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Abstract

We propose a lattice-based cryptosystem by modifying the Regev’'05 cryptosystem (STOC 2005),
and design a proof of secret-key knowledge. Lattice-based public-key identification schemes have al-
ready been proposed, however, it is unknown that their public keys can be used for the public keys of
encryption schemes. Our modification admits the proof of knowledge on its secret key, however, we
need a stronger assumption than that required by the original cryptosystem.
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1 Introduction

Lattice-Based Cryptosystems. Since Ajtai’'s seminal results on the average-pasest-case connection

of lattice problems ], the lattice-based cryptosystems have been studied. Ajtai and Dwork proposed a
public-key cryptosystem3] based on the worst-case hardness of unique shortest vector problem (USVP).
After their results, Regev proposed a cryptosysté®] pased on the worst-case hardness of uSVP. In
2005, Regev introduced a cryptosystem R0 pased on the approximation version of SVP and Ajtai
introduced another cryptosyste].[In the Regev’05 cryptosystem and the AjtaiO5 cryptosystem, the size
of the public key isO(n?) or in the common reference string mod2(n). Their cryptosystems are more
realistic than the Ajtai-Dwork cryptosystem.

However, there were no applications of lattice-based cryptosystems, except Micciancio and ¥&Hhan [
and Goldwasser and KharchenKd]. The former is a zero-knowledge proof for a gap version of closest
vector problem (GapCVj), which we refer as the MV protocol. The latter is a proof of plaintext knowledge
for the Ajtai-Dwork cryptosystem. Thus, we consider another application for lattice-based cryptosystems,
a proof of knowledge on its secret key.

Our Contribution. In this paper we propose a modified Regev’05 cryptosystem and introduce a proof
of knowledge on its secret key in the CRS model. We consider the relation between the private key and
the public key as that between the message and the codeword with the error in coding theory. We modify
the construction of the error. The modification admits a prover to prove the knowledge of the error and the
message based on StePi]. Thus, we obtain a proof of knowledge on a secret key of our cryptosystem.

Related Results. There already exist public-key identification schemes based on lattice and coding prob-
lems. In 1989, Shamir showed an identification scheme based on Permuted Kernel Piiljlernm [



1996, Stern proposed public-key identification based on syndrome decoding prd@ilenMicciancio

and Vadhan proposed a zero-knowledge proof witicient prover for GapCVPand discussed public-key
identification schemesdl[]. Recently, Hayashi and Tada showed public-key identification schemes based
on integer subset sum problem or binary non-negative exact length vector prd#pnuUpfortunately,

it is not known if their public keys can be used as a public key of cryptosystems. We stress that in our
identification schemes, information for identification is indeed a public key of cryptosystems.

Why can we not apply the MV protocol to R05?  In the Regev'05 cryptosystems, the secret keydsZg
ands’ € {0, 1}™ and the public key i#\ € ngm andb = 'As + e, wheree e Z{]“ and each coordinate efis
close to 0. From a coding-theoretical view, we can'éeas a generator matris,as a message, aeas an
error. Moreover, the length @is short. Then, one would think we can apply the MV protocol to proofs of
knowledge for a secret keyy However, we cannot apply it in a naive way. We explain more details.

We first review the intuition which is used in the protocol it7]. Let (B,y,t) be an instance of
GapCVPyl. Let B(c,r) be ann-dimensional hyperball whose centerdsand radius ig. In their pro-
tocol, the prover chooses a random biaind a random vectar from B(0, yt/2). The prover computes
m = cy + r modB and sendsn to the verifier. The verifier sends a challengediv the prover. Note that
if (B,y, 1) is a YES instance then the ratio between the volumd(@d,(t/2) modB) N (B(y, yt/2) modB)
and that ofB(0, yt/2) is at least Lpoly(n). If m € (B(0, yt/2) modB) n (B(y, yt/2) modB) the prover can
flip a bit c. The prover sends the proof thaitis chosen fronB(cy, yt/2). Note that if B,y,t) is a NO
instance theng(0, yt/2) modB) n (B(y, yt/2) modB) = 0. Therefore the prover can not flip a liafter a
reception of the challenge bit.

Next, we consider applying their protocol to the Regev'05 cryptosystem, i.e., a proof of knowledge
that, on input A, b), the prover knows such thatb = 'As + e, wheree € B(0,t). Note that a linear
code isZg-module inZ{qn and a lattice iZ-module inR™. Therefore, instead of modul®, we multiply a
parity-check matrixH of 'A to the vector inZg'. Suppose thaB(0,yt/2) andB(b, yt/2) do not intersect.
Unfortunately, we cannot ensure thB(0, yt/2) andHB(b, yt/2) do not intersect because the dimension
of HZ§ is m-n < m. On such 4, b), the prover can cheat about which hyperball he chodeom, and
the soundness of the protocol fails. Thus, we cannot apply their protocol to the Regev'05 cryptosystem in
a straightforward way.

Main Idea. As seen in the above paragraph, we cannot apply the protbéald the Regev’05 crypto-
system straightforwardly. Let us re-consider multiplying a parity-check mhtriket s € Zg be a private
key and letA, b = 'As+ e be a public key. Multiplying a parity-check matrik to the equatiom = 'As+e,
we obtain thaHb = He. The prover should prove the knowledgeedhat satisfies the equation and each
coordinate okis in certain range. The flliculty to construct the protocol is to combine protocols that prove
suficiency of the equation and lying in the range.

Then, we modify a public key as follows: The secret keg @szg ands’ € {0, 1}™, whose Hamming
weight ismp. The public key isA € Zg*™ andE € Zg™™ andb = 'As + ES'. In this case, by multiplying
a parity-check matribH, we have thaHb = HEs'. Translating a matrbHE as a parity-check matrix,
we have an instancéHE, Hb, mp) and a withess of Syndrome Decoding Problem (SDP). Since Stern
proposed a proof of knowledge for SDP in 1928]] we adopt it to prove knowledge of secret &y

The proof of knowledge for SDP needs a statistically-hiding computationally-binding commitment
scheme. Fortunately, i is chosen randomly then the functida : {0,1}™ — Z§ : m — Am is a
collision-resistant function based on the approximation version of YR 6, 14, 16]. Thus we employ
that function to develop a statistically-hiding computationally-binding string commitment scheme. Our
construction of string commitment is more straightforward than Damgard, Pedersen, and PfiZn@&nn [
and Halevi and Micali12], which used the universal hash functions.

1 (B,y,t) is a YES instance if there existg € Z" such thai|Bw —y|| < t. It is a NO instance if for any vectow € Z",
IBw —yil > yt.



Organization. The rest of this paper is organized as follows. We briefly note basic notions and notations

for lattice-based cryptosystems, zero-knowledge proof, and proof of knowledge in Section 2. In Section 3,
we will argue the construction of a string commitment scheme. We describe the Regev’'05 cryptosystem
and our modified cryptosystem in Section 4. Finally, we give our main results, a proof of knowledge on a

secret key, in Section 5.

2 Preliminaries

We define a negligible amount imas an amount that is asymptotically smaller tmahfor any constant
¢ > 0. More formally, f(n) is a negligible function im if limp_.nf(n) = 0 for anyc > 0. Similarly, a
non-negligible amount is one which is at least for somec > 0.

The length of a vectax = '(xq, ..., X,) € R", denoted bylx|, is (X[, X)*/2. For any fieldK, the inner
product of two vectors = t(xl,...,xn) e K"andy = t()/1, ...,¥n) € K", denoted byx,y), is Zi”:l XY
Let wy(X) denote Hamming weight of, i.e., the number of nonzero elementxinWe definel, as then
by nidentity matrix. For an elemente Zq we defingx|q as the integexif x € {0,1,...,|p/2]} and as the
integerq — x otherwise. In other word$x|q represents the distancefrom 0 inZ.

Gaussian and other distributions. The normal distributi%n with mean 0 and variancgis the distri-
bution onR given by the density function\/% exp(—% ((é) ) For any distributionp, we consider the
distribution (™ obtained as follows: (1) take samplesxy, ..., X, from ¢ independently and (2) output
Y(X,...,%n). For an-dimensional vectox and anys > 0, Ietp(sn)(x) = exp(r||x/9l?) be a Gaussian
function scaled by a factor & Also, v(s”) = p(s”)/§q is ann-dimensional probability density function. For
a € R* the distribution?,, is the distribution on [01) obtained by sampling from a normal variable with
mean 0 and variana€®/(2r) and reducing the result modulo 1:

Y, (r) = Z é exp(—n(%)z].

keZ

For an arbitrary probability distribution with density functign: T — R* and some integeq > 0, we
define its discretizatiop : Zq — R* as the discrete probability distribution obtained by sampling fgom
multiplying by g, and rounding to the closest integer modgldVore formally,

_ (i+1/2)q
o) = f( o(x)dx

i~1/2)q

For integersmy > mp > 0, we define Sef, := {s' € {0,1}™ | wy(s') = mp}. For anys € Z', we define
As obtained as follows: (1) Choose a random veetarZg'. (2) Choose a random elemet Zq according
to ¥,. (3) Outputs &, (a,s) + €). For anys Za” and anys' e Sety,, we defineAgsy as the distribution on
zy ng‘l X Zq obtained as follows: (1) Choose a random veatarZg'. (2) Choose a random vecter Zg‘l

according td?g}‘ﬁzz (3) Setb := (a,s) + (g, ') and output & e, b). We also defindJ’ as the distribution
on Zg x Zq" x Zq obtained as follows: (1) Choose a random veeter Zg. (2) Choose a random vector

ee Zg‘l according tdI_’g”/"rlTZZ (3) Choose a random elements Zy and output§, e, u).
We consider the following learning problems.

Definition 2.1 (Learning With Errors, LWEy, ). Given samples from, finds.
Definition 2.2 (Learning With Known Errors, LWKEy, ). Given samples fromdsg, finds.

We note that if there exists an adversafiythat solves LWEy  with non-negligible probability then
there exists an adversa@ that solves LWKE g with non-negligible probability. IfA needsk = poly(n)

,,,,,



s. A’ outputss. Using the reproducibility of Gaussian distributions, we show that the sum smples
indeed samples frors.

Given two probability density functiong;, > onR", we define the statistical distance between them
asA(¢1, ¢2) = %fR" |#1(X) — ¢2(x)|dx. A similar definition holds for discrete random variables. We some-
times abuse such notation, and use the same notation for two arbitrary functions. Note that the acceptance
probability of any algorithm on inputs frord differs from its acceptance probability on inputs fronby
at mostA(X,Y).

We say that an algorithr® with oracle access is a distinguisher between two distributions if its ac-
ceptance probability when the oracle outputs samples of the first distribution and when the oracle outputs
samples of the second distributiorffdr by a non-negligible amount.

Lattices. An n-dimensional lattice irR" is the setL(b1,...,bn) = {Zi”zl aibi | i € Z} of all integral
combinations of linearly independent vectols, ..., b,. The sequence of vectobs, ..., b, is called a
basisof the latticeL. For clarity of notations, we represent a basis by the m&trix[b1, ..., by]. For more
details on lattices, see the textbook by Micciancio and Goldwa&8kr [

We give well-known lattice problems, Shortest Vector Problem (SVP) and Shortest Independent Vector
Problem (SIVP) and their approximation version.

Definition 2.3 (Shortest Vector Problem, SVPEiven a basiB of a latticeL, find a non-zero vector € L
such that for any non-zero vectore L, ||V|| < ||X]|.

Definition 2.4 (SVP,). Given a basiB of a latticeL, find a non-zero vectov € L such that for any
non-zero vectox € L, ||V|| < y [IX]|.

Definition 2.5 (Shortest Independent Vector Problem, SIVB)jven a basi8 of a latticeL, find a sequence
of nlinearly independent vectors, . .., v, € L such that for any sequencerolinearly independent vectors
X1,...,Xn € L, max [lvill < max [[xll.

Definition 2.6 (SIVP,). Given a basid of a latticeL, find a sequence of linearly independent vectors
Vi,...,Vnp € L such that for any sequence nfinearly independent vectorg, ..., X, € L, max|vj|| <
y max [[xil.

Codes. Let Fqy denote a field withg elements, whereg is a prime power. Ag-ary linear codeC is a
linear subspace dfy. If C has dimensiork thenC is called an i, k]q code. A generator matrig for a
linear codeC is an by k matrix for which the columns are a basis@f Note thatC := {Gm | m € ]F'a}.

We say thatG is in standard form ilG = (ka) For an h,k]q codeC, we define the dual code* by
Cti={ye IFg | foranyx e C,(x,y)=0}. If G = ('Pk) is a generator matrix in standard form of the c@Je

thenH = (,‘::) is a generator matrix of the co@®-. This follows from the fact thatl has the right size and
rank and thatHG = 0, which implies every codewor@m has inner product 0 with every columndf In
other wordsx e C if and only if tHx = 0. Thus, we calH a parity-check matrix. We note that, given any
generator matrixs of the codeC, we can éiciently computeC’s generator matrixs’ in standard form and
C'’s parity-check matrix.

If Cis alinear code with a parity-check mattikthen for every € [Fg we call'Hx the syndrome ok.

It is well known that the question of finding the nearest codeword to a vector (Nearest Codeword
Problem, NCP) is NP-hard even in approximation versidin It is also dificult to find a word of a given
weight from its syndromes].

Definition 2.7 (Symdrome Decoding Problem, SDR}iven a parity-check matrixi € Z2*™, a binary
nonzero vectoy € Z7', and a positive integew, find a binary vectok € ZJ with no more tharw 1's such
that'Hx =y.



Zero Knowledge and Proof of Knowledge. In this section, we recall definitions and notations of zero
knowledge and proof of knowledge.

Definition 2.8 (Auxiliary-Input Zero Knowledge) An interactive proof systemR(V) for a language.

is (perfectstatisticaglcomputationalauxiliary-input zero knowledgi for every probabilistic polynomial-
time machine&/* and polynomialp(-), there exists a probabilistic polynomial-time mach&such that the
ensembles$(P, V*(2)(X)} and{S(x, 2)} are (perfectlystatisticallycomputationally) indistinguishable on the
set{(x,2) : xe L,|Z = p(Ix)}.

For arelatiorR € {0, 1}* x {0, 1}* andx € {0, 1}*, we define a set of withe$¥x) := {y| (X, y) € R}

Definition 2.9 (Proof of Knowlegde) Let € (0, 1). An interactive protocolR, V) with a proverP and a
verifier V is aproof of knowledge system with knowledge ekréor a relation Rif the following holds:

Completeness:For every common input for which there existy such thatx, y) € Rthe verifierV always
accepts interacting with the prover

Validity with error n: There exists a polynomial-time interacting oracle Turing macKirmed a constant
¢ > 0 such that for every € {0, 1}* such thaRR(x) # 0 and for every proveP* the following holds:
KP'(x) € R(x) U {1} and PrK” (x) € R(X)] > (p — )¢, wherep > « is the probability tha¥ accepts
while interacting withP* on common inpuk.

String Commitments. We explain the notation for commitment schemes in the common reference string
(CRS) model. Assume that there exists a trusted third party (TTP). LetCombe an indexed function
which maps a pair of a message string and a random string to a commitment string. First, TTP on input
1" outputs a random string, which is the CRS and the index of the commitment function. To commit to

a strings, the sender chooses a random stringomputes = Comy(s; r), and sends to the receiver. To

reveal commitment, the sender sendsandr to the receiver. The receiver acceptg i Comy(s;r) or

rejects otherwise.

Definition 2.10. We say a string commitment scheme Ggf)-) is statistically hiding and computationally
binding if it has the following properties:

Statistical Hiding: For any two stringss and s, the statistical distance betweea Comy(s;r)) and
(a, Comy(s'; 1)) is negligible, where, r, r’ are random and independent.

Computational Binding: For any probabilistic polynomial-time machio®, if a is randomly chosen by
TTP, then the probability that, given an inpatA outputs §,r) and §,r’) such that Com(s;r) =
Comy(s'; 1) is negligible.

3 Subset-Sum Hash Functions and A String Commitment Scheme

Let n be a security parameter (or a dimension of underlying lattice problems). For agpengén) = n°®
and an integem = m(n) > nlogq(n), we define a family of hash function${qm = {fa : {0, 1M
Zyn | A € Zg(xnr)”(”)}, wherefa(x) = Ax modg(n).

Originally, Ajtai showedHqn, is a family of one-way functions under the assumption that SVP with
some polynomial approximation factor is hard in the worst case for suitably clygspandm(n). It is
known thatHqn, is indeed a family of collision-resistant hash functions for suitably chasand m by
Goldreich, Goldwasser, and Hale\i(], Cai and Nerurkarg] and Micciancio [L4]. Recently, Micciancio
and Regev showettlym is a family of collision-resistant hash functions under the assumptionsgvie
hard in the worst casd f].

We construct a statistically-hiding computationally-binding string commitment scheme based on the
above hash functions. Itis well known that if there exists a collision-resistant hash function then there exists
a statistically hiding and computationally binding string commitment sch@& 12]. Their construction



used universal hash functions for the statistically hiding property. However, our construction do not use it,
because imis suficiently large and a plaintextis randomizedAs is distributed statistically close to the
uniform distribution. To prove the statistically-hiding property, we Gé&im 3.2in Regev [L9)].

We describe how to achieve a string commitment scheme in the CRS model. We first split the domain
{0, 1}™into two domain{0, 1}"2x{0, 1}™2. The first domain is used for randomization. The second domain
is for message. We define CaKs, r) := Ax, wherex = t(ro,...,rm/z, St,...»Sw2), I = I1...I'y2, and
S=S1...Sm2.

Lemma 3.1. For a prime g= q(n) = n°Y and an integer m= m(n) > 10nlogq, if Hqm is collision
resistant and a trusted third party gives a random ma#ix Zg*™, thenComy is a statistically hiding and
computationally binding string commitment scheme in the CRS model.

Proof. The computationally-binding property immediately follows from the collision-resistant property.
Next, we consider the statistically-hiding property. UsfDigim 3.2 we have that with probability expo-
nentially close to 1 the statistical distance between the distributioA,&¢ma (0™2; r)) and that of A, u)

is negligible inn, wherer andu are random variables according to the uniform distributiofiGph}™? and

Zy, respectively. Hence, for any two messagesny, € {0, 1)™2, the statistical distance between the distri-
bution of A, Coma (my; r1)) and that of A, Coma (mp; r2)) is negligible inn with probability exponentially
close to 1, where; andr, are random variables according to the uniform distributior{@n}™?2. This
completes the proof. O

Claim 3.2(Claim 5.3, [L9]). Let G be a finite Abelian group and letlclog|G|. For ¢ > 5, when choosing

| elements g ..., uniformly from G the probability that the statistical distance between the uniform
distribution on G and the distribution given by the sums of random subsets.of g is more thar?/ |G|

is at mostl/ |G|.

4 The Regev’'05 Cryptosystem and Modified Regev’'05 Cryptosystem

4.1 The Regev’'05 Cryptosystem

Regev proposed a lattice-based cryptosystem in 2095 YWe briefly review the Regev’05 cryptosystem,
RO5.

Let n be a security parameter (or a dimension of the underlying lattice problemy heeta prime and
« be a parameter to define the variance of Gaussian distribution suakgtha® 4/n. Let m be an integer
at least 56 + 1) loga.

Private Key: Chooses € Zg randomly. _

Public Key: Chooseay,...,an€ Zg randomly. Choosey, ..., e, according to the distributio¥,. Com-
puteb; = (&, s) + § modqg. The public key iq(a;, bi)}i=1....m-

Encryption: A plaintext is o € {0,1}. ChooseS Cgr {1,...,m} randomly. The ciphertext is
(Zies &, 0 10/2] + Yies bi).

Decryption: Let (a,b) € ZgxZq be areceived ciphertext. [§—(a, s)lq < q/4 then decrypt to 0. Otherwise
decrypt to 1.

The size of a public key and a private key &émnlogq) = O(n?log? g) andO(nlogq) = O(nlogn)
respectively. Ifas, ..., anis the CRS, this is the idea from Ajte]] the size of a public key i®(mlogq) =
O(nlog? q). We summarize the security and decryption errors of R05.

Theorem 4.1(Thereom 3.1, Lemma 4.4, and Lemma 5M4]. Leta = a(n) be a real number o0, 1) and

g = q(n) a prime such thatq > 2+/n. For m> 5(n+1) logq, if there exists a polynomial time algorithm that
distinguishes between encryption®afnd1 then there exists a distinguisher that distinguishes betwgen A
and U(Zg X Zq) for a non-negligible fraction of all possibke



Next, assume there exists a distinguisher that distinguishésom U(Zj x Zq) for a non-negligible
fraction of all possibles. Then, there exists arfieient algorithm that solveBWE, ;.

Finally, assume there exists affieient (possibly quantum) algorithm that soM&E . Then there
exists an gicient quantum algorithm for solving the worst-case&sdfPs ) and SIVPs( -

Lemma 4.2 (Lemma 5.1, 19 (Correctness)) The decryption error probability is at mogre®/(me?)
27,

Remark 4.3. The reduction inTheorem 4.1is quantum. Therefore, the security of RO5 depends on the
worst-case hardness of LWE, in the classical sense.

4.2 Modified Regev’'05 Cryptosystem

We modify the Regev’05 cryptosystem to obtain a new cryptosystem mRO05.

Let n be a security parameter (or a dimension of the underlying lattice problem{ heeta prime and
a be a parameter to define the variance of Gaussian distribution suclgtha? v/n. Lett, be a threshold
such that Per@w/mz[lelq > t,] is negligible inn (i.e.,t, = w(aglogn/my).) Let m be an integer at least

10(n + 1)logq. Letm andnp be integers such thay, m, = poly(n) and (%) is exponential im. Let
Sety, :=1{s € {0, }™ | wy(S') = mp}. We need dimpt, < g to ensure the correctness of the cryptosystem.

Private Key: Chooses e Zg randomly. Choos€g' € Sety,, randomly.

Public Key: Chooseay,...,anm € Zg randomly andey, .. ., &m, according to the distributioﬁ_fg;?nz. Let
A =ai,...,an] andE = [ey,...,en,]. Check for anyi, ’s coordinates are at most in the sense
| -lg- Computee := ES'. Letb := '‘As+ec Zg. The public key is@, E, b). The secretkey is,s'.

Encryption: A plaintext is o € {0,1}. ChooseS Cgr {1,...,m} randomly. The ciphertext is
(Zies &, 0 10/2] + Yies bi).

Decryption: Let (a,b) € ZgxZq be areceived ciphertext. [§—(a, s)lq < q/4 then decrypt to 0. Otherwise
decryptto 1.

For example, we sat = ©(n®), m = 10(n + 1) logq, @ = 1/n?, t, = n/logn, my = m, andm, = Vm.
Note that, with such parameters, we have thatat, < q.

The size of a public key and a private key @€nnlogq + minlogq) = O(n?log? q) andO(nlogq +
my logqg) = O(nlog? n) respectively. IfA andE are the CRSs the size of a public keyGémlogq) =
O(nlog? q).

Note that, from a coding-theoretical vieW is a generator matrix and we can compute a parity check
matrix H such that, for ang e Zh, H'As =0 zg .

First, we see the correctness of mR05.

Lemma 4.4(Correctness) There exist no decryption errors.
Proof. Suppose thai(b) is a valid ciphertexts of 0, i.e.a(b) = (X, riai, >, rib;) for somer € {0, 1}™.

We have
bi - <Z ria, s>

m

<8

i=1

Ib—(as)lq =

.LMB

< m|a|q S mrrtt(la

i=1

whereg is i-th coordinate ok = ES. Slnce we setmmgta < g, we obtain|b — (a,s)lg < q/4. Next
we consider the case, () is a valid ciphertexts of 1, i.e.a(b) = (X, riai, /2] + X", rib) for some
r € {0, 1}™. Similarly to the case of 0, we have

Ib - (& s)lq > 1a/2] — mmpt, > /4
and we can decrypt correctly. O



CombiningLemma 4.6 Lemma 4.7 andLemma 4.8elow, we obtain the following theorem on secu-
rity of mRO5.

Theorem 4.5(Security) For m > 10(n + 1) logq, if there exists a polynomial-time algorithf that dis-
tinguishes between encryptions0adnd 1 with its public key, then there exists a polynomial-time algorithm
A that solved WKE, g, in the worst case.

Lemma 4.6. For m > 5(n + 1)logq, if there exists a polynomial time algorithg® that distinguishes
between encryptions &fand 1 with its public key, then there exists a distinguiskZrthat distinguishes
between A¢ and U for a non-negligible fraction of all possibleands'.

We omit the proof, because the proof is quite similar to the security prodfin [

Lemma 4.7 (Average-case to Worst-casedssume there exists a distinguisi@rthat distinguishes &
from U’ for a non-negligible fraction of all possibleands’. Then there exists an algorith@®’ that for all
sands’ accepts with probability exponentially closet®n inputs from Ay and rejects with probability
exponentially close t@ on inputs from U.

Proof. As similar to Regev’s proofl9], we prove the lemma based on the following transformation. For
anyt € ZQ and any permutatiom € Sy, consider the functior; ,, : Zg X Zg“l X Zq — Zg X Z(Tl X Zq defined
by

fi-(a, e b) = (& 7(€), b+ (at)).
This function transforms the distributidfy into As,t -(s). Moreover, it transforms the distributidg into
itself.

Next we consider the random statistical test. Assume thatfarfraction of all possibleg '), the
acceptance probability & on inputs fromAsgy and on inputs fron)’ differ by at leash~®. We construct
the distinguisheD’ as follows. LetR denote the unknown input distribution. (0) Repeat the following
n“+*1 times. (1) Choose a vectore Zg and a permutation € S, uniformly at random. (2) Estimatgr,
the acceptance probability @ on f; ,(R), by callingD T = n*2*! times. Letxg be the number of 1 in the
outputs ofD. (3) Estimatepy, the acceptance probability @ onU’, by calling® T times. Letxy be the
number of 1 in the outputs d. (4) If [xy — xgrl/T > n~%/2 then stop and accept. Otherwise continue. (5)
If the procedure ends without accepting, stop and reject.

WhenRis U’, the probability thatpy — xy/T| > n~%/8 is exponentially small by the Hfeing bound.
Since fi »(U’) = U’, the probability thaipy — xg/T| > n~%/8 is exponentially small. Therefore, the
acceptance probability @@’ is exponentially close to O.

WhenRis Agsg for somes, s'. In each of the iterations, we are considering the distributig(Ass) =
As.t (s) for some uniformly chosehandn. Hence, with probability exponentially close to 1, in one of
the n+! iterations, ¢ + t, 75 is such that the acceptance probability®fon inputs fromAs, ~(s) and
on inputs fromU’ differ by at leash™. In this case, from the Hdkling bound, the probability that
lpu — Xu/T| > n"%/8 and|pr — Xr/T| = N~%/8 is exponentially small. Henc&) accepts with probability
exponentially close to 1. O

Lemma 4.8(Decision to Search)Let n > 1 be some integer and g 2 be a prime. Assume there exists
an algorithm® that for all s, s accepts with probability exponentially close®n inputs from Ay and
rejects with probability exponentially close t@n inputs from U. Then, there exists an algorithfi’ that,
given samples from4y for somes, outputss with probability exponentially close th

Proof. We only show how?)’ find the first coordinate o s; € Zq. For anyk € Zgq, consider the following
transformation. Given a tuple(e b) we output the tuplea + (1, 0,...,0),e b + k) wherel ¢ Zq is
chosen uniformly at random. This random transformation téKdato itself. Moreover, itk = s then this
transformation also take&sy into itself. Finally, ifk # s; then it transform#\ss to U’. Therefore, using
D, we can test whethdr= s; or not. Since there are onty< poly(n) possibilities fors;, we can try all of
them.

m]



Remark 4.9. The hardness of the worst case of LWKE implies the hardness of the worst case of
LWE,y,. Note that it is unknown if the converse statement holds. Figreorem 4.1 there exists a
quantum reduction from LW, to SVRs, ) and SIVR,,).-

5 Protocol PSK

Recall that we can considéA as a generator matrix from a coding-theoretical view and a parity-check
matrix H is easily computed. Informally, if Alice wants to prove that she has a secret key corresponding to
a public keyb, it is suficient that she proves that she has an errorskeuch thaHEs’ = Hb.

Definition 5.1 (RelationRnros). Let (A, E, b) be a public key of mROS a parity-check matrix of\, s
a vector inZQ, ands’ a vector inzg‘l. We say that inputA, H, E, b) and witness g, s') are inRnros if
S € Sely,, As+ ES = b, andHES' = Hb.

Next, we describe the protocol for a proof of knowledge for a secret key, which is mainly based on a
proof of knowledge for SDP by Ster27].

Let P andV be a prover and a verifier respectively. The CR3j&. The common input i®. The
auxiliary inputs to the prover aeands’ such thab = 'As + Es'. Let Com¢;-) = Coma(; -).

Step P1 Choose a random permutatianfor {1,...,m} and a random vectoyr € Zg‘l. Computec; =
Com@r, HEY; r1), ¢ = Com(y); r2) andcs = Comr(y + S); r3). Sendcy, Cp, c3to V.

Step V1 V sends a random challenge bi€g {1, 2, 3} to P.

Step P21If 6§ = 1, P opensc; andc; (i.e., send, y,rq, andr, to V). If 6 = 2, P opensc; andcs (i.e., sends
m Y+ S rpandrgtoV). If 6 = 3, P opensc; andcs (i.e., sends(s), #(y), r2, andrz to V).

Step V2 If 6§ = 1, receivedr; y, F1, andr3, check the commitments; and ¢, were correct (i.e.,
c1 = Com@, HEV; 1) andc, = Comr(y); 2)). If 6 = 2, receivedt; X, 1, andr3, check that the com-
mitmentsc; andcz were correct (i.e.¢; = Comr, HEX — Hb; 1) andcs = Comr(X); '3)). If 6 = 3,
receivedXy, X», f», andr3, check that the commitments andcz were correct (i.e.¢; = Comy; )
andcz = Com; + Xo; F3)) and thatwy (X2) = np.

Theorem 5.2(PSK for mR05) Interactive protocolP, V) is a proof of knowledge system with knowledge
error 2/3 for Rnros. Moreover, the protocolP, V) is a statistical zero-knowledge argument fordgs in
CRS-model under the assumption that the worst cab®fE ;. and SVPqy, is hard.

Proof of completenesdNe omit the proof since it is evident. O

Proof of knowledge error witR/3. Assume that some probabilistic polynomial-time adverd@irys ac-
cepted with probability larger thary2 + € after playing the protocol. We prove that the existenc®of
implies the existence of a probabilistic polynomial-time machinthat outputs witness' or finds colli-
sions for the hash function. Note that, under the assumption that the worst casef,$3/Fard, finding
collision is hard [6]. Therefore we obtain a knowledge extrackar

We consideP*’s random tape as a random variable. Sif¢es accepted with probability larger than
2/3 + ¢, there are fractions of all possiblé*’s random tape such th& can answer to aN’s challenges
correctly. LetP’s answer toV’s challenge 1 berf, ¥, f11, andri,. Let P’'s answer toV's challenge 2 be
72, X, F2.1, andry 3. Finally, letP’'s answer toV'’s challenge 3 b&j, X2, 32 andrss. SinceP*’s answer are
correct, we obtain that

C = Comﬁl, HEV; Fl,l) = Comﬁz, HEX — Hb; FZ,l)
c2 = Com(z1(¥); F1.2) = Com(y; f32)
¢z = Com@z(X); F2.3) = Com1 + X2; F'33)

If there exists a distinct pair iR*'s answer, we find a collision. Then, we assume there exists no distinct pair
in P*'s answer. Sinc®* is acceptedwy (X2) = mp. Frome;'s equationsi = 7. Combiningr; = 7, and



cg's equations, we obtaik = 7,1 (%1) + 77,1(X2). Fromc,’s equation, we have th§t= 7,%(X,). Therefore,
combining the above argument acds equation, we obtaiklb = HE(X — §) = HEﬁEl(Xz) and a witness
7?510”(2). Then, we obtain a collision or a witness usiggand complete the proof. O

Proof of zero knowledgeWe construct the simulator as follows.

Step P1 ChooseA € {1, 2, 3} randomly. Choose a permutatiana vectory € Zg‘l, a vectors' e Sety,
uniformly at random.

1. A = 1: Computec; = Com@r, HE(y + §') — Hb; r1), ¢ = Comfr(y); r2), andcz = Comr(y +
s'); r3). Send<y, ¢y, andcs to V™.
2. A = 2: Computec; = Com@r, HEY; r1), ¢ = Comgr(y); r2), andcz = Comr(y+); r3). Sends
C1, Cp, andcz to V™.
3. A = 3: Computex € Zg’l such thatHEx = HEy + Hb. Computec; = Com(r, HEY; r1),
¢, = Comr(y); rz), andcz = Comgr(x); r3). Send<, ¢, andcs to V™.
Step V1 Receive a challengge {1, 2, 3}.
Step P2 If A = ¢ then outputL and halt. Else,

1. (A,6)=(1,2): Sendn™=n, X = n(y + ), f1 = r1, andrz = rz to V*.
2. (A,6) = (1,3): SendXy = n(y), X2 = n(s), f2 = rp, andrz = rz to V*.
3. (A,0)=(2,1): Sendr=x,§ =y, 1 =rq,andrz = ro to V*.

4. (A,06) = (2,3): Sendxy = n(y), X2 = n(s), 2 = rp, andrz = rz to V*.
5. (A,6)=(3,1): Sendr'=n,§ =y, 1 =rg,andrz = rp to V™.

6. (A,6) = (3,2): Sendr™= &, X = n7Y(x), f1 = r1, andrz = rz3 to V*.

Output the transcript and halt.

Since Com is statistically hiding, the simulator’s outputs when the simulator did not auipgtatistically
close to the real transcript. m]
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