]
)

−
(

Pr[E] Pr[Exp3
ES(A(pk)) = 1 | E] + Pr[E] Pr[Exp3

ES(A(pk)) = 1 | E]
)∣∣∣

≤ Pr[E]
∣∣∣ Pr[Exp2

ES(A(pk)) = 1 | E]− Pr[Exp3
ES(A(pk)) = 1 | E]

∣∣∣
≤ Pr[E].

t is used to compute s2 and s3, therefore A may get the value t somehow. However, m is chosen
randomly from M. Then,

Pr[E] ≤ 1− |M| − 1
|M| · |M| − 2

|M| − 1
· · · · · |M| − qR

|M| − (qR − 1)

=
qR

|M| .

When we compare Exp4
ES with Exp3

ES, the order to choose random values is changed. However,
the distribution of s4 is identical with that of s3. Therefore Adv3

A(k) = 0. The same, Adv4
A(k) =

0. The difference between Exp6
ES and Exp5

ES is a distribution of s′. We denote an uniform
distribution on {0, 1, . . . , nq−1} by D. Since 2b is (k+1) bits longer than q and nq < 2b ≤ (n+1)q,
we have 2k+1 + 1 < n. Then,

‖D − Ub‖ =
1
2

{
nq

(
1
nq

− 1
2b

)
+ (2b − nq)

1
2b

}

= 1− nq

2b

≤ 1− nq

(n + 1)q
=

1
n + 1

<
1

2k+1 + 2
.

Therefore Adv5
A(k) ≤ 1/(2k+1 + 2). Combining these, Advicma

SD,A(k) is negligible.

We show that IND$-CMA1 ⇒ IND$-CMA.

Theorem 7. Let SD be a digital signature scheme. If SD satisfies IND$-CMA1, then SD satisfies
IND$-CMA.

Proof. Let Ac be an adversary attacking IND$-CMA of SD and A1 an adversary attacking IND$-
CMA1 of SD. We consider the experiments Expi

CC for i ∈ {1, . . . , c} as follows:

Expi
CC

1. Ac is given pk.

2. On j-th challenge query, Ac produces u∗j ∈ {0, 1}k and passes u∗j to the challenger.
If i ≥ j, the challenger chooses m ∈M randomly and computes σj = S(u∗j ||m, sk).
Otherwise, the challenger chooses σj ← U`. Then the challenger passes σj to Ac.

3. Ac outputs a bit d.

4. Return d.

11



In the above experiments, Ac can make access to signing oracle S. Note that Ac’s advantage is
|Pr[Expc

CC(Ac(pk)) = 1]− Pr[Exp0
CC(Ac(pk)) = 1]|. Then,

Advicma
SD,Ac

(k) =
∣∣∣ Pr[Expc

CC(Ac(pk)) = 1]− Pr[Exp0
CC(Ac(pk)) = 1]

∣∣∣

=
∣∣∣

c∑

j=1

(
Pr[Expj

CC(Ac(pk)) = 1]− Pr[Expj−1
CC(Ac(pk)) = 1]

)∣∣∣

≤
c∑

j=1

∣∣∣ Pr[Expj
CC(Ac(pk)) = 1]− Pr[Expj−1

CC(Ac(pk)) = 1]
∣∣∣.

We show that |Pr[Expj
CC(Ac(pk)) = 1] − Pr[Expj−1

CC(Ac(pk)) = 1]| ≤ Advicma
SD,A1

(k) for j ∈
{1, . . . , c}. We construct A1 attacking IND$-CMA1 by using Ac.

A1 takes a public key pk where (pk, sk) ← G(1k) and passes it to Ac. If Ac makes a signing
query m, A1 queries m to A1’s signing oracle and receives σ which is a signature for m. A1 returns
σ to Ac. In the challenge phase, A1 responds to Ac’s e-th challenge query u∗e as follows:

• If 1 ≤ e ≤ j − 1, A1 chooses m ∈M randomly and queries u∗e||m to A1’s signing oracle and
receives σe = S(u∗e||m, sk). A1 passes σe to Ac.

• If e = j, A1 queries u∗e as its challenge query and receives its challenge. A1 passes it as σe to
Ac.

• If e ≥ j + 1, A1 chooses σe ← U` and passes σe to Ac.

Finally, if Ac outputs a bit d, A1 outputs the same bit d. Then we have that |Pr[Expj
CC(Ac(pk)) =

1]−Pr[Expj−1
CC(Ac(pk)) = 1]| ≤ Advicma

SD,A1
(k) and Advicma

SD,Ac
(k) ≤ cAdvicma

SD,A1
(k). If Advicma

SD,Ac
(k)

is non-negligible, then Advicma
SD,A1

(k) is also non-negligible.

From Theorem 4, our proposed steganographic signature scheme with the extended Schnorr
signature scheme is steganographically secure in the random oracle model.

The extended Schnorr signature scheme satisfies EUF-CMA in the random oracle model. There-
fore, from Theorem 5, our proposed steganographic signature scheme with the extended Schnorr
signature scheme is unforgeable in the random oracle model.

6 Conclusion

We have formalized and proposed the steganographic signature schemes. We have defined the
security notion of steganographic signature, the steganographic security and the unforgeability. In
order to construct the steganographic signature scheme satisfying the steganographic security, we
have defined the security notion of digital signature, IND$-CMA. We have shown that the extended
Schnorr signature scheme satisfies this notion in the random oracle model. We have also shown
that our proposed steganographic signature scheme with the extended Schnorr signature scheme
is steganographically secure and unforgeable in the random oracle model.
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