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Abstract

In this paper we propose a quantum asymmetric-key cryptosystem, which does not rely on a
computationally hard problem for security, but on uncertainty principles of quantum mechan-
ics, thus obtaining security against a computationally unbounded adversary. We first propose a
universally composable security criteria for quantum asymmetric-key cryptosystems by adapt-
ing the universally composable security of quantum key distribution by Mayers et al. [4, 3] to
the context of quantum asymmetric-key encryption. We then give a specific implementation us-
ing this security notion, which improves the quantum asymmetric-key cryptosystem of Kawachi
et al. [15] in the sense of information-theoretic security. We prove that the information leak
on the decryption key from the multiple copies of the encryption keys released in our scheme
is exponentially smaller than that in [15], which allows Alice to produce exponentially more
encryption keys.

Keywords: Quantum Asymmetric-Key Cryptosystem, Information-Theoretic Security, Uni-
versally Composable Security.

1 Introduction

Public-key cryptography is the most used cryptographic paradigm. In contrast to secret-key
schemes, where the key used to encrypt messages must be kept hidden from the adversary and
communicated secretly to anyone wishing to send a secret message, in public-key cryptography
the encryption key can be announced publicly and given to any party who wishes it, because
knowledge of this key is not sufficient to perform the reverse operation, decryption, efficiently. But
the person who generated the public key, also generated a secret key, the decryption key, which he
keeps private and uses to decrypt any message sent to him, which was encrypted with the public
key he published.

The most famous public-key cryptosystem is RSA, which relies on the difficulty of factoring
large numbers to make the attack inefficient for anyone who does not have knowledge of the secret
key. Any classical public-key cryptosystem must similarly rely on the computational difficulty of
some problem. But with the advent of quantum computers, a lot of these difficult problems have
been proved to be efficiently solvable [23]. And new paradigms have to be found.

∗Supported in part by NTT Information Sharing Platform Laboratories and Grant-in-Aid for Scientific Research,
Ministry of Education, Culture, Sports, Science, and Technology, 16092206.
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Where quantum computation makes existing protocols insecure, it also provides new protocols.
BB84 [5] marked the breakthrough of quantum cryptography, a quantum key-distribution protocol
which is unconditionally secure, when classical key-distribution protocols are only computation-
ally secure and vulnerable to quantum adversaries. Instead of relying on the difficulty of some
computational problem, as classical key distribution does, QKD uses fundamental principles of
quantum mechanics, such as the indistinguishability of non-orthogonal quantum states and the
fact that eavesdropping produces noise (we refer to the textbook by Nielsen and Chuang [18] for an
introduction to quantum information), to ensure that the eavesdropper has no information on the
quantum communication between Alice and Bob. Other protocols with security relying on the fun-
damental principles of quantum mechanics were developed, such as quantum oblivious transfer [8],
quantum string commitment [6] or quantum digital signatures [10], often leading to unconditional
security. But little has been done in this area for quantum asymmetric-key cryptosystems.

The development of quantum key distribution allows the usage of secret-key cryptosystems
which are secure against a computationally unbounded quantum adversary. But public-key cryp-
tosystems have advantages which we want to preserve. To make them secure against quantum
attacks, a possible solution is to develop schemes which rely on problems thought to be hard even
on quantum computers, e.g., NP-hard problems, either classical protocols as in [13, 1, 20], or
quantum protocols as in [19, 14, 15]. But such schemes are still only computationally secure, and
thus vulnerable to further development of (quantum) computation. The alternative solution is to
design protocols which are secure by virtue of quantum mechanical principles, and thus produce a
scheme which is secure against a computationally unbounded adversary. In this paper we propose
such a quantum asymmetric-key cryptosystem.

Model

The first quantum encryption scheme using the same model as ours was proposed by Kawachi
et al. in [14]. In this model, which is illustrated in Figure 1 on page 4 and will be described in
more detail in Section 2, Alice distributes a quantum state, ρν , which serves as an encryption key
and corresponds to a decryption key, to anyone who wants to send her a secret message. She also
publishes some encoding operations {Us}s∈S , which Bob applies to Alice’s state when he wants to

send her the message s. He thus creates the state ρν,s = UsρνU
†
s , and sends it back to Alice. She

then measures it to detect which operator Us was applied, i.e., decrypt Bob’s message s.
Public-key cryptosystems are vulnerable to man-in-the-middle attacks, in which an adversary

intercepts or modifies the public key sent by Alice to Bob, and replaces it by her own. So some
authentication protocol is necessary, to ensure that the key Bob receives really is the one Alice
sent. As authentication is out of the scope of this work, the model we consider requires an
authentic quantum channel as cryptographic primitive for the distribution of the encryption-key
states (which can be realized with unconditional security, see, e.g., [2] and Section 2.2 for further
discussion). The adversary can not tamper with the encryption-key states before they are received
by Bob, but she can intercept the cipher he sends back to Alice and all other encryption-key states,
and has unbounded computational power. (See Figure 2 on page 5.)

Security

Alice can perform a measurement to decrypt the message sent to her by Bob, because she knows
how she constructed her encryption key ρν , she knows the decryption key ν, so she knows how to
measure it. But to the adversary the encryption key looks like a mixture of all possible ρν , and as a
measurement destroys the state and quantum mechanics does not allow cloning [18], the adversary
is very dependent on the number of copies of the encryption key released by Alice, to measure
it precisely, extract the decryption key and thus find a way to measure Bob’s cipher state, ρν,s.
So by keeping the number of copies of the encryption key released bellow a certain threshold, the
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secrecy is guaranteed even against a computationally unbounded adversary. A proof of security
based on that idea for the scheme by Kawachi et al. [14], and its extension in [15], was proved by
Hayashi, Kawachi and Kobayashi in [11].

The previous paragraph briefly sketches how the adversary could try to extract the decryption
key from multiple copies of the encryption key to break the cryptosystem. This is one strategy
amongst many, and the security criteria, which is discussed in detail in Section 3, has to encompass
any possible attack allowed by the model. But what is more, we want the encryption scheme to
still be secure — or at least as secure as an ideal functionality — if the adversary gets some
partial information about the message or which may be leaked if this protocol is combined with
others, e.g., if Alice publishes part of the message she received, or encrypts it a second time to
send it to someone else, the rest of the message should still be secure. This notion is captured by
what is called universal composability, which was first proposed by Canetti [7] and adapted to the
quantum setting by Mayers et al. [4, 3] and in parallel by Unruh [24]. So in Section 3 we use such
a universally composable security notion for this encryption scheme.

Main Results

Our main result is a new encryption scheme based on [15], which improves the previous best
bound on the number of encryption-key states which can be released [11], by a factor exponential
in the length of the message which Bob can send. We also derived a new universal security criteria
for the quantum asymmetric-key cryptosystem considered, based on the universal composability
framework in [4, 3], and proved the scheme secure according to this condition.

More precisely, Hayashi et al. found in [11], that Alice can safely produce k = o
(

n log n
m log m

)

encryption keys for the quantum asymmetric-key cryptosystem proposed in [15], where m is the
number of messages Bob can send, i.e., log m is the length of the secret message in bits, and n is
a security parameter, polynomial in the size of the encryption-key state. Their security criteria
was the indistinguishability of any two cipher states, which is weaker than the universal security
criteria we use, but their work can be adapted to meet the same criteria as ours and still keep

the same bound on k. Our scheme allows Alice to produce k ≤ n log n
3 log m − O

(

n
log m

)

copies of the

encryption-key state (Eq. (14)), thus improving the bound by a factor m/3, which is exponential
in the length of the message. This allows Alice to produce that many more encryption keys and
receive that many more messages.

Organization of the Paper

This paper is structured as follows. In Section 2 we define the model considered, the assumptions
on channels available and adversary power. We also detail the encryption scheme which was briefly
sketched in the introduction, defining precisely the states, unitaries and operations needed, and
how they fit together in the protocol. In Section 3 we discuss the security notions and requirements
for the scheme, introduce universally composable security more precisely, and derive a condition
for universal security for this asymmetric-key cryptosystem. And finally in Section 4 we give an
implementation of the scheme, prove its correctness and find the bound stated previously on the
number of encryption keys which can be released, so that the scheme is secure according to the
notion discussed in Section 3.

2 Model

2.1 Scheme

The following two definitions describe the states and operations required by the encryption scheme
(illustrated in Figure 1), which were sketched in the introduction. Definition 1 describes the various
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quantum states, operations and measurements which the cryptosystem needs, and which need to
be defined when an implementation of the model is given. Definition 2 describes how the protocol
is executed and how the elements fit together.

Alice Bob

νρ : enc. key
ν : dec. key

νρ

s : message
: enc. operator

†
,s U Uν νρ ρ= s s

Us

Alice Bob

νρ : enc. key
ν : dec. key

νρ

s : message
: enc. operator

†
,s U Uν νρ ρ= s s

†
,s U Uν νρ ρ= s s

UsUs

Figure 1: Encryption scheme

Definition 1. The asymmetric-key cryptosystem model considered consists of a tuple of three
elements, MAKC =

(

{ρν}ν∈Γ , {Us}s∈S , {Eν}ν∈Γ

)

, where

• {ρν}ν∈Γ is a set of quantum states lying in a Hilbert space Hd of dimension d, which we will
call encryption keys, indexed by elements ν ∈ Γ, which we will call decryption keys.

• {Us}s∈S is a set of unitary operators of dimension d, which we will call encoding operators,
indexed by elements s ∈ S, which we will call secret messages.

• {Eν}ν∈Γ is a set of POVMs, which we will call decoding measurements, where Eν = {Eν
s }s∈S

are the POVM elements, indexed by the decryption keys and secret messages respectively.

Although we have specified a set of POVMs as decoding measurements in this definition,
practically we will give a protocol, or a set of unitary operations followed by a measurement,
which are equivalent to a POVM.

Definition 2. The protocol consists of three steps, which use the states and operations given in
Definition 1, namely key generation, encryption and decryption.

Key generation: Alice chooses an element ν ∈ Γ uniformly at random, and creates copies of the
encryption key ρν , which she sends to any party who asks for one on an authentic quantum
channel. She also publishes the set of encoding operations {Us}s∈S .

Encryption: To encode the message s, Bob applies the unitary Us to the encryption key, and
obtains ρν,s = UsρνU

†
s , which he sends back to Alice.

Decryption: Alice measures ρν,s with the POVM Eν = {Eν
s }s∈S , corresponding to her choice of

decryption key ν. She obtains the result s′ which is her guess of Bob’s message.

For such a scheme to be useful three things are required. First of all it is necessary for Alice to
be able to distinguish between the possible ciphers sent by Bob, ρν,s, for all messages s ∈ S and a
given decryption key ν, which we will refer to as the correctness of the protocol. More precisely,
we want the probability of Alice decoding the message correctly, tr(Eν

s ρν,s), to be close to 1 for
every ν ∈ Γ and s ∈ S. But it must be hard for Eve to distinguish between them when she has
no or only partial information on the decryption key ν, on Bob’s message s, or any other kind of
information she might obtain. This latter condition is the security of the protocol, which we will
discuss in the next section. And thirdly, we want the protocol to be efficient, i.e., the encoding
and decoding operations have to be implementable by a polynomial-time quantum algorithm.
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2.2 Channels and Adversary

An adversary, Eve, could perform a man-in-the-middle attack, and replace the encryption-key
state sent by Alice to Bob by her own state. If Alice and Bob do not run some authentication
protocol, to ensure that the key Bob receives really is the one Alice sent, then any cipher state sent
back to Alice by Bob, which is encrypted using the unauthenticated encryption key he received,
could be readable by the adversary.

In this work we study the feasibility of encrypting messages into quantum states of which the
adversary has copies. We do not consider the protocols which allow these states to be distributed.
We therefore require an authentic quantum channel as cryptographic primitive. Such a channel
could be realized with a non-interactive protocol if a decryption key is shared by the two parties,
as proposed in [2], in which case this scheme can be seen as turning a secret key into a public
one. Alternatively, an interactive protocol involving entanglement distillation or quantum error
correction (see [18] for an overview of these techniques) can be used.

Alice Bob

νρ

,s νρν νρ ρ⋯

Eve

Alice Bob

νρ

,s νρν νρ ρ⋯

Eve

Figure 2: The adversary’s attack

In this model we therefore have an authentic quantum channel for the distribution of the
encryption-key state, and a totally insecure quantum channel for sending the cipher state. Thus the
adversary cannot tamper with the encryption key, but he can make a copy of it1 and can intercept
the cipher state and all of the other encryption keys published, as illustrated in Figure 2. The
adversary is also computationally unbounded, and can perform any operation and measurement
allowed by quantum mechanics on the states she intercepted.

3 Security

The security of the general scheme presented in the previous section relies on the indistinguisha-
bility of non-orthogonal quantum states. For a given decryption key ν ∈ Γ, the encodings of the
possible messages s ∈ S must be near-orthogonal, so that Alice can distinguish between them with
high probability. But when ν is not known, the possible ciphers over all possible decryption keys
must be highly non-orthogonal, so that Eve cannot distinguish between them without knowing in
which basis to measure Bob’s message.

Each encryption key Alice publishes is information leaked to the adversary. With sufficient
copies of it, Eve can measure it precisely and thus discover how to measure Bob’s message in order
to extract the secret message. So it is necessary to find a bound on the number of encryption keys
Alice can release, so that Eve only gets negligible information on Bob’s message.

Yet as such, this security notion is not strong enough. Eve may obtain information from other
sources or in subsequent protocols, which combined with what is leaked by this protocol reveal

1Cloning of a quantum state is generally impossible. But as we use an authentic quantum channel as a black
box, by assuming the adversary gets a copy of the state we upper bound the information he might obtain.
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too much of Bob’s message, although individually neither this protocol nor the subsequent leaks
give any non-negligible amount of information to Eve. This stronger security notion is captured
by what is called universally composable security.

Universal composability was first introduced by Canetti in [7] for classical cryptography. The
idea is to ensure that a cryptographic protocol is still secure when combined in a complex system
with other protocols, and that the developer of such a system only needs to consider the ideal
functionalities the protocols are trying to implement, and not the details of the implementations,
when combining them together. The framework proposed in [7] was extended to the quantum
setting by Ben-Or and Mayers in [4] and adapted to quantum key distribution in [3]. In these
works, a protocol is considered secure if the environment, which comprises all adversaries and the
inputs and outputs of the protocol, can only distinguish with negligible probability between the real
protocol and the ideal functionality the protocol is trying to implement. The ideal functionality
can thus be substituted for the real protocol in the analysis of any other cryptographic protocol
which uses it as a subroutine, as the two cannot be distinguished.

A slightly different approach to quantum universal security by Renner lead to the same defin-
ition for the security of secret keys as [3] and was applied to quantum privacy amplification [22]
and quantum key distribution [21]. Here the question asked is whether the scheme is still secure
if the adversary postpones the measurement of whatever information he possesses encoded in a
quantum state until a later time when he might have gathered extra information, e.g., part of the
message, telling him how to perform the measurement, thus unlocking much more information
than he could have obtained initially2. This extra information the adversary might get, could be
from another protocol, when several are combined together. So these two approaches are basically
the same. But the latter can also be seen as a generalization of other specific security requirements,
such as wanting the last bit of the key to still be secret if the rest of it is revealed, or not wanting
the adversary to be able to distinguish between any two possible ciphers, which was the security
criteria used in [11] for the quantum asymmetric-key cryptosystem proposed in [15].

Very generally, let S be a secret (e.g., a key or message) with distribution PS , which consists
of the input or output of a protocol P, and let ρs

E be the adversary’s system after the execution
of this protocol, when the secret takes the value s, for any element s of S. The resulting system
can be described by the following density operator:

ρSE =
∑

s∈S

PS(s)|s〉〈s|ρs
E , (1)

where {|s〉}s∈S is an orthonormal basis of some Hilbert space HS . With an ideal protocol PI ,
the adversary’s system would be uncorrelated to the secret. Thus not only he gets no direct
information about the secret, but if this protocol is combined with others which share the same
secret input or output and leak some information about it, the adversary cannot use this extra
information to help him extract the secret from the states this protocol leaked. I.e., the system
would be in the state

ρU ⊗ ρE , (2)

where ρU = 1
|S|I = 1

|S|

∑

s∈S |s〉〈s| is the fully mixed state in the Hilbert space of the secret HS ,
and ρE is the adversary’s state, namely

ρE = trS (ρSE) =
∑

s∈S

PS(s)ρs
E . (3)

We want the distance between the real situation (Eq. (1)) and the ideal one (Eq. (2)) to be
small. Therefore

‖ρSE − ρU ⊗ ρE‖1 ≤ ǫ, (4)

2This phenomenon, sometimes called locking of classical correlation, has been studied in other contexts, see, e.g.,
[9, 12].
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where the distance measure used, known as the 1-distance, is defined as ‖ρ − σ‖1 := tr(|ρ − σ|).
According to the work done in [4, 3], if Eq. (4) is respected, then the environment cannot

distinguish between the real protocol P and the ideal functionality PI , except with probability
ǫ. The protocol P is said to ǫ-securely realize the ideal functionality PI , and by the composition
theorem from [4, 3], any protocol Q which is ǫ′-secure when using the ideal functionality PI as
subroutine, is (ǫ′ + ǫ)-secure when using the real protocol P as subroutine. In [21], if Eq. (4) is
respected, the secret S is said to be ǫ-secure with respect to HE . The ideal and real situations
are ǫ-close, and as the 1-distance cannot increase when applying an arbitrary quantum operator,
it will remain so for any further evolution of the world.

We therefore take Eq. (4) as our definition of universally composable security, and adapt it to
the particular context of our encryption scheme. The secret which maybe be seen as both input
and output of the encryption protocol is Bob’s message s. Alice or Bob may publish part of it, or
encrypt it again to send it to another party. It can be used by any super protocol which accesses
this encryption scheme as subroutine. Alice’s secret key on the other hand is kept secret by Alice.
No matter how other protocols use this one, they do not have access to her secret key, so no extra
information will ever be leaked about it. The adversary’s system consists of all the encryption
keys and the intercepted cipher state ρν,s from Bob, as defined in Section 2. If Alice chooses the
decryption key ν uniformly at random from a set Γ and publishes k copies of the encryption key
ρν , the adversary’s system conditioned on the secret message being s is then in the state

ρs
E =

1

|Γ|
∑

ν∈Γ

ρν,s ⊗ ρ⊗k
ν . (5)

By placing Eq. (5) in Eq. (4), we get a universal security criteria for the scheme. It depends
however not only on the choice of the encryption-key states ρν , but also on the way the encoding
of the message s is done and the resulting cipher states ρν,s. In Theorem 3 we will show that the
universal security of the encryption-key scheme only depends on a near-uniform distribution of the
messages s ∈ S and the security of the encryption-key state, namely the difficulty to distinguish
it from the fully mixed state when drawn uniformly at random, given k extra copies of it.

Theorem 3. If
∥

∥

∥

∥

∥

1

|Γ|
∑

ν∈Γ

ρ⊗(k+1)
ν − 1

d
I ⊗ 1

|Γ|
∑

ν∈Γ

ρ⊗k
ν

∥

∥

∥

∥

∥

1

≤ ǫ

2
, (6)

where d is the dimension of ρν and I is the identity operator of dimension d, and if the non-
uniformity3 of the message probability distribution is less than δ

2 , then an asymmetric-key cryp-
tosystem as described in Section 2, i.e., which leaves the adversary’s system in the state ρs

E =
1
|Γ|

∑

ν∈Γ ρν,s ⊗ ρ⊗k
ν (Eq. (5)) when the message is s and the encryption key is chosen uniformly at

random from {ρν}ν∈Γ, then such a scheme is (δ + ǫ)-secure with respect to the Hilbert space HE,
i.e.,

‖ρSE − ρU ⊗ ρE‖1 ≤ δ + ǫ. (7)

Proof. Let

σs :=
1

|Γ|
∑

ν∈Γ

ρν,s ⊗ ρ⊗k
ν − 1

d
I ⊗ 1

|Γ|
∑

ν∈Γ

ρ⊗k
ν ,

then
1

|Γ|
∑

ν∈Γ

ρν,s ⊗ ρ⊗k
ν =

1

d
I ⊗ 1

|Γ|
∑

ν∈Γ

ρ⊗k
ν + σs. (8)

3The non-uniformity of a probability distribution PX is its variational distance from the uniform distribution,

i.e., d(PX) = 1

2

P

x∈X

˛

˛

˛
PX(x) − 1

|X|

˛

˛

˛
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Because ρν,s is obtained from ρν by applying the unitary Us, and because a unitary operation
does not change the 1-distance, we have ‖σs1

‖ = ‖σs2
‖ for any s1, s2 ∈ S. Then by the hypothesis

of this lemma (Eq. (6)), ‖σs‖1 ≤ ǫ
2 .

By placing Eq. (8) in the left-hand side of Eq. (7) and replacing ρSE and ρE with their exact
values (Eqs. (1), (3) and (5)), we get

∥

∥

∥

∥

∥

∑

s∈S

PS(s)|s〉〈s| ⊗
(

1

d
I ⊗ 1

|Γ|
∑

ν∈Γ

ρ⊗k
ν + σs

)

− 1

|S|I ⊗
∑

s∈S

PS(s)

(

1

d
I ⊗ 1

|Γ|
∑

ν∈Γ

ρ⊗k
ν + σs

)
∥

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∥

(

∑

s∈S

PS(s)|s〉〈s| − 1

|S|I
)

⊗ 1

d
I ⊗ 1

|Γ|
∑

ν∈Γ

ρ⊗k
ν

+
∑

s∈S

PS(s)|s〉〈s| ⊗ σs −
1

d
I ⊗

∑

s∈S

PS(s)σs

∥

∥

∥

∥

∥

1

≤
∥

∥

∥

∥

∥

∑

s∈S

PS(s)|s〉〈s| − 1

|S|I
∥

∥

∥

∥

∥

1

+

∥

∥

∥

∥

∥

∑

s∈S

PS(s)|s〉〈s| ⊗ σs

∥

∥

∥

∥

∥

1

+

∥

∥

∥

∥

∥

1

d
I ⊗ 1

|S|
∑

s∈S

σs

∥

∥

∥

∥

∥

1

≤ δ +
ǫ

2
+

ǫ

2
.

We can require from Bob that the non-uniformity of the distribution of his messages s ∈ S be
negligible. So the sufficient conditions for universal security expressed in Theorem 3 are reduced
to Eq. (6). From the universal composability viewpoint, this criteria can be seen as a universal
security requirement for the encryption key, namely a negligible probability that the environment
can distinguish between the encryption key ρν drawn uniformly at random from all possible key-
states and the fully mixed state, given k extra copies of the key.

This criteria can be used to find bounds on the number of copies k of the encryption key
which can safely be released, for particular instances or family of instances of states and encoding
operations implementing Definition 1, which is what we do in the next section.

4 Instances

In Section 4.2 we will give a specific implementation of encryption key, encoding-operation and
measurement tuple, with a precise bound on the security. But before that, in Section 4.1, we
will study a family of good encryption key candidates, namely what is known as coset states of
a subgroup of prime order (see Definition 4). This allows us to derive a bound on the number of
encryption-key states which can be released for the universal security criteria found in Section 3
(Eq. (6)), for a specific family of states with common proprieties. The final scheme we propose in
Section 4.2 is a particular instance of this family of states, and we can directly use the security
bound derived in Section 4.1.
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4.1 Coset States

Definition 4. Let G be a finite group and H a subgroup of G. The coset state of H is then

ρH =
1

|G|
∑

g∈G

|gH〉〈gH| =
|H|
|G|

∑

g∈G/H

|gH〉〈gH|,

with

|gH〉 =
1

√

|H|
∑

h∈H

|gh〉,

where {|g〉}g∈G is an orthonormal basis of some Hilbert space HG, and gh is the composition of g
and h with the group operation.

These coset states appear in what is known as the standard method to solve the hidden subgroup
problem, which is one of the central issues in quantum computation, introduced for revealing the
structure behind exponential speedups in quantum computation [17]. Let G be a finite group, and
H a hidden subgroup of G. Given a map fH from G to a finite set S such that fH(g) = fH(gh)
if and only if h ∈ H, the hidden subgroup problem (HSP) is the problem of outputting a set of
generators for the hidden subgroup H.

The standard method to solve the HSP consists in constructing several copies of the coset state
of H (using the map fH) and then measuring these states to identify the hidden subgroup. General
solutions to Abelian HSPs have been given [16, 17], but non-Abelian HSPs are much harder and
most important cases of non-Abelian HSPs are not known to have efficient solutions. Although
our problem at hand is slightly different, it is still very interesting to use coset states as encryption
keys, as it seems a hard problem to identify them exactly without a large number of copies.

In the following lemma (which is a slight modification of Theorem 2.4 in [11]) and Corollary 6
just after, we substitute coset states {ρH}H∈H of subgroups H ∈ H with prime cardinality for
the encryption-key states {ρν}ν∈Γ in Eq. (6), and find an upper bound on the number of copies
k of the coset state ρH which can be released, so that the environment can only distinguish with
probability ǫ between an encryption key drawn at random and the fully mixed state when provided
with k extra copies of it.

Lemma 5. If

k ≤ 2 log ǫ + log |H |
log maxH∈H |H| − 1,

then
∥

∥

∥

∥

∥

1

|H |
∑

H∈H

ρ
⊗(k+1)
H − 1

|G|I ⊗ 1

|H |
∑

H∈H

ρ⊗k
H

∥

∥

∥

∥

∥

1

≤ ǫ,

for H ∈ H with prime cardinality.

Proof. Simply by expanding the coset states and using the triangle inequality, we obtain

∥

∥

∥

∥

∥

1

|H |
∑

H∈H

ρ
⊗(k+1)
H − 1

|G|I ⊗ 1

|H |
∑

H∈H

ρ⊗k
H

∥

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∥

∥

1

|H |
∑

H∈H

1

|G|k+1

∑

g0,...,gk∈G

∑

h0,...,hk∈H

(|g0, . . . , gk〉〈g0h0, . . . , gkhk|

− |g0, g1, . . . , gk〉〈g0, g1h1, . . . , gkhk|)
∥

∥

∥

∥

∥

1

9



=

∥

∥

∥

∥

∥

∥

∥

∥

1

|H |
1

|G|k+1

∑

g0,...,gk∈G

∑

H∈H

∑

h0,...,hk∈H
h0 6=id

|g0, . . . , gk〉〈g0h0, . . . , gkhk|

∥

∥

∥

∥

∥

∥

∥

∥

1

≤ 1

|H ||G|k+1

∑

g0,...,gk∈G

‖〈g0, . . . , gk|‖2

∥

∥

∥

∥

∥

∥

∥

∥

∑

H∈H

∑

h0,...,hk∈H
h0 6=id

|g0h0, . . . , gkhk〉

∥

∥

∥

∥

∥

∥

∥

∥

2

=
1

|H |

√

∑

H,H′∈H

|H ∩ H ′|k (|H ∩ H ′| − 1)

≤
√

maxH∈H |H|k+1

|H | ,

where ‖·‖2 is the L2-norm. The last inequality is obtained by using the fact that the subgroups
considered have prime cardinality which implies that |H ∩ H ′| = 1 if H 6= H ′.

The last inequality is then smaller than ǫ, if

k ≤ 2 log ǫ + log |H |
log maxH∈H |H| − 1.

Corollary 6. If we use coset states {ρH}H∈H as encryption keys {ρν}ν∈Γ in the scheme described
in Section 2, and each H ∈ H has the same cardinality, then the scheme is ǫ-secure if the number
of copies k of the encryption key released is

k ≤ 2 log ǫ + log |H |
log |H| − 1. (9)

4.2 Implementation with Cyclic Permutations

We now propose a particular instance for the scheme discussed so far, namely cosets of subgroups
of the group G = Zm × Sn, where Zm is the set of natural numbers smaller than m and the group
operation is addition modulo m, and Sn is the set of all permutations of an n-tuple and the group
operation is permutation composition. n and m are two parameters such that m is prime and
m divides n, but for the rest they can be chosen freely. As it will become clear as we define the
encryption scheme more precisely, m is the number of messages which can be encoded, and n is a
security parameter. By choosing n big enough, we will be able to make the scheme ǫ-secure, for
an ǫ exponentially small in n.

In Section 4.2.1 we will define the encryption-key states, encoding operations and decoding
measurements precisely, and show that the scheme is correct, i.e., that Alice can decode Bob’s
message with probability 1 if the adversary does not intervene. In Section 4.2.2 we will then prove
that the scheme is secure and find a bound on the number of encryption keys which can be released.

4.2.1 Correctness

The following definition specifies the encryption-key state ρπ, where π is the decryption key.

Definition 7. Let

Km
n = {h : h = (a1 · · · am) · · · (an−m+1 · · · an), ai ∈ {1, . . . , n}, ai 6= aj (i 6= j)} ,

10



Km
n ⊆ Sn, be the set composed of n/m disjoint cyclic permutations. We now define the encryption-

key state ρπ, where the decryption key π is chosen uniformly at random from Km
n , as

ρπ :=
1

n!

∑

σ∈Sn

|Φσ
π〉〈Φσ

π|, (10)

where

|Φσ
π〉 =

1√
m

m−1
∑

x=0

|x, σπx〉. (11)

Alice will send this state to Bob, or any party who wishes it. To send a message s to Alice,
Bob will apply a unitary Us to the encryption key ρπ, obtaining ρπ,s = UsρπU †

s , which he sends
back to Alice. The operations Us are defined as follows.

Definition 8. Let the message set S, which the scheme allows Bob to send, have cardinality m,
|S| = m, and let us represent them by the natural numbers, i.e., S = {0, · · · , m − 1}. To encrypt
the message s in the state ρπ defined previously, let Bob apply the unitary

Us :=
m−1
∑

x=0

e2πisx/m|x〉〈x|. (12)

This unitary is only defined on a space of dimension m and acts on the first register of the
encryption-key state ρπ, so it needs to be padded by an identity operator of dimension n! to be
formally correct. But we will omit it for simplicity and allow ourselves to write ρπ,s = UsρπU †

s

instead of ρπ,s = (Us ⊗ I) ρπ

(

U †
s ⊗ I

)

.

If the first register is represented by ⌈log m⌉ qubits, Eq. (12) can be rewritten as Ûs =
⊗⌈log m⌉−1

j=0 Us,j , where

Us,j =

(

1 0

0 e2πis2j/m

)

.

Note that Ûs differs slightly from Us, in that it is defined on a space of dimension 2⌈log m⌉ and also
modifies the first register if it takes a value m ≤ x ≤ 2⌈log m⌉− 1. But the encryption-key states ρπ

are only defined with values of the first register 0 ≤ x ≤ m − 1, so for all decryption keys π and
messages s, UsρπU †

s = ÛsρπÛ †
s . The operators {Us}s∈S can thus be efficiently implemented.

The operators Us defined in Eq. (12) take any encryption-key state ρπ to mutually orthogonal
subspaces, which allows them to be distinguished by Alice with probability 1, as the following
theorem shows.

Theorem 9. There exists a polynomial-time quantum algorithm that, for each π ∈ Km
n , decrypts

ρπ,s = UsρπU †
s to s with probability 1.

Proof.

ρπ,s =
1

n!

∑

σ∈Sn

∣

∣Φσ
π,s

〉〈

Φσ
π,s

∣

∣,

where
∣

∣Φσ
π,s

〉

=
1√
m

m−1
∑

x=0

e2πisx/m|x, σπx〉.

This state is a superposition of the pure states |Φσ
π,s〉. So it is sufficient to give a polynomial-

time quantum algorithm which can extract s from any |Φσ
π,s〉 independently from σ, and by linearity

the algorithm can extract s from ρπ,s.

11



By applying to |Φσ
π,s〉 the controlled-π−1 operator,

Cπ−1 =
m−1
∑

x=0

∑

σ∈Sn

∣

∣x, σπ−x
〉

〈x, σ|,

which applies x times the permutation π−1 to the second register, when the first register contains
x, we obtain:

Cπ−1

∣

∣Φσ
π,s

〉

=
1√
m

m−1
∑

x=0

e2πisx/m|x〉|σ〉.

The second register is now un-entangled from the first, and by applying the inverse Fourier trans-
form on the first register we get s.

The efficiency of this algorithm is straightforward from its construction.

Theorem 9 not only proves that the cipher states ρπ,s can be decoded, but it also gives an
explicit efficient algorithm to do it, which serves as the decoding POVMs required by the definition
of the scheme (Definition 1 in Section 2).

4.2.2 Security

To prove that a scheme using the encryption key defined in the previous section (Definition 7)
is secure, we will show that it is a coset state, and then we apply the bound from Eq. (9) from
Corollary 6.

Theorem 10. An encryption scheme as defined in Section 2 using the encryption keys given in
Definition 7 is ǫ-secure, if the number k of encryption keys released is

k ≤ 6 log ǫ + n log n

3 log m

Proof. The encryption-key state defined in Eqs. (10) and (11) is a coset state, as the following
calculation shows.

Let Hπ = {(0, id), (1, π), . . . , (m − 1, πm−1)}, where π ∈ Km
n . Hπ is a subgroup of Zm × Sn,

and its coset state is

ρHπ =
1

mn!

∑

a∈Zm,σ∈Sn

|Φa,σ
π 〉〈Φa,σ

π |,

where

|Φa,σ
π 〉 =

1√
m

m−1
∑

x=0

|a + x, σπx〉.

But by setting x′ = a + x and σ′ = σπ−a, we get

1√
m

m−1
∑

x=0

|a + x, σπx〉 =
1√
m

m−1
∑

x′=0

∣

∣

∣
x′, σ′πx′

〉

,

which is identical to the expression in Eq. (11). As we are summing over all a ∈ Zm and all σ ∈ Sn,
we get ρHπ = ρπ.

By the standard counting method we find that |Km
n | = n!

(n/m)!mn/m , and using the bounds
√

2πn
(

n
e

)n ≤ n! ≤
√

2πn
(

n
e

)n+ 1

12n we get

|Km
n | ≥ m

1

2
+ m

12n nn− n
m
− m

12n

en− n
m
− m

12n

.
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We can now put this into Eq. (9) from Corollary 6 and we find that our scheme is ǫ-secure if

k ≤ 2 log ǫ +
(

m
12n − 1

2

)

log m +
(

n − n
m − m

12n

)

(log n − log e)

log m
. (13)

As
(

n
m + m

12n

)

log n +
(

n − n
m − m

12n

)

log e + 1
2 log m ≤ 2n

3 log n for m ≥ 2 and n ≥ 24, the theorem
is proved.

Corollary 11. An encryption scheme as defined in Section 2 using the encryption keys given
in Definition 7 is ǫ-secure for an exponentially small ǫ, namely ǫ = 2−Θ(n), if the number k of
encryption keys released is

k ≤ n log n

3 log m
− O

(

n

log m

)

. (14)

5 Concluding Remarks and Further Work

We have proposed a model for a quantum asymmetric-key cryptosystem in Section 2 and given an
instance of it in Section 4, with a bound on the number of encryption keys which can be released
(Eq. (14)), which is exponentially better in the length of the messages which can be sent than
the previously known bound for a quantum asymmetric-key cryptosystem [15, 11]. The notion
of security we use is universally composable (Section 3), which guarantees that no matter what
information the adversary might get at a later stage or from another protocol which is composed
with this encryption scheme, the real system is still ǫ-close to the ideal system, for a negligible ǫ.
(Exponentially small in our specific instance, see Corollary 11.)

An open question is how much the bound on the number of encryption keys which can be
released can be improved — if possible at all. This bound is a strict lower bound on the number
of copies of the encryption-key state the adversary needs to break the encryption scheme. By
finding an upper bound on the number of copies necessary to break the scheme, no matter what
encryption-key states are chosen (as long as there exist encoding operations with which they
fulfill the correctness condition), we would have a bound beyond which this model of quantum
asymmetric-key cryptosystem cannot be improved.

Another line of research is to circumvent the authentic quantum channel requirement. Clearly
the encryption keys still need to be distributed authentically. But by including this operation in
the scheme, it might be possible to perform it in a less costly way than by invoking a separate
protocol.
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