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Abstract

We propose a lattice-based cryptosystem by modifying the Regev’05 cryptosystem (STOC 2005),
and design a proof of secret-key knowledge. Lattice-based public-key identification schemes have al-
ready been proposed, however, it is unknown that their public keys can be used for the public keys of
encryption schemes. Our modification admits the proof of knowledge on its secret key, however, we
need a stronger assumption than that required by the original cryptosystem.

Keywords: lattice-based cryptosystems, proof of knowledge, secret keys.

1 Introduction

Lattice-Based Cryptosystems. Since Ajtai’s seminal results on the average-case/worst-case connection
of lattice problems [1], the lattice-based cryptosystems have been studied. Ajtai and Dwork proposed a
public-key cryptosystem [3] based on the worst-case hardness of unique shortest vector problem (uSVP).
After their results, Regev proposed a cryptosystem [18] based on the worst-case hardness of uSVP. In
2005, Regev introduced a cryptosystem R05 [19] based on the approximation version of SVP and Ajtai
introduced another cryptosystem [2]. In the Regev’05 cryptosystem and the Ajtai05 cryptosystem, the size
of the public key isÕ(n2) or in the common reference string modelÕ(n). Their cryptosystems are more
realistic than the Ajtai-Dwork cryptosystem.

However, there were no applications of lattice-based cryptosystems, except Micciancio and Vadhan [17]
and Goldwasser and Kharchenko [11]. The former is a zero-knowledge proof for a gap version of closest
vector problem (GapCVPγ), which we refer as the MV protocol. The latter is a proof of plaintext knowledge
for the Ajtai-Dwork cryptosystem. Thus, we consider another application for lattice-based cryptosystems,
a proof of knowledge on its secret key.

Our Contribution. In this paper we propose a modified Regev’05 cryptosystem and introduce a proof
of knowledge on its secret key in the CRS model. We consider the relation between the private key and
the public key as that between the message and the codeword with the error in coding theory. We modify
the construction of the error. The modification admits a prover to prove the knowledge of the error and the
message based on Stern [21]. Thus, we obtain a proof of knowledge on a secret key of our cryptosystem.

Related Results. There already exist public-key identification schemes based on lattice and coding prob-
lems. In 1989, Shamir showed an identification scheme based on Permuted Kernel Problem [20]. In
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1996, Stern proposed public-key identification based on syndrome decoding problem [21]. Micciancio
and Vadhan proposed a zero-knowledge proof with efficient prover for GapCVPγ and discussed public-key
identification schemes [17]. Recently, Hayashi and Tada showed public-key identification schemes based
on integer subset sum problem or binary non-negative exact length vector problem [13]. Unfortunately,
it is not known if their public keys can be used as a public key of cryptosystems. We stress that in our
identification schemes, information for identification is indeed a public key of cryptosystems.

Why can we not apply the MV protocol to R05? In the Regev’05 cryptosystems, the secret key iss ∈ Zn
q

ands′ ∈ {0, 1}m1 and the public key isA ∈ Zn×m
q andb = tAs+ e, wheree ∈ Zm

q and each coordinate ofe is
close to 0. From a coding-theoretical view, we can seetA as a generator matrix,sas a message, andeas an
error. Moreover, the length ofe is short. Then, one would think we can apply the MV protocol to proofs of
knowledge for a secret keys. However, we cannot apply it in a naive way. We explain more details.

We first review the intuition which is used in the protocol in [17]. Let (B, y, t) be an instance of
GapCVPγ

1. Let B(c, r) be ann-dimensional hyperball whose center isc and radius isr. In their pro-
tocol, the prover chooses a random bitc and a random vectorr from B(0, γt/2). The prover computes
m = cy + r modB and sendsm to the verifier. The verifier sends a challenge bitδ to the prover. Note that
if (B, y, t) is a YES instance then the ratio between the volume of (B(0, γt/2) modB) ∩ (B(y, γt/2) modB)
and that ofB(0, γt/2) is at least 1/poly(n). If m ∈ (B(0, γt/2) modB) ∩ (B(y, γt/2) modB) the prover can
flip a bit c. The prover sends the proof thatm is chosen fromB(cy, γt/2). Note that if (B, y, t) is a NO
instance then (B(0, γt/2) modB) ∩ (B(y, γt/2) modB) = ∅. Therefore the prover can not flip a bitc after a
reception of the challenge bit.

Next, we consider applying their protocol to the Regev’05 cryptosystem, i.e., a proof of knowledge
that, on input (A,b), the prover knowss such thatb = tAs + e, wheree ∈ B(0, t). Note that a linear
code isZq-module inZm

q and a lattice isZ-module inRm. Therefore, instead of moduloB, we multiply a
parity-check matrixH of tA to the vector inZm

q . Suppose thatB(0, γt/2) andB(b, γt/2) do not intersect.
Unfortunately, we cannot ensure thatHB(0, γt/2) andHB(b, γt/2) do not intersect because the dimension
of HZm

q is m− n < m. On such (A, b), the prover can cheat about which hyperball he chosem from, and
the soundness of the protocol fails. Thus, we cannot apply their protocol to the Regev’05 cryptosystem in
a straightforward way.

Main Idea. As seen in the above paragraph, we cannot apply the protocol [17] to the Regev’05 crypto-
system straightforwardly. Let us re-consider multiplying a parity-check matrixH. Let s ∈ Zn

q be a private
key and letA, b = tAs+ebe a public key. Multiplying a parity-check matrixH to the equationb = tAs+e,
we obtain thatHb = He. The prover should prove the knowledge ofe that satisfies the equation and each
coordinate ofe is in certain range. The difficulty to construct the protocol is to combine protocols that prove
sufficiency of the equation and lying in the range.

Then, we modify a public key as follows: The secret key iss ∈ Zn
q ands′ ∈ {0,1}m1, whose Hamming

weight ism2. The public key isA ∈ Zn×m
q andE ∈ Zm×m1

q andb = tAs+ Es′. In this case, by multiplying
a parity-check matrixH, we have thatHb = HEs′. Translating a matrixHE as a parity-check matrix,
we have an instance (HE,Hb,m2) and a witnesss′ of Syndrome Decoding Problem (SDP). Since Stern
proposed a proof of knowledge for SDP in 1996 [21], we adopt it to prove knowledge of secret keys′.

The proof of knowledge for SDP needs a statistically-hiding computationally-binding commitment
scheme. Fortunately, ifA is chosen randomly then the functionfA : {0, 1}m → Zn

q : m 7→ Am is a
collision-resistant function based on the approximation version of SVP [1, 10, 6, 14, 16]. Thus we employ
that function to develop a statistically-hiding computationally-binding string commitment scheme. Our
construction of string commitment is more straightforward than Damgård, Pedersen, and Pfizmann [7, 8]
and Halevi and Micali [12], which used the universal hash functions.

1 (B, y, t) is a YES instance if there existsw ∈ Zn such that∥Bw − y∥ ≤ t. It is a NO instance if for any vectorw ∈ Zn,
∥Bw − y∥ ≥ γt.
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Organization. The rest of this paper is organized as follows. We briefly note basic notions and notations
for lattice-based cryptosystems, zero-knowledge proof, and proof of knowledge in Section 2. In Section 3,
we will argue the construction of a string commitment scheme. We describe the Regev’05 cryptosystem
and our modified cryptosystem in Section 4. Finally, we give our main results, a proof of knowledge on a
secret key, in Section 5.

2 Preliminaries

We define a negligible amount inn as an amount that is asymptotically smaller thann−c for any constant
c > 0. More formally, f (n) is a negligible function inn if limn→∞nc f (n) = 0 for anyc > 0. Similarly, a
non-negligible amount is one which is at leastn−c for somec > 0.

The length of a vectorx = t(x1, . . . , xn) ∈ Rn, denoted by∥x∥, is (
∑n

i=1 x2
i )1/2. For any fieldK, the inner

product of two vectorsx = t(x1, . . . , xn) ∈ Kn andy = t(y1, . . . , yn) ∈ Kn, denoted by⟨x, y⟩, is
∑n

i=1 xiyi .
Let wH(x) denote Hamming weight ofx, i.e., the number of nonzero elements inx. We defineIn as then
by n identity matrix. For an elementx ∈ Zq we define|x|q as the integerx if x ∈ {0,1, . . . , ⌊p/2⌋} and as the
integerq− x otherwise. In other words,|x|q represents the distance ofx from 0 inZq.

Gaussian and other distributions. The normal distribution with mean 0 and varianceσ2 is the distri-
bution onR given by the density function 1√

2πσ
exp

(
−1

2

(
x
σ

)2
)
. For any distributionϕ, we consider the

distributionϕ(n) obtained as follows: (1) taken samplesx1, . . . , xn from ϕ independently and (2) output
t(x1, . . . , xn). For an-dimensional vectorx and anys > 0, let ρ(n)

s (x) = exp(−π ∥x/s∥2) be a Gaussian
function scaled by a factor ofs. Also, ν(n)

s := ρ(n)
s /s

n is ann-dimensional probability density function. For
α ∈ R+ the distributionΨα is the distribution on [0, 1) obtained by sampling from a normal variable with
mean 0 and varianceα2/(2π) and reducing the result modulo 1:

Ψα(r) :=
∑
k∈Z

1
α

exp

−π ( r − k
α

)2 .
For an arbitrary probability distribution with density functionϕ : T → R+ and some integerq > 0, we
define its discretization̄ϕ : Zq → R+ as the discrete probability distribution obtained by sampling fromϕ,
multiplying by q, and rounding to the closest integer moduloq. More formally,

ϕ̄(i) :=
∫ (i+1/2)q

(i−1/2)q
ϕ(x)dx.

For integersm1 ≥ m2 ≥ 0, we define Setm2 := {s′ ∈ {0, 1}m1 | wH(s′) = m2}. For anys ∈ Zm
q , we define

As obtained as follows: (1) Choose a random vectora ∈ Zm
q . (2) Choose a random elemente ∈ Zq according

to Ψ̄α. (3) Outputs (a, ⟨a, s⟩ + e). For anys ∈ Zm
q and anys′ ∈ Setm2, we defineAs,s′ as the distribution on

Zn
q×Zm1

q ×Zq obtained as follows: (1) Choose a random vectora ∈ Zm
q . (2) Choose a random vectore ∈ Zm1

q

according toΨ̄(m1)
α/m2

. (3) Setb := ⟨a, s⟩ + ⟨e, s′⟩ and output (a,e,b). We also defineU′ as the distribution
on Zn

q × Zm1
q × Zq obtained as follows: (1) Choose a random vectora ∈ Zm

q . (2) Choose a random vector

e ∈ Zm1
q according toΨ̄(m1)

α/m2
. (3) Choose a random elementsu ∈ Zq and output (a, e, u).

We consider the following learning problems.

Definition 2.1 (Learning With Errors, LWEq,Ψ̄α). Given samples fromAs, find s.

Definition 2.2 (Learning With Known Errors, LWKEq,Ψ̄α). Given samples fromAs,s′ , find s.

We note that if there exists an adversaryA that solves LWEq,Ψ̄α with non-negligible probability then
there exists an adversaryA′ that solves LWKEq,Ψ̄α with non-negligible probability. IfA needsk = poly(n)
samples, thenA′ takesk samples (ai ,ei , bi) from As,s′ . A′ inputs{(ai , bi)}i=1,...,k toA and obtains an output
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s. A′ outputss. Using the reproducibility of Gaussian distributions, we show that the sum ofm2 samples
according toΨ̄α/m2 is, in fact, distributed according tōΨα, and hence{(ai , bi)}i=1,...,k whichA′ computes is
indeed samples fromAs.

Given two probability density functionsϕ1, ϕ2 onRn, we define the statistical distance between them
as∆(ϕ1, ϕ2) := 1

2

∫
Rn |ϕ1(x) − ϕ2(x)|dx. A similar definition holds for discrete random variables. We some-

times abuse such notation, and use the same notation for two arbitrary functions. Note that the acceptance
probability of any algorithm on inputs fromX differs from its acceptance probability on inputs fromY by
at most∆(X,Y).

We say that an algorithmD with oracle access is a distinguisher between two distributions if its ac-
ceptance probability when the oracle outputs samples of the first distribution and when the oracle outputs
samples of the second distribution differ by a non-negligible amount.

Lattices. An n-dimensional lattice inRn is the setL(b1, . . . , bn) = {∑n
i=1αibi | αi ∈ Z} of all integral

combinations ofn linearly independent vectorsb1, . . . , bn. The sequence of vectorsb1, . . . , bn is called a
basisof the latticeL. For clarity of notations, we represent a basis by the matrixB = [b1, . . . , bn]. For more
details on lattices, see the textbook by Micciancio and Goldwasser [15].

We give well-known lattice problems, Shortest Vector Problem (SVP) and Shortest Independent Vector
Problem (SIVP) and their approximation version.

Definition 2.3 (Shortest Vector Problem, SVP). Given a basisB of a latticeL, find a non-zero vectorv ∈ L
such that for any non-zero vectorx ∈ L, ∥v∥ ≤ ∥x∥.

Definition 2.4 (SVPγ). Given a basisB of a latticeL, find a non-zero vectorv ∈ L such that for any
non-zero vectorx ∈ L, ∥v∥ ≤ γ ∥x∥.

Definition 2.5 (Shortest Independent Vector Problem, SIVP). Given a basisB of a latticeL, find a sequence
of n linearly independent vectorsv1, . . . , vn ∈ L such that for any sequence ofn linearly independent vectors
x1, . . . , xn ∈ L, maxi ∥vi∥ ≤ maxi ∥xi∥.

Definition 2.6 (SIVPγ). Given a basisB of a latticeL, find a sequence ofn linearly independent vectors
v1, . . . , vn ∈ L such that for any sequence ofn linearly independent vectorsx1, . . . , xn ∈ L, maxi ∥vi∥ ≤
γmaxi ∥xi∥.

Codes. Let Fq denote a field withq elements, whereq is a prime power. Aq-ary linear codeC is a
linear subspace ofFn

q. If C has dimensionk thenC is called an [n, k]q code. A generator matrixG for a
linear codeC is an by k matrix for which the columns are a basis ofC. Note thatC := {Gm | m ∈ Fk

q}.
We say thatG is in standard form ifG =

(
Ik
P

)
. For an [n, k]q codeC, we define the dual codeC⊥ by

C⊥ := {y ∈ Fn
q | for anyx ∈ C, ⟨x, y⟩ = 0}. If G =

(
Ik
P

)
is a generator matrix in standard form of the codeC,

thenH =
(−tP
In−k

)
is a generator matrix of the codeC⊥. This follows from the fact thatH has the right size and

rank and thattHG = 0, which implies every codewordGm has inner product 0 with every column ofH. In
other words,x ∈ C if and only if tHx = 0. Thus, we callH a parity-check matrix. We note that, given any
generator matrixG of the codeC, we can efficiently computeC’s generator matrixG′ in standard form and
C’s parity-check matrixH.

If C is a linear code with a parity-check matrixH then for everyx ∈ Fn
q we call tHx the syndrome ofx.

It is well known that the question of finding the nearest codeword to a vector (Nearest Codeword
Problem, NCP) is NP-hard even in approximation version [4]. It is also difficult to find a word of a given
weight from its syndrome [5].

Definition 2.7 (Symdrome Decoding Problem, SDP). Given a parity-check matrixH ∈ Zn×m
2 , a binary

nonzero vectory ∈ Zm
2 , and a positive integerw, find a binary vectorx ∈ Zn

2 with no more thanw 1’s such
that tHx = y.
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Zero Knowledge and Proof of Knowledge. In this section, we recall definitions and notations of zero
knowledge and proof of knowledge.

Definition 2.8 (Auxiliary-Input Zero Knowledge). An interactive proof system (P,V) for a languageL
is (perfect/statistical/computational)auxiliary-input zero knowledgeif for every probabilistic polynomial-
time machineV∗ and polynomialp(·), there exists a probabilistic polynomial-time machineS such that the
ensembles{(P,V∗(z))(x)} and{S(x, z)} are (perfectly/statistically/computationally) indistinguishable on the
set{(x, z) : x ∈ L, |z| = p(|x|)}.

For a relationR⊆ {0,1}∗ × {0, 1}∗ andx ∈ {0, 1}∗, we define a set of witnessR(x) := {y | (x, y) ∈ R}.

Definition 2.9 (Proof of Knowlegde). Let η ∈ (0,1). An interactive protocol (P,V) with a proverP and a
verifierV is aproof of knowledge system with knowledge errorκ for a relation Rif the following holds:

Completeness:For every common inputx for which there existsy such that (x, y) ∈ R the verifierV always
accepts interacting with the proverP.

Validity with error η: There exists a polynomial-time interacting oracle Turing machineK and a constant
c > 0 such that for everyx ∈ {0, 1}∗ such thatR(x) , ∅ and for every proverP∗ the following holds:
KP∗(x) ∈ R(x) ∪ {⊥} and Pr[KP∗(x) ∈ R(x)] ≥ (p− κ)c, wherep > κ is the probability thatV accepts
while interacting withP∗ on common inputx.

String Commitments. We explain the notation for commitment schemes in the common reference string
(CRS) model. Assume that there exists a trusted third party (TTP). Let Com(·)(·; ·) be an indexed function
which maps a pair of a message string and a random string to a commitment string. First, TTP on input
1n outputs a random stringa, which is the CRS and the index of the commitment function. To commit to
a strings, the sender chooses a random stringr, computesc = Coma(s; r), and sendsc to the receiver. To
reveal commitmentc, the sender sendss andr to the receiver. The receiver accepts ifc = Coma(s; r) or
rejects otherwise.

Definition 2.10. We say a string commitment scheme Com(·)(·; ·) is statistically hiding and computationally
binding if it has the following properties:

Statistical Hiding: For any two stringss and s′, the statistical distance between (a,Coma(s; r)) and
(a,Coma(s′; r ′)) is negligible, wherea, r, r ′ are random and independent.

Computational Binding: For any probabilistic polynomial-time machineA, if a is randomly chosen by
TTP, then the probability that, given an inputa, A outputs (s, r) and (s′, r ′) such that Coma(s; r) =
Coma(s′; r ′) is negligible.

3 Subset-Sum Hash Functions and A String Commitment Scheme

Let n be a security parameter (or a dimension of underlying lattice problems). For a primeq = q(n) = nO(1)

and an integerm = m(n) > n logq(n), we define a family of hash functions,Hq,m = { fA : {0, 1}m(n) →
Zn

q(n) | A ∈ Z
n×m(n)
q(n) }, where fA(x) = Ax modq(n).

Originally, Ajtai showedHq,m is a family of one-way functions under the assumption that SVP with
some polynomial approximation factor is hard in the worst case for suitably chosenq(n) andm(n). It is
known thatHq,m is indeed a family of collision-resistant hash functions for suitably chosenq andm by
Goldreich, Goldwasser, and Halevi [10], Cai and Nerurkar [6] and Micciancio [14]. Recently, Micciancio
and Regev showedHq,m is a family of collision-resistant hash functions under the assumption SVPÕ(n) is
hard in the worst case [16].

We construct a statistically-hiding computationally-binding string commitment scheme based on the
above hash functions. It is well known that if there exists a collision-resistant hash function then there exists
a statistically hiding and computationally binding string commitment scheme [7, 8, 12]. Their construction
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used universal hash functions for the statistically hiding property. However, our construction do not use it,
because ifm is sufficiently large and a plaintexts is randomized,As is distributed statistically close to the
uniform distribution. To prove the statistically-hiding property, we useClaim 3.2in Regev [19].

We describe how to achieve a string commitment scheme in the CRS model. We first split the domain
{0, 1}m into two domain{0, 1}m/2×{0, 1}m/2. The first domain is used for randomization. The second domain
is for message. We define ComA(s; r) := Ax, wherex = t(r0, . . . , rm/2, s1, . . . , sm/2), r = r1 . . . rm/2, and
s= s1 . . . sm/2.

Lemma 3.1. For a prime q= q(n) = nO(1) and an integer m= m(n) > 10n logq, if Hq,m is collision
resistant and a trusted third party gives a random matrixA ∈ Zn×m

q , thenComA is a statistically hiding and
computationally binding string commitment scheme in the CRS model.

Proof. The computationally-binding property immediately follows from the collision-resistant property.
Next, we consider the statistically-hiding property. UsingClaim 3.2, we have that with probability expo-
nentially close to 1 the statistical distance between the distribution of (A,ComA(0m/2; r)) and that of (A, u)
is negligible inn, wherer andu are random variables according to the uniform distribution on{0, 1}m/2 and
Zn

q, respectively. Hence, for any two messagesm1,m2 ∈ {0, 1}m/2, the statistical distance between the distri-
bution of (A,ComA(m1; r1)) and that of (A,ComA(m2; r2)) is negligible inn with probability exponentially
close to 1, wherer1 andr2 are random variables according to the uniform distribution on{0, 1}m/2. This
completes the proof. �

Claim 3.2 (Claim 5.3, [19]). Let G be a finite Abelian group and let l= c log |G|. For c ≥ 5, when choosing
l elements g1, . . . , gl uniformly from G the probability that the statistical distance between the uniform
distribution on G and the distribution given by the sums of random subsets of g1, . . . , gl is more than2/ |G|
is at most1/ |G|.

4 The Regev’05 Cryptosystem and Modified Regev’05 Cryptosystem

4.1 The Regev’05 Cryptosystem

Regev proposed a lattice-based cryptosystem in 2005 [19]. We briefly review the Regev’05 cryptosystem,
R05.

Let n be a security parameter (or a dimension of the underlying lattice problem). Letq be a prime and
α be a parameter to define the variance of Gaussian distribution such thatαq > 2

√
n. Let m be an integer

at least 5(n+ 1) logq.

Private Key: Chooses ∈ Zn
q randomly.

Public Key: Choosea1, . . . , am ∈ Zn
q randomly. Choosee1, . . . , em according to the distribution̄Ψα. Com-

putebi = ⟨ai , s⟩ + ei modq. The public key is{(ai ,bi)}i=1,...,m.
Encryption: A plaintext is σ ∈ {0, 1}. ChooseS ⊆R {1, . . . ,m} randomly. The ciphertext is

(
∑

i∈S ai , σ ⌊q/2⌋ +
∑

i∈S bi).
Decryption: Let (a, b) ∈ Zn

q×Zq be a received ciphertext. If|b−⟨a, s⟩|q ≤ q/4 then decrypt to 0. Otherwise
decrypt to 1.

The size of a public key and a private key areO(mnlogq) = O(n2 log2 q) andO(n logq) = O(n logn)
respectively. Ifa1, . . . , am is the CRS, this is the idea from Ajtai [2], the size of a public key isO(mlogq) =
O(n log2 q). We summarize the security and decryption errors of R05.

Theorem 4.1(Thereom 3.1, Lemma 4.4, and Lemma 5.4, [19]). Letα = α(n) be a real number on(0, 1)and
q = q(n) a prime such thatαq > 2

√
n. For m≥ 5(n+1) logq, if there exists a polynomial time algorithm that

distinguishes between encryptions of0 and1 then there exists a distinguisher that distinguishes between As

and U(Zn
q × Zq) for a non-negligible fraction of all possibles.
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Next, assume there exists a distinguisher that distinguishes As from U(Zn
q × Zq) for a non-negligible

fraction of all possibles. Then, there exists an efficient algorithm that solvesLWEq,Ψ̄α .
Finally, assume there exists an efficient (possibly quantum) algorithm that solvesLWEq,Ψ̄α . Then there

exists an efficient quantum algorithm for solving the worst-case ofSVPÕ(n/α) andSIVPÕ(n/α).

Lemma 4.2 (Lemma 5.1, [19] (Correctness)). The decryption error probability is at most2−Ω(1/(mα2)) +

2−Ω(n).

Remark 4.3. The reduction inTheorem 4.1is quantum. Therefore, the security of R05 depends on the
worst-case hardness of LWEq,Ψ̄α in the classical sense.

4.2 Modified Regev’05 Cryptosystem

We modify the Regev’05 cryptosystem to obtain a new cryptosystem mR05.
Let n be a security parameter (or a dimension of the underlying lattice problem). Letq be a prime and

α be a parameter to define the variance of Gaussian distribution such thatαq > 2
√

n. Let tα be a threshold
such that Pre∼Ψ̄α/m2

[|e|q ≥ tα] is negligible inn (i.e., tα = ω(αq logn/m2).) Let m be an integer at least

10(n + 1) logq. Let m1 andm2 be integers such thatm1,m2 = poly(n) and
(
m1
m2

)
is exponential inn. Let

Setm2 := {s′ ∈ {0, 1}m1 | wH(s′) = m2}. We need 4mm2tα < q to ensure the correctness of the cryptosystem.

Private Key: Chooses ∈ Zn
q randomly. Chooses′ ∈ Setm2 randomly.

Public Key: Choosea1, . . . , am ∈ Zn
q randomly ande1, . . . , em1 according to the distribution̄Ψ(m)

α/m2
. Let

A = [a1, . . . , am] andE = [e1, . . . , em1]. Check for anyi, ei ’s coordinates are at mosttα in the sense
| · |q. Computee := Es′. Let b := tAs+ e ∈ Zm

q . The public key is (A,E, b). The secret key iss, s′.
Encryption: A plaintext is σ ∈ {0, 1}. ChooseS ⊆R {1, . . . ,m} randomly. The ciphertext is

(
∑

i∈S ai , σ ⌊q/2⌋ +
∑

i∈S bi).
Decryption: Let (a, b) ∈ Zn

q×Zq be a received ciphertext. If|b−⟨a, s⟩|q ≤ q/4 then decrypt to 0. Otherwise
decrypt to 1.

For example, we setq = Θ(n3), m = 10(n+ 1) logq, α = 1/m2, tα = n/ logn, m1 = m, andm2 =
√

m.
Note that, with such parameters, we have that 4mm2tα < q.

The size of a public key and a private key areO(mnlogq +m1n logq) = O(n2 log2 q) andO(n logq +
m1 logq) = O(n log2 n) respectively. IfA andE are the CRSs the size of a public key isO(mlogq) =
O(n log2 q).

Note that, from a coding-theoretical view,tA is a generator matrix and we can compute a parity check
matrixH such that, for anys ∈ Zn

q, HtAs = 0 ∈ Zm−n
q .

First, we see the correctness of mR05.

Lemma 4.4(Correctness). There exist no decryption errors.

Proof. Suppose that (a, b) is a valid ciphertexts of 0, i.e., (a, b) = (
∑m

i=1 r iai ,
∑m

i=1 r ibi) for somer ∈ {0,1}m.
We have

|b− ⟨a, s⟩|q =
∣∣∣∣∣∣∣

m∑
i=1

r ibi − ⟨
m∑

i=1

r iai , s⟩
∣∣∣∣∣∣∣
q

=

∣∣∣∣∣∣∣
m∑

i=1

r iei

∣∣∣∣∣∣∣
q

≤
∣∣∣∣∣∣∣

m∑
i=1

ei

∣∣∣∣∣∣∣
q

≤ m|ei |q ≤ mm2tα,

whereei is i-th coordinate ofe = Es′. Since we set 4mm2tα < q, we obtain|b − ⟨a, s⟩|q < q/4. Next
we consider the case (a,b) is a valid ciphertexts of 1, i.e., (a, b) = (

∑m
i=1 r iai , ⌊q/2⌋ +

∑m
i=1 r ibi) for some

r ∈ {0,1}m. Similarly to the case of 0, we have

|b− ⟨a, s⟩|q ≥ ⌊q/2⌋ −mm2tα ≥ q/4

and we can decrypt correctly. �
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CombiningLemma 4.6, Lemma 4.7, andLemma 4.8below, we obtain the following theorem on secu-
rity of mR05.

Theorem 4.5(Security). For m ≥ 10(n + 1) logq, if there exists a polynomial-time algorithmD that dis-
tinguishes between encryptions of0 and1 with its public key, then there exists a polynomial-time algorithm
A that solvesLWKEq,Ψ̄α in the worst case.

Lemma 4.6. For m ≥ 5(n + 1) logq, if there exists a polynomial time algorithmD that distinguishes
between encryptions of0 and1 with its public key, then there exists a distinguisherD′ that distinguishes
between As,s′ and U′ for a non-negligible fraction of all possibles ands′.

We omit the proof, because the proof is quite similar to the security proof in [19].

Lemma 4.7 (Average-case to Worst-case). Assume there exists a distinguisherD that distinguishes As,s′
from U′ for a non-negligible fraction of all possiblesands′. Then there exists an algorithmD′ that for all
s ands′ accepts with probability exponentially close to1 on inputs from As,s′ and rejects with probability
exponentially close to1 on inputs from U′.

Proof. As similar to Regev’s proof [19], we prove the lemma based on the following transformation. For
anyt ∈ Zn

q and any permutationπ ∈ Sm1 consider the functionft,π : Zn
q×Zm1

q ×Zq→ Zn
q×Zm1

q ×Zq defined
by

ft,π(a,e,b) = (a, π(e),b+ ⟨a, t⟩).
This function transforms the distributionAs,s′ into As+t,π(s′). Moreover, it transforms the distributionU′ into
itself.

Next we consider the random statistical test. Assume that forn−c1 fraction of all possible (s, s′), the
acceptance probability ofW on inputs fromAs,s′ and on inputs fromU′ differ by at leastn−c2. We construct
the distinguisherD′ as follows. LetR denote the unknown input distribution. (0) Repeat the following
nc1+1 times. (1) Choose a vectort ∈ Zn

q and a permutationπ ∈ Sm1 uniformly at random. (2) EstimatepR,
the acceptance probability ofD on ft,π(R), by callingD T = n2c2+1 times. LetxR be the number of 1 in the
outputs ofD. (3) EstimatepU , the acceptance probability ofD onU′, by callingD T times. LetxU be the
number of 1 in the outputs ofD. (4) If |xU − xR|/T ≥ n−c2/2 then stop and accept. Otherwise continue. (5)
If the procedure ends without accepting, stop and reject.

WhenR is U′, the probability that|pU − xU/T | ≥ n−c2/8 is exponentially small by the Hoeffding bound.
Since ft,π(U′) = U′, the probability that|pU − xR/T | ≥ n−c2/8 is exponentially small. Therefore, the
acceptance probability ofD′ is exponentially close to 0.

WhenR is As,s′ for somes, s′. In each of the iterations, we are considering the distributionft,π(As,s′) =
As+t,π(s′) for some uniformly chosent andπ. Hence, with probability exponentially close to 1, in one of
the nc1+1 iterations, (s+ t, πs′) is such that the acceptance probability ofD on inputs fromAs+t,π(s′) and
on inputs fromU′ differ by at leastn−c2. In this case, from the Hoeffding bound, the probability that
|pU − xU/T | ≥ n−c2/8 and|pR− xR/T | ≥ n−c2/8 is exponentially small. Hence,D′ accepts with probability
exponentially close to 1. �

Lemma 4.8 (Decision to Search). Let n ≥ 1 be some integer and q≥ 2 be a prime. Assume there exists
an algorithmD that for all s, s′ accepts with probability exponentially close to1 on inputs from As,s′ and
rejects with probability exponentially close to1 on inputs from U′. Then, there exists an algorithmD′ that,
given samples from As,s′ for somes, outputss with probability exponentially close to1.

Proof. We only show howD′ find the first coordinate ofs s1 ∈ Zq. For anyk ∈ Zq, consider the following
transformation. Given a tuple (a, e, b) we output the tuple (a + t(l, 0, . . . , 0),e,b + lk) where l ∈ Zq is
chosen uniformly at random. This random transformation takesU′ into itself. Moreover, ifk = s1 then this
transformation also takesAs,s′ into itself. Finally, if k , s1 then it transformsAs,s′ to U′. Therefore, using
D, we can test whetherk = s1 or not. Since there are onlyq < poly(n) possibilities fors1, we can try all of
them.

�
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Remark 4.9. The hardness of the worst case of LWKEq,Ψ̄α implies the hardness of the worst case of
LWEq,Ψ̄α . Note that it is unknown if the converse statement holds. FromTheorem 4.1, there exists a
quantum reduction from LWEq,Ψ̄α to SVPÕ(n/α) and SIVP̃O(n/α).

5 Protocol PSK

Recall that we can considertA as a generator matrix from a coding-theoretical view and a parity-check
matrixH is easily computed. Informally, if Alice wants to prove that she has a secret key corresponding to
a public keyb, it is sufficient that she proves that she has an error keys′ such thatHEs′ = Hb.

Definition 5.1 (RelationRmR05). Let (A,E, b) be a public key of mR05,H a parity-check matrix ofA, s
a vector inZn

q, ands′ a vector inZm1
q . We say that input (A,H,E, b) and witness (s, s′) are inRmR05 if

s′ ∈ Setm2, As+ Es′ = b, andHEs′ = Hb.

Next, we describe the protocol for a proof of knowledge for a secret key, which is mainly based on a
proof of knowledge for SDP by Stern [21].

Let P andV be a prover and a verifier respectively. The CRS isA,E. The common input isb. The
auxiliary inputs to the prover ares ands′ such thatb = tAs+ Es′. Let Com(·; ·) = ComA(·; ·).

Step P1 Choose a random permutationπ for {1, . . . ,m1} and a random vectory ∈ Zm1
q . Computec1 =

Com(π,HEy; r1), c2 = Com(π(y); r2) andc3 = Com(π(y + s); r3). Sendc1, c2, c3 to V.
Step V1 V sends a random challenge bitδ ∈R {1, 2, 3} to P.
Step P2 If δ = 1, P opensc1 andc2 (i.e., sendsπ, y, r1, andr2 to V). If δ = 2, P opensc1 andc3 (i.e., sends

π, y + s, r1 andr3 to V). If δ = 3, P opensc2 andc3 (i.e., sendsπ(s), π(y), r2, andr3 to V).
Step V2 If δ = 1, received ˜π, ỹ, r̃1, and ˜r2, check the commitmentsc1 and c2 were correct (i.e.,

c1 = Com(π̃,HEỹ; r̃1) andc2 = Com(π̃(ỹ); r̃2)). If δ = 2, received ˜π, x̃, r̃1, and ˜r3, check that the com-
mitmentsc1 andc3 were correct (i.e.,c1 = Com(π̃,HEx̃ −Hb; r̃1) andc3 = Com(π̃(x̃); r̃3)). If δ = 3,
receivedx̃1, x̃2, r̃2, and ˜r3, check that the commitmentsc2 andc3 were correct (i.e.,c2 = Com(̃x1; r̃2)
andc3 = Com(̃x1 + x̃2; r̃3)) and thatwH(x̃2) = m2.

Theorem 5.2(PSK for mR05). Interactive protocol(P,V) is a proof of knowledge system with knowledge
error 2/3 for RmR05. Moreover, the protocol(P,V) is a statistical zero-knowledge argument for RmR05 in
CRS-model under the assumption that the worst case ofLWKEq,Ψ̄α andSVP ˜O(n) is hard.

Proof of completeness.We omit the proof since it is evident. �

Proof of knowledge error with2/3. Assume that some probabilistic polynomial-time adversaryP∗ is ac-
cepted with probability larger than 2/3 + ϵ after playing the protocol. We prove that the existence ofP∗

implies the existence of a probabilistic polynomial-time machineK that outputs witnesss′ or finds colli-
sions for the hash function. Note that, under the assumption that the worst case of SVPÕ(n) is hard, finding
collision is hard [16]. Therefore we obtain a knowledge extractorK.

We considerP∗’s random tape as a random variable. SinceP∗ is accepted with probability larger than
2/3+ ϵ, there areϵ fractions of all possibleP∗’s random tape such thatP∗ can answer to allV’s challenges
correctly. LetP’s answer toV’s challenge 1 be ˜π1, ỹ, r̃1,1, and ˜r1,2. Let P’s answer toV’s challenge 2 be
π̃2, x̃, r̃2,1, and ˜r2,3. Finally, letP’s answer toV’s challenge 3 bẽx1, x̃2, r̃3,2 andr̃3,3. SinceP∗’s answer are
correct, we obtain that

c1 = Com(π̃1,HEỹ; r̃1,1) = Com(π̃2,HEx̃ − Hb; r̃2,1)

c2 = Com(π̃1(ỹ); r̃1,2) = Com(̃x1; r̃3,2)

c3 = Com(π̃2(x̃); r̃2,3) = Com(̃x1 + x̃2; r̃3,3)

If there exists a distinct pair inP∗’s answer, we find a collision. Then, we assume there exists no distinct pair
in P∗’s answer. SinceP∗ is accepted,wH(x̃2) = m2. Fromc1’s equation, ˜π1 = π̃2. Combiningπ̃1 = π̃2 and
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c3’s equations, we obtaiñx = π̃−1
2 (x̃1) + π̃−1

2 (x̃2). Fromc2’s equation, we have thatỹ = π̃−1
2 (x̃1). Therefore,

combining the above argument andc1’s equation, we obtainHb = HE(x̃ − ỹ) = HEπ̃−1
2 (x̃2) and a witness

π̃−1
2 (x̃2). Then, we obtain a collision or a witness usingP∗ and complete the proof. �

Proof of zero knowledge.We construct the simulator as follows.

Step P1 Choose∆ ∈ {1,2,3} randomly. Choose a permutationπ, a vectory ∈ Zm1
q , a vectors′ ∈ Setm2

uniformly at random.

1. ∆ = 1: Computec1 = Com(π,HE(y + s′) − Hb; r1), c2 = Com(π(y); r2), andc3 = Com(π(y +
s′); r3). Sendsc1, c2, andc3 to V∗.

2. ∆ = 2: Computec1 = Com(π,HEy; r1), c2 = Com(π(y); r2), andc3 = Com(π(y+s′); r3). Sends
c1, c2, andc3 to V∗.

3. ∆ = 3: Computex ∈ Zm1
q such thatHEx = HEy + Hb. Computec1 = Com(π,HEy; r1),

c2 = Com(π(y); r2), andc3 = Com(π(x); r3). Sendsc1, c2, andc3 to V∗.

Step V1 Receive a challengeδ ∈ {1, 2, 3}.
Step P2 If ∆ = δ then output⊥ and halt. Else,

1. (∆, δ) = (1,2): Send ˜π = π, x̃ = π(y + s′), r̃1 = r1, and ˜r3 = r3 to V∗.
2. (∆, δ) = (1,3): Sendx̃1 = π(y), x̃2 = π(s′), r̃2 = r2, and ˜r3 = r3 to V∗.
3. (∆, δ) = (2,1): Send ˜π = π, ỹ = y, r̃1 = r1, and ˜r2 = r2 to V∗.
4. (∆, δ) = (2,3): Sendx̃1 = π(y), x̃2 = π(s′), r̃2 = r2, and ˜r3 = r3 to V∗.
5. (∆, δ) = (3,1): Send ˜π = π, ỹ = y, r̃1 = r1, and ˜r2 = r2 to V∗.
6. (∆, δ) = (3,2): Send ˜π = π, x̃ = π−1(x), r̃1 = r1, and ˜r3 = r3 to V∗.

Output the transcript and halt.

Since Com is statistically hiding, the simulator’s outputs when the simulator did not output⊥ is statistically
close to the real transcript. �

References

[1] Ajtai, M. Generating hard instances of lattice problems (extended abstract). InProceedings on 28th
Annual ACM Symposium on Theory of Computing (STOC ’96)(Philadelphia, Pennsylvania, USA,
May 1996), ACM, pp. 99–108. See also ECCC TR96-007.

[2] Ajtai, M. Representing hard lattices withO(n logn) bits. In Gabow and Fagin [9], pp. 94–103.

[3] Ajtai, M., and Dwork, C. A public-key cryptosystem with worst-case/average-case equivalence. In
Proceedings on 29th Annual ACM Symposium on Theory of Computing (STOC ’97)(El Paso, Texas,
USA, May 1997), ACM, pp. 284–293. See also ECCC TR96-065.

[4] Arora, S., Babai, L., and Stern, Jacques Sweedyk, Z. The hardness of approximate optima in lattices,
codes, and systems of linear equations.Journal of Computer and System Sciences 54, 2 (1997), 317–
331.

[5] Berlekamp, E. R., McEliece, R. J.,and van Tilborg, H. C. A. On the inherent intractability of certain
coding problems.IEEE Transactions on Information Theory 24, 3 (MAY 1978), 384–386.

[6] Cai, J.-Y.,andNerurkar, A. An improved worst-case to average-case connection for lattice problems.
In 38th Annual Symposium on Foundations of Computer Science (FOCS ’97)(Miami Beach, Florida,
USA, October 1997), IEEE Computer Society, pp. 468–477.

[7] Damgård, I. B., Pedersen, T. P.,and Pfizmann, B. On the existence of statistically hiding bit com-
mitment schemes and fail-stop signatures.Journal of Cryptology 10, 3 (1997), 163–194. Preliminary
version inCRYPTO ’93, 1993.

10



[8] Damgård, I. B., Pedersen, T. P.,and Pfizmann, B. Statistical secrecy and multibit commitments.IEEE
Transactions on Information Theory 44, 3 (MAY 1998), 1143–1151.

[9] Gabow, H. N., and Fagin, R., Eds. Proceedings on the 37th Annual ACM Symposium on Theory of
Computing (STOC 2005)(Baltimore, MD, USA, May 2005), ACM.

[10] Goldreich, O., Goldwasser, S.,and Halevi, S. Collision-free hashing from lattice problems.Elec-
tronic Colloquium on Computational Complexity (ECCC) 3, 42 (1996).

[11] Goldwasser, S.,andKharchenko, D. Proof of plaintext knowledge for the Ajtai-Dwork cryptosystem.
In Theory of Cryptography, 2nd Theory of Cryptography Conference, TCC 2005(Cambridge, MA,
USA, February 2005), J. Kilian, Ed., vol. 3378 ofLecture Notes in Computer Science, Springer-
Verlag, pp. 529–555.

[12] Halevi, S., and Micali, S. Practical and provably-secure commitment scheme from collision-free
hashing. InAdvances in Cryptology – CRYPTO ’96(Santa Barbara, California, USA, August 1996),
N. Koblitz, Ed., vol. 1109 ofLecture Notes in Computer Science, Springer-Verlag, pp. 201–215.

[13] Hayashi, S.,and Tada, M. A lattice-based public-key identification scheme. InThe 2006 International
Symposium on Information Theory and its Applications (ISITA 2006)(2006).

[14] Micciancio, D. Almost perfect lattices, the covering radius problem, and applications to Ajtai’s con-
nection factor.SIAM Journal on Computing 34, 1 (2004), 118–169. Preliminary version inSTOC
2002, 2002.

[15] Micciancio, D., and Goldwasser, S. Complexity of Lattice Problems: a cryptographic perspective,
vol. 671 ofThe Kluwer International Series in Engineering and Computer Science. Kluwer Academic
Publishers, Boston, Massachusetts, March 2002.

[16] Micciancio, D., and Regev, O. Worst-case to average-case reductions based on Gaussian measures.
In 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004)(Rome, Italy,
October 2004), IEEE Computer Society, pp. 372–381.

[17] Micciancio, D., and Vadhan, S. Statistical zero-knowledge proofs with efficient provers: Lattice
problems and more. InAdvances in Cryptology – CRYPTO 2003(Santa Barbara, California, USA,
August 2003), D. Boneh, Ed., vol. 2729 ofLecture Notes in Computer Science, Springer-Verlag,
pp. 282–298.

[18] Regev, O. New lattice-based cryptographic constructions.Journal of the ACM 51, 6 (2004), 899–942.
Preliminary version inSTOC 2003, 2003.

[19] Regev, O. On lattices, learning with errors, random linear codes, and cryptography. In Gabow and
Fagin [9], pp. 84–93.

[20] Shamir, A. An efficient identification scheme based on permuted kernels (extended abstract). In
Advances in Cryptology – CRYPTO ’89(Santa Barbara, California, USA, August 1989), G. Brassard,
Ed., vol. 435 ofLecture Notes in Computer Science, Springer-Verlag, pp. 606–609.

[21] Stern, J. A new paradigm for public key identification.IEEE Transactions on Information Theory
42, 6 (November 1996), 749–765. Preliminary version inCRYPTO ’93, 1993.

11


	1 Introduction
	2 Preliminaries
	3 Subset-Sum Hash Functions and A String Commitment Scheme
	4 The Regev'05 Cryptosystem and Modified Regev'05 Cryptosystem
	4.1 The Regev'05 Cryptosystem
	4.2 Modified Regev'05 Cryptosystem

	5 Protocol PSK

