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Abstract

Private approximation, introduced by Feigenbaum, Ishai, Malkin, Nissim, Strauss, and
Wright, allows us to find approximate solutions with disclosing as little information as possible.
In STOC 2006, Beimel, Carmi, Nissim, and Weinreb studied the private approximation for
both the vertex cover and the max exact 3SAT problems. In this paper, we consider the set
cover problem where the costs of all sets are polynomially bounded. We show that there exists
neither a deterministic nor a randomized private approximation. We also consider the case that
the frequencies of all elements are equal. We show that in this case there exist no deterministic
private approximation.

Keywords: private approximation, set cover problem.

1 Introduction

Approximation algorithms can sometimes provide efficient solutions when no efficient exact com-
putation is known. Approximation algorithms are widely studied, especially for NP-hard problems.

Feigenbaum, Ishai, Malkin, Nissim, Strauss, and Wright [3] introduced the notion of the private
approximation of functions. Roughly speaking, an approximation function ĝ is called private
approximation with respect to the target function g, if ĝ(x) reveals no more information about
x than g(x) does. More formally, there exists a probabilistic polynomial time simulator M such
that the distribution of the simulation output M(g(x)) is indistinguishable from ĝ(x). They
proposed a function (two-party protocol) which is the private approximation with respect to that
for computing the hamming distance between two binary vectors. They also proposed the private
approximations of several natural #P -hard problems. After [3], several private approximaitons
were proposed [4, 10, 7].

Halevi, Krauthbamer, Kushilevitz, and Nissim [5] discussed the private approximation of NP-
hard problems. They proved that there exists no private approximation for computing the size
of minimum vertex cover within approximation ratio n1−ε. Their proof used the sliding-window
reduction that translates a SAT instance φ to an instance G of the vertex cover problem. If φ is
satisfiable then G has the vertex cover of size z, otherwise any vertex cover for G is of size at least
z+1. The definition of the private approximation in [5] is almost the same as that by Feigenbaum,
Ishai, Malkin, Nissim, Strauss, and Wright [3].
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Beimel, Nissim, Carmi, and Weinreb [1] studied the private approximation for both the vertex
cover and the max exact 3SAT problems. In order to consider search problems, they proposed
a definition of the private approximation which is different from that in [3]. In their definition,
an algorithm A is a private approximation with respect to a privacy structure R, which is an
equivalent relation, if the outputs of executing A on two R-equivalent inputs are computational
indistinguishable. Under their definition, they showed that there exists neither a deterministic
nor a randomized private approximation of the search problem for a minimum vertex cover within
approximation ratio n1−ε.

In this paper we consider the private approximation of the set cover problem. In the previous
paper [5, 1], only the vertex cover problem whose costs of all not fixed that vertices are fixed. In
particular, we consider the set cover problem where the costs of all sets are polynomially bounded.
We show that there exists neither a deterministic nor a randomized private approximation. We
also consider the case that the frequencies of all elements are equal. We show that in this case
there exist no deterministic private approximation.

2 The Set Cover Problem

In this section, we describe the set cover problem and the frequency.

Definition 2.1 (Set Cover Problem). Let U be a set of m elements, S = {S1, . . . , Sn} a collection
of subsets of U , and c: S → Q+ a cost function. We say the set C ∈ {1, . . . , n} of indices is called
a cover of U if the collection of Si (i ∈ C) covers all elements in U , that is,

⋃
i∈C Si = U . Given

〈U,S, c〉, the set cover problem is to find a minimum cost cover of U .

Karp [9] showed that set cover problem is a NP-hard problem. One of the best and well
known polynomial-time approximation algorithms is the greedy algorithm: at each step the subset
that covers the largest number of remaining elements. Johnson [8] and Lovász [11] independently
showed that the performance ratio of the greedy method is no worth than ln |S|+1. Halldórsson [6]
and Duh and Fürer [2] has improved the upper bound to about (ln |S|)/2.

Usually, the size of the instance 〈U,S, c〉 of the set cover problem is considered as the number
of the elements in U . In this paper, we consider the size of the instance of the set cover problem
as the number of sets in S. Therefore, the number of the elements in each set in S is restricted to
polynomial of the number of the sets in S.

In this paper, we consider “polynomial-cost set cover problem” where the cost of each set is
polynomial in the problem size. Let “Set Cover” be a polynomial-cost set cover problem.

Definition 2.2 (Frequency). We define the frequency of an element to be the number of sets the
element is in. A useful parameter is the frequency of the most frequent element. Let us denote this
by f .

We call the problem where all elements in U have the equivalent frequency as “set cover problem
with fixed frequency” .

3 The Approximation and the Private Algorithm

First, we describe the definition of the approximation. The following definition of the approxi-
mation can be applied to minimization problems. The definition for maximization problems is
similar.
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Definition 3.1 (Approximation of the Search Problem). Let g be a function, A an algorithm for
a search problem, and c a cost function. We say that A is an α-approximation of g if it runs in
polynomial time and for all input x, ∑

y∈A(x)

c(y) ≤ α
∑

y∈g(x)

c(y).

Next, we describe the definition of the private algorithm, following [1]. We describe the privacy
structure which is necessary to define the private algorithm.

Definition 3.2 (Privacy Structure). A privacy structure R ⊆ {0, 1}∗ × {0, 1}∗ is an equivalence
relation on instances. For 〈x, y〉 ∈ R, we use the notation x ≡R y.

We only discuss on the privacy structures of the form R = ∪n∈NRn, where Rn is an equivalence
relation among the instances of size n, such as S with n sets.

We now define the private algorithm. We say that an algorithm A is private with respect to a
privacy structure R if the results of executing A on two R-equivalent inputs are computationally
indistinguishable.

Definition 3.3 (Private Algorithm). Let R be a privacy structure. A probabilistic polynomial-time
algorithm A is private with respect to R if for every polynomial-time algorithm D and for every
positive polynomial p(·), there exists some n0 ∈ N such that for every x, y ∈ {0, 1}∗, x ≡R y, and
|x| = |y| ≥ n0, ∣∣Pr [D (A (x ) , x , y) = 1] − Pr [D (A (y) , x , y) = 1]

∣∣ ≤ 1
p(|x |) .

That is, when x ≡R y, any algorithm D cannot distinguish if the input of A is x or y.

Next, in order to define the private approximation of the search problem, we define the privacy
structure, following [1]. We can regard the decision and the search problems as follows by using
the bivariate relation.

Definition 3.4. A bivariate relation Q is polynomially bounded if there exists a constant c such
that |w| ≤ |x|c for every 〈x,w〉 ∈ Q. The decision problem for Q is, given an input x, to decide
if there exists an element w such that 〈x,w〉 ∈ Q or not. The search problem for Q is, given an
input x, to find an element w such that 〈x,w〉 ∈ Q if such w exists.

We now define the privacy structure of the search problem. We require that if two input values
have the same set of answers of the search problem, the approximation algorithm should not be
able to distinguish between them.

Definition 3.5 (Privacy Structure of the Search Problem). The privacy structure RQ related to
the relation Q is defined as follows: x ≡RQ y if and only if

• |x| = |y|,

• 〈x,w〉 ∈ Q if and only if 〈y, w〉 ∈ Q for every w.

That is, x ≡RQ y if they have the same set of solutions.

Finally, we give two relations of the problems considered in this paper.
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〈U1, S1, c1〉
U1 = {e1, e2, e3, e4}
S1 = {S1, S2, S3, S4}
S1 = {e1, e2}
S2 = {e2, e3}
S3 = {e3, e4}
S4 = {e1, e3}

c1(S1) = 4
c1(S2) = 2
c1(S3) = 1
c1(S4) = 2

〈U2, S2, c2〉
U2 = {e1, e2, e3, e4}
S2 = {S1, S2, S3, S4}
S1 = {e1, e2, e3}
S2 = {e2, e3}
S3 = {e4}
S4 = {e1, e3}

c2(S1) = 4
c2(S2) = 3
c2(S3) = 2
c2(S4) = 1

Figure 1: 〈U1,S1, c1〉 ≡RminSC
〈U2,S2, c2〉. Note that |S1| = |S2|. Both solutions of 〈U1,S1, c1〉 and

〈U2,S2, c2〉 are equivalent ({1, 3} and {2, 3, 4}).

Definition 3.6. Let minSC be the minimum set cover relation for Set Cover, that is,
〈〈U,S, c〉, C〉 ∈ minSC if C is the minimum cost cover for 〈U,S, c〉. In this case, the privacy
structure RminSC contains all pairs (〈U1,S1, c1〉, 〈U2,S2, c2〉) where every minimum cost cover
C ∈ S for 〈U1,S1, c1〉 is that for 〈U2,S2, c2〉 and vice verse. Similarly, let 〈U,S, c〉 be the minimum
cost cover relation for Set Cover with fixed-frequency.

In Figure 1, we give an example for the relation minSC.

4 Private Approximation of Set Cover

In this section, we show that there exists no deterministic f ε-private approximation algorithm of
Set Cover.

4.1 Definitions

In this section, we describe some definitions.
First, we describe the definition of the private approximation of Set Cover.

Definition 4.1 (Private Approximation of the Set Cover Problem). An algorithm A is a private
α-approximation algorithm for minSC if:

• A is a α-approximation algorithm for minSC, and

• A is private with respect to RminSC.

In order to analyze the private approximation of the vertex cover problem, Beimel et el. [1]
employed “critical vertices” and “relevant vertices”. We also employ the notion of “critical” and
“relevant” for Set Cover.

Definition 4.2 (Critical Set and Relevant Set). Let U be a set of m elements, S = {S1, S2, . . . , Sn}
a collection of sets and c a cost function of S. We say that Si is critical for 〈U,S, c〉 if every
minimum set cover of 〈U,S, c〉 contains Si. We say that Si is relevant for 〈U,S, c〉 if there exists
at least one minimum set cover of 〈U,S, c〉 that contains Si.

Next, we present the problem related to Definition 4.2.

Definition 4.3 (The Relevant Set / Non-Critical Set Problem).

Input: a Set U , a collection S = {S1, S2, . . . , Sn} of sets, and a cost function c.
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Output: “Si is relevant for 〈U,S, c〉” or “Si is non-critical for 〈U,S, c〉”.

It is easy to see that relevant include critical. Therefore some sets are both relevant set and
non-critical. If the set is relevant and non-critical, it makes no difference to output relevant or
non-critical.

We next define two special set cover problems. When we construct the algorithm for the
Relevant / Non-Critical Set problem in Section 4.2, they are helpful.

Definition 4.4 (〈U2,S2, c2〉 and 〈U(t,u),S(t,u), c(t,u)〉). Let U be a set that contains m elements
e1, . . . , em, S = {S1, . . . , Sn} a collection of subsets of U , c a cost function S → Q+, I a col-
lection of empty sets. For 〈U,S, c〉 and for any Su ∈ I and St ∈ S, we define 〈U2,S2, c2〉 and
〈U(t,u),S(t,u), c(t,u)〉 as follows.

The collection S2 of sets is defined as S2 = {S1, . . . , S2m} ∪ I where Si+n := {ek+m | ek ∈ Si}.
The set U2 is defined as U2 = {e1, . . . , e2n}. The function c2 is defined as c2(Si) = c(Si) (for
1 ≤ i ≤ n), c2(Si) = c(Si−l) (for l + 1 ≤ i ≤ 2n), and c2(Si) = 1 (for Si ∈ I).

The collection S(t,u) of sets is defined as S(t,u) = {S1, . . . , Sn} ∪ I where St = St ∪ {e∗, e∗∗},
Su = Su ∪ {e∗}, and Su+n = Su+n ∪ {e∗∗} for some e∗, e∗∗ /∈ U2. The set U(t,u) is defined as
U(t,u) = U2 ∪ {e∗, e∗∗}, and let c(t,u) = c2.

We give concrete examples S2 and S(t,u) in Figure 2.

4.2 Proofs

In this section, we show that there exists no deterministic f ε-private approximation algorithm for
Set Cover with respect to RminSC if P 6= NP.

Theorem 4.5. Let ε > 0 be a constant and f a frequency. If P 6= NP, then there is no deterministic
private f ε-approximation algorithm of the search problem of minSC .

This proof is similar to that in [1]. The outline of the proof is as follows :

1. We construct a Relevant or Non-Critical for Set Cover algorithm from the private approxima-
tion algorithm A with respect to RminSC.

2. We construct a greedy algorithm that efficiently solves the NP-hard problem from the Rele-

vant or Non-Critical for Set Cover algorithm.

3. If P 6= NP , this is a contradiction. Thus there is no private approximation algorithm A for
Set Cover with respect to RminSC.

In Algorithm 1, we describe a greedy algorithm of Set Cover given an access to the algorithm
which decides relevant or non-critical ( we call this algorithm Relevant or Non-Critical for Set

Cover). We will show that the algorithm Relevant or Non-Critical for Set Cover can be constructed
by using oracle access to private approximation algorithms of Set Cover later on.
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〈U,S, c〉
U = {e1, e2, e3, e4}
S = {S1, S2, S3, S4}
S1 = {e1, e2}
S2 = {e2, e3}
S3 = {e3, e4}
S4 = {e1, e3}

c(S1) = 4
c(S2) = 1
c(S3) = 2
c(S4) = 2

⇓ |I| = 2

〈U2,S2, c2〉 〈U(9,2),S(9,2), c(9,2)〉
U2 = {e1, e2, e3, e4, e5, e6, e7, e8}
S2 = {S1, S2, S3, S4, S5, S6, S7, S8} ∪ I

I = {S9, S10}
S1 = {e1, e2}
S2 = {e2, e3}
S3 = {e3, e4}
S4 = {e1, e3}
S5 = {e5, e6}
S6 = {e6, e7}
S7 = {e7, e8}
S8 = {e5, e7}
S9 = ∅
S10 = ∅

c2(S1) = 4
c2(S2) = 1
c2(S3) = 2
c2(S4) = 2
c2(S5) = 4
c2(S6) = 1
c2(S7) = 2
c2(S8) = 2
c2(S9) = 1
c2(S10) = 1

U(9,2) = {e1, e2, e3, e4, e5, e6, e7, e8, e
∗, e∗∗}

S(9,2) = {S1, S2, S3, S4, S5, S6, S7, S8} ∪ I

I = {S9, S10}
S1 = {e1, e2}
S2 = {e2, e3, e

∗}
S3 = {e3, e4}
S4 = {e1, e3}
S5 = {e5, e6}
S6 = {e6, e7, e

∗∗}
S7 = {e7, e8}
S8 = {e5, e7}
S9 = {e∗, e∗∗}
S10 = ∅

c(9,2)(S1) = 4
c(9,2)(S2) = 1
c(9,2)(S3) = 2
c(9,2)(S4) = 2
c(9,2)(S5) = 4
c(9,2)(S6) = 1
c(9,2)(S7) = 2
c(9,2)(S8) = 2
c(9,2)(S9) = 1
c(9,2)(S10) = 1

Figure 2: The constructions of 〈U2,S2, c2〉 and 〈U(t,u),S(t,u), c(t,u)〉 (t = 9, u = 2) using 〈U,S, c〉
and I with size 2.
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Algorithm. 1 (Greedy Minimum Set Cover)

Input: a collection of sets S = {S1, . . . , Sn} , a cost function c : S → Q+, and a set U of m

elements.

1. Set Cs = ∅.

2. If U = ∅ return Cs.

3. Pick a set Si ∈ S and execute the algorithm Relevant or Non-Critical for Set Cover on 〈U,S, c〉
and Si.

4. If the answer is ”Relevant”,

(a) Delete all the elements included in Si from both U and sets Sj in S. (We define these
as U

′
and S ′

for the sake of latter explanations.)

(b) S ← S \ {Si}.

(c) Cs ← Cs ∪ {i}.

(d) Go to STEP2.

5. If the answer is ”Non-Critical”,

(a) S ← S \ {Si}.

(b) Go to STEP2.

The following claim shows the correctness of the greedy algorithm.

Claim 4.6. If the algorithm Relevant or Non-Critical for Set Cover is polynomial and correct then
the algorithm Greedy Minimum Set Cover is polynomial and correct.

proof. The algorithm is trivially correct for U = ∅. Now suppose U 6= ∅. If Si is relevant for
〈U,S, c〉, there is a minimum cover C for 〈U,S, c〉 that contains Si. Let d be a sum total of the
cost of the set included in C. Then the set C \{Si} is a cover of cost d− c(Si) for 〈U ′

,S ′ \{Si}, c〉.
By the induction hypothesis, the set Cv is a minimum cover for 〈U ′

,S ′ \ {Si}, c〉. We claim that
Cv ∪ {Si} is a minimum cover for 〈U,S, c〉. All of the elements in Si are covered by Si, and the
rest of the elements are covered by Cv. Since Cv is a minimum cover of 〈U ′

,S ′ \ {Si}, c〉, the cost
of the covers is at most d− c(Si). Therefore, the cost of Cv ∪ {Si} is d, and it is a minimum cover
of 〈U,S, c〉. If Si is not critical for 〈U,S, c〉, there is a minimum cover C

′
for 〈U,S, c〉 that does not

contain Si. Therefore C
′

is one of the minimum covers for 〈U ′
,S ′ \ {Si}, c〉. It is oblivious that

if the algorithm Relevant or Non-Critical for Set Cover is polynomial, then the greedy algorithm is
polynomial.

We next construct the Relevant or Non-Critical for Set Cover algorithm from a private approxi-
mation algorithm for minSC. We adopt the idea of [1].

Claim 4.7. Let S = {S1, S2, . . . , Sn} be a collection of sets, c a cost function S → Q+, e∗

an element such that e∗ /∈ U . We choose i, j ∈ {1, . . . , n} arbitrary i 6= j, and define S∗ =
{S∗

1 , . . . , S∗
n} where S∗

i = Si ∪ {e∗}, S∗
j = Sj ∪ {e∗}, and S∗

k = Sk for k 6= i, j. We also define
U∗ = U ∪ {e∗} and c∗(S∗

i ) = c(S∗
i ).

Then, If Sj is critical for 〈U,S, c〉, then 〈U,S, c〉 ≡RminSC
〈U∗,S∗, c∗〉.
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proof. First, we show that a minimum set cover of 〈U,S, c〉 is that of 〈U∗,S∗, c∗〉. Let C be a
minimum set cover of 〈U,S, c〉. Since C contains (the index) j, and therefore C covers 〈U∗,S∗, c∗〉.
Further, every cover of 〈U∗,S∗, c∗〉 covers 〈U,S, c〉. Thus, C is a minimum set cover of 〈U∗,S∗, c∗〉.
Next, we show that every minimum set cover of 〈U∗,S∗, c∗〉 is the minimum set cover of 〈U,S, c〉.
Let C∗ be the minimum cover of 〈U∗,S∗, c∗〉 and d the cost of the minimum cover of 〈U,S, c〉. The
minimum set cover C for 〈U,S, c〉 contains j since Sj is critical. Thus, C is the minimum set cover
for 〈U∗,S∗, c∗〉, and the cost of C∗ is at most d which is the cost of C. On the other hand, since
U ⊆ U∗, C∗ is a set cover of 〈U,S, c〉 and the cost is at least d. Therefore the cost of C∗ is d and
C∗ is the minimum cover of 〈U,S, c〉.

We prove the two claims with respect to 〈U2,S2, c2〉 and 〈U(t,u),S(t,u), c(t,u)〉 defined in Defini-
tion 4.4. We use these claims for the proof of the correctness of Algorithm 2.

Claim 4.8. If Su is critical for 〈U,S, c〉, then 〈U2,S2, c2〉 ≡RminSC
〈U(t,u),S(t,u), c(t,u)〉.

proof. Since S2 is composed of two separate copies of S and Su is critical for 〈U,S, c〉, then Su

and Su+n are critical for 〈U2,S2, c2〉 where m = |U |. Therefore, by Claim 4.7, 〈U2,S2, c2〉 ≡RminSC

〈U(t,u),S(t,u), c(t,u)〉.

Claim 4.9. If Su is not relevant for 〈U,S, c〉, then St is critical for 〈U(t,u),S(t,u), c(t,u)〉.

proof. Assume that St is not critical for 〈U(t,u),S(t,u), c(t,u)〉. Then, there exists a minimum set
cover C(t,u) which does not contain St. Since e∗ is contained nothing but St and Su, C(t,u) must
contain Su. Similarly, C(t,u) must contain Su+n in order to cover e∗∗. Then there is a minimum
cover C(t,u) of 〈U(t,u),S(t,u), c(t,u)〉 that contains Su and Su+n. Therefore it is enough that we show
that if Su is not relevant for 〈U,S, c〉, the cover C(t,u) of 〈U(t,u),S(t,u), c(t,u)〉 is not optimal.
Let d be cost of the minimum cover of 〈U,S, c〉. Here, C(t,u) contains Su and Su+n, while the
minimum cover of 〈U,S, c〉 does not contain Su if Su is not relevant. Thus,

∑
i∈C(t, u) c(t,u)(Si) ≥

2(d + 1) = 2d + 2. Let C be the minimum cover of 〈U,S, c〉, and C+n = {s + n | s ∈ C}.
Then the cost of C and that of C+n are d, and C ∪ C+n ∪ {t} is a cover of 〈U(t,u),S(t,u), c(t,u)〉
of cost 2d + 1. This is a contradiction to the minimality of C(t,u). Therefore, St is critical for
〈U(t,u),S(t,u), c(t,u)〉.

Next, by using a private f ε-approximation algorithm we describe the Relevant or Non-Critical

for Set Cover algorithm in Algorithm 2.
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Algorithm. 2 (Relevant or Non-Critical for Set Cover)

Input: (〈U,S, c〉, Su)

1. Let I be a set of 2df ε + 1 empty sets. (where d =
∑

i c(Si))

2. Construct the collection of sets S2 from S and I.

3. Execute A on 〈U2,S2, c2〉 and get the output W 2 of A.

4. Choose any set St ∈ I \ W 2.

5. Construct the collection of sets S(t,u) from S, I, St, and Su.

6. Execute A on S(t,u), and get the output W(t,u) of A.

7. If W 2 6= W(t,u), return “Non-Critical”. Else return “Relevant”.

We show the following claim.

Claim 4.10. Let A be a deterministic private approximation algorithm for minSC, U a set of
m elements, S = {S1, . . . , Sn} a collection of subsets of U , and c a cost function, and denote
A(〈U,S, c〉) be a cover of 〈U,S, c〉 that corresponding to indices outputted by A. Then for any set
i ∈ S \ W , the set Si is not critical for 〈U,S, c〉.

proof. Let U
′
be U ∪ {e} where e /∈ U , and S ′

= {S1, . . . , Sn} where Si = Si ∪ {e}. Let W
′
be

the output of A with 〈U ′
,S ′

, c
′〉. Then W

′ 6= W since Si is included in W
′
.

If Si is critical for 〈U,S, c〉, then, by Claim 4.9, the minimum set cover of 〈U,S, c〉 and 〈U ′, S′, c′〉
are equal. However since A is private and deterministic, if W

′
= W , the minimum set cover of S

and S ′
must be difficult. It contradicts. Therefore Si is not critical.

We must prove Algorithm 2 is correct and running time is polynomial. We prove the correctness
by proving the following two claims.

Claim 4.11. If W 2 6= W(t,u), then Su is not critical for 〈U,S, c〉.

proof. Assume Su is critical for 〈U,S, c〉. Since, by Claim 4.7, 〈U2,S2, c2〉 ≡RminSC

〈U(t,u),S(t,u), c(t,u)〉, the minimum set cover of 〈U2,S2, c2〉 and 〈U(t,u),S(t,u), c(t,u)〉 are equal. There-
fore since A is private, W 2 = A(S2) = A(S(t,u)) = W(t,u). Hence if W 2 6= W(t,u), Su is not critical
for 〈U,S, c〉.

Claim 4.12. If W 2 = W(t,u), then Su is relevant.

proof. As W 2 = W(t,u) and St /∈ W 2, then St /∈ W(t,u). Therefore, by Claim 4.10, St is not
critical for 〈U(t,u),S(t,u), c(t,u)〉. Since St is not critical for 〈U(t,u),S(t,u), c(t,u)〉, Su is relevant for
〈U(t,u),S(t,u), c(t,u)〉.

Finally, we show that there is a set chosen in STEP 4 of Algorithm 2.

Claim 4.13. Let ε ≥ 0. There is a set Si ∈ I such that Si ∈ I \ W 2.

proof. The cost of minimum set cover of 〈U2,S2, c2〉 is twice the cost of the minimum set cover
of 〈U,S, c〉, thus, it is at most 2d. Since A is an f ε-approximation algorithm of Set Cover, the
cost of A(〈U2,S2, c2〉) is at most 2df ε. Consequently, there is at least one set Si ∈ I \ W 2.
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Therefore we proved Theorem 4.5.

Remark 4.14. Since d is polynomial in the size of problem, the sizes of S2 and S(t,u) are poly-
nomial in the size of problem. Therefore we prove Theorem 4.5. When d is exponentially large,
the sizes of S2 and S(t,u) are are exponentially large. Therefore in this case, we do not get an
impossibility result by applying our strategy.

5 Randomized Private Approximation of the Set Cover Problem

In this section, we show that there exists no randomized private f ε-approximation algorithm of
Set Cover. The outline of the proof is similar to that in [1]. We execute the approximation
algorithm k times to decide whether the set is Relevant or Non-Critical. We prove several claims
than correspond to those in Section 4.

We use the Algorithm 1, and we use Algorithm 3 as Relevant or Non-Critical for Set Cover in
Algorithm 1.

Claim 5.1. Let A be a randomized private f ε-approximation algorithm of Set Cover . For every
polynomial p(·), there exists some n0 ∈ N such that for every n ≥ n0 and every triple 〈U,S, c〉,
where |S| = n, if Pr [{t, u} ∩ A(〈U,S, c〉) = ∅] ≥ 1

p(n) , for some St, Su ∈ S, then St is not critical
for 〈U,S, c〉.

proof. Let n be an integer, p(·) be a polynomial, 〈U,S, c〉 be a triple where U be a set of l elements
{e1, . . . , el}, S be a set of n set {S1, . . . , Sn}, c be a cost function, and St, Su ∈ S. Assume that
Pr [{t, u} ∩ A(〈U,S, c〉) = ∅]. As St and Su are both not in A(〈U,S, c〉) with probability at least
1/p(|n|), and A(〈U,S, c〉) is cover of 〈U,S, c〉. Let S∗ = {S1, . . . , Sn} where St = St ∪ e∗ and Su =
Su∪e∗, U∗ = U∪e∗, and c∗ = c. In every execution of A on 〈U∗,S∗, c∗〉, the cover A(〈U,S, c〉) must
cover the element e∗. Therefore Pr [{t, u} ∩ A(〈U,S, c〉) = ∅] − Pr [{t, u} ∪ A(〈U∗,S∗, c∗〉) = ∅] ≥

1
p(|n|) .
Let algorithm D, whose input is two triples and the output C of A on one of them, be following:

• If the number of pair of the sets, whose index is the same but elements is different, is more
than two or exactly one, always return 1.

• If the number of pair of the sets, whose index is the same but elements is different, is exactly
two (let two sets be St and Su),

– If C contains at least one of St or Su, return 1.

– Otherwise return 0.

Now consider the execution of D where the triples are 〈U,S, c〉 and 〈U∗,S∗, c∗〉 which differ
in exactly two sets. Since A is private, there exists some n0 such that D cannot distinguish
between equivalent triples with more than n0 sets. Thus, if 〈U,S, c〉 has n ≥ n0 sets and
Pr [{t, u} ∩ A(〈U,S, c〉) = ∅], the triples 〈U,S, c〉 and 〈U∗,S∗, c∗〉 are not equivalent. This implies,
by Claim 4.7, that Su is not critical for 〈U,S, c〉.
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Algorithm. 3 (Randomized Relevant or Non-Critical for Set Cover)

Input: (〈U,S, c〉, Su).

1. If S contains less than n2 sets (where n2 = max{n0, n1}), then find if Su is relevant for
〈U,S, c〉 or non-critical for 〈U,S, c〉 using exhaustive search.

2. Let I be a set 4df ε + 2 sets. (where d =
∑

i c(Si))

3. Construct the family of sets 〈U2,S2, c2〉 from 〈U,S, c〉 and I as in Definition 4.8.

4. Execute k times the algorithm A on 〈U2,S2, c2〉.

5. Choose a set St ∈ I such that St appears at most k/2 times in A(〈U2,S2, c2〉) in the k

executions.

6. Construct the family of sets 〈U(t,u),S(t,u), c(t,u)〉 from 〈U,S, c〉, I, St, and Su as in Defini-
tion 4.8.

7. Execute k times Algorithm A on S(t,u).

8. If t ∈ A(〈U(t,u),S(t,u), c(t,u)〉) in at least 0.75k of the k executions, then return “Non-Critical”
Else return “Relevant”.

We show the following claims.

Claim 5.2. There is a set St ∈ I such that index t appears at most k/2 times in A(〈U2,S2, c2〉)
out of the k executions.

proof. The cost of minimum set cover of 〈U2,S2, c2〉 is twice the cost of the minimum set cover
of 〈U,S, c〉, thus, it is at most 2d. Since A is an f ε-approximation algorithm for Set Cover , the
cost of A(〈U2,S2, c2〉) is at most 2d · f ε ≤ |I|

2 . Thus, in each execution, at least half of the sets
in I are not in A(〈U2,S2, c2〉). Consequently, there is at least one set St ∈ I such that t is not in
A(〈U2,S2, c2〉) in at least k/2 of the executions of A on 〈U2,S2, c2〉.

Claim 5.3. There exists a constant n1 such that if

• 〈U2,S2, c2〉 contains at least n1 sets,

• Pr
[
t ∈ A(〈U2,S2, c2〉)

]
< 0.55, and

• Pr
[
t ∈ A(〈U(t,u),S(t,u), c(t,u)〉)

]
> 0.6,

then Su is not critical for 〈U,S, c〉

proof. Let Algorithm D ,whose input is two triples and the output C of A on one of them, be
following:

• If the sets of empty sets in both triples are equal, returns 1.

• Otherwise, choose an empty set in exactly one of the family of sets, and

– if this set is in C, return 1.

– otherwise, return 0.
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Now consider the execution of D where the triples are 〈U2,S2, c2〉 and 〈U(t,u),S(t,u), c(t,u)〉. Since
A is private, there exists some n1 ∈ N such that D cannot distinguish between equivalent triples
with more than n1 sets. Thus, if 〈U2,S2, c2〉 and 〈U(t,u),S(t,u), c(t,u)〉 have more than n1 sets
and Pr

[
t ∈ A(〈U(t,u),S(t,u), c(t,u)〉)

]
− Pr

[
t ∈ A(〈U2,S2, c2〉)

]
≥ 0.05, the sets 〈U2,S2, c2〉 and

〈U(t,u),S(t,u), c(t,u)〉 are not equivalent. This implies, by Claim 4.8, that St is non-critical for
〈U,S, c〉.

Claim 5.4. If Pr[{t, u} ∩ A〈U,S, c〉) = ∅] ≤ 0.8 then Su is relevant for 〈U,S, c〉.

proof. Since |I| = 4df ε + 2, there must be some same Sk ∈ I such that
Pr

[
t, k ∩ A(〈U(t,u),S(t,u), c(t,u)〉) = ∅

]
is non negligible. By Claim 5.1, the set St is not critical

for 〈U(t,u),S(t,u), c(t,u)〉. Hence, by Claim 4.9, the set St is relevant for 〈U,S, c〉.

Claim 5.5. Let k > Ω(df ε). Algorithm Randomized Relevant or Non-Critical for Set Cover returns
the correct answer with probability 1 − O(2−k)

proof. Let n0 and n1 be the constants guaranteed in Claim 5.3 and Claim 5.4 respectively, and
define n2 = max{n0, n1}. If S contains less than n2 sets, then the correctness is oblivious.
Let Sw ∈ I. By Chernoff bound, if Pr

[
t ∈ A(〈U2,S2, c2〉)

]
> 0.55, the probability that w ∈

A(〈U2,S2, c2〉) in less than 0.5k of the k executions of algorithm A on 〈U2,S2, c2〉 is O(2−k).
Therefore, the probability that Sw ∈ I is include in 〈U2,S2, c2〉 such that Pr

[
t ∈ A(〈U2,S2, c2〉)

]
>

0.55 and w ∈ A(〈U2,S2, c2〉) in less than 0.5k of the k executions of Algorithm A on 〈U2,S2, c2〉
is |I|O(2−k) = df εO(2−k) = O(2−k) (since k > Ω(df ε)). Therefore the probability that the set St

chosen in Randomized Relevant or Non-Critical for Set Cover satisfies Pr
[
t ∈ A(〈U2,S2, c2〉)

]
< 0.55

is at least 1 − O(2−k). We assume Pr
[
t ∈ A(〈U2,S2, c2〉)

]
< 0.55 and prove the remainder.

Let p = Pr
[
t ∈ A(〈U(t,u),S(t,u), c(t,u)〉)

]
. If 0.6 < p < 0.8, then by Claim 5.3 and Claim 5.4, set

Su is both relevant and non-critical for 〈U,S, c〉, thus the algorithm cannot error in this case. By
Claim 5.3, If p > 0.8 then set Su is not critical. If p > 0.8, by Chernoff bound, the probability
that t ∈ A(〈U(t,u),S(t,u), c(t,u)〉) in less than 0.75k of the k executions is O(2−k), thus the algorithm
errors with probability at most O(2−k). By Claim 5.4, if p < 0.6 then set Su is not critical. If
p < 0.6, by chernoff bound, the probability that u ∈ A(〈U(t,u),S(t,u), c(t,u)〉) in more than 0.75k of
the executions is O(2−k), thus the algorithm errors with probability at most O(2−k).

From the above claims, we can prove the following main theorem.

Theorem 5.6. Let ε > 0 be a constant. If RP 6= NP, then there is no randomized private
f ε-approximation algorithm of Set Cover.

proof. By Claim 5.5 and Claim 4.6, the success probability of the randomized algorithm of the
exact search problems for minSC is (1 − O(2−k))n.

if there is a randomized private f ε-approximation algorithm of Set Cover, then there is a
randomized algorithm of the exact search problems for minSC. This algorithm is transformed to
the algorithm of decision problem for Set Cover (given 〈U,S, c〉 and x ∈ Q+, decide whether there
is a cover of cost at most x). Since this problem is NP-complete, it contradicts RP 6= NP .

6 Private Approximation of the Set Cover Problem with the

Fixed Frequency

When the frequency of all elements U are 2, the set cover problem is essentially the same as the
vertex cover problem. Therefore, in this section, we consider the situation that the frequencies of
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all e ∈ U are equal.
We show that there exists no randomized private approximation algorithm of Set Cover with

the fixed frequency. The strategy of the proof is similar to that in the previous section, however,
the construction of the greedy algorithm depends on whether the cost is fixed or not.

First, we describe the greedy algorithm for the case that the cost is not fixed. In this case, it
is easy to construct the greedy algorithm.

Algorithm. 4 (Greedy Minimum Set Cover with fixed frequency (cost is not fixed))

Input: a collection of sets S = {S1, . . . , Sn} , a cost function c : S → Q+, and a set U of m

elements.

1. Set Cs = ∅.

2. If U = ∅ return Cs.

3. Pick an element ei ∈ U and make a list of all sets that include ei. We define this list as
L = {L1, . . . Lm}.

4. Set c′ ← c and j = 1.

5. Execute Algorithm Relevant or Non-Critical for Set Cover with fixed frequency on 〈U,S, c〉 and
Sj′ (where Sj′ = Lj).

6. If the answer is “Relevant”

(a) Delete all the elements included in Sj
′ from both U and sets Si in S.

(b) S ← S \ {Sj
′}.

(c) c ← c′.

(d) Cs ← Cs ∪ {j′}.

(e) Go to STEP 2.

7. If the answer is “Non-Critical”

(a) c(Sj′ ) ← c(Sj′ ) + 1.

(b) j ← j + 1 and go to STEP 5.

We can show that this algorithm is polynomial and correct.

Claim 6.1. If the algorithm Relevant or Non-Critical for Set Cover with fixed frequency is polynomial
and correct and the cost of each set is not fixed then the algorithm Greedy Minimum Set Cover with

fixed frequency is polynomial and correct.

proof. This proof is the same proof of Claim 4.6 except when Lj is not critical. Thus we consider
when Lj is not critical.

One is when Li is not critical and not relevant(i.e. No optimal solution contain Lj) and the
other is when Lj is not critical and relevant(i.e. At least one optimal solution contain Lj , but at
least one optimal solution do not contain Lj). In the former, we can skip to Lj since every optimal
solution do not contain Si, and go to next iterate.

However in the latter, this algorithm is not guaranteed to stop if we skip to Li. Since when
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there are possibility that every sets that include ei are non-critical, every sets are skipped, the
algorithm can not output the solution.

In STEP 6, the cost of Sj′ = Lj is increased 1. This ensure that the all solutions that contain
Sj

′ become no optimal solution. (since Sj
′ is not critical, there is at least one optimal solution

without Sj′ ). In iteration, at least one in L1, . . . , Lm become the critical set. Therefore this
algorithm stop. Form Claim 4.6, Algorithm 4 is polynomial and correct if Algorithm Relevant or

Non-Critical for Set Cover with fixed frequency is polynomial and correct .

In Algorithm 4, if the cost is fixed, we can not execute STEP 6-a. Therefore we transform
from Algorithm 4 to Algorithm 5.
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Algorithm. 5 (Greedy Minimum Set Cover with fixed frequency (cost is fixed))

Input: a collection of sets S = {S1, . . . , Sn} , a cost function c : S → Q+, and a set U of m

elements.

1. Set Cs = ∅.

2. If U = ∅ return Cs.

3. Pick an element ei ∈ U and make a list of all sets that include ei. We define this list as
L = {L1, . . . , Ll}.

4. Set S ′ ← S, and j = 1.

5. If j ≤ l,

(a) Execute Algorithm Relevant or Non-Critical for Set Cover with fixed frequency on 〈U,S, c〉
and Sj

′ (where Sj
′ = Lj).

(b) If the answer is “Relevant”

i. Delete all the elements included in Sj
′ from both U and all sets Si in S.

ii. S ← S ′ \ {Sj
′}.

iii. Cs ← Cs ∪ {j′} .

iv. Go to STEP 2.

(c) If the answer is “Non-Critical”

i. If |Si| = 1

A. j ← j + 1 and go to STEP 5.

ii. Else

A. Divide Si into |Si| (= k) sets Si1 , . . . , Sik (such that |Siα | = 1 and if α 6= β,
Siα ∩ Siβ = ∅).

B. S ← (S \ Si) ∪ Si1 ∪ . . . ∪ Sik .

C. j ← j + 1 and go to STEP 5.

6. If j = l,

(a) Cs ← Cs ∪ h where Sh = L1.

(b) S ← S ′ \ {Sh}.

(c) Go to STEP 2.

We show that this algorithm is polynomial and correctness.

Claim 6.2. If Algorithm Relevant or Non-Critical for Set Cover with fixed frequency is polynomial
and correct and the cost of each set is fixed, then Algorithm Greedy Minimum Set Cover with fixed

frequency is polynomial and correct.

proof. The proof correctness is similar to that of Claim 6.1. Along with Claim 6.1, we consider
that Lj is not critical. Intuitively, by the set is divided, the set put off the optimal solution.

In the case of there exists only one element e such that e ∈ Sj and e /∈ S (S 6= Sj), there do
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not exits critical set after STEP 5c-ii. However the set where include e is critical since other sets
cover all elements except e. Thus by STEP 6a, we chose a set that include e.

Next, we consider that the case of there exists at least two elements e such that e ∈ Sj and
e /∈ S (S 6= Sj). The cost of the cover that include Sj is increase since Sj is divided STEP 5c -
ii (Sj need to cover at least two elements). Therefore similar to Claim 6.1, at least a set become
critical set. Thus the correctness is proved.

This algorithm execute O(n + mf) steps. However m and f are polynomial in n. Therefore
the run time of this algorithm is polynomial in n. Thus Algorithm Greedy Minimum Set Cover with

fixed frequency is polynomial.

Next, we consider the algorithm Relevant or Non-Critical for Set Cover with fixed frequency. This
is the Algorithm 2 where 〈U(t,u), S(t,u), c(t,u)〉 is replaced with 〈U(t, u | f),S(t, u | f), c(t, u | f)〉. We
now define 〈U(t, u | f),S(t, u | f), c(t, u | f)〉.

Definition 6.3 (〈U(t, u | f),S(t, u | f), c(t, u | f)〉). 〈U2,S2, c2〉 and I are the same as those defined
by Definition 4.9. We choose the 2(f − 1) elements from I, and which we denote Sk1 , . . . Sk2(f−1)

.
The collection S(t, u | f) of sets is defined as S(t, u | f) = {S1, . . . , Sn} ∪ I where St = {e∗, e∗∗},
Su = Su∪{e∗}, Su+n = Su+n∪{e∗∗}, Ski

= {e∗} (1 ≤ i ≤ f−1), and Ski
= {e∗∗} (f ≤ i ≤ 2(f−1))

such that e∗, e∗∗ /∈ U2 . The set U(t, u | f) defined as U(t, u | f) = U2∪{e∗, e∗∗}, and c(t, u | f) = c2.

We can easily see 〈U2,S2, c2〉 and 〈U(t, u | f),S(t, u | f), c(t, u | f)〉 are Set Cover with fixed
frequency if 〈U,S, c〉 is Set Cover with fixed frequency.

Finally, we can prove Claims 6.4, 6.5, 6.6, and 6.7 in a similar way as those for the proof of
Claims 4.8, 4.9, 4.11, and 4.12, respectively.

The following two claims are used in the proofs of Claim 6.6 and Claim 6.7.

Claim 6.4. If Su is critical for 〈U,S, c〉, then 〈U,S, c〉 ≡RminSCfixed
〈U(t, u | f),S(t, u | f), c(t, u | f)〉.

Claim 6.5. If Su is not relevant for 〈U,S, c〉, then Si is critical for 〈U(t, u | f),S(t, u | f), c(t, u | f)〉.

The following two claims guaranteed the correctness of Algorithm 5.

Claim 6.6. If W 2 6= W(t, u | f), then Su is not critical for 〈U,S, c〉.

Claim 6.7. If W 2 = W(t, u | f), then Su is relevant.

We can prove the following theorem from the above claims and Claim 4.13.

Theorem 6.8. Let ε > 0 be a constant and f a frequency. If P 6= NP, then there is no determin-
istic private f ε-approximation algorithm of the search problem for minSCfixed.

7 Concluding Remarks

In this paper, we have considered the set cover problem where the costs of all sets are polynomially
bounded. We have shown that there exists neither a deterministic nor a randomized private
approximation. We have also considered the case that the frequencies of all elements are equal.
We have shown that in this case there exist no deterministic private approximation.

In this paper, we have proved only when the size of the problem is defined as the number of
the sets. It might be interesting to consider the problem where the size of the problem is defined
as the number of elements. It might be also interesting to consider whether NP-hard problems
other than the set cover problem have the private approximation algorithms or not.
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Halevi et al. [5] discussed the leakage of information about the approximation algorithms for
the minimum set cover problem. Beimel et al. [1] also discussed that for the vertex cover and the
exact 3SAT problems. It might be interesting to consider the leakage of information about the
approximation algorithms for the minimum set cover problem.
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[6] Halldórsson, M. M. Approximating Discrete Collections via Local Improvements. In
Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms – SODA ’95
(San Francisco, California, January 1995), Lecture Notes in Computer Science, ACM Press,
pp. 160–169.

[7] Indyk, P., and Woodruff, D. Polylogarithmic Private Approximations and Efficient
Matching. In Third Theory of Cryptography Conference – TCC 2006 (New York, NY, USA,
March 2006), T. R. Shai Halevi, Ed., vol. 3876 of Lecture Notes in Computer Science, Springer-
Verlag.

[8] Johnson, D. S. Approximation Algorithms for Combinatorial Problems. Journal of Com-
puter and System Sciences 9, 3 (December 1974), 256–278.

[9] Karp, R. Reducibility among Combinatorial Problems. In Complexity of Computer Compu-
tations, R. Miller and J. Thatcher, Eds. Plenum Press, 1972, pp. 85–103.

[10] Kiltz, E., Leander, G., and Malone-Lee, J. Secure Computation of the Mean and
Related Statistics. In Third Theory of Cryptography Conference – TCC 2005 (Cambridge,
MA, USA, February 2005), J. Kilian, Ed., vol. 3378 of Lecture Notes in Computer Science,
Springer-Verlag.

17



[11] Lovász, L. On the Ratio of Optimal Integral and Fractional Covers. Discrete Math. 13, 4
(1975), 383–390.

18


