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Abstract

Goldwasser and Kharchenko (TCC 2006) showed a proof of plaintext knowledge for the Ajtai-
Dwork cryptosystem and left the open problem designing a proof of plaintext knowledge for the
Regev’'04 cryptosystem (JACM 2004). In this paper, we show a proof of plaintext knowledge for the
Regev'04 cryptosystem (JACM 2004) using their technique. Furthermore, we show that it can be ap-
plied to the Regev'05 cryptosystem (STOC 2005). The key idea is to analyze fisatiebween the
hardness of the underlying lattice problem and the variance of ciphertexts, which given by Kawachi,
Tanaka, and Xagawa (SCIS 2006).
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1 Introduction

In the last decade, the lattice-based public-key cryptosystems have been studied. In 1997, Ajtai and Dwork
constructed three public-key cryptosystems based on unique shortest vector pigblRecently, Regev
proposed two public-key cryptosystenisd] 15], which we call R04 and R05. Ajtai also introduced a
public-key cryptosystemil].

There were many zero knowledges and proofs of knowledge for number theoretic cryptosystems. How-
ever, there were a few zero-knowledge proofs and proofs of knowledge for lattice-based cryptosystems;
Goldreich and Goldwasse8]| Micciancio and Vadhanl2], and Goldwasser and Kharchenkg}.[In [8]
they left the open problem to design a proof of plaintext knowledge for RO4. Following Goldwasser and
Kharchenko, we construct proofs of plaintext knowledge for R04, and furthermore for R05.

Proof of Plaintext Knowledge. Given an instance of a public-key cryptosystem with public gkya

proof of plaintext knowledge (PPK) allows a prover to prove knowledge of the plaimeftciphertext

¢ € Ey(m) to a verifier. If both the prover and the verifier are online, IND-CPA public-key cryptosystems
with PPK protocol achieves interactive IND-CCAL securidy $]. It was known that &icient PPKs for

the number-theoretic public-key cryptosystems, such that Rabin, RSA, El-Gamal, and etc., using zero-
knowledge public-coin proofs of knowledge protocols with 3 rounds (knowBl-psotocol). However,
efficient PPKSs for the lattice-based cryptosystems were not known except tBht in [

Summary of Our Results. We construct PPK protocols for slightly modified versions of R04 and R05
based on the protocol if8].

We show the relation between ciphertexts of cryptosystems, R04 and R05, and instances of GapCVP
Although the cryptosystems are less secure than the original ones, we can show that their security are based



on the worst-case of certain lattice problems as in Kawachi, Tanaka, and Xagavwnfortunately, we
cannot show the relation between ciphertexts of the original cryptosystems and GapdIvBur efort.

Our connection between the ciphertexts and GapQwlies that if we set large factor for the under-
lying lattice problems, for smalfi, the LLL algorithm [LQ] heuristically succeed to distinguish ciphertexts
of 0 and 1. From the positive view, we can apply Micciancio and Vadhan’s zero-knowledge protocol for
GapCVF, [12] and obtain a verifiable encryption scheme. Based on the protoc@] iand the above
connection, we construct a proof of plaintext knowledge for R0O4 and RO5.

Organization. The rest of this paper is organized as follows: We first describe basic notions and notations
and briefly review tools irBection 2 In Section 3we briefly review R04 and describe a proof of plaintext
knowledge for RO4. I'5ection 4we review R05 and describe a proof of plaintext knowledge for R05.

2 Preliminaries

We define a negligible amount imas an amount that is asymptotically smaller tmahfor any constant
c > 0. More formally, f(n) is a negligible function im if lim,_.n°f(n) = 0 for anyc > 0. Similarly, a
non-negligible amount is one which is at least from somec > 0.

The length of a vectax = '(xy, ..., X,) € R", denoted byix||, is (X1, x)*/2. For any fieldK, the inner
product of two vectorg = '(xy, ..., X)) € K"andy = '(y1, ..., yn) € K", denoted byx, y), is 3., xiyi. For
m-bit stringr € {0, 1}™, r; denotes-th bit of r (i.e.,r =r1...rmy). We defind , as then by n identity matrix.
We also definaj; € R" as amn-dimensional vector whodeth coordinate is 1 and other coordinates are all
0. For any vectox € R" and a seS c R" we define Dist, S) = infyes |ly — x||. For two real numbers
x andy > 0 we definex mody asx — | X/y]y. Forx € R we define|x] as the integer nearest ip more
formally | x — 1/2]. We also use the notation ftg) := |[x — | X]|, i.e., the distance of a realto the nearest
integer. Notice that fox,y € R, 0 < frc(x) < 1/2, frc(x) < |X|, and fre(x +y) < frc(x) + frc (y). For an
elementx € Zq we defingx|q as the integek if x € {0,1,...,[q/2]} and as the integey - x otherwise. In
other words|x|q represents the distance:xfrom 0 inZ.

Gaussian and other distributions. The normal distribution with mean 0 and variancgis the distribu-
tion onR given by the density function (V2ro) exp(-(x/c-)?/2). The sum of two independent normal
variables with meam; andm, and variance—% ando-g is a normal variable with meam; + mp and variance
0'% + 0'%. For an-dimensional vectox and anys > 0, Ietp(sn)(x) = exp(-~ |)x/s|?) be a Gaussian function
scaled by a factor a$. Also, v@ = pg“>/§ is ann-dimensional probability density function. Fare R*

the distribution¥,, is the distribution on [01) obtained by sampling from a normal variable with mean 0
and variance?/(2x) and reducing the result modulo 1:

2
Wo(r) = Z 1 exp(—n(ﬂ) ]
keZ @ @

This distribution is obtained by “folding” a Gaussian distribut(0, @?/(2x)) onR into the interval [Q1).
Based on this distribution, the Regev’'04 cryptosystem makes use of a periodic distribgtiatefined by
the density functio®y ,(r) := ¥, (rh mod 1). We can sample values according to this distribution by using
samples from¥,, as shown in14]: (1) We samplex € {0,1,...,[h]} uniformly at random and then (2)
sampley according to¥,. (3) If 0 < (x+ y)/h < 1, we then take the value as a sample. Otherwise, we
repeat.

For an arbitrary probability distribution with a density function T — R* and some integeg > O,
we define its discretization : Zq — R* as the discrete probability distribution obtained by sampling from
¢, multiplying by g, and rounding to the closest integer modgldMore formally,

_ (i+1/2)q
o) = f( p(x)dx

i-1/2)q



We use the following lemma irL@] to bound the tail of Gaussian distribution.

Lemma 2.1 ([14]). The probability that the distance of a normal variable with varianee from
its mean is more than t is at mos{2/x(c/t) exp(-(t/c)?/2). That is, Pl ymeallx - m > ] <
V2/n(o /1) exp(=(t/o)?/2),

Given two probability density functiong;, ¢, onR", we define the statistical distance between them
asA(¢1, ¢2) = %fR" [p1(X) — ¢2(X)|dx. A similar definition holds for discrete random variables. We some-
times abuse such notation, and use the same notation for two arbitrary functions. Note that the acceptance
probability of any algorithm on inputs fromX differs from its acceptance probability on inputs fronby
at mostA(X, Y).

Lattice and Problems. An n-dimensional lattice ilR" is the set_(bq,...,bp) = {Zi”:l aibj | aj € Z} of
all integral combinations af linearly independent vectols, . . ., by. The sequence of vectdss, .. ., b, is
called abasisof the latticel.. For clarity of notations, we represent a basis by the m&rix[by, ..., by].
For n linearly independent vectots, .. ., b,, we define the fundamental parallelepigétbs,...,bn) =
{YiL,a@ibi | 0 < a; < 1}. The vectorx € R" reduced modulo the parallelepip{B), denoted by mod
P(B), is the unique vectoy € £(B) such thaty — x € L(B). For more details on lattices, see the textbook
by Micciancio and Goldwasset {].

The shortest vector problem (SVP) and its approximation version {BNdve been deeply studied in
the computer science.

Definition 2.2 (SVP). Given a basi® of a latticeL, find a non-zero vector € L such that for any non-zero
vectorx € L, ||Vl < |IX]].

Definition 2.3 (SVP,). Given a basiB3 of a latticeL, find a non-zero vectov € L such that for any
non-zero vectox € L, ||V|| < y [IX]l.

The unique shortest vector problem (uSVP) is also well known as a hard lattice problem applicable to
cryptographic constructions. We say the shortest vectofr a latticeL is f-unique if for any non-zero
vectorx € L which is not parallel tov, f ||v|]| < |[X]|. The definition of uSVP is given as follows.

Definition 2.4 (f-uSVP) Given a basi® of a latticeL whose shortest vector isunique, find a non-zero
vectorv € L such that for any non-zero vectore L which is not parallel tor, f ||v|| < ||X]|.

In the computational complexity theory on lattice problems, the shortest linearly independent vectors
problem (SIVP) and its approximation version Slvdte also considered as a hard lattice problem.

Definition 2.5 (SIVP). Given a basiB of a latticeL, find a sequence af linearly independent vectors
V1,...,Vpn € L such that for any sequencerlinearly independent vectors, ..., X € L, max-1__nllvill <
max=1,...n [IXill-

.....

Definition 2.6 (SIVP,). Given a basi® of a latticeL, find a sequence af linearly independent vectors
V1,...,Vn € L such that for any sequencerlinearly independent vectors, ..., X, € L, max-1._nllvill <

ymax=1,_.nlXill-
The closest vector problem (CVP) is also important problem.

.....

Definition 2.7 (CVP). Given a basiB of a latticeL and a target vectaor, find a closest vector € L such
that for any vectok € L, |ly — v|| < |ly — X||.

Definition 2.8 (CVP,). Given a basi$ of a latticeL and a target vectoy, find a closest vector € L such
that for any vectox € L, |[ly — V|| < v ly = XI.

We often consider its decisional promise problem.

Definition 2.9 (GapCVRB). Fory > 1, instances of the promise closest vector problem GagG@vétuples
(B,y,t) whereB is a basis of a lattick in R", t > 0, and a vectoy € R". (B,y,t) is a YES instance of
the GapCVP if there exists a lattice vector € L such thafx —y|| > t. (B,y.t) is a NO instance of the
GapCVF  if there exists no lattice vectore L such that|x — y|| > yt.



Zero Knowledge and Proof of Knowledge. We recall definitions and notations of zero knowledge and
proof of knowledge.

Definition 2.10 (Auxiliary-Input Computatinal Zero KnowledgeAn interactive proof systen(V) for a
languagd. is computational auxiliary-input zero knowledidor every PPTV* and polynomialp(-), there
exists a PPTS such that the ensembl¢d, V*(2))(X)} and{S(x, 2)} are computationally indistinguishable
onthe sef(x,2) : xe L,|Z = p(Ix)}.

For arelatiorR C {0, 1}* x {0, 1}* andx € {0, 1}*, we define a set of witness &fasR(X) := {y | (X,y) €
R}

Definition 2.11 (Proof of Knowlegde) Let « € (0, 1), an interactive protocoR V) with a proverP and a
verifier V is aproof of knowledge system with knowledge ekréor a relation Ris the following holds:

Completeness:For every common input for which there existy such thatx, y) € Rthe verifierV always
accepts interacting with the prover

Validity with error n: There exists a polynomial-time interacting oracle Turing macKirmed a constant
¢ > 0 such that for every € {0, 1}* such thaRR(x) # 0 and for every proveP* the following holds:
KP'(x) € R(x) U {1} and PrKP (x) € R(X)] = (p — )¢, wherep > « is a probability thal accepts
while interacting withP* on common inpuk.

2.1 The Ajtai-Dwork Cryptosystem and Nguyen and Stern’s Embedding

The Ajtai-Dwork cryptosystem is an 1-bit lattice-based cryptosystem. Nguyen and Stern showed how to
reduce distinguishing encryptions of O from one of 1 to GapCiPsomey > 1. We briefly review error-
less version of the Ajtai-Dwork cryptosystem, which proposed by Goldreich, Goldwasser, and Halevi [
and Nguyen and Stern’s embedding techniqd&g [For more details, sed B, Section 4].

The secret key of the Ajtai-Dwork cryptosystenuis R" whose length is 1. The public key s+ n
vectors inn-dimensional space and an index. We denote itvas.(.,Wn,V1,...,Vm,ig). The vectors
wi, Vv; are chosen from hyperplanes € [0, n"]" | (x,u) € Z} and “blurred” by adding small noises. The
indexig is chosen from{1,..., m} such thatu, v;) is near by odd integers. Encryption of € {0,1} is
produced as follows: (1) Choose random string: r1...rm € {0,1}™. (2) Computec = (07/2)vi, +
>M rivi modP(wa, ..., wp). We decrypt a ciphertext € P(wy, ..., wy) into 0 if frc ((c,u)) < 1/4 and
into 1 if frc ({c,u)) > 1/4.

Nguyen and Stern showed the following embeddirigd.[For any public keypk of the Ajtai-Dwork
cryptosystem, leBp, € RCHMx(+m) phe

>K1W1 K]_Wn K]_V]_ K]_Vm—
1

K>

Ko |

where K; and K, are suitably chosen and all empty spaces are set by 0. For any ciphertext
P(W1, ..., Wp), definex; = (Kéc) e R2™M  Nguyen and Stern showed for suitably chos@nand Ko,
Dist(xc, L(Bpk)) is small ifcis a legal ciphertext of O witpk and Distc, L(Bpx)) is large ifc decrypts into

1 with high probability.



2.2 Micciancio and Vadhan’s Zero-Knowledge Protocol

In [12], Micciancio and Vadhan introduced a zero-knowledge protocol for GagCMRey use the fol-
lowing observation by Goldreich and Goldwassg@}: [Consider twon-dimensional unit hyperballs, one
center locates the origin and the other center locates the point that distahdesisB(0, 1) andB(y, 1),
where|ly|| = d. If d = Q(+/n/logn), ratio between a volume of an intersection of two hyperballs and a
volume of a hyperball is Apoly(n). Based on this observation, Goldreich and Goldwasser showed SZK
protocol for coGapCVB( J7Togn) [6]. Micciancio and Vadhan also constructed HVSZK proof system for

We refer Micciancio and Vadhan’s protocol as the MV protocol. Pgt; andVyy denote the prover
and the verifier, respectively. The common inputBsy(,t). The auxiliary input to the prover iw € Z"
such that|Bw — y|| < t.

Step P1 Choosek random bitsc,, ..., ¢k € {0,1} independently. Also choose error vectoss. .., rx €
B(0, yt/2) independently and uniformly at random. Then, check if there exists an iridaich
that ||ri« + (2¢i- — L)u|| < yt/2. If not, seti* = 1 and redefine;- = 0 andr;- = u/2, so that
IIri- + (2¢i- — L)u|| < yt/2 is certainly satisfied. Finally, compute poimts = ¢y + r; modB for
i =1,...,kand send them t¥y .

Step V1 Send a random challenge bit {0, 1} to Pyy .

Step P2 Receive a challenge bt € {0,1}. If § = Z!‘Zl ¢ mod 2, then the prover completes the proof
sending bitg; and lattice vector8v; = m; — (r; + ¢iy) to Vv . If § # Z!‘:l ¢ mod 2, then the prover
sends the same message¥ji®, but withc;- andBv;- replaced by * ¢« andBv;- + (2¢i- — 1)(y — u).

Step V2 Receivek bits ¢y, . . ., ¢ andk lattice pointsBvy, . . ., Bvg and check that they satisﬂik:1 G =q
(mod 2) andim; — (Bv; + ¢iy)|| < yt/2foralli =1,...,k.

A completeness property is evident.

Theorem 2.12(Zero Knowledge) (Pmv, Vmy) is a statistical zero-knowledge proof system with perfect
completeness and soundness efir?, provided one of the following conditions holds:

e ¥ =Q(+4/n/logn) and k= poly(n) is a syficiently large polynomial, or
e y = Q(+/n) and k= w(logn) is any superlogarithmic function of n, or
e y =n®5 M and k= w(1) is any superconstant function of n.

Theorem 2.13(Proof of Knowledge) There is a probabilistic polynomial-time algorithmyk such that if
a prover P makes Y accept with probabilityl/2 + e on some instancg, y, t), then Pﬁv(B, y, t) outputs
a vectorw e Z" satisfying||Bw — y|| < yt with probabilitye.

2.3 Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem

Goldwasser and Kharchenk8] [showed a interactive zero-knowledge proof of plaintext knowledge (PPK)
for the Ajtai-Dwork cryptosystem using the above two results.

First, we immediately obtain a statistical zero-knowledge protocol for a statement ihat legal
ciphertext of 0 combining the above results. They also show a statistical zero-knowledge protocol for a
statement that is a legal ciphertext of 1 setting parameters carefully and using the faatthav;,/2 +
co modP(ws, ..., wy) for some legal ciphertexts; of 1. Thus, in other words, they showed a verifiable
encryption for a statement “the ciphertexdecrypts intar".

They showed PPK for the Ajtai-Dwork cryptosystem implicitly using pseudohomomorpSisoh the
cryptosystem. We state informally their protocol: Let a common input be aglait)( The auxiliary inputs
to the prover are a plaintext and a randomness that used in the ciphertext. In the first step, the prover
makes a dummy ciphertext of a random dit The verifier sends a challenge bit Suppose thai = 0.

The prover sends the plaintext and the randomness that used in the dummy ciphertext. The verifier checks
its consistency. Next, suppose tliat 1. The prover invokes a prover of the MV protocol with a statement



that the sum of input ciphertext and dummy one decryptsdrgoo’. The verifier invokes a verifier of the
MV protocol.

3 Proof of Plaintext Knowledge for the Regev’'04 Cryptosystems

3.1 The Regev'04 Cryptosystem

Instead of the original cryptosystem, we review the modified one in Kawachi, Tanaka, and Xafjdved |
¢ > O is a constant. The parameter of original one #s0.

Let n be a security paramete¥, 287" andm = cyn2 wherecn, is a constant. Leg(n) = w(n**flogn).
LetH = {h e [ VN,2VN) | frc (h) < 1/(8n°m)}.

Private Key: Chooseh € H uniformly at random. Letl denoteN/h. The private key is the numbaér(or
d).

Public Key: Choosex € [2/y(n), 2 V2/y(n)) uniformly at random. We choosa valuesz, ..., Z, from
®p, by choosingxy, ..., Xm andyi, ..., ym, where eachy; is chosen from0, 1,...,h]} at random
and eacly; is chosen according t#,. Letig be an index such thag, is odd. Fori € {1,...,m}, let
a be|Nz]|. The public key isdy,...,am,io).

Encryption: A plaintext iso € {0,1}. Choose a random string= ry...rm € {0,1}™ The ciphertext is
o lai,/2] + X", rigg mod N.

Decryption: Letw € {0,...,N — 1} be a receiving ciphertext. We decrypt 0 if {xg/d) < 1/4 and 1
otherwise.

We summary the results ii4, 9] on the decryption errors and the security of R04 as follows.

Theorem 3.1([14, 9]). The security of the Regev’04 cryptosystem is based on the worst cagémf{h)-
uSVP. The decryption error probability is at mogt2*(/nm),

We modify parameters and key-generation algorithm as follows:

Parameters: Letc = 3 andt, = n=35. Let alsoy(n) = n*logn.

Private Key: Same as the original one.

Public Key: Choosex € [2/y(n), 2 V2/y(n)) uniformly at random. We choosa valuesz, ..., z, from
®p, by choosingxy, ..., Xm andys, ..., ym. If lyil1 > t, we rechoose;. Fori € {1,...,m}, leta be
INz]. Letip be an index such thag, is odd andg;, is even. The public key isa, . .., am, io).

We refer this modified version as R04.
Before summarizing security and correctness of R04, we need Lemma to bound the tail of Gaussian
distribution?,,.

Lemma 3.2. Let n be a security parameter. Let> 0 be a real number ifi2/y(n), 2 V2/y(n)). Let t, be an
integer that asymptotically larger thahv2 logn/y(n), i.e., t, = w(logn)/y(n). Finally, let y be a random
variable according to the distributioW,. Then, the probability thdtc (y) > t, is negligible in n.

Proof. By Lemma 2.1 we have that

Jrlire®) 2 t] < oo V] > ta]

< ERHOONE o B
¥ b 2(2v2/(y(n) V2r))?

2v2 tay(n)?
7o )

Since we set, = w(+/logn)/y(n), we obtain exp{w(logn)) as the upperbound of the probability. o



Let we argue the correctness of R04.
Lemma 3.3(Correctness)Let ¢ and ¢ be legal ciphertexts d¥ and 1 respectively. Then,

(;1) }—i+(m+l)ta2%—§.

Co 1 2
frc(d) 43+m'ra<—andfrc( > 2

l.e., there exist no decryption errors.

Proof. We first evaluate fréco/d). Letco = Y., rigg mod N. Considering #ects by moduld\ at mostm
times, we have that

<m|N -d[h] = md- frc (h) < ﬁd

- (Z rigg modd Lh]]

i=1

By the triangle inequality,

M rig; dd|h
frc(ijo) i+frc( =1 1% MO H)

8n3 d
1 moa
< @+frc( g )

1 m N ©
s@+a+frc(a;a],

where in the last inequality we use the fact [Nz ]. Sincez = (X + Yy;)/h andN = dh,

m

(il o

i=1 i=1

Sinced is much larger tham, 5 + T < . Therefore, we obtain fio/d) < ;15 + mt,.
We next evaluate frc; /d). Note that for some legal ciphertext ofg), ¢; = |a;,/2| + co mod N. From
the construction of;,,

frc(La'O/ J)zfrc(a'o/ )—E>frc( %/ )—g>frC(—X|O+yIO)—§Z%—frC(&)—SZ%—ta’

d d d d d

where in the last inequality we use the fads much larger tham,. By the triangle inequality, we obtain
that

frc(%) _ frc(|_a,-0/2J +C;:0 mod N)

1o (A m)

-2  \am 8n3m
1 1

> - — - )

25" 53 (m+ 1),

We define the assumption IuSVP as follows:

Assumption 3.4(Infeasibility of uSVP) There exists no polynomial-time algorithm that sol@®™*5)-
uSVP with non-negligible probability.



3.2 Preliminaries for PPK

Let &(pk, o) be a set of legal ciphertexts ofwith a public keypk. We define a threshold of GapCVP as
t= /M + Kgm and an approximation factor of GapCVPjas /%.

Definition 3.5. Letpk = (a,...,am,ig) be a public key of R04. Let be an integer if0,1,..., N — 1}.
Define a mapping (pk. ¢) = (Bpk. t. Xc), wherexc = (4°) € Z™2. And By € ZM2X(M) js

KiN Kivi -+ Kivyg
1
K2
wherey; = a;, K1 = n?, K> = n? and empty spaces are set by 0.

vamt,
K2

_1
8ndm

We remark thak; > yt and + <n

3.3 From Ciphertexts to GapCVP (or Verifiable Encryption)
3.3.1 From Ciphertexts of 0 to Instances of GapCVP

We show thatF(-,-) maps a valid ciphertext of O to a YES instance of GapC¥Rd a ciphertext that
decrypts to 1 to a NO instance of one. Hence, we have an interactive proofisreciphertext of O using
the MV protocol and this transformation.

Lemma 3.6.

1. For (sk, pk) and ce &(pk, 0), ¥ (pk, c) is a YES instance @&apCVh..
2. For any instance ofsk, pk) and ce {0, 1, ..., N—1} such that sk, c) = 1, ¥ (pk, ¢) is a NO instance
of GapCVB..

Proof. (1). Sincec € &(pk, 0), there exists a stringsuch that = Y, riv; modN. Thus, there exists a
vectorw = Y(a,B1,...,Bm), whereay € {-m,...,0} andg; € {0, 1}, such that = a1N + Zi”:‘lﬁivi. Itis
evident thaB,w € Ly. Hence, we obtain that

(K (K
Dlst(( éc), ka)s Dlst(( éc), Bpkw)
m
= Jezekzy g2
j

< JmMP+KZm=t.

(2). Letce {0,1,...,N — 1} be any vector which decrypts to 1 andTet yt. From the remark, it follows
that T/n* < 1/4 < frc(c/d). By Claim 3.7Dist((“¢%). L) < T can not hold. Thusf (pk,c) is a NO
instance. O

Claim 3.7. Let Ky > T > 0, pk be a public key oR04, and ce {0,1,..., N — 1}. For syficiently large n, If
Dist (%), Lp) < T thenfre (c/d) < T(gd= + Y2M) < T/n*.

8ndm




Proof. From the assumption, there exists= (a1, B1, . . ., Am) Such that”(Kgc) - Bpkw” < T. We define
e= Kic— Ky(a1N + Zi”;l,&vi). From the construction d, we obtain that

m
o +KZY pR+ < T2
=

From the facK; > T ande € K1Z, e must be 0. Recall that= a1N + Z{‘llﬁivi + e/K;. Therefore,

m

frc (c/d) < |aa|frc (N/d) + Z |Bil frc (vi/d)

i=1

< Tfrc(h) + Z 1Bil (1/d + frc (yi))
=

By the Cauchy-Schwartz inequality and the upper bounqzqif, we have} " Bi(1/d + frc(y)) <
\/Z{Qlﬁiz \/Z{‘;l(l/d +frc(yi))? < \/Zi”:‘l 2frc (y;)?T /K. Moreover, from the key generation algorithm,

we have \/>, 2frc(y))* < v2mt,. Hence, we obtain fric/d) < T(g5- + ‘/@“) and conclude the
proof. O

Protocoly: proving that a ciphertext decrypts to 0: Let Py andV, denote the prover and the verifier,
respectively. Let the common input be a paik,(c), wherepk is a public key of R04 andis an element in
{0,1,...,N —1}. The auxiliary input to the prover 8, ...,Bm € {0, 1} such that = Z{Qlﬁivi mod N.

Prover Py: Computes an integer; such thatc = a3N + Zi”:‘l,b’ivi. Invokes the provePyy to prove
that input# (pk,c) is a YES instance of GapC\(Pwith an auxiliary inputByw, wherew =

t(al’ﬂls LY >Bm)
Verifier Vo: Invoke the verifieMyy to verify that inputf (pk, c) is a YES instance of GapCVyP
Hence we use the MV protocol, we obtain the lemma as follows.

Lemma 3.8. Protocol (P, Vo) is a statistical zero-knowledge protocol.

3.3.2 From Ciphertexts ofl to Instances of GapCVP

If cis a valid ciphertext of 1 theg := ¢ - |Vvi,/2] modN is a valid ciphertext of 0. On the other hand,
even ifc be a ciphertext that decrypts to 0, there are the caseytisatot a ciphertext that decrypts to 1
because frév;,) is not 0 and there arefects by moduldN. However, we ensurg (pk, y) is a NO instance
of GapCVF, as follows.

Lemma 3.9. Lety=c—|Vi,/2] modN.

1. For (sk, pk) and ce &(pk, 1), ¥ (pk,y) is a YES instance &apCVE.
2. For any instance ofsk, pk) and ce {0, 1, ..., N—1} such that sk, ¢) = 0, ¥ (pk, y) is a NO instance
of GapCVE,.

Proof. (1). Sincecis a legal ciphertext of 1, we hayas a legal ciphertext of 0. Therefore, hgmma 3.6
F (pk,y) is a YES instance of GapC\P
(2) Letce{0,1,...,N — 1} be a ciphertext that decrypts into 0. By the triangle inequality,

c- Lvio/ij modN) . frc(%) ~fre (<)~ fre(h).

frc



From the decryption algorithm, f{c/d) < 1/4. Therefore, we obtain

C—|Vi,/2] modN 1 1 1 1
f 0 >ty —1/4— —— > — [ty + ——].
rc( d ~ 2 / 8n3m — 4 " Brem
Note thatl < % - (to + g#=)- Thus, byClaim 3.7 Dist((*¢%). L) < ¥t can not hold, andF (pk.y) is a
NO instance of GapCVP m]

Protocol;: proving that a ciphertext decrypts to 1: Let P; andV; denote the prover and the verifier,
respectively. The common input is a paik(c), wherepk is a public key of R0O4 and is an integer in
{0,1,...,N—1}. The auxiliary input to the prover 8, ... ., Bm € {0, 1} such that = |v;,/2]+ >, Bivi mod
N.

Prover P1: Lety = ¢ —|Vi,/2] modN. Computes an integer; such that = a1N + Y, Bivi. Invokes
the proverPyy to prove that inpuf (pk,y) is a YES instance of GapC\/Rvith an auxiliary input
BpkW, wherew = Y(@1,f1, . . . , Bm).-

Verifier V1: Invoke the verifieMyy to verify that input# (pk, y) is a YES instance of GapC\P

Similar to the case of ciphertexts of 0, we obtain the following lemma.

Lemma 3.10. Protocol(P1, V1) is a statistical zero-knowledge protocol.

3.4 Lemmas

In this section, we consider the sum of ciphertexts and its pseudohomomorgisiim the following
section, we defin€& = 4t.

Definition 3.11. Let pk = (a1, ...,am, o) be a public key of RO4¢ andc’ elements from0,1,...,N —
1}, o ando” € {0,1}, r’ € {0,1}™, andp be a point fromLp,. We say that inputpk, c) and witness
(¢,o’,r',0”,p) are inRro4 if:
o ¢’ = Ex(o’;1)
Ki(c+c'—a” [vio/ZJ mod N)
0

Theorem 3.12. Let (pk, sk) be an instance oR04. If ((pk, C),w) € Rro4 for w = (¢’,0”’,r’, 0", p), then
o’ ®o” = D(sk,C).

. Dist(( )- p) <yt (i.e.,c+ ¢ modN decrypts tar”.)

Proof. We first consider the cage”’ = 0. In this case, we have that an inequality

Dist((Kl(C + c;)mod N))’ p) <.

Applying Claim 3.7 we obtain that fr¢(c + ¢ modN)/d) < yt’/n*. Suppose that’ = 0. Sincec’ is a
legal ciphertext, fréc’ /d) < 2/n. It implies that fro(c/d) < yt’/n* +2/n+ 1/8n°m < 1/4 andD(sk, ¢) = 0.
We also suppose that = 1. Sincec’ is a legal ciphertexts, fic’/d) > 1/2 — 2/n. Therefore, by triangle
inequality fre(c/d) > 1/2 — 2/n—yt’'/n* — 1/8n®m > 1/4 andD(sk, c) = 1.
Next, we consider the case’ = 1, i.e.,

Dist((Kl(C o= L\c’)“’/ 2 mod N)), p) <t
Applying Claim 3.7 we obtain that fr¢(c+ ¢ - |vi,/2) modN)/d) < 9t’//n*. It implies that
frc ((c+ ¢ modN)/d) > 1/2 — (frc (h) + 2t,) — yt'/n* > 1/2 — 2/n. Suppose that” = 0. Sincec
is a legal ciphertext, frec’/d) < 2/n. It implies that froc/d) > 1/2 — 2/n — 2/n - 1/8n®m > 1/4

and D(sk,c) = 1. Next, we suppose that’” = 1. Sincec is a legal ciphertext, we have that
frc (¢/'/d) > 1/2 — (2frc(h) + 2mt,) > 1/2 — 2/n. It implies that fro(c/d) < 2/n+ 2/n+ 1/8n°m < 1/4 and
D(sk, c) = 0. We conclude the proof. O
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3.5 Main Protocol

Let P andV denote a prover and a verifier, respectively. A common inpyiksd). An auxiliary input to
the prover is €, r) such that = Ep(o; ).

Define a mappingz(pk,c) = (Bpk, Xc, 1) wheret” = 2t and By andx. are similar to7 (pk, c). Let
Protoco}, (or Protoco]) be Protocgj (or Protocof) where# (-, -) is replaced bys(-, ) respectively.

Protocol PPK:

Step P1 P selectsr’ € {0, 1} andr’ € {0, 1}™ randomly. Computes’ = Ep(c’; ") and sends’ to V.

Step V1 V sends a random challenge bi€ {0, 1} to P.

Step P2If 6 = 0, P sends paird’,r’). If § = 1, P computesr” = o+ ¢’ mod 2 and sends” to V. Let
¢ = (c+¢’) modN and runs Protocg), on input pk, ) as prover.

Step V2 If § = 0. V accepts i’ = Epk(o”;1’), else rejects. 16 = 1. Run the Protocg), on input pk, C)
as verifier.

Theorem 3.13(Regev 04 PPK)Interactive protoco(P, V) is a proof of knowledge system with knowledge
error 3/4 for Rros. Moreover, the protocdlP, V) is a computational zero knowledge under the assumption
IUSVP.

The proofs of followingLemma 3.14andLemma 3.15re inAppendix A We need the lemmas for larger
protocol PPK.

Lemma 3.14. For syficiently large n,

1. If (sk,pk) is an instance oR04, ¢ = ¢; + ¢c; modN such that [sk,c) = 0 and g, c; € &(pk, ),
G(pk,c) is a YES instance &apCVB..

2. Let(sk, pk) be an instance dR04and ce {0, 1,...,N —1}. If frc (c/d) > 1/8, thenG(pk, c) is a NO
instance ofGapCVRB..

Lemma 3.15. For syficiently large n,

1. If (sk,pk) is an instance oR04, ¢ = ¢; + ¢c; modN such that [fsk,c) = 1 and g, c; € &(pk, ),
G(pk,y) is a YES instance @&apCVE, where y= ¢ — | vj,/2] modN.

2. Let(sk, pk) be an instance dR0O4and ce {0, 1,...,N —1}. If frc (c/d) < 3/8, thenG(pk, y) is a NO
instance ofGapCVE, where y= ¢ — | vj,/2] modN.

Proof of CompletenessSince it is evident, we omit the proof. m]

Proof of Validity with error3/4. Letpk = (ay, ..., am, ig) be a public key of R04. ancle {0,1,...,N—1}.
Let P* be an arbitrary prover that makeaccept with probability + 3/4 for e > 0 on common inputgk, c).
We construct a knowledge extractéras follows. K’s input is (pk, ). First, K choose a random tape
of P*. Leto; denotes a challenge bit in Protogeol K runsP* three times, where the challenge bit are
0, (1L0) and (11). K obtains three view3g, T1, andT,. Views are in forms thafy = (¢’,0,07,1’),
T1=(c.,1,0",T;),andT, = (¢, 1, 0", T7), whereT; andT/ are transcripts of Protocol thats; are 0 and
1 respectively. If any one of three views is rejectédyutputsL and halts. Otherwise, i.e., three views are
acceptedK obtains a vectop that is witness of GapCV/Pusing the extractor in Protogpbr Protoco].
Outputs ¢, 0", r’,0”, p) and halts.
Note that the probabilityK does not outputL is at leaste. Therefore,K is indeed the knowledge
extractor. m]

Proof of Zero-knowledge of PPKlVe construct a simulatoB as follows: LetS, is a simulator for
Protoco],.
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Step P1 Chooses\ € {0, 1} randomly (Predictor of a challenge bit).Af= 0, chooses”, r’ randomly and
computes’ = Ep(o’;r’). If A =1, chooses”, r” randomly, computes = Ep(o”;r”), and sets
¢ =c-cmodN. Sendg’ to V*.

Step V1 Receives a challenge Bitfrom V*.

Step P2, V2If A # §, outputsL and halts. IfA = 6 = 0 outputs ¢',6,0”,r’). If A = § = 1, invokeS,~
with input (pk, €). LetT = S,~(pk, €). Outputs ¢, 6, 0", T) and halts.

We assume that ISVP holds, hence according to the security property of R04if0 thenc’ is
computationally indistinguishable from the uniform distribution{onl,...,N — 1}; if A = 0 thenc’ =
c - cmodN is also indistinguishable from the uniform distribution. Therefore, the generated transcripts is
computationally indistinguishable from a real transcript. O

4 Proof of Plaintext Knowledge on the Regev’'05 Cryptosystem

4.1 The Regev’'05 Cryptosystem

We briefly review the Regev’05 cryptosysted].
Let n be a security parameter (or a dimension of underlying lattice problems)q bheta prime and
a € (0,1) areal such thatg > 2+/n. Letmbe an integer larger thanrb¢ 1) loga.

Private Key: Chooses e Zg uniformly at random. A private key is

Public Key: Choosem vectorsay,...,am € Zg independently at random. Choosg...,en € Zq inde-
pendently according t&,. Computed; = (g, S) + & modq. A public key is{(a;, b;)}i=1....m-

Encryption: Choose a random string € {0,1}™. Let o € {0,1} be a plaintext. A ciphertext is
(X, rigg modq, o [a/2] + X1, riby modq).

Decryption: Let (a,b) € Zg x Zq be a received ciphertext. |b - (a,s)lq < g/4 then decrypt into 0,
otherwise into 1.

Regev recommendeagle (n?, 2n?) anda = o(1/ v/nlogn) to tighten the approximation factor of underlying
lattice problems.

Theorem 4.1([15]). The security of the Regev'05 cryptosystem is based on the worst CAS&gf, ()
and SIVPs /() for polynomial-time quantum algorithms. The decryption error probability is at most
2-Q(1/(ma*(m)) | 9-Q(n)

We modify the key generation algorithm and parameters as follows:

Parameter: Letq = ©(n*) be a prime andan = 5(n + 1)(logq + 1). We also define = 1/n?. Note that
ga = O©(n?/ log? n) > 2+/n for sufficiently largen. Lett, = n?logn. Note that, = w(qe +/logn).

Private Key: Same as the original one.

Public Key: Choosemvectorsay,...,am € Zg independently at random. Choaseelementse, ..., en €
Zq independently according t#,. If |glq < t, for all i then computéy; = (a;,s) +  modq, else
re-choose, . .., en. A public key is{(a;, bj)}i=1....m-

.....

We refer this modified version as R05. Note that the probability that there exsisth thate|q > t, is
negligible inn from the followingLemma 4.2 We also note that there exist no decryption errors in R0O5.

Lemma 4.2. Let n be a security parameter. Let g be a prime ansl 0 a real number such thatag> 2 +/n.
Let t, be an integer that asymptotically larger than glogn, i.e., t, = w(ga v/logn). Finally, let e be a
random variable according to the distributioh,. Then, the probability thggly > t,, is negligible in n.
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Proof. By Lemma 2.1 we have that
Prieg>t] < Prilel> (- 1/d

2 a/Nor (_ (te — 1)2/q2)

: ; (ta - 1)/q 2((1’/ ‘/Z)Z
Qa (ta — 1)2
< ﬂ(ta — 1) exp(—n q2a2 )

Since we set, = w(ga +/logn), we obtain exptw(logn)) as the upperbound of the probability. O
The security follows fromTheorem 4.1We summarize the property of RO5 as follows.

Theorem 4.3. The security oR05is based on the worst case VP53 and SIVP5 s for polynomial-
time quantum algorithms. There exist no decryption errors.

We define the assumption ISVP as follows:
Assumption 4.4 (Infeasibility of SVP) There exists no quantum polynomial-time algorithm that solves
SVPs 3 and SIVRy 3 with non-negligible probability.
4.2 Preliminaries for PPK

Let E(pk, o) be a set of legal ciphertexts of with a public keypk. We define a threshold of GapCVP as
t= \/(n + 1)m? + K2mand an approximation factor of GapCVP-as ‘/%

.....

T(pk, C) — (Bpk,ta XC); WhereXC — (Kéc) c ZZn+m+3_ Bpk e Z(2n+m+3)><(n+m+2) is

[KiQlnsa Ki(@—LDuns Kavr ... Kpviy)
|n+l
1
Bpk: K2 ’

K2 |
wherev; = (‘gj) € zg*, Ky = n*, andK; = n?.

From the definitions of andy, we have thayt = O(n’m). We remark that, for diiciently largen,
4yt = O(n’m) < Ky and 4t(1 + vmt,/Ko) = O(n’m)O(1 + vmlogn) < O(n*) = g/8 from the definitions
of Ky, K2, g, andt,.

4.3 From Ciphertexts of 0 to Instances of GapCVP (or Verifiable Encryption)

We show thatF(-,-) maps a valid ciphertext of O to a YES instance of GapC¥Rd a ciphertext that
decrypts into 1 to a NO instance of one. Hence, we have an interactive prooistactiphertext of 0 using
the MV protocol and the transformatigf(., -).

Lemma 4.6.

1. For (sk, pk) andc € &(pk, 0), ¥ (pk, €) is a YES instance &apCVE.
2. For any instance ofsk,pk) andc € Zg“ such that Osk,c) = 1, F(pk,c) is a NO instance of
GapCVE,.
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Proof. (1). Sincec € &(pk, 0), there exists a string € {0,1}™ such thatc = )", rjvi modq. Thus,
there exists a vectonw = t(al, oo, ni1, 0,81, ...,8m), Wherea; € {-m,...,0} andg; € {0, 1}, such that
c=yMlaiqui + Z'j“:lﬁjvj. It is evident thaBpw € L(Bpk). Hence, we obtain that

Dist ((Kgc), L(Bpk)) < Dist ((Kéc), Bpkw)

n+1 m
= JZai2+ K%Z,BJZ
i

i

< \/(n+ P + Ksm=t.

(2). Letc = (§) € Z5* be any vector which decrypts into 1. LEt= yt. From the remark, it follows that
T(1+ VMt /Ky) < 0/4 < |b - (a S)lg. By Claim 4.7Dist((*3). L(B)) < T can not hold. Thusf (pk, c)
is a NO instance. O
Claim 4.7. Let K3 > T > 0. Letpk be a public key oRO5andc € ZS”. For syficiently large n, if
Dist((*3°). L(Bp)) < T thenjb — (& 9lq < T(1+ VMt,/Ka).

Proof. From the assumption, there exists= '(ax, . . ., @ns2, B4, . . ., Sm) SUCh thaH(Kéc) - Bpka <T.We

definee = K;c — Ky(q Zi”*l aiUj + (0 — DansoUns1 + er“:lﬁivi). From the construction d8p, we obtain
that

n+2 m

DaZ+ K3 R+ llel? < T2
i=1 i=1

From the factk; > T ande € K;Z™1, e must be0. We note thatxﬁ+2 < T2. Now, recall thatc =
Z|n:+11 @iqui + (0 — L)anioUnsy + Zgr;lﬁivi + e/K1. Therefore,

b—(a 9 = (a-amz+ ) Bibi— ) Bi(a,9) = —amz2+ ) fie (Moda).
i=1

i=1 i=1
By the Cauchy-Schwartz inequality and the upper bound zoﬁiz, we have | YT, Bielq
\/2{21,8? \/Z{Qllalé < 4 {21|Q|§T/K2. Moreover, from the key generation algorithm, we have

NN Ie'.lﬁ < +/mt,. Hence, by triangle inequality, we obtgb- (a, s)l < T(1+ vmt,/K>) and complete
the proof. O

IA

Protocoly: proving that a ciphertext decrypts into 0: Py andVy denote the prover and the verifier,
respectively. The common input is a paik(c), wherepk is a public key of RO5 andis a vector inzg*l.
The prover’s auxiliary input i81, . .., 8m € {0, 1} such that = 3, Biv; modq.
Prover Py: Compute integerss, ..., a1 such that = Zi":‘l,Bivi + Z’j‘;rl gaiu;. Invoke the provePyy

to prove that the inpuf (pk, c) is a YES instance of GapCVRvith an auxiliary inputBpcw, where

W = t(al’ <o Ol O;ﬁl’ e ,,Bm)-
Verifier Vo: Invoke the verifieMyy to verify that the input (pk, c) is a YES instance of GapC\P

Hence we use the MV protocol, we obtain the lemma as follows.

Lemma 4.8. The protocol Py, Vp) is a statistical zero-knowledge protocol.
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4.4 From Ciphertexts of 1 to Instances of GapCVP (or Verifiable Encryption)
Lemma 4.9. Lety = ¢ - |g/2] un;1 modq.

1. For (sk, pk) andc € &(pk, 1), ¥ (pk, y) is a YES instance &apCVPB..
2. For any instance ofsk, pk) andc € Zg” such that Osk,c) = 0, F(pk,y) is a NO instance of
GapCVE.

Proof. (1). Sincec is a legal ciphertext of 1y is a legal ciphertext of 0. The proof is similar to that of
Lemma 4.6

(2). We considey = ¢ —|q/2]un:1 modg. In this caseD(sk,y) = 1. Therefore, we prove in a similar
way to the proof oLemma 4.6 O

Protocol;: proving that a ciphertext decrypts into 1: P; andV; denote the prover and the verifier,
respectively. The common input is a pgik(c), wherepk is a public key of RO5 and is a vector from
Zg”. The prover’s auxiliary input i, ..., 8m € {0, 1} such that = 3", Bivi modq.

Prover P;: Lety = ¢ - [0/2]un1 modg. Compute integerss, ..., ans1 Such thatc = [q/2] Upe +
> Bivi + ZTﬁ gaiu;. Invoke the provePyy to prove that inputF (pk,y) is a YES instance of
GapCVP, with an auxiliary inputByxw, wherew = Yag,...,ans1,0,81, ..., Bm).

Verifier V1: Invoke the verifieMyy to verify that input¥ (pk, y) is a YES instance of GapC\P

We obtain the following lemma in a similar way to the case of ciphertexts of 0.

Lemma 4.10. The protocolP1, V1) is a statistical zero-knowledge protocol.

4.5 Definition of Relation
We definet’ = 4t.

.....

Let o’ ando” be bits,r’” anm-bit string, andp a vector inL(Bpk). We say that inputgk, c) and witness
(¢, o, r',0”,p) are inRros if:

o ¢ = Ep(o’;r)and
o Dist((f(Cremo"lq2lnamodd) ) <4t (i.e.,c + ¢ modq decrypts intar”.)

Theorem 4.12. Let (pk, sk) be an instance oR05. If ((pk,c),w) € Rros for w = (¢/,d’,1’,0”,p), then
o’ ®o” = D(sk,c).

Proof. Let pk = {(ai, bi)}i=1,..m be a public key of R05.
We first consider the cage’ = 0. In this case, we have that an inequality

Dist((Kl(C i % mod q)), p) <.

Applying Claim 4.7 we obtain thatb + b’ — (a+ &, s)lq < y'(1 + vmt,/Kz). Suppose that’ = 0. Since
c is a legal ciphertexib’ — (a, s)ly < mt,. Itimplies thatlb — (a, s)lqg < mt, + y'(1 + Vmt,/Ky) < q/4
andD(sk, c) = 0. We also suppose that = 1. Sincec’ is a legal ciphertextp’ — (a, s)lg > /2 — mt,. It
implies thatb - (a, s)ly > q/2 — mt, — yt'(1 + vmt,/K2) > g/4 andD(sk, c) = 1.

Next, we consider the case’ =1, i.e.,

Dist((Kl(C +c - LCI/OZJ Un+1 Mod Q))’ p) <ot
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Applying Claim 4.7, we obtain thatb + b’ — [g/2] — (a+ &, S)lq < yt'(1 + VYmt,/K2). Hence we have
b+b - (a+a,s)lq > q/2 - yt'(1+ +mt,/Ky). Suppose that” = 0. Sincec’ is a legal ciphertext,
Ib” — (&, s)lqg < mt,. Itimplies thatlb - (a, S)lq > 9/2 — mt, — yt’(1 + vmt,/Ky) > q/4 andD(sk, c) = 1.
Next, we suppose that’ = 1. Sincec’ is a legal ciphertext, we have thiat — (&', S)lq > /2 — mt,. It
implies thatb - (a, s)lq < yt'(1+ vmt,/K2) + mt, < g/4 andD(sk, c) = 0. We complete the proof. O

4.6 Main Protocol

Let P andV denote the prover and the verifier, respectively. The common input is aghaa)( The
auxiliary input is a paird, r) such that = Ep(o; 1).

Define a mappin@(pk, €) = (Byk, Xc, t’) wheret” = 4t and bothBp, andx. are similar tof (pk, c). Let
Protoco}, (or Protoco]) be Protocgj (or Protocof) where# (-, -) is replaced by5(., ) respectively.

Protocol PPK:

Step P1 P selects’ € {0, 1} andr’ € {0, 1} randomly.P computes’ = Ep(o”;r’) and sends’ to V.

Step V1 V sends a random challenge it {0, 1} to P.

Step P2 If 6 = 0, P sends the pairf’,r’). If § = 1, P computesr” = o + ¢’ mod 2 and sends” to V.
Letc = (c+ ¢’) modg and runs Protoc§), on the input gk, C) as the prover.

Step V2 If 6 = 0,V accepts ift’ = Epk(o’; 1), else rejects. 16 = 1,V runs the Protocgl, on the input
(pk, ©) as the verifier.

Theorem 4.13(PPK for R05) The interactive protocq(P, V) is a proof of knowledge system with knowl-
edge error3/4 for Rrgs. Moreover, the protocofP, V) is a computational zero knowledge under the as-
sumption ISVP.

Our proof is based on the proof of Goldwasser and Kharche@kdefore describing the proof, we
need lemmas that give the properties of the protocols.

Lemma 4.14. For syficiently large n,

1. If (sk, pk) be an instance dRO5andc = ¢; + ¢c; modq such that sk, c) = 0 andcy, ¢, € E(pk, ),
G(pk,c) is a YES instance &apCVP..

2. Let (sk,pk) be an instance oR05andc = (§) € Zi*L. If b - (& )lq > /8, thenG(pk, ) is a NO
instance ofGapCVRB..

Lemma 4.15. For syficiently large n,

1. If (sk, pk) be an instance dR0O5andc = c; + ¢, modq such that sk, ¢c) = 1 andcy, ¢; € &(pk, -),
G(pk,y) is a YES instance @apCVP, wherey = ¢ - [g/2] Un+1 modd.

2. Let(sk, pk) be an instance dR05andc = (}) € Z3*L. If |b - (a )|y > 3q/8, theng(pk,y) is a NO
instance o’GapCVPy, wherey = ¢ - |q/2] un;1 modq.

The proofs ofLemma 4.14andLemma 4.15re inAppendix B Let us proverheorem 4.13

Proof of completenessSince it is evident, we omit the proof. ]

.....

P* be an arbitrary prover that makeaccept with probabilitg + 3/4 for e > 0 on the common inpupk, ).

We construct a knowledge extractigras follows.K’s input is (pk, c). First,K chooses a random tape
of P*. Letd; denote a challenge bit in Proto¢ol K runsP* three times, where the challenge bits are
0, (1L0) and (11). K obtains three view3g, T1, andT,. Views are in forms thafy = (¢’,0,07,1’),
T1=(c.,1,0",T;),andT, = (¢, 1,0”, T7), whereT; andT, are transcripts of Protocol thats; are 0 and
1 respectively. If any one of three views is rejectédyutputsL and halts. Otherwise, i.e., three views are
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acceptedK obtains a vectop that is witness of GapCVRusing the extractor of Protogpbr Protoco]. K
outputs ¢, 07, r’, 0", p) and halts.

Note that the probabilit)k does not output is at leas®(e). ThereforeK is indeed the knowledge
extractor. m|

Proof of zero-knowledge of PPK.et S, be a simulator for Protocpl. We construct a simulatd® as
follows:

Step P1 ChoosesA € {0, 1} randomly (a predictor of a challenge bit). Af= 0, chooses~’,r’ randomly
and computes’ = Ey(o”;r’). If A =1, chooses”,r” randomly, computes = Ep(c”’; 1), and
setsc’ = ¢ - c modg. Sends’ to V*.

Step V1 Receives a challenge Bitfrom V*.

Step P2, V2If A # §, outputsL and halts. IfA = § = 0 outputs ¢',6,0”,r’'). If A = 6§ = 1, invokeS,~
with input (pk, ¢). Let T = S, (pk, ). Outputs ¢, 6,c”’,T) and halts.

We assume that ISVP holds, hence according to the security property of RO5=if0 thenc’ is
computationally indistinguishable from the uniform distribution%ﬁ‘il; if A=0thenc’ =c-cmodqis
also indistinguishable from the uniform distribution. Therefore, the generated transcripts is computationally
indistinguishable from a real transcript. O

5 Concluding Remarks

In this paper we constructed PPKs for R0O4 and RO5.

We list up a few open problems: Verifiable decryption for the lattice-based cryptosystems and non-
malleable proofs for plaintext knowledge for the lattice-based cryptosystems. The former has many appli-
cations. The latter are sources of interactive CCA2-secure cryptosystems.
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A Proof of Lemmas

Proof ofLemma 3.14 (1) There are two cases thatan decrypts into 0: when both andc, are cipher-
texts of 0 and when both are ciphertexts of 1.

Suppose thaty, ¢; € E(pk,0). FromLemma 3.6 Dist((“}"), L(Bpi)) < tfori = 1,2. ByLemma A.1
below, Thus, forc = ¢; + ¢, mod N, we have that

(K
Dlst(( 8‘:), L(Bpk)) <2A+1<4dt=t.

Next, suppose thati,c; € &(pk,1). Thus, fori = 1,2, ¢ = ¢ — Vi,/2 modN € &(pk,0). By
Lemma A.1below, we have that fot = ¢; + ¢, modN, Dist((Kcl)C , L(Bpk)) < 2t + 1. Consider the vector
€ =C+V;, modN. By Lemma A.2 we have that

(K
DISt(( SC) L(Bpk)) <2t+1+ (Ki+l<dt=t.

(2) Letc € {0,1,...,N — 1} be any ciphertext such that ffc/d) > 1/8. LetT = yt’. Note thatT/n* <
1/8 < frc (c/d). Hence, byClaim 3.7Dist((*3°), L(Bp)) < T can not hold. Thusg(pk, c) is a NO instance
of the GapCVP. O

Proof ofLemma 3.15 (1) Without a loss of generality, we suppose toate E(pk,0) andc, € E(pk, 1).
Sincec, is a legal ciphertext of 0, frorhemma 3.6 for somep; € L(B), Dist((4?). p1) < t. Sincec,
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is a legal ciphertext of 1, frorhemma 3.9 for somep; € L(By), Dis,t((Kl(CZ“’io(/)2 mOdN)),

fromy = ¢y + c2 — Vvj,/2 modN, we obtain

pz) < t. Hence,

. K
DISt(( Sy) L(Bpk)) <2t+1l<4t=t

by Lemma A.1

(2) Letc € {0,1,...,N — 1} be any ciphertext such that fic/d) < 3/8. In this case, we obtain that
frc (y/d) > 1/4 in a similar way to the proof ofemma 3.9 Let T = yt’. Note thatT/n* < 1/4 <
frc (y/d). Hence, byClaim 3.7Dist((“%"), L(Bp)) < T can not hold. Thugg(pk.y) is a NO instance of the
GapCVE,. O

Lemma A.1. Letpk be a public key oR04, p; andpz points from I(Byy). If for c1,c, € {0,1,...,N - 1},
Dist((*4*). p1) < dy andDist(("4?2), pz) < da, thenDist ((**% ™M) | (B,,)) < dy +dz + 1.

Proof. RepresenKi(c1 + ¢c; modN) = Ki(c1 + ¢ + @1N). Since both vectorg; and c, belong to
{0,1,...,N — 1}, we can bounda;| < 1. Consider a vectop = Bpk‘(al, 0,...,0). Thus, we obtain

that Koo
Dist(( 1(6; ),p)sl.

By the triangle inequality, the lemma follows. O

Lemma A.2. Let pk be a public key oR04 and p a point from L(Bp). If forc € {0,1,...,N -1},

Dist(("3°).p) = d thenDist((Kl(CW‘% mod N)), L(Bpi)) <d+ /K3 + 1.

Proof. RepresenKi(c + vi, modN) = Ky(c + vi, + a1N) for somea; € {-1,0}. Consider a vectop’ in
L(Bpk) such thap’ = L(Bw)'(0,...,0,1,0,...,0) (with 1 at the {p + 1)-th position). By the construction

of By, we have that Dis(t(Kl(V‘Og(”N)), p’) < 4 /K% + 1. By the triangle inequality, the lemma follows. o

B Proof of Lemmas

Proof ofLemma 4.14
(1) There are two cases thatan decrypts into 0: when both andc;, are ciphertexts of 0 and when both
are ciphertexts of 1.

Suppose thaty, ¢; € &(pk, 0). FromLemma 4.6 Dist((*5*). L(Bp)) < tfor i = 1,2. By Lemma B.1
below, Thus, folc = c; + ¢c; modq, we have that

. K
DISt(( éc) L(Bpk)) <2t+ Vn+l<4t=t.

Next, suppose that;,c, € E(pk,1). Thus, fori = 1,2, ¢ = ¢ — |g9/2] uns1 modq € E(pk,0). By
Lemma B.1below, we have that fot = ¢; + ¢, modaq, Dist((KéC ,L(Bpk)) < 2t + Vn+ 1. Consider the
vectorc = C; + C2 +2g/2] uny,1 modg. Sincegis a prime, we have @1/2| = g— 1. By Lemma B.2below,
we have that Disf(*3°), L(Bp)) < 2t+ Vn+ 1+ 1<4t=t.

(2) Letc = (§) € Z3** be any ciphertext such thit - (a s)lq > /8. LetT = yt'. Recall thatT(1 +

VMt /Kz) < /8 < |b - (a S)lg. Hence, byClaim 4.7Dist((*3°), L(By)) < T can not hold. Thusg(pk, )
is a NO instance of the GapCyP O

Proof ofLemma 4.15 (1) Without loss of generality, we suppose thet € &(pk,0) and c; «
&(pk,1). From Lemma 4.6and Lemma 4.9 for somepy.p; € L(By) Dist((*}).p1) < t and

Dist(('<1(‘32‘Lq/2{)“'“+1 mOdQ)), p2) < t. Hence, fromy = ¢; + ¢ — |0/2] Uns1 Mod g, we obtain

Dist((Kéy), L(Bpk)) <2t+1<4t=t
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by Lemma B.1

(2) Letc = (§) € Z3** be any ciphertext such thiit— (a,s)ly < 30/8. Lety = (§). In this case, we obtain
that|b’ — (&, s)lq > q/8. LetT = yt’. Note thaflT (1+ vmt,/K>) < q/8 < |b’ - (&, s)|q. Hence, byClaim 4.7
Dist((*¢Y). L(Bp)) < T can not hold. Thusg(pk.y) is a NO instance of GapC\P o

Lemma B.1. Let pk be a public key oR05 p; and p2 points from I(Bp). If for ci,co € Zg”,
Dist((Kgcl), pl) =d,; and Dist((KBCZ), p2) =dy, thenDist((Kl(C“Cg mOdQ)), L(Bpk)) <di+dp+ Vn+ L.

Proof. RepresenKi(c1 + ¢; modq) = Ki(cp + ¢ + Zi”:*f ajqu;). Since both vectors; andc; belong to
{0,1,...,q - 1}™*, we can boundw;| < 1 for alli. Consider a vectops = Bp'(a1, ..., @ns1,0,. .., 0).

Thus, we obtain that
n+l ) n+1
Dist((Kl Zi:é a.qu,)’ |O3) < A Z a? < Vn+ 1.
i=1

By the triangle inequality, the lemma follows. O

Lemma B.2. Let pk be a public key oRO5andp a point from L(By). If for ¢ € Z3*, Dist((Ké"), p)=d
thenDist((¥1(+2/2}ma modD) | () < d + 1.

Proof. Sinceq is an odd prime, we have thai @/2] = q—- 1. RepresenKi(c + (q — 1)upy1 modq) =
Ki(c + (0 = Duns1 + ans2(d — L)uns1) for somea € {-1,0}. Consider a vectop’ in L(By) such that
p’ = L(Bw)'(O, .. .,0,an:2,0,...,0) (with 1 at the 0+ 2)-th position). By the construction &, we have
that Dist( (4t ene2(d-Dn2)) | (B,)) < 1. By the triangle inequality, the lemma follows. o
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