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Abstract

The notion of the pseudo-free group was informally introduced by Hohenberger [Hoh03],
and was formalized by Rivest [Riv04a]. Rivest showed that many cryptographic assumptions
(e.g. the RSA assumption, the strong RSA assumption, the discrete logarithm problem and
so on) hold in pseudo-free groups. In this paper, we point out the fact that in the definition
by Rivest, many cryptographic assumptions except for the RSA assumption do not hold. The
reason is that the equation in pseudo-free groups contains no integer-valued exponent variables.
Rivest probably supposed that we may not need the notion of exponent variables since the
adversary can choose himself equations. In this paper, we also study some of the variations
introduced in [Riv04a, Section 5-4] [Riv04b]. Using these variations, we show several properties
for pseudo-free groups. Furthermore, we describe the subgroup of pseudo-free groups.

Keywords: pseudo-free groups, free groups, the RSA assumption, the strong RSA assump-
tion, the discrete logarithm problem, group equation.

1 Introduction

The notion of pseudo-free groups was first introduced by Hohenberger [Hoh03]. She did only
define informally. She used such groups to study the transitive signature schemes, and studied
their variants where inversion is not efficiently computable, at least by the adversary.

After her works, the notion of pseudo-free groups is formalized by Rivest, and he presented an
explicit definition [Riv04a]. He showed that the pseudo-freeness is a very strong assumption, and
it implies many other computational assumptions typically used in cryptography, like the hardness
of the computing discrete logarithms, the RSA assumption, and the strong RSA assumption1.

The concept of the pseudo-freeness is the followings:

• Using a strong assumption that subsumes many other common cryptographic assumptions
(like the discrete logarithm problem) may make proof easier.

• Assuming pseudo-freeness allows one to capture natural security proofs in a plausible frame-
work.

• What assuming pseudo-freeness is implied by a cryptographic application? In other words,
what are its necessary (and sufficient) conditions?

∗Supported in part by NTT Information Sharing Platform Laboratories and Grant-in-Aid for Scientific Research,
Ministry of Education, Culture, Sports, Science, and Technology, 16092206.

1Many cryptographic problems can be found in the Appendix A.
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Rivest left many open problems: for example, do pseudo-free groups exist? Rivest suggested
the RSA group (Z/nZ)× (where n = pq is the product of two large primes) as a possible candidate
pseudo-free abelian groups. Micciancio [Mic05] solved Rivest’s conjecture and proved that (Z/nZ)×

is pseudo-free under the strong RSA assumption, at least when n = pq is the product two safe
primes (that is, odd primes such that p′ = (p − 1)/2 and q′ = (q − 1)/2 are also prime). He also
showed that no adversary can efficiently compute an unsatisfiable system of equations together
with a solution in the given pseudo-free group.

In this paper, we point out an important fact that many cryptographic assumptions except
for the RSA assumption do not hold in the definition proposed by Rivest. The reason is that the
equation chosen by an adversary contain no integer-valued exponent variables. For this reason,
we cannot adapt the definition to several cryptographic assumptions which contain both element-
valued variables and integer-valued exponent variables (like the strong RSA problem).

Rivest probably supposed that we may not need the notion of exponent variables since the
adversary can choose himself equations. In this paper, we also study some of the variations intro-
duced in [Riv04a, Section 5-4] [Riv04b], say pseudo-free with generalized exponential expression
and weakly pseudo-free, and show several properties for pseudo-free with generalized exponential
expression and weakly pseudo-free. In particular, in order to describe the intersection problem for
cyclic subgroups, we consider the subgroup of pseudo-free groups, and give a result for subgroups
of pseudo-free groups.

This paper is organized as follows: In Section 2 we introduce basic definitions and notations
for groups. In Section 3 we see the definition of a pseudo-free group, and consider several variants
of pseudo-free groups. In Section 4 we show many properties on pseudo-free groups. In Section 5
we conclude and provide some open problems.

2 Preliminaries

2.1 Groups and Computational Groups

First, we denote the definition of a (mathematical) group.

Definition 2.1. ((Mathematical) Groups) A group G = (S, ◦) consists of a set S of elements, and
a binary operator ◦ defined on S, such that:

• Closure: ∀x, y ∈ S, x ◦ y ∈ S.

• Associativity: ∀x, y, z ∈ S, x ◦ (y ◦ z) = (x ◦ y) ◦ z.

• Identity: ∃e ∈ S such that x ◦ e = e ◦ x = x, for ∀x ∈ S.

• Inverse: ∀x ∈ S, ∃y ∈ S such that x ◦ y = y ◦ x = e.

G is called abelian if ◦ holds the following:

• Commutative: ∀x, y ∈ S, x ◦ y = y ◦ x.

We use notations as follows: ab means a ◦ b. The inverse of x is denoted x−1. Let G also
denote the set S. A group G is finite if and only if |G| < ∞ (i.e. |S| < ∞). We use the usual
exponent notation: am is the word aa · · · a of length m, and a−m is the corresponding inverse word
a−1a−1 · · · a−1 of length m.

A mathematical group G has some representation [G]. In particular, when we use some groups
in cryptography, we have to implement some representation: for example, (Z/pZ)×, which p is a
prime, is represented by {1, . . . , p − 1}, as usual. We call such a representation [G] a computa-
tional group. To demand for a computational group [G] is that several operations in [G] must be
performed on polynomial-time. The formal definition of a computational group is the following:
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Definition 2.2. (Computational (Mathematical) Groups) A computational group [G] is defined
as the representation for an underlying mathematical group G = (S, ◦), and it provides polynomial
time algorithms for all of the following operations:

• Membership Test Given a string [x], determine whether [x] ∈ [G].

• Composition: Given [x], [y] ∈ [G], compute [x] ◦ [y].

• Identity: Compute the identity element [e] ∈ [G].

• Inverse: Given x ∈ [G], compute [x−1] ∈ [G].

• Equality Test: Given [x], [y] ∈ [G], determine whether [x] = [y].

• Sampling: (Only if G is finite.) Return [x] ∈ [G] chosen uniformly at random from [G], or
in a manner that is indistinguishable from uniformly at random to a probabilistic polynomial-
time adversary. We denote such a procedure as [x]∈R[G].

Many groups used in cryptography implies the notion of computational groups. Henceforth, if
a set G is defined as a group then we assume that G also means a computational group [G] with
the identity 1.

2.2 Free Groups

Free groups are infinite groups with a set of generators that there is no non-trivial relationship.
Free groups are defined formally as follows.

Definition 2.3. (Free Groups) Let A = {a1, a2, . . . , ak} be a nonempty set of distinct symbols. For
each ai, let a−1

i be a new symbol representing the inverse of ai, and let A−1 = {a−1
1 , a−1

2 , . . . , a−1
k }.

We define a word on Ã = A ∪ A−1 ( A ∩ A−1 = φ) to be a finite string of symbols Ã. (where
we allow a word to be the empty word ε). For words ab and c, define the concatenation ab ◦ c
by abc. Then a set W (Ã) of all words in Ã is a semigroup. Further, a word is called reduced if
no cancellation in this word can be made; two words are called equivalent if they have the same
reduced form. Then, a set of the equivalent class of W (Ã) is a group. We call such a group a free
group, denote F (A). If abelian, FA(A).

We note that if A ⊆ B, then F (A) is a subgroup of F (B).

Remark 2.1. It is well-known that FA(a1, a2, . . . , an) is isomorphic to the n-fold direct sum
Z⊕Z⊕· · ·⊕Z. Therefore, we can identify an element ae1

1 ae2
2 · · · aen

n of FA(a1, a2, . . . , an) with the
vector (e1, e2, . . . , en), and implement ◦ with the vector addition.

A free group has no surprising or anomalous identities. The only truths are implied by the
axioms of the group theory.

2.3 Equations in Free Groups

Before we denote the definition of a pseudo-free group, we consider the equation in free groups.
For a detailed introduction to equations below in free groups the reader is referred to [LS77]. We
note that if we use such equations in pseudo-free group, we see that various problems arise then.

Let x1, x2, . . . , xm denote variables ranging over F (A). An equation in F (A) takes the form
w1 = w2 where w1 and w2 are words formed from the symbols of F (A) and from the variables
x1, x2, . . . , xm. One can always put such equations in a reduced form of the form w = 1 for some
word w.

Equations that have solutions in the free group are called satisfiable, otherwise unsatisfiable.
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In 1982 Makanin [Mak82] showed that it is decidable whether or not an equation in the free
group is satisfiable. More recently Gutiérrez has shown that this problem is decidable in PSPACE
[Gut00].

When the free group is the abelian, it is easy to determine whether a given equation is satisfi-
able: the equation can always be rewritten in the form:

xd1
1 xd2

2 · · ·xdm
m = ae1

1 ae2
2 · · · aen

n

for integers d1, d2, . . . , dm, e1, e2, . . . , en. Such an equation is satisfiable over F (A) if and only if
for all i, 1 ≤ i ≤ n, we have gcd(d1, d2, . . . , dm) | ei. An equation that is satisfiable over F (A)
is also satisfiable over FA(A) (but not necessarily conversely). This is useful since it provides an
easy way to prove that an equation is unsatisfiable over a free group. Therefore we prove that it
is unsatisfiable over the corresponding free abelian group.

3 Pseudo-Free Groups

Intuitively, we say that a finite group G is a pseudo-free if it is indistinguishable from a free group.
Informally, a finite group G is pseudo-free if a probabilistic polynomial-time adversary can not
efficiently procedure an equation E and together with a solution in G where E has no solution in
the corresponding free groups. If G is a pseudo-free group, then many cryptographic assumptions
which hold in free groups satisfy over G. Hence, the pseudo-freeness means a strong assumption.

3.1 Definition of Pseudo-Free Groups

Rivest gave the following definition of pseudo-freeness.

Definition 3.1. (Pseudo-Free Groups (PFG)) A family of computational groups {Gλ}λ∈Λ is
pseudo-free if for any set of polynomial size |A| = p(k) (where p is a polynomial and k is a
security parameter), and any probabilistic polynomial-time algorithm A in k, the following holds.
Let λ ∈ Λ(k) be a randomly chosen group index. Let α1, α2, . . . , αp(k) be |A| group elements cho-
sen independently at random according to the computational group sampling procedure. Then, the
probability that A(Gλ, α1, α2, . . . , αp(k)) = (E, β1, β2 . . . , βp′(k)) (where p′ is a polynomial) outputs
an unsatisfiable equation

E = E(x1, x2, . . . , xp′(k); a1, a2, . . . , ap(k))

over F (A) (where x1, x2, . . . , xp′(k) ∈ X and a1, a2, . . ., ap(k) ∈ A are variables and generators,
respectively, over F (A)) together with a solution β1, β2, . . . , βp′(k) ∈ Gλ to the equation

E′ = E′(x1, x2, . . . , xp′(k);α1, α2 . . . , αp(k))

over Gλ, is negligible in k.

For efficiency in describing his equation, we allow the adversary to use exponential expression,
for example, a((ab)−2x5)3 = 1. If a pseudo-free group is abelian, it is equivalent to x15 = a5b6.

3.2 Variants of Pseudo-Free Groups

We observe the fact that all of the equations of many cryptographic assumptions except for the
RSA problem contain integer-valued exponential variables. On the other hand, the equation for
this definition do not contain integer-valued exponent variables. So it is hard that by using this
definition, we describe whether these problems hold in pseudo-free groups. Rivest probably thought
that we may not need exponent variables since the adversary can choose himself equations: he

4



expected that in his definition, the equation implies ones with exponent variables. However, if the
equation does not contain any exponent variables, we cannot describe the problems which have no
group element variables (e.g. the order problem).

In order to solve the problems as mentioned above, we use generalized exponential expression.
This notion is a natural extension to exponential expression.

The expression allows the equations to contain integer-valued exponent variables, for example:
a((ab)ey)f = x2 where x and y are variables (over the group), a and b are constants (group
elements), and e and f are integer-valued variables. However, we cannot determine whether a
given equation with the above expression is satisfiable over free groups. We nonetheless allow an
adversary to use one.

The following definition with generalized exponential expression was also introduced in [Riv04a,
Section 5-4]. Perhaps, using this definition, Rivest showed that many cryptographic assumptions
hold in pseudo-free groups.

Definition 3.2. (Pseudo-Free Groups with Generalized Exponential Expression (PFGwGEE)) A
family of computational groups {Gλ}λ∈Λ is pseudo-free if for any set of polynomial size |A| =
p(k) (where p is a polynomial and k is a security parameter), and any probabilistic polynomial-
time algorithm A in k, the following holds. Let λ ∈ Λ(k) be a randomly chosen group in-
dex. Let α1, α2, . . . , αp(k) be |A| group elements chosen independently at random according to
the computational group sampling procedure. Then, the probability that A(Gλ, α1, α2, . . . , αp(k)) =
(E, β1, β2, . . . , βp1(k); γ1, γ2, . . . , γp2(k)) (where p1 and p2 are polynomials) outputs an unsatisfiable
equation

E = E(x1, x2, . . . , xp1(k); a1, a2, . . . , ap(k); z1, z2, . . . , zp2(k))

over F (A) (where x1, x2, . . . , xp1(k) ∈ X, a1, a2, . . ., ap(k) ∈ A and z1, z2, . . . , zp2(k) ∈ XZ are
variables, generators, and integer-valued variables, respectively, over F (A)) together with a solution
β1, β2, . . . , βp1(k) ∈ Gλ; γ1, γ2, . . . , γp2(k) ∈ Z to the equation

E′ = E′(x1, x2, . . . , xp1(k);α1, α2, . . . , αp(k); z1, z2, . . . , zp2(k))

over Gλ, is negligible in k.

Remark 3.1. If a pseudo-free group G is abelian, then the equation can be always rewritten in
the form:

xz1
1 xz2

2 · · ·xzm
m = a

zm+1

1 a
zm+2

2 · · · azm+n
n .

We compare Definition 3.1 with the definition above. Then, we obtain the following proposition.

Theorem 3.1. If a finite group G is pseudo-free with generalized exponential expression, G implies
pseudo-free.

Proof. If G is pseudo-free with generalized exponential expression, any probabilistic polynomial-
time adversary never outputs an equation E together with a solution. Therefore, the adversary
never solves the equation with a non-trivial restriction that (z1, z2, . . . , zp2(k)) = (d1, d2, . . . , dp2(k)),
where each di is a fixed integer (i.e. set all integer-valued exponent variables as fix integers). The
equation with above restriction is just the equation for pseudo-free. Hence, if G is a pseudo-free
with generalized exponential expression, no probabilistic polynomial-time adversary solves the
equation for pseudo-free. That is, a pseudo-free group with generalized exponential expression
implies a pseudo-free group.

3.3 The Other Definitions

By the way, in [Riv04b] Rivest suggested an interesting formalization for pseudo-free groups. The
notion is a natural extension to pseudo-free groups. We find that the following definition depends
on no adversary being able to make any non-trivial identity.
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Definition 3.3. (Weakly Pseudo-Free Groups (WPFG)) A family of computational groups {Gλ}λ∈Λ

is (weakly) pseudo-free if for any set of polynomial size |A| = p(k) (where p is a polynomial and
k is a security parameter), and any probabilistic polynomial-time algorithm A in k, the following
holds. Let λ ∈ Λ(k) be a randomly chosen group index. Let α1, α2, . . . , αp(k) be |A| group elements
chosen independently at random according to the computational group sampling procedure. Then,
the probability that A(Gλ, α1, α2, . . . , αp(k)) = (E, γ1, γ2, . . . , γp′(k)) (where p′ is a polynomial)
outputs an unsatisfiable equation

E = E(a1, a2, . . . , ap(k); z1, z2, . . . , zp′(k))

over F (A) (where a1, a2, . . . , ap(k) ∈ A and z1, z2, . . ., zp′(k) ∈ XZ are generators and integer-valued
variables, respectively, over F (A)) together with a solution γ1, γ2, . . . , γp′(k) ∈ Z to the equation

E′ = E′(α1, α2, . . . , αp(k); z1, z2, . . . , zp′(k))

over Gλ, is negligible in k.

Remark 3.2. If a weakly pseudo-free group G is abelian, then the equation can be always rewritten
in the form:

az1
1 az2

2 · · · azn
n = 1.

Similarly, we compare Definition 4.1 with the definition above. Then, we obtain the following
proposition:

Theorem 3.2. If a finite group G is pseudo-free with generalized exponential expression, G implies
weakly pseudo-free.

Proof. If G is pseudo-free with generalized exponential expression, any probabilistic polynomial-
time adversary never outputs an equation E together with a solution. Therefore, the adversary
never solves the equation with a non-trivial restriction (x1, x2, . . ., xp1(k)) = (1, 1, . . . , 1), where 1
is the identity in G (i.e. set every variables ranging over group elements as the identity 1). The
equation with above restriction is just the equation for weakly pseudo-free. Hence, if G is a pseudo-
free with generalized exponential expression, no probabilistic polynomial-time adversary solves
the equation for weakly pseudo-free. That is, a pseudo-free group with generalized exponential
expression implies a weakly pseudo-free group.

4 Properties on Variants of Pseudo-Free Groups

In this section, we describe many cryptographic assumptions for pseudo-free groups with general-
ized exponential expression. First, we describe several properties of weakly pseudo-free groups.

4.1 Cryptographic Problems for Weakly Pseudo-Free Groups

The following Proposition 4.1 and Proposition 4.2 ware proved in [Riv04b].

Proposition 4.1. In a weakly pseudo-free group G, it is infeasible for any probabilistic polynomial-
time adversary to determine the order of a randomly chosen element α from G.

Proposition 4.2. In a weakly pseudo-free group G, it is infeasible for any probabilistic polynomial-
time adversary to solve the discrete logarithm for randomly chosen elements α1 and α2 from G.

Theorem 4.1. In a pseudo-free group with generalized exponential expression G, it is infeasible for
any probabilistic polynomial-time adversary to determine the order of a randomly chosen element
α from G.
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Proof. Using Theorem 3.2, we can prove the theorem.

Theorem 4.2. In a pseudo-free group with generalized exponential expression G, it is infeasible
for any probabilistic polynomial-time adversary to solve the discrete logarithm for randomly chosen
elements α1 and α2 from G.

Proof. Using Theorem 3.2, we can prove the theorem.

Theorem 4.3. In a weakly pseudo-free group G, it is infeasible for any probabilistic polynomial-
time adversary to solve the generalized power problem for randomly chosen elements α1 and α2

from G.

Proof. In a weakly pseudo-free group G, any probabilistic polynomial-time adversary cannot out-
put the equation together with a solution to G. So, it is infeasible for the adversary to solve
an equation with the following restriction: (z3, z4, . . . , zp′(k)) = (0, 0, . . . , 0). Then, since the
equation E : az1

1 az2
2 = ε is unsatisfiable over F (a1, a2), the adversary cannot solve the equation

E′ : αz1
1 αz2

2 = e for randomly chosen elements α1, α2 from G. Therefore, it is infeasible for the
adversary to solve the generalized power problem.

Theorem 4.4. In a pseudo-free group with generalized exponential expression G, it is infeasible
for any probabilistic polynomial-time adversary to solve the generalized power problem for randomly
chosen elements α1 and α2 from G.

Proof. Using Theorem 3.2, we can prove the theorem.

4.2 The Intersection Problem for Cyclic Subgroups in Pseudo-Free Groups

In the [Riv04a], he showed that the RSA problem and the strong RSA problem hold in pseudo-free
groups. Now, in six cryptographic problems, it remains only the intersection problem for cyclic
subgroups. In order to describe the problem, we consider whether the following proposition is true:
Is the subgroup of a pseudo-free group (with generalized exponential expression) also pseudo-free
(with generalized exponential expression)? That is, in order to describe the intersection problem
for cyclic subgroups, we must solve the proposition. However, we remain the proposition as
conjecture. Although we believe that it is intuitively true, proving the proposition is not easy.

Conjecture 4.1. A finite group G is pseudo-free (with generalized exponential expression) if and
only if 〈g〉 := {gi|i ∈ Z} is pseudo-free (with generalized exponential expression), for a randomly
chosen element g from G.

If the above conjecture is proved, then we obtain that the intersection problem for cyclic
subgroups hold in a pseudo-free group.

Now, we give the following interesting lemma closely related to the conjecture.

Lemma 4.1. We assume that a finite group G is abelian. For randomly chosen elements g1, g2

from G, if 〈g1〉 := {gi
1 | i ∈ Z} is pseudo-free with generalized exponential expression, then

〈g1, g2〉 := {gi
1g

j
2 | i, j ∈ Z} is weakly pseudo-free.

Proof. Let k be a security parameter and p be a polynomial. By hypothesis, for h1, h2, . . . , hp(k)

∈R 〈g1〉, the probability that any probabilistic polynomial-time adversary Ag1 outputs an equation
together with a solution is negligible in k.

We assume that 〈g1, g2〉 is not weakly pseudo-free. Then, there exists a probabilistic polynomial-
time adversary Ag1g2 and a polynomial p′ such that for α1, α2, . . . , αn ∈R 〈g1, g2〉, Ag1g2(〈g1, g2〉,
α1, α2, . . . , αn) outputs an equation E together with a solution γ1, γ2, . . . , γn ∈ Z, with non-
negligible probability (where n = p′(k)). For simplicity of exposition and without loss of generality,
we assume that every γj 6= 0 (1 ≤ j ≤ n).
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Now, we take two randomly chosen elements r11, r21 from Z, and let α1 be hgr11
1 gr21

2 , where h is
a randomly chosen element from 〈g1〉. Then, it is clear that α1 is a randomly element on 〈g1, g2〉.
In the same way, we set αi (2 ≤ i ≤ n) as above: αi = hgr1i

1 gr2i
2 (r1i, r2i ∈R Z). Thus, using an

adversary Ag1g2 we obtain the following equation E together with a solution:

αγ1
1 αγ2

2 · · ·αγn
n = 1.

Since G is abelian, we transform the above equation into as follows:

hγgR1
1 gR2

2 = 1,

where, γ = γ1 + γ2 + · · · + γn, Ri = ri1γ1 + ri2γ2 + · · ·+ rinγn (i = 1, 2). Then, it follows that
g−R2
2 is a element of 〈g1〉.

Here, we consider relationship between g1 and g2: we find integers |s|, |t| ≥ 1 such that gs
1 = gt

2.
In order to solve above, we can use the adversary Ag1g2 : for 1 ≤ j ≤ n, we take randomly chosen
elements d1j , d2jj from Z, and set βj = g

d1j

1 g
d2j

2 . Then, usingAg1g2 we obtain the following equation
together with a solution:

βl1
1 βl2

2 · · ·βln
n = 1,

where l1, l2, . . . , ln are non-zero integers. From βj = g
d1j

1 g
d2j

2 , we can rewrite as follows:

gs
1 = gt

2

where s = d11l1 + d12l2 + · · · + d1nln and t = −(d21l1 + d22l2 + · · · + d2nln). Thus, we can find
integers s, t. If gcd(s, t) = d1 > 1, we can take s = s′ and t = t′ again, where s′ = s/d1 and
t′ = t/d1. Then gcd(s, t) = 1.

Now, we show that for a randomly chosen element h from 〈g1〉, an adversary Ag1 outputs an
equation E together with a solution, with non-negligible probability.

The adversary Ag1(〈g1〉, h) executes as follows.

• set α1, α2, . . . , αn as above (Ag1 knows such r1i, r2i, (1 ≤ i ≤ n)).

• find |s|, |t| ≥ 1 such that gs
1 = gt

2 and gcd(s, t) = 1 by using an adversary Ag1g2 .

• obtain an equation E together with a solution as above by using an adversary Ag1g2 .

• put an equation E1 as hz = xz1
1 xz2

2 , where x1, x2 are variables over 〈g1〉 and z, z1, z2 are
integer-valued variables.

Here, we see that x1 = g1, x2 = g−R2
2 , z = γ, z1 = −R1, and z2 = 1 are solutions to the equation

E′. However, the equation is not unsatisfiable over free groups because z2 = 1. Here

htγ = g−tR1
1 g−tR2

2

= g−tR1
1 (gt

2)
−R2

= g−tR1
1 (gs

1)
−R2

= g−tR1
1 g−sR2

1

= g−tR1−sR2
1

Let u = tγ and v = −tR1 − sR2, and compute gcd(u, v) = d2. Then, we take e = u/d2 and
f = v/d2 then gcd(e, f) = 1, and set an equation E2 as hz′ = xz′1 . From Remark A.1, the equation
E2 with a restriction that z′1 > 1 and gcd(z′, z′1) = 1, is an unsatisfiable equation, where x is
a variable over group and z′, z′1 are integer-valued variables. Then, x = g1, z

′ = e, z′1 = f are
solutions to E2.

Therefore, if Ag1g2 returns an equation together with a solution whose the probability is non-
negligible, then Ag1 also returns as above with non-negligible probability. This is by contradiction
that 〈g1〉 is pseudo-free with generalized exponential expression. Hence, 〈g1, g2〉 is weakly pseudo-
free.
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5 Conclusion and Open Problems

We have seen variations on the definition, and shown that many cryptographic assumptions never
hold. Furthermore, we have proved several properties for the pseudo-free group, which we sum-
marize using a table. The table is for relationship between pseudo-free groups and cryptographic
assumptions.

OP DLP RSAP SRSAP GPP IPCS

PFG × × © × × ×
PFGwGEE © © © © © 4

WPFG © © × × © 4

Table 1: Relationship between Pseudo-Free Groups and Cryptographic Problems.

In addition to the intersection problem for cyclic subgroups in pseudo-free groups, many open
problems remain. We describe some of them.

The following problem, already posed in [Riv04a], is the most important in the theory of
pseudo-free groups.

• Show that it is decidable whether given an equation with generalized exponential expression
is satisfiable over a free group.

We have to solve this open problem under the present definition. Naturally, the equation with
no integer-valued exponent variables are well-studied (see [LS77]). However, we must use like
generalized exponential expression, which is allow the equation to contain exponent variables.

The next open problem is also in [Riv04a]:

• Show that the computational and decisional Diffie-Hellman problem in pseudo-free groups is
computationally infeasible.

In this connection, it is an interesting problem that we apply the theory of pseudo-free groups
to some groups which is already known some side informations. For example, (Z/pZ)×, where p
is a prime, is not typically pseudo-free because we can find the order of it easily.

The following problem is also an interesting problem.

• Find examples of pseudo-free groups under the definition (i.e. for pseudo-free group or weakly
pseudo-free group).

In Definition 3.1, Micciancio [Mic05] showed that (Z/nZ)× is a pseudo-free under the strong
RSA problem, at least when n is the product of two safe primes. Unfortunately, we cannot apply
his proof using Definition 3.2 or 3.3. Nevertheless, we believe that (Z/nZ)× is pseudo-free.
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A Six Cryptographic Problems for Free Groups

Lipschutz and Miller [LI71] considered six fundamental problems commonly appeared in many
cryptographic protocols; the order problem [solving ae = 1 for e], the power problem (aka the
discrete logarithm problem) [solving ae = b for e], the root problem (aka the RSA problem)
[solving xe = a for x], the proper power problem (aka the strong RSA problem) [solving xe = a for
x and e > 1], the generalized power problem [solving ae = bf for nonzero e, f ], and the intersection
problem for cyclic subgroups [solving ae = bf 6= 1 for e, f ]. They showed that these problems are
independent, i.e. for each pair of problems there is a group such that one problem is solvable (that
is, satisfiability of the relevant equation is decidable) while the other problem is unsolvable. We
explore their satisfiability in the free groups. In this section, we assume that the adversary has
infinitely computational resources.

Definition A.1. (The Order Problem (OP)) The order problem in G is the following: given an
element a ∈ G, to determine a positive integer e (if any exist) such that

ae = 1.

The least positive such value e is the order of the element a in the group G.

In a free group all elements except for the identity have infinite order. Hence, there is no
solution to the equation in such a group. That is, it is infeasible for any adversary to solve the
order problem in free groups.

Definition A.2. (The Discrete Logarithm Problem (DLP)) The discrete logarithm problem in G
is the following: given elements a and b from G, to determine an integer e (if any exist) such that

ae = b.

The value e is a discrete logarithm of b, to the base a, in the group G.

In F (a, b) and FA(a, b) it is infeasible for any adversary to solve the above equation, for any
value of e. Since a and b are distinct generators, the two sides of the equation are variable-free
constant expressions that cannot be equal.

Definition A.3. (The RSA Problem (RSAP)) The RSA problem in G is the following: given an
element a from G and a positive integer e > 1, to find x (if any exist) such that

xe = a.
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It is clear that the equation has no solution in F (a) and FA(a).

Definition A.4. (The Strong RSA Problem (SRSAP)) The strong RSA problem in G is the
following: given an element a from G, to find x and a positive integer e > 1 (if any exist) such
that

xe = a.

Similarly, the above equation has no solution in F (a) and FA(a). A different point from the
RSA problem is that an adversary can choose himself an exponent e > 1.

Remark A.1. Similar equations, such as

xe = af ,

where the adversary is given a and must find x, e, and f such that e > 1 and gcd(e, f) = 1, are
also infeasible for the adversary to solve in free groups, because this problem is equivalent to solving
the strong RSA problem since x̂e = a where x̂ = xf ′ae′ and ee′ + ff ′ = 1 (see [CS00, Lemma 1]).

Definition A.5. (The Generalized Power Problem (GPP)) The generalized power problem is:
given group elements a and b, to find nonzero integers e, f satisfying

ae = bf .

There is no relationship between the element of F (A) or FA(A). Thus, it is infeasible for the
adversary to solve the generalized power problem in free groups.

Definition A.6. (The Intersection Problem for Cyclic Subgroups (IPCS)) The intersection prob-
lem for cyclic subgroups is: given group elements a and b, to find integers e, f such that

ae = bf 6= 1.

We note that the above problem is in the cyclic subgroup of a free group. It is well-known
that if a group G is free, every subgroup of G is also free. For this reason, it is infeasible for the
adversary to solve the intersection problem for cyclic subgroups in free groups.
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