
Research Reports on
Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: CCC ooommm ppp uuu ttt eee rrr SSS ccc iii eee nnn ccc eee

ISSN 1342-2812

Key-Substitution Attacks on Group Signature

Koichi Sakumoto and Keisuke Tanaka

January 2007, C–237

Key-Substitution Attacks on Group Signature

Koichi Sakumoto and Keisuke Tanaka ∗

Dept. of Mathematical and Computing Sciences
Tokyo Institute of Technology

W8-55, 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552, Japan
{sakumot3, keisuke}@is.titech.ac.jp

January 4, 2007

Abstract

Group signatures were introduced by Chaum and Van Heyst [12], and many security re-
quirements for group signatures have been proposed. Bellare, Micciancio, and Warinschi [4]
showed that satisfying full-anonymity and full-traceability is sufficient, in the sence that all
the above-mentioned requirements are implied by them. Wilson and Menezes [5] introduced
a considerable attack against standard signatures, key substitution attack. In this paper, we
propose security conditions of group signatures against this attack and show that the security
requirements are not sufficient regarding the attack. We also propose a group signature scheme
that is secure against the key substitution attack, fully-anonymous, and fully-traceable.

Keywords: group signature scheme, key substitution attack

1 Introduction

Group signatures, introduced by Chaum and Van Heyst [12], allow any member of a group to sign
a message on behalf of the group. Moreover, no one can find out which group member provided it.
Preserving the anonymity of the signer can be important in many applications where the signer
does not want to be directly identified with the message that he signed. However, there exist
a special party, called the group manager, who has the ability to trace the signer of any given
signature in the case of a later dispute.

The core requirements of group signatures are that the group manager has a secret key gmsk
based on which it can, given a signature σ, extract the identity of the group member who created
σ (traceability) and on the other hand an entity not holding gmsk should not be able, given a
signature σ, to extract the identity of the group member who created σ (anonymity).

Major requirements have been introduced as follows.

unforgeability It is computationally unfeasible to produce a message and signature pair (m,σ)
that are accepted by the verification algorithm, without knowledge of the secret key(s).

exculpability No member of the group and not even the group manager can produce signatures
on behalf of other users [3].

∗Supported in part by NTT Information Sharing Platform Laboratories and Grant-in-Aid for Scientific Research,
Ministry of Education, Culture, Sports, Science, and Technology, 16092206.

1

traceability Originally [12], “traceability” was used to denote the functional property that if
a message is signed with a i-th user’s key and the opening algorithm is applied to the
resulting signature, the output of the opening algorithm should be i. Later, the term has
been overloaded to include an actual security requirement, namely that it is not possible
to produce signatures which can not be traced to one of the group that has produced the
signature.

coalition resistance No colluding subset of group members (even if comprised of the entire
group) can generate a valid signature that the group manager can not be traced to any of
them [1].

framing resistance No set of group members can combine their keys to produce a valid signa-
tures in such a way that the opening algorithm will attribute the signature to a different
member of the group [13].

anonymity It is infeasible to ascertain the group member who signed a message without knowing
the group maneges secret key.

unlinkability It is not feasible to decide whether two signatures have been issued by the same
group member or not.

Bellare, Micciancio, and Warinschi [4] formulated strong versions of the anonymity and trace-
ability, which they called full-anonymity and full-traceability respectively. Moreover, they showed
satisfying the two requirements is sufficient, in the sense that all the above-mentioned requirements
are implied by full-anonymity plus full-traceability.

Wilson and Menezes [5] introduced a property which they called duplicate-signature key se-
lection property on a signature scheme. In this scenario, an attacker is given a message m along
with a signature s for a verification key y and tries to find another verification key y (along with
the matching secret key) such that s is valid on m with respect to y, too.

Menezes and Smart [16] formalized this property as the key substitution attack and proved that
several established signature schemes, including DSA, EC-DSA, and Schnorr signatures, are secure
in this setting, provided that the parameters are restricted accordingly. In this formulation, an
attacker is provided some message along with a signature s for a verification key y and attempts to
produce a valid pair of a public key and a private key on which s is valid for the provided message.

Bohli, Rohrich, and Steinwandt [6] considered other two attack models, which were derived
on the assumptions that there exists a “corrupted signer” and a “malicious signer”, respectively.
In the former model, an attacker is presented both a public key and a secret key. In the later
model, given a domain parameter, an attacker himself produces two public (and secret) keys y, y,
a message m, and a signature σ such that σ is valid signature for m on both y and y. They also
classified the goals of an attacker, a strong model and a weak model. They call the strong key
substitution attack if an attacker needs to output both a public key and a corresponding secret
key. In the weak key substitution attack, an attacker does not output a secret key.

In 2004, Boneh and Boyen [7] proposed a signature scheme based on a bilinear map in the
standard model, which is existential unforgeable against adaptive chosen message attack. Tan
showed that Boneh and Boyen’s scheme succumbs to the key substitution attack [20], and proposed
a signature scheme based on a bilinear map that is secure against the key substitution attack and
existential unforgeable in the standard model [21].

For several signature schemes, including the proposals that are provably secure in the sense of
existential unforgeability, it has been demonstrated that key substitution attacks are possible [5,
16, 14, 19, 6, 20].

In this paper, we formulate the security requirements against the key substitution attack [16,
14, 19, 20, 21, 6] on group signature schemes. Bellare, Micciancio, and Warinschi [4] formulate

2

the full-anonymity and the full-traceability and sais that two requirements are enough, in the
sense that all the other requirements are implied by them. Nevertheless, we show that Boneh,
Boyen and Shacham’s short group signatures [8] which are full-anonymous and full-traceable are
not secure against key substitution attack. This means that satisfying the full-anonymity and the
full-traceability is not sufficient to be secure against the attack.

We propose the security against key substitution attacks as the additional requirement for
group signature schemes, and formalize two security requirements against this attack. In one of
the scenarios, an attacker is provided some message along with a signature s for a group public key
gpk and attempts to produce another group public key gpk for which s is valid for the provided
message. In the other scenario, an attacker is provided a group public key gpk , a group manager’s
secret key gmsk , and users’ secret keys gsk and attempts to produce another group public key gpk ,
a message m, and a signature σ such that σ is valid signature for m on both gpk and gpk . We call
the former attack “key substitution attack 1” and the latter “key substitution attack 2”. We prove
that the security requirement against key substitution attack 2 is truly stronger than that against
key substitution attack 1. We also construct a group signature scheme that is fully-traceable,
CPA-fully-anonymous, and secure against key substitution attack 2.

In the next section, we review some cryptographic tools that our main construction based
on. In section 3, we review the model of group signature schemes and their proposed security
requirement. We also formalize two security definition against key substitution attacks. One is
inspired by Menezes and Smart [16] and Tan [21], the other is stronger attack. In section 4, we show
the insecurity of a fully-traceable and CPA-fully-anonymous group signature scheme proposed by
Boneh, Boyan and Shacham [8] against the weaker key substitution attack. We improve the group
signatue scheme and show that the modified scheme is fully-traceable, CPA-fully-anonymous, and
secure against the stronger key substitution attack. We prove that there exists a separation
between the weaker and stronger key substitution attacks in section 5.

2 Primitive

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its size. If k ∈ N then
1k denotes the string of k ones. For any integer n, [n] = {1, · · ·n}. For a randomized algorithm
A, [A(x, y, · · ·)] denotes the set of all points having positive probability of being output by A on

inputs x, y, · · · . For a randomized algorithm A, z
$←− A(x, y, · · ·) denotes the operation where on

the input x, y, · · · , A outputs z.
We say that a function is polynomially bounded if there exists a polynomial p(·) such that

f(k) ≤ p(k) for all sufficiently large k ∈ N. We also say f is nice if it is polynomially bounded
and computable in polynomial-time regarding its input. In this paper, we need a notion of the
negligibility of a two-argument function µ : N× N→ N. We say such a µ is negligible if for every
nice function n : N→ N, the function µn : N→ N where µn(k) = µ(k, n(k)) is negligible.

2.1 Trapdoor commitment scheme

We review a few concepts related to trapdoor commitment schemes [11, 10]. A trapdoor commit-
ment scheme (also known as a chameleon hash function [15, 2]) is a function which is associated
with a pair of a public key and a private key. The main property of a function which we want
is the collision-resistance: it is infeasible to find two inputs that are mapped to the same value
without the trapdoor. On the other hand, the knowledge of the trapdoor suffices to find collisions
easily.

We follow the notation [11]. A trapdoor commitment scheme is defined by a triplet T C =
(K, C,D) of polynomial-time algorithms:

3

• The key generation algorithm K is a randomized algorithm which takes as input 1k, where
k ∈ N is the security parameter and outputs a pair of a public key and a private key (pk, sk).

• The commitment function C is a deterministic algorithm which takes as input pk, m, and
r, where pk is a public key, m is a message and r is an auxiliary parameter, and outputs a
committed value c.

• The collision-finding function D is a deterministic algorithm which takes as input sk, m, r,
and m′, where pk is a secret key, m,m′ are messages and r is an auxiliary parameter, and
outputs an auxiliary parameter r′ such that C(pk, m, r) = C(pk, m′, r′).

There are various security properties on a trapdoor commitment scheme, however, we only
require the collision-resistance. We define formally the advantage of an adversary A in defeating
it by:

Advcol
T C,A(k) = Pr[(pk, sk) $←− K(1k); ((m, r), (m′, r′)) $←− A(1k, pk) :

C(pk, m, r) = C(pk, m′, r′) ∧ (m, r) 6= (m′, r′)].

Definition 1 ((t, ε)-collision resistance of trapdoor commitment schemes). We say that a
trapdoor commitment scheme T C is (t, ε)-collision resistant if for any polynomial-time adversary
A that runs in time t, the function Advcol

T C,A(·) is at most ε(·).

2.2 Hash functions

In this paper, we treat a hash function H as a function H : {0, 1}∗ → Zp, where H is given
at random from a family of functions. We would like to deal with the difficulty with which an
adversary is able to find two distinct points in the domain of a hash function that hashes to
the same range point. Following [17], we define the advantage of an adversary A in defeating
collision-resistance of the hash function H by:

Advcol
H,A(k) = Pr[(x, y) $←− A(1k) : H(x) = H(y) ∧ x 6= y].

Definition 2 ((t, ε)-collision resistance of hash functions). We say that a hash function H
is (t, ε)-collision resistant if for any polynomial-time adversary A that runs in time t, the function
Advcol

H,A(·) is at most ε(·).

2.3 Bilinear groups

We review a few concepts related to bilinear maps. We follow the notation of [9]:

1. G1 and G2 are two (multiplicative) cyclic groups of prime order p;

2. g1 is a generator of G1 and g2 is a generator of G2;

3. φ is a computable isomorphism from G2 to G1, with φ(g2) = g1; and

4. e is a computable bilinear map e : G1 ×G2 → GT with the following properties:

• Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab

• Non-degeneracy: e(g1, g2) 6= 1

Throughout this paper, we consider a bilinear map e : G1 × G2 → GT where all groups
G1, G2, GT are multiplicative and of prime order p. One could set G1 = G2. However, we allow
for the more general case where G1 6= G2 in the same way as [8].

We say that a truple of two groups (G1, G2) is a bilinear group pair if the group action in G1

and G2, the map φ, and the bilinear map e are all efficiently computable.

4

3 Group signature schemes

3.1 The model and proposed requirements

In the group signature setting introduced by Chaum and Van Heyst [12], there is a group having
numerous members and a single manager. Associated to the group is a single signature-verification
key gpk called the group public key. Each group member i has its own secret signing key based
on which it can produce a signature relative to gpk . The group manager has a secret key which
can revoke the anonymity of the signed message.

Following the notation [4, 16], we define a group signature scheme GS = (GDg, GDv, GKg, GKv, GSg, GSv, Open)
of seven polynomial-time algorithms:

• The group domain parameter generation algorithm GDg is a randomized algorithm which
takes as input 1k and 1n, where k ∈ N is the security parameter and n ∈ N is the group
size (i.e. the number of members of the group), and outputs a group domain parameter D
to be shared between one or more groups and possibly some state information I required to
verify that these parameters satisfy some security requirements. It may be the case that GDg
simply returns its input, namely 1k and 1n.

• The group domain parameter validation algorithm GDv is a deterministic algorithm which
on input a security parameter k, a group size n, a group domain parameter D, and possibly
some state information I, outputs 1 if the group domain parameter conforms to the specified
security requirements. Otherwise, it outputs 0.

• The randomized group key generation algorithm GKg takes as input a group domain parame-
ter D and returns a tuple (gpk , gmsk ,gsk), where gpk is a group public key, gmsk is a group
manager’s secret key, and gsk is an n-vector of keys with gsk[i] being a secret signing key
for the player i ∈ [n].

• The group public key validation algorithm GKv is a deterministic algorithm which on input
a group domain parameter D and a group public key gpk , outputs 1 if these parameters
conform to the specified requirements. Otherwise, it outputs 0.

• The randomized group signing algorithm GSg takes as input a group public key gpk , a group
secret signing key gsk[i] associated with the group domain parameter D and a message m
and returns a signature of m under gsk[i] (i ∈ [n]).

• The deterministic group signature verification algorithm GSv takes as input a group public
key gpk , a group domain parameter D, a message m, and a candidate signature σ for m
and returns 1 if the signature conforms to the specified security requirements. Otherwise, it
returns 0.

• The deterministic opening algorithm Open takes as input a group manager secret key gmsk ,
a group domain parameter D, a group public key gpk , a message m, and a signature σ of m
and returns an identity i or the symbol ⊥ to indicate failure.

Bellare et al. [4] provided three properties that a group signature scheme must satisfy; the
correctness, the full-anonymity, and the full-traceability, and showed that all existing security
requirements are implied by satisfying the full-anonymity and the full-traceability. We review the
properties along with these definitions of a group signature scheme as follows.

Correctness A group signature scheme must satisfy the following correctness requirement: a
signature created correctly by the signing algorithm is always valid and recovered the identity of
the signer by the opening algorithm.

5

Definition 3 (correctness). We say that GS is correct if for all k, n ∈ N, D ∈ [GDg(1k, 1n)],
(gpk , gmsk ,gsk) ∈ [GKg(D)], i ∈ [n], and m ∈ {0, 1}∗,

GSv(D, gpk ,m, GSg(D, gpk ,gsk[i],m)) = 1 and Open(D, gpk , gmsk ,m, GSg(D, gpk ,gsk[i],m)) = i.

Full-anonymity. Informally, the anonymity requires that an adversary not in possession of the
group manager’s secret key cannot identify the signer of a signature. An adversary A is given
the secret keys of all group members. There are two settings of the adversary, that is, the CCA
model [4] and the CPA model [8]. In the CCA model [4], A is given access to the opening oracle
Open(D, gpk , gmsk , ·, ·), which when queried with a message m and signature σ, answers with
Open(D, gpk , gmsk ,m, σ). On the other hand, in the CPA model [8], A is not allowed to access the
oracle. Bellare et al. [4] associated A with the following experiment.

Experiment Expatk-anon-b
GS,Aatk

(k, n)

D
$←− GDg(1k, 1n); (gpk , gmsk ,gsk) $←− GKg(D)

(St, i0, i1,m) $←− Aatk(choose, D, gpk ,gsk)

σ
$←− GSg(D, gpk ,gsk[ib],m)

d
$←− Aatk(guess,St, σ);

If Aatk did not query its oracle with (m,σ) in the guess stage then return d EndIf
Return 0.

Let us now proceed the formalization. For any group signature scheme GS = (GDg, GDv, GKg, GKv, GSg, GSv, Open),
we associate an adversary Aatk (atk ∈ {cpa, cca}) and a bit b with the experiment. Here, Aatk is
an adversary that functions in two stages, the choosing stage and the guessing stage. In the
choosing stage, Aatk takes as input the group members’ secret keys gsk, the group public key
gpk , and the group domain parameter D. During this stage, Acca can also query the opening
oracle Open(D, gpk , gmsk , ·, ·) on group signatures of his choice. On the other hand, Acpa can not
query the opening oracle. At the end of this stage, Aatk is required to output two valid identities
1 ≤ i0, i1 ≤ n, and a message m. The adversary also outputs some state information to be used in
the second stage of the attack. In the second stage, the adversary is given the state information
and a signature σ on m produced using the secret key of the user ib. Acca can still query the
opening oracle except for the challenge signature σ. The goal of Aatk is to distinguish between the
two secret keys on which the signature was created. We denote the advantage of the adversary
Aatk in breaking the atk-full-anonymity of GS by

Advatk-anon
GS,Aatk

(k, n) = |Pr[Expatk-anon-1
GS,Aatk

(k, n) = 1]− Pr[Expatk-anon-0
GS,Aatk

(k, n) = 1]|.

Definition 4 (Full-anonymity). For atk ∈ {CPA, CCA}, we say that a group signature scheme
is atk-fully-anonymous if for any polynomial-time adversary A, the two-argument function Advatk-anon

GS,Aatk
(·, ·)

is negligible.

Although the full-anonymity in the CPA setting is weaker than that in the CCA setting,
Boneh, Boyen and Shacham [8] mentioned that it is sufficient that a group signature scheme
satisfies the fully-traceability and the CPA-fully-anonymity in order to achieve the traditional
security requirements, which are the unforgeability, the exculpability, the traceability, the coalition
resistance, the framing resistance, the anonymity and the unlinkability.

Full-traceability. In the case of misuse, the signer anonymity can be revoked by the group
manager. We require that no colluding set S of group members (even consisting of the entire
group, and even being in possession of the secret key to open signatures) can create signatures
that cannot be either opened or traced back to any coalition of the members. We remark that

6

giving the opening key to the adversary models the compromise of the group manager’s key by the
adversary, not the corruption of the group manager. We call this requirement the full-traceability.
Bellare et al. [4] associated A with the following experiment.

Experiment Exptrace
GS,A (k, n)

D
$←− GDg(1k, 1n); (gpk , gmsk ,gsk) $←− GKg(D)

St← (D, gpk , gmsk); C ← ∅; K ← ε; Cont← true;
while (Cont = true) do

(Cont,St, j) $←− AGSg(D,gpk ,gsk[·],·)(choose,St,K);
If Cont = true then C ← C ∪ {j}; K ← gsk[j] EndIf

Endwhile
(m,σ) $←− AGSg(D,gpk ,gsk[·],·)(guess,St);
If GSv(D, gpk ,m, σ) = 0 then return 0
If Open(D, gpk , gmsk ,m, σ) = ⊥ then return 1
If there exists i ∈ [n] such that all the following conditions are true then return 1

else return 0 :
1. Open(D, gpk , gmsk ,m, σ) = i
2. i /∈ C
3. (i,m) was not queried by A to GSg(D, gpk ,gsk[·], ·)

Here, an adversary A runs in two stages, the choosing stage and the guessing stage. On
input the group domain parameter D, the group public key gpk , and the secret key of the group
manager gmsk , the adversary starts its attack by adaptively corrupting a set C of group members
and querying the signing oracle GSg(D, gpk ,gsk[·], ·). At the end of the choosing stage, the set C
contains the identities of the corrupted members. In the guessing stage, the adversary attempts
to produce a forgery (m,σ), and the experiment returns 1 if σ is a valid group signature on m and
the opening algorithm returns ⊥ or some valid user identity i such that i /∈ C. Otherwise, the
experiment returns 0. We say A wins if the experiment returns 1. We define the advantage of the
adversary A in defeating full-traceability of a group signature scheme GS by:

Advtrace
GS,A (k, n) = Pr[Exptrace

GS,A (k, n) = 1].

Definition 5 (Full-traceability). We say that GS is fully-traceable if for any polynomial-time
adversary A, the two-argument function Advtrace

GS,A (·, ·) is negligible.

3.2 Key substitution attacks

We define two security conditions of group signature schemes against two key substitution attack
models. We call one “key substitution attack 1” and the other “key substitution attack 2”. It
is easy to prove that if a group signature scheme GS is secure against key substitution attack 2,
then GS is secure against key substitution attack 1. At the end of this section, we prove it. In the
section 5, we also prove that the security requirement against key substitution attack 2 is truly
stronger than that against key substitution attack 1.

Key substitution attack 1 Informally, if a signature scheme satisfies this property, an adver-
sary can not create another group public key on which a message and a signature pair can be
valid which is also valid on the original group group public key. Following the descriptions of the
key substitution attacks [16, 21] and a group signature scheme [4], we define an experiment which
performs the key substitution attack 1 against a group signature scheme.

Experiment Expksa1
GS,A(k, n)

D
$←− GDg(1k, 1n); (gpk , gmsk ,gsk) $←− GKg(D);

7

St← (D, gpk); L← ∅; σ ← ε; Cont← true;
while (Cont = true) do

(Cont,St,m, j) $←− A(choose,St, σ);

If Cont = true then σ
$←− GSg(D, gpk ,gsk[j],m); L← L ∪ {(m,σ)} EndIf

Endwhile
gpk $←− A(guess,St);
If all the following conditions are true then return 1 else return 0 :

1. there exists (m,σ) ∈ L such that GSv(D, gpk ,m, σ) = 1
2. GKv(D, gpk) = 1
3. gpk 6= gpk

We formally define the security against this attack. Here, an adversary A runs in two stages,
the choosing stage and the guessing stage. On the input of the group public key gpk , the adversary
adaptively queries a group signature generated by an arbitrary group member i for any message
in the choosing stage. If Cont is true then we regard an output (Cont,St,m, j) in this stage as
a query (m, j) to the signing oracle GSg(D, gpk ,gsk[·], ·). The list L records pairs of messages
and signatures, where the messages are queried from GSg(D, gpk ,gsk[·], ·) by A during the attack
and the signatures are the corresponding answers. In the guessing stage, A attempts to produce
a forged key gpk , and the experiment returns 1 if A’s output satisfies all the following winning
conditions: there exists (m,σ) ∈ L such that σ is valid for m on gpk , gpk is valid group public key
regarding the group domain parameter D, and gpk and gpk are different group public keys each
other. We say A wins if the experiment returns 1. We denote by

Advksa1
GS,A(k, n) = Pr[Expksa1

GS,A(k, n) = 1],

the advantage of A in breaking the security against key substitution attack 1 of GS. This probability
is taken over GDg, GKg, GSg, and A.

Definition 6 (Security against key substitution attack 1). We say that a group signature
scheme is secure against the key substitution attack 1 if for any polynomial-time adversary A, the
two-argument function Advksa1

GS,A(·, ·) is negligible.

Definition 7 ((t, qs, ε)-secure against key substitution attack 1). We say that a group
signature scheme GS is (t, qs, ε)-secure against key substitution attack 1 if for any polynomial-
time adversary A which queries to the signing oracle at most qs times and runs in time t, the
two-argument function Advksa1

GS,A(·, ·) is at most ε(·, ·).

Key substitution attack 2 In the group signature scheme model, the following scenario can
be considerable; a signature σ on a message m was created by a member of the group 1. Another
member of group 1 may want σ not to be published. Then he creates another group 2 where
(m,σ) is valid for the group 2 and insists that σ is created by a member of the group 2. To avoid
this scenario, we define the stronger security property as follows. To capture the possibility of an
adversary A colluding with group members and a group manager, we give A all group members’
secret keys and a group manager’s secret key. We remark that giving the opening key to the
adversary models the compromise of the group manager’s key by the adversary, not the corruption
of the group manager, since group signature scheme models do not consider it. We associate A
with the following experiment.

Experiment Expksa2
GS,A(k, n)

D
$←− GDg(1k, 1n);

(gpk , gmsk ,gsk) $←− GKg(D);

8

(gpk ,m, σ) $←− A(D, gpk , gmsk ,gsk);
If the following conditions are true then return 1 else return 0 :

1. GSv(D, gpk ,m, σ) = 1
2. GSv(D, gpk ,m, σ) = 1
3. GKv(D, gpk) = 1
4. gpk 6= gpk

In the same way to the former security, we formally define the security condition against the
key substitution attack 2 using the experiment. A takes input of a group public key gpk , a group
manager’s secret key gmsk , and users’ secret keys gsk , and produces a pair (gpk ,m, σ) where gpk
is another group public key, m is a message, and σ is a group signature. The experiment returns
1 if A’s output satisfies all the following winning conditions: σ is valid for m on both gpk and
gpk , gpk is valid group public key regarding the group domain parameter D, and gpk and gpk
are different group public keys each other. We say A wins if the experiment returns 1. We define
the advantage of A in defeating the security against the key substitution attack 2 of the group
signature scheme GS by:

Advksa2
GS,A(k, n) = Pr[Expksa2

GS,A(k, n) = 1].

Definition 8 (Security against key substitution attack 2). We say that a group signature
scheme is secure against the key substitution attack 2 if for any polynomial-time adversary A, the
two-argument function Advksa2

GS,A(·, ·) is negligible.

Definition 9 ((t, ε)-secure against key substitution attack 2). We say that a group signature
scheme GS is (t, ε)-secure against key substitution attack 2 if for any polynomial-time adversary A
such that runs in time t, the two-argument function Advksa2

GS,A(·, ·) is at most ε(·, ·).
Lemma 10. Let GS be a group signature scheme. If GS is (t′, ε′)-secure against key substitution
attack 2, then GS is (t, qs, ε)-secure against key substitution attack 1 where t′ = t + O(qs), ε′ = ε

qs
,

and qs is an arbitrary number.

Proof. Given an algorithm A that breaks the (t, qs, ε)-security of GS against key substitution attack
1, we construct an algorithm B which breaks the (t′, ε′)-security of GS against key substitution
attack 2.

B is given a group domain parameter D, a group public key gpk , a group manager’s secret key
gmsk , and users’ secret key gsk. B then provides A the group domain parameter D and the group
public key gpk .

When A queries (i,M) to A’s signing oracle GSg(D, gpk ,gsk[·], ·), B computes correctly a signa-
ture σ for m using gsk[i], responds σ as the response from A’s signing oracle, and records a pair
(M, σ) to the list L.

In the random oracle model, A can query the random oracle. When A queries (M,T,R) to A’s
random oracle HA, B queries (M,T,R) to B’s random oracle HB, receives the response h from
HB, and responds h as the response from HA.

A outputs a group public key gpk . B takes (M, σ) at random from the list L, and outputs
a pair (gpk ,M, σ). If B responds correctly A’s signing query, then (gpk ,M, σ) satisfies the first
winning condition of Expksa2

GS,A: GSv(D, gpk ,M, σ) = 1. If gpk satisfies the first winning condition
of Expksa1

GS,A: ∃(m,σ) ∈ L s.t. GSv(D, gpk ,m, σ) = 1 with some probability ε0, then (gpk ,M, σ)
satisfies the second winning condition of Expksa2

GS,A: GSv(D, gpk ,m, σ) = 1 with some probability
ε0
qs

. If gpk satisfies the second and third winning conditions of Expksa1
GS,A, then (gpk ,M, σ) satisfies

the third and forth winning conditions of Expksa2
GS,A, respectively. That is, if A’s output gpk satisfies

the winning conditions of Expksa1
GS,A with some probability ε0 then B’s output (gpk ,M, σ) satisfies

the winning conditions of Expksa2
GS,A with some probability ε0

qs
.

9

Since the keys given to A and the answers of A’s queries are all valid, B simulates A’s enviroment
with proper distributions. Therefore, A outputs gpk that satisfies the winning conditions of Expksa1

GS,A

with advantage ε and B breaks the security against key substitution attack 2 of GS with at least
ε
qs

.
B’s running time is the sum of A’s running time and the time to answer A’s queries to the

signing oracle and to take (M, σ) from the list L. It takes constant time to answer each query and
to take (M, σ), and the numbers of queries to the signing oracle is at most qs. If A runs in time t,
B runs in time t′ = t + O(qs).

4 Boneh, Boyen and Shacham’s short group signatures

In this section, we analyze the security of a short group signature scheme proposed by Boneh, Boyen
and Shacham [8] against key substitution attacks. The full-anonymity and the full-traceability of
this scheme are based on the Strong Diffe-Hellman Assumption (SDH) in groups with a bilinear
map and the Decision Linear Assumption (LA), where the LA holds on generic bilinear groups in
the sense of Shorp [18]. In their proof, the hash function H is treated as a random oracle. We
denote their short group signature scheme as GS0 = (GDg0, GDv0, GKg0, GKv0, GSg0, GSv0, Open0).
First, we show the insecurity of GS0. This means that satisfying the full-anonymity and the full-
traceability is not sufficient to be secure against the attack. We also propose the modified scheme
and prove that the modified scheme is correct, fully-anonymous, full-traceable, and secure against
key substitution attack 2.

4.1 Insecurity of Boneh, Boyen and Shacham’s scheme

As mentioned above, the short group signature scheme GS0 is fully-traceable and fully-anonymous
on the Strong Diffe-Hellman assumption and the Decision Linear Assumption in the random oracle
model [4]. Nevertheless, we can construct an algorithm A which breaks this scheme’s security
against the key substitution attack 1 as follows. A takes as input a group domain parameter D and
a group public key gpk = (g1, g2, h, u, v, w) and computes another group public key gpk as follows:

1. It queries a message (i,m) to the signing oracle GSg0(D, gpk ,gsk[·], ·) and receives a signature
σ = (T, c, s), where T = (T1, T2, T3) and s = (sα, sβ, sx, sδ1, sδ2).

2. It sets e1 = sx, e2 = −sα − sβ, and e3 = −sδ1 − sδ2 .

3. It chooses X ∈ Z∗p and sets Y = c(X − 1)e−1
2 and Z = e3(1−X)X−1e−1

2 , where X 6= 1 .

4. It sets h = hXT Y
3 and w = gZ

2 wX−1
.

5. It outputs gpk = (g1, g2, h, u, v, w).

We show A’s output gpk satisfies the winning conditions of the experiment Expksa1
GS0,A. Using

the definition of GKv0 in GS0 and the construction of A, we can see that A’s output gpk satisfies
the second and third winning conditions, respectively. Let R̃ = (R̃1, R̃2, R̃3, R̃4, R̃5) be computed
using gpk and σ and R = (R1, R2, R3, R4, R5) computed using gpk and σ. If R = R̃ then
H(m,T,R) = H(m,T, R̃), that is, GSv0(D, gpk ,m, σ) = GSv0(D, gpk ,m, σ). Therefore, to prove
that it satisfies the first condition GSv0(D, gpk ,m, σ) = 1, it is sufficient to show that R = R̃.
gpk and gpk are identical except for h and x and R1, R2, R4, R5 are computed without h and w.

10

Therefore, we can see R̃1 = R1, R̃2 = R2, R̃4 = R4, and R̃5 = R5. We can see R̃3 = R3 as follows:

R3 = e(T3, g2)sx · e(h, w)−sα−sβ · e(h, g2)−sδ1
−sδ2 · (e(T3, w)

e(g1, g2)
)c

= e(T3, g2)e1 · e(h, w)e2 · e(h, g2)e3 · e(T3, w)c · e(g1, g2)−c

= e(T3, g2)e1 · e(hX , gZ
2)e2 · e(T Y

3 , gZ
2)e2 · e(hX , wX−1

)e2 · e(T Y
3 , wX−1

)e2 · e(hX , g2)e3 · e(T Y
3 , g2)e3

·e(T3, g
Z
2)c · e(T3, w

X−1
)c · e(g1, g2)−c

= e(T3, g2)e1+Y Ze2+Y e3+Zc · e(h,w)XX−1e2 · e(h, g2)XZe2+Xe3 · e(T3, w)Y X−1e2+X−1c · e(g1, g2)−c

= e(T3, g2)e1 · e(h,w)e2 · e(h, g2)e3 · (e(T3, w)
e(g1, g2)

)c

= R̃3.

Note that, since Y and Z are computed as Y = c(X − 1)e−1
2 and Z = e3(1 − X)X−1e−1

2 by A,
respectively,

e1 + Y Ze2 + Y e3 + Zc

= e1 + {c(X − 1)e−1
2 · e3(1−X)X−1e−1

2 · e2}+ {c(X − 1)e−1
2 · e3}+ e3(1−X)X−1e−1

2 · c
= e1 + ce−1

2 e3{X−1(X − 1)(1−X) + (X − 1) + (1−X)X−1}
= e1,

XZe2 + Xe3

= X · e3(1−X)X−1e−1
2 · e2 + Xe3

= e3,

Y X−1e2 + X−1c

= c(X − 1)e−1
2 ·X−1e2 + X−1c

= c.

Hence, A breaks the security against the key substitution attack 1.

Lemma 11. The Short Signature Scheme GS0 is not secure against the key substitution attack 1.

4.2 Modified short signature scheme

The original short signature scheme GS0 is not secure against the key substitution attack 1. To
achieve this security, we modify the scheme.

In this paper, we describe the following modified group signature scheme as GS1 = (GDg1, GDv1, GKg1, GKv1, GSg1, GSv1, Open1).
We construct GS1 using GS0 as follows.

• GDg1, GDv1, GKg1, and GKv1 are identical to those in GS0.

• GSg1(D, gpk ,gsk[i],M) = GSg0(D, gpk ,gsk[i],M ||gpk).

• GSv1(D, gpk ,M, σ) = GSv0(D, gpk ,M ||gpk , σ).

• Open1(D, gpk , gmsk ,M, σ) = Open0(D, gpk , gmsk ,M ||gpk , σ).

We show GS1 is correct, fully-traceable, and fully-anonymous if GS0 are satisfies these security
properties (Lemma 12, Lemma 14, Lemma 16).

Lemma 12. If GS0 is correct, then GS1 is correct.

11

Proof. We assume that GS0 is correct. Then, for all k, n ∈ N, D ∈ [GDg0(1k, 1n)], (gpk , gmsk ,gsk) ∈
[GKg0(D)], i ∈ [n], and m ∈ {0, 1}∗,

GSv0(D, gpk ,m, GSg0(D, gpk ,gsk[i],m)) = 1 and Open0(D, gpk , gmsk ,m, GSg0(D, gpk ,gsk[i],m)) = i.

Hence, for all k, n ∈ N, D ∈ [GDg1(1k, 1n)], (gpk , gmsk ,gsk) ∈ [GKg1(D)], i ∈ [n], and m ∈ {0, 1}∗,

GSv1(D, gpk ,m, GSg1(D, gpk ,gsk[i],m)
= GSv0(D, gpk ,m||gpk , GSg0(D, gpk ,gsk[i],m||gpk)) = 1

Open1(D, gpk , gmsk ,m, GSg1(D, gpk ,gsk[i],m))
= Open0(D, gpk , gmsk ,m||gpk , GSg0(D, gpk ,gsk[i],m||gpk)) = i.

This means that the modified group signature scheme GS1 is correct.

Definition 13 ((t, qH , qs, ε)-full-traceability). In the random oracle model, we say that a group
signature scheme GS is (t, qH , qs, ε)-fully-traceable if for any polynomial-time adversary A which
queries to the random oracle at most qH times and to the signing oracle at most qs times in running
time t, the two-argument function Advtrace

GS,A (·, ·) is at most ε(·, ·).
Lemma 14. If GS0 is (t′, q′H , q′s, ε′)-fully-traceable, then GS1 is (t, qH , qs, ε)-fully-traceable, where
t′ = t + O(qs) + O(qH), q′H = qH , q′s = qs, and ε′ = ε in the random oracle model.

Proof. Given an algorithm A that breaks the (t, qH , qs, ε)-fully-traceability of GS1, we construct an
algorithm B that breaks the (t′, q′H , q′s, ε′)-fully-traceability of the original group signature scheme.

B is given a group domain parameter D, a group public key gpk , and a group manager’s secret
key gmsk . B then provides A the group domain parameter D, the group public key gpk , and the
group manager’s secret keys gmsk .

At any time, A can query the random oracle H. When A queries (M,T,R) to A’s random oracle
HA, B queries (M,T,R) to B’s random oracle HB, receives the response h from HB, and responds
h as the response from HA.

When A queries (i,M) to A’s signing oracle GSg1(D, gpk ,gsk[·], ·), B queries (i,M ||gpk) to B’s
signing oracle GSg0(D, gpk ,gsk[·], ·). B then receives the response σ from GSg0(D, gpk ,gsk[·], ·),
and responds with σ as the response from GSg1(D, gpk ,gsk[·], ·).

When A asks for the private key of a user indexed i, B asks for the private key gsk[i] of the
user indexed i and responds gsk[i] to A.

Finally, A outputs a pair (m,σ). B returns (m||gpk , σ) as the answer of its own challenge. Since
(m||gpk , σ) satisfies the winning conditions in Exptrace

GS0,B whenever (m,σ) satisfies ones in Exptrace
GS1,A,

B wins whenever A does.
Since the keys given to A and the answers of A’s queries are all valid, B simulates A’s enviroment

with proper distributions. Therefore, A breaks the traceability of the group signature σ with the
advantage ε, and B can break the traceability of the group signature σ with the same advantage.

B’s running time is the sum of A’s running time and the time to answer A’s queries to the
random oracle and the signing oracle. Each query is answered in constant time, and the numbers
of queries to the random oracle and the signature oracle are at most qs, qH respectively. If A runs
in time t, B runs in time t′ = t + O(qs) + O(qH).

Definition 15 ((t, qH , ε)-atk-full-anonymity). In the random oracle model, for atk ∈ {CPA, CCA},
we say that GS is (t, qH , ε)-atk-fully-anonymous if for any polynomial-time adversary A which
queries to the random oracle at most qH times and runs in time t, the two-argument function
Advatk-anon

GS,Aatk
(·, ·) is at most ε(·, ·).

Lemma 16. If GS0 is (t′, q′H , ε′)-CPA-fully-anonymous, then GS1 is (t, qH , ε)-CPA-fully-anonymous,
where t′ = t + O(qH), q′H = qH , and ε′ = ε.

12

Proof. Given an algorithm A that breaks the (t, qH , ε)-CPA-fully-anonymity of GS1, we construct
an algorithm B that breaks the (t′, q′H , ε′)-CPA-fully-anonymity of GS0.

B is given a group domain parameter D, a group public key gpk , and users’ secret keys gsk. It
then provides A the group domain parameter D, the group public key gpk , and the users’ secret
keys gsk.

At any time, A can query the random oracle HA. When A queries (M,T,R) to A’s random
oracle HA, B queries (M,T,R) to B’s random oracle HB, receives the response h from HB, and
responds with h as the response from HA.

A requests its full-anonymity challenge by providing two indices i0 and i1 and a message M .
B then requests its full-anonymity challenge by providing the two indices i0 and i1 and a message
M ||gpk . It is given a group signature σ of user ib where the bit b is chosen by B’s group signature
challenger and responds σ as response from A’s group signature challenger.

Finally, A outputs a bit d. B returns this d as the answer to its own challenge. If σ is returned
by B as a group signature by the user ib, B also responds σ as a group signature by the user ib.
Therefore, B answers its challenge correctly whenever A does.

Since the keys given to A and the answers to A’s queries are all valid, B simulates A’s enviroment
with proper distributions. Therefore, A breaks the anonymity of the group signature σ with
advantage ε, and B can break the anonymity of the group signature σ with the same advantage.

B’s running time is the sum of A’s running time and the time to answer A’s queries to the random
oracle. Each query is answered in constant time, and the numbers of queries to the random oracle
is at most qH . If A runs in time t, B runs in time t′ = t + O(qH).

In Lemma 14 and 16, note that ε is negligible whenever ε′ is, and that B is polynomial-time
adversary whenever A is since A and B take input with the same length. Also note that B is
polynomial-time adversary whenever A is.

Finally, we prove that the modified group signature scheme is secure against key substitution
attack 2, assuming that the hash function is collision resistant.

Lemma 17. If the hash function H in GS1 is (t′, ε′)-collision resistant, then the modified group
signature scheme GS1 is (t, ε)-secure against key substitution attack 2, where t′ = t + O(1), ε′ = ε.

Proof. Given an algorithm A that breaks the (t, ε)-security against key substitution attack 2 of
GS1, we construct an algorithm B that breaks the (t′, ε′)-collision resistance of the hash function
H in GS1.

B is given a hash function’s security parameter 1k = 1|p|. B chooses an arbitrary nice function
n(k) as a number n of group members and generates a group domain parameter D

$←− GDg1(1k, 1n)

and a pair (gpk , gmsk ,gsk) $←− GKg1(D). B then provides A the group domain parameter D, the
group public key gpk , the group manager’s secret key gmsk , and the users’ secret keys gsk.

Finally, A outputs a pair (m,σ, gpk). B parses σ as (T, c, s), gpk as (g1, g2, h, u, v, w), and gpk
as (g1, g2, h, u, v, w). B computes R̃ = (R̃1, R̃2, R̃3, R̃4, R̃5) and R = (R1, R2, R3, R4, R5) as follows:

R̃1 = usα · T−c
1 , R̃2 = vsβ · T−c

2 ,

R̃3 = e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1
−sδ2 · (e(T3,w)

e(g1,g2))
c,

R̃4 = u−sδ1 · T sx
1 , R̃5 = v−sδ2 · T sx

2 ,

R1 = usα · T−c
1 , R2 = vsβ · T−c

2 , (1)

R3 = e(T3, g2)sx · e(h, w)−sα−sβ · e(h, g2)−sδ1
−sδ2 · (e(T3,w)

e(g1,g2))
c,

R4 = u−sδ1 · T sx
1 , R5 = v−sδ2 · T sx

2 .

B then outputs a pair (x, y) = ((m||gpk ,T, R̃), (m||gpk ,T,R)). If (m,σ, gpk) satisfies the first,

13

second, and forth winning conditions of Expksa2
GS1,A, respectively, we can see that

c = H(m||gpk ,T, R̃) = H(x),
c = H(m||gpk ,T,R) = H(y),

x = (m||gpk ,T, R̃) 6= (m||gpk ,T,R) = y,

where σ = (T, c, s). Therefore, B breaks the collision resistance of the hash function whenever A
breaks the security of the key substitution attack 2.

Since the keys given to A and the answers of A’s queries are all valid, B simulates A’s enviroment
with proper distributions. Therefore, A breaks the security against the key substitution attack 2
of GS1 with advantage ε, and B breaks the collision resistance of H with the same advantage.

B’s running time is the sum of A’s running time and the time to compute A’s input that can be
created in constant time. If A runs in time t, B runs in time t + O(1).

Note that ε is negligible whenever ε′ is since n is a nice function on k, and that B is polynomial-
time adversary whenever A is since A’s input length is polynomial bounded on B’s one.

5 Separation between our proposed security notions

In Section 3.2, we proved that if a group signature scheme GS is secure the against key substitution
attack 2, then GS is secure against key substitution attack 1. At this point, it is not still clear
whether or not there exists a separation between sequrity requirements against key substitution
attack 1 and 2. In this section, We show that there exists the separation, that is, there exists a
group signature scheme GS2 using a collision resistant trapdoor commitment, which secure against
key substitution attack 1, and not secure against key substitution attack 2.

Let T C = (K, C,D) be a collision resistant trapdoor commitment. Using Boneh, Boyen and
Shacham’s group signature scheme GS0 and T C, we construct a group signature scheme GS2 =
(GDg2, GDv2, GKg2, GKv2, GSg2, GSv2, Open2) as follows.

• GDg2(1k, 1n) performs as follows. Using GDg0, it generates D0
$←− GDg0(1k, 1n). It chooses

a reasonable security parameter l for the trapdoor commitment such that there exists a
constant α : l = αk. The group domain parameter is D = (D0, 1l).

• GDv2 is identical to GDv0.

• GKg2(D) performs as follows. Using GKg0 and K, it parses D as (D0, 1l) and generates key

pair (gpk0, gmsk0,gsk0)
$←− GKg0(D0) and (pkT C , skT C)

$←− K(1l). It chooses mT C ∈ M and
rT C ∈ R at random and computes cT C ← C(pkT C ,mT C , rT C). The group public key is gpk =
(gpk0, pkT C , cT C ,mT C , rT C). The private key of the group manager is gmsk = (gmsk0, skT C).
The i-th user’s secret key is gsk[i] = gsk0[i].

• GKv2(D, gpk) performs as follows. It parses gpk as (gpk0, pkT C , cT C ,mT C , rT C) and returns 1
if cT C = C(pkT C ,mT C , rT C). Otherwise, it returns 0.

• GSg2(D, gpk ,gsk[i],M) performs as follows. It parses gpk as (gpk0, pkT C , cT C ,mT C , rT C) and
D as (D0, 1l) and runs GSg0(D0, gpk ,gsk[i],M ||gpk0||pkT C ||cT C).
• GSv2(D, gpk ,M, σ) performs as follows. It parses gpk as (gpk0, pkT C , cT C ,mT C , rT C) and D

as (D0, 1l) and runs GSv0(D0, gpk ,M ||gpk0||pkT C ||cT C , σ).

• Open2(D, gpk , gmsk ,M, σ) performs as follows. It parses gpk as (gpk0, pkT C , cT C ,mT C , rT C)
and D as (D0, 1l) and runs Open0(D0, gpk , gmsk ,M ||gpk0||pkT C ||cT C , σ).

14

In the same way as Lemma 12, 14, 16, we can say that if GS0 is correct, fully-traceable and
CPA-fully-anonymous, then GS2 is correct, fully-traceable and CPA-fully-anonymous.

Now, we show that GS2 is secure against key substitution attack 1 (Lemma 18), and not secure
against key substitution attack 2 (Lemma 19).

Lemma 18. If the hash function H in GS2 is (t′, ε′)-collision resistant and the trapdoor com-
mitment scheme T C in GS2 is (t′′, ε′′)-collision resistant, then GS2 is (t, qs, ε)-secure against key
substitution attack 1 where t′ = t + O(qs), t′′ = t + O(qs), ε′ = ε

2qs
, ε′′ = ε

2 , and qs is an arbitrary
number.

Proof. Given an algorithm A that breaks the (t, qs, ε)-security against key substitution attack 1 of
GS2, we construct either an algorithm B1 which breaks the (t′, ε′)-collision resistance of H in GS2

or an algorithm B2 which breaks the (t′′, ε′′)-collision resistance of T C in GS2, where t′ = t+O(qs),
t′′ = t + O(qs), ε′ = ε

2qs
, ε′′ = ε

2 , and qs is an arbitrary number.
On the point of the output, we classify A into either Type 1 Forger or Type 2 Forger as follows:

• On the input of gpk = (gpk0, pkT C , cT C ,mT C , rT C), A which classified in this group outputs
gpk = (gpk0, pkT C , cT C ,mT C , rT C) such that (mT C , rT C) = (mT C , rT C). If A classified into
this group, A is called (t, qs, ε)-Type 1 Forger.

• On the input of gpk = (gpk0, pkT C , cT C ,mT C , rT C), A which classified in this group outputs
gpk = (gpk0, pkT C , cT C ,mT C , rT C) such that (mT C , rT C) 6= (mT C , rT C). If A classified into
this group, A is called (t, qs, ε)-Type 2 Forger.

It is easy to see that A is certainly classified into either Type 1 or Type 2. Therefore, if there
exists an adversary A that breaks the (t, qs, ε)-security against key substitution attack 1 of GS2,
there exists either (t, qs,

ε
2)-Type 1 Forger A1 or (t, qs,

ε
2)-Type 2 Forger A2. We construct B1 that

breaks the collision resistance of H using A1 and B2 that breaks the collision resistance of T C using
A2.

First, we construct an algorithm B1 that breaks the collision resistance of the hash function H.
B1 is given a hash function H’s security parameter 1k = 1|p|. B1 chooses an arbitrary nice function
n(k) as a number n of group members, and generates a group domain parameter D

$←− GDg2(1k, 1n)

and a pair (gpk , gmsk ,gsk) $←− GKg2(D). B1 then provides A1 the group domain parameter D and
the group public key gpk .

When A1 queries (i,M) to A1’s signing oracle GSg2(D, gpk ,gsk[·], ·), B1 computes σ correctly
using gsk, responds with σ as the response from GSg2(D, gpk ,gsk[·], ·), and records the pair (M, σ)
to the list L.

A1 outputs a group public key gpk . B1 takes at random (m,σ) from the list L and ob-
tains R̃ and R in the same way to the Equations (1). B1 also parses σ as (T, c, s) and gpk as
(gpk0, pk , cT C ,mT C , rT C). It then outputs a pair (x, y) = ((m||gpk0||pk ||cT C ,T, R̃), (m||gpk0||pk ||cT C ,T,R)).
If (m,σ, gpk) satisfies GSv2(D, gpk ,m, σ) = 1 and GSv2(D, gpk ,m, σ) = 1, we can see that

c = H(m||gpk0||pk ||cT C ,T, R̃) = H(x),
c = H(m||gpk0||pk ||cT C ,T, R̃) = H(x),

where σ = (T, c, s). If (mT C , rT C) = (mT C , rT C) and gpk 6= gpk , we obtain (gpk0, pk , cT C) 6=
(gpk0, pk , cT C). Therefore, if B takes a pair (m,σ) that satisfies the winning conditions of Expksa1

GS2,A1
from the list L and (mT C , rT C) = (mT C , rT C), B1 breaks the collision resistance of H.

Since the keys given to A1 and the answers of A1’s queries are all valid, B1 simulates A1’s envi-
roment with proper distributions. Therefore, A1 outputs gpk that satisfies the winning conditions
in Expksa1

GS2,A1 and (mT C , rT C) = (mT C , rT C) with advantage ε
2 . If A1’s output satisfies the winning

conditions of Expksa1
GS2,A1 with some advantage ε0, (M, σ) that is taken by B1 from the list L satisfies

15

GSv(D, gpk ,M, σ) with advantage at least ε0
qs

. Hence, B1 can break the collision resistance of H
with at least ε

2qs
. Note that, since n is an nice function on k and qs is polynomial bounded on k,

ε is negligible whenever ε′ is.
B1’s running time is the sum of A1’s running time and the time to answer A1’s queries to the

signing oracle, to compute A1’s input, and to take (m,σ) from the list L. It takes constant time
to answer each query, to compute A1’s input, and to take (m,σ). The numbers of queries to the
signing oracle is at most qs. If A1 runs in time t, B1 runs in time t′ = t + O(qs).

Secondly, we construct an algorithm B2 that breaks the collision resistance of a trapdoor com-
mitment scheme T C. B2 is given T C’s security parameter 1l and public key pk. B2 chooses GS0’s
reasonable security parameter k and an arbitrary nice function n(k) as a number n of group mem-

bers, and generates a group domain parameter D0
$←− GDg0(1k, 1n) and a pair (gpk0, gmsk0,gsk0)

$←−
GKg0(D0). B2 also chooses mT C , rT C at random and computes cT C = C(pk, mT C , rT C). B2 then pro-
vides A2 the group domain parameter D = (D0, 1l) and the group public key gpk = (gpk0, pk, cT C ,mT C , rT C).

B2 simulates A2’s signing oracle is the same way to the one in the A1.
A2 outputs a group public key gpk . B2 parses gpk as gpk = (gpk0, pk , cT C ,mT C , rT C) and then

outputs a pair (x, y) = ((mT C , rT C), (mT C , rT C). If A2 outputs gpk that satisfies (mT C , rT C) 6=
(mT C , rT C) and the second winning condition of Expksa1

GS2,A2 then B2 breaks the collision resistance
of T C.

Since the keys given to A2 and the answers of A2’s queries are all valid, B2 simulates A2’s
enviroment with proper distributions. Therefore, A2 outputs gpk such that satisfies the winning
conditions in Expksa1

GS2,A2 and (mT C , rT C) 6= (mT C , rT C) with advantage ε
2 , and B2 can break the

collision resistance of the trapdoor commitment T C with the same advantage. Note that, since n
is a nice function on k, ε is negligible whenever ε′′ is.

B2’s running time is the sum of A2’s running time, the time to answer A2’s queries to the
signing oracle, and to compute A2’s input that is created in constant time. Each query is answered
in constant time and the numbers of queries to the signing oracle is at most qs. If A2 runs in time
t, B2 runs in time t′′ = t + O(qs).

Note that ε is negligible whenever both ε′ and ε′′ are (cf. proof of the Lemma 18), and that Bi
is polynomial adversary whenever Ai is since Ai’s input length is polynomial bounded on Bi’s one.

Lemma 19. GS2 is not secure against key substitution attack 2.

Proof. We construct an algorithm A which breaks the security of GS2 against the key substitution
attack 2 as follows. A takes as input a group domain parameter D, a group public key gpk =
(gpk0, pkT C , cT C ,mT C , rT C), a manager’s secret key gmsk = (ξ1, ξ2, skT C), and users’ secret keys
gsk, and computes another group public key gpk , a message m, and a group signature σ as follows:

1. A chooses a message m, user’s index i ∈ [n], and mT C (6= mT C) ∈M at random.

2. A computes σ
$←− GSg2(D, gpk ,gsk[i],m) and rT C ← D(skT C ,mT C , rT C , cT C ,mT C).

3. A sets gpk = (gpk0, pkT C , cT C ,mT C , rT C).

4. A returns (gpk ,m, σ).

(gpk ,m, σ) satisfies the first and third winning conditions of Expksa2
GS2,A, since σ is created correctly

using GSg2 and rT C is produced correctly using D, respectively. It is trivial that it satisfies the
forth winning condition: gpk 6= gpk . Considering the second winning condition, since a part of
gpk that is related to σ is not different from gpk ’s one, it holds GSv2(D, gpk ,m, σ) = 1.

Hence, A breaks the security against the key substitution attack 2.

16

6 Conclusions

We formalized two key substitution attacks against group signature schemes, and showed that
the security requirements proposed by now (full-anonymity and full-traceability) is not sufficient
regarding even the key substitution attack 1. We proposed the group signature scheme that is
secure against key substitution attack 2, fully-anonymous, and fully-traceable. We also showed
that there is a separation between the attack 1 and attack 2.

References

[1] Ateniese, G., Camenisch, J., Joye, M., and Tsudik, G. A practical and provably secure
coalition-resistant group signature scheme. In CRYPTO (Santa Barbara, California, USA,
August 2000), M. Bellare, Ed., vol. 1880 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 255–270.

[2] Ateniese, G., and de Medeiros, B. On the key exposure problem in chameleon hashes.
In Security in Communication Networks, 4th International Conference, SCN 2004, Amalfi,
Italy, September 8-10, 2004, Revised Selected Papers (2004), C. Blundo and S. Cimato, Eds.,
vol. 3352 of Lecture Notes in Computer Science, Springer, pp. 165–179.

[3] Ateniese, G., and Tsudik, G. Some open issues and new directions in group signatures.
In FC ’99: Proceedings of the Third International Conference on Financial Cryptography
(London, UK, February 1999), M. K. Franklin, Ed., vol. 1648 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 196–211.

[4] Bellare, M., Micciancio, D., and Warinschi, B. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general assumptions.
In EUROCRYPT (Warsaw, Poland, May 2003), E. Biham, Ed., vol. 2656 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 614–629.

[5] Blake-Wilson, S., and Menezes, A. Unknown key-share attacks on the station-to-station
(STS) protocol. In Public Key Cryptography (Kamakura, Japan, March 1999), H. Imai and
Y. Zheng, Eds., vol. 1560 of Lecture Notes in Computer Science, Springer-Verlag, pp. 154–170.

[6] Bohli, J.-M., Röhrich, S., and Steinwandt, R. Key substitution attacks revisited:
Taking into account malicious signers. International Journal of Information Security 5, 1
(2006), 30–36.

[7] Boneh, D., and Boyen, X. Short signatures without random oracles. In EUROCRYPT
(Interlaken, Switzerland, May 2004), C. Cachin and J. Camenisch, Eds., vol. 3027 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 56–73.

[8] Boneh, D., Boyen, X., and Shacham, H. Short group signatures. In CRYPTO (Santa
Barbara, California, USA, August 2004), M. Franklin, Ed., vol. 3152 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 41–55.

[9] Boneh, D., Lynn, B., and Shacham, H. Short signatures from the Weil pairing. In
ASIACRYPT (Gold Coast, Australia, December 2001), C. Boyd, Ed., vol. 2248 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 514–532.

[10] Brassard, G., Chaum, D., and Crépeau, C. Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences 37, 2 (1988), 156–189.

17

[11] Bresson, E., Catalano, D., and Pointcheval, D. A simple public-key cryptosystem
with a double trapdoor decryption mechanism and its applications. In ASIACRYPT (Taipei,
Taiwan, November 2003), C. S. Laih, Ed., vol. 2894 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 37–54.

[12] Chaum, D., and van Heyst, E. Group signatures. In EUROCRYPT (Brighton, UK,
April 1991), D. Davies, Ed., vol. 547 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 257–265.

[13] Chen, L., and Pedersen, T. P. New group signature schemes (extended abstract). In
EUROCRYPT (Perugia, Italy, May 1994), A. De Santis, Ed., vol. 950 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 171–181.

[14] Geiselmann, W., and Steinwandt, R. A key substitution attack on sflashv3. Cryptology
ePrint Archive, Report 2003/245, 2003.

[15] Krawczyk, H., and Rabin, T. Chameleon signatures. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2000, San Diego, California, USA (2000),
The Internet Society.

[16] Menezes, A., and Smart, N. P. Security of signature schemes in a multi-user setting.
Designs, Codes and Cryptography 33, 3 (2004), 261–274.

[17] Rogaway, P., and Shrimpton, T. Cryptographic hash-function basics: Definitions, im-
plications, and separations for preimage resistance, second-preimage resistance, and collision
resistance. In FSE (2004), B. K. Roy and W. Meier, Eds., vol. 3017 of Lecture Notes in
Computer Science, Springer, pp. 371–388.

[18] Shoup, V. Lower bounds for discrete logarithms and related problems. In EUROCRYPT
(Konstanz, Germany, May 1997), W. Fumy, Ed., vol. 1233 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 256–266.

[19] Tan, C. H. Key substitution attacks on some provably secure signature schemes. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences 87-A,
1 (2004), 226–227.

[20] Tan, C. H. Key substitution attacks on provably secure short signature schemes. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences 88-A,
2 (2005), 611–612.

[21] Tan, C.-H. Signature scheme in multi-user setting. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences E89-A, 5 (2006), 1339–1345.

A Description of Boneh, Boyen and Shacham’s Short Group Sig-
natures

We describe the short group signature scheme GS0 = (GDg0, GDv0, GKg0, GKv0, GSg0, GSv0, Open0).

GDg0(1k, 1n) This randomized algorithm takes as input parameters 1k and 1n, the security param-
eter and the number of members of the group, respectively. Note that n is a nice function on
k. It proceeds as follows. It chooses a bilinear group pair (G1, G2) with a computable iso-
morphism φ and a computable map e as in Section 2.3 and a hash function H : {0, 1}∗ → Zp.
Suppose that the SDH assumption holds on (G1, G2), the Linear assumption holds on G1.
The group domain parameter is D = (1k, 1n, G1, G2, φ, e,H).

18

GDv0(1k, 1n, D) This deterministic algorithm takes as input parameters 1k, 1n and D, the secu-
rity parameter, the number of members of the group, and the group domain parameter,
respectively, and outputs 1 if D has the correct format. Otherwise, it returns 0.

GKg0(D) This randomized algorithm takes as input a group domain parameter D and proceeds
as follows. It selects a generator g2 in G2 uniformly at random and sets g1 = φ(g2). It also
selects h

R←− G1 \ {1G1} and ξ1, ξ2
R←− Z∗p, and sets u, v ∈ G1 such that uξ1 = vξ2 = h. It

then selects γ
R←− Z∗p and sets w = gγ

2 . Using γ, it generates for each user i, 1 ≤ i ≤ n, an

SDH tuple (Ai, xi) by selecting xi
R←− Z∗p and computing Ai = g

1
γ+xi
1 ∈ G1. The group public

key is gpk = (g1, g2, h, u, v, w). The private key of the group manager that is able to trace
signatures is gmsk = (ξ1, ξ2). Each user’s private key is the tuple gsk[i] = (Ai, xi). No party
except for the private-key issuer is allowed to possess γ.

GKv0(D, gpk) This deterministic algorithm takes as input a group domain parameter D and a
group public key gpk and outputs 1 if gpk is in a correct format. Otherwise, it returns 0.

GSg0(D, gpk ,gsk[i],M) This deterministic algorithm takes as input a group domain parameter D,
a group public key gpk = (g1, g2, h, u, v, w), a user’s key gsk[i] = (Ai, xi), and a message
M ∈ {0, 1}∗ and computes the signature as follows:

1. It selects exponents α, β
R←− Zp and computes the value T = (T1, T2, T3) such that:

T1 = uα, T2 = vβ, T3 = Aih
α+β.

2. It computes two helper values δ1 = xiα and δ2 = xiβ ∈ Zp, and picks blinding values
rα, rβ, rx, rδ1 , and rδ2 randomly from Zp.

3. It computes R = (R1, R2, R3, R4, R5) as follows:

R1 = urα , R2 = vrβ ,

R3 = e(T3, g2)rx · e(h,w)−rα−rβ · e(h, g2)−rδ1
−rδ2 ,

R4 = T rx
1 · u−rδ1 , R5 = T rx

2 · v−rδ2 .

4. It computes c = H(M,T,R).

5. Using c, it constructs the value s = (sα, sβ , sx, sδ1 , sδ2) as follows:

sα = rα + cα, sβ = rβ + cβ, sx = rx + cxi, sδ1 = rδ1 + cδ1, sδ2 = rδ2 + cδ2.

6. it outputs the signature σ = (T, c, s).

GSv0(D, gpk ,M, σ) This deterministic algorithm takes as input a group domain parameter D, a
group public key gpk = (g1, g2, h, u, v, w), a message M , and a group signature σ = (T, c, s)
and verifies as follows:

1. It computes R̃ = (R̃1, R̃2, R̃3, R̃4, R̃5) as follows:

R̃1 = usα · T−c
1 , R̃2 = vsβ · T−c

2 ,

R̃3 = e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1
−sδ2 · (e(T3,w)

e(g1,g2))
c,

R̃4 = u−sδ1 · T sx
1 , R̃5 = v−sδ2 · T sx

2 .

2. It checks that c = H(M,T, R̃). It returns 1 if this check succeeds. Otherwise, it returns
0.

19

Open0(D, gpk , gmsk ,M, σ) This deterministic algorithm takes as input a group domain parameter
D, a group public key gpk = (g1, g2, h, u, v, w), the corresponding group manager’s private
key gmsk = (ξ1, ξ2), a message M , and a signature σ = (T, c, s), and proceeds as follows.

1. It verifies that σ is a valid signature on M using GSv0(D, gpk ,M, σ).

2. It recovers the user’s A as A = T−ξ1
1 · T−ξ2

2 · T3 from T = (T1, T2, T3).

3. Using the elements {Ai} of the users’ private keys, if there exists a user indexed i
corresponding to the identity A recovered from the signature, it outputs i, else outputs
⊥.

20

