Research Reports on
Mathematical and
Computing Sciences

An Efficient Parsing for Highly Ambiguous
Context-Free Grammars Based on Pruning
Shin-ichi Morimoto
Jan 2007, C-240

Department of
Mathematical and
Computing Sciences
Tokyo Institute of Technology

seres C: COMpPUter Science

An Efficient Parsing for Highly Ambiguous Context-Free
Grammars Based on Pruning

Shin-ichi Morimoto
NEC Aerospace Systems, Ltd.
s-morimoto@ah.jp.nec.com

In this report, I introduce an efficient parsing algorithm even for highly ambiguous context-
free grammars, which is intended to be applied to natural language processing. It uses a graph-
structured stack as those by Tomita (1991), Kipps (1991), and Nederhof (1993). Here, a graph-
structured stack is a directed graph whose nodes are sets of pairs of an item and an input string,
and whose edges are pointers (parent pointers), each pointing to a parent node in the parse tree.
The new technique here is to prune the pointers pointing to the nodes having the same item part.
By this pruning, we cannot obtain all parse trees, but we can reduce the size of the set of parent
pointers to a constant, thus making the time complexity of this algorithm O(n?). In this report, I
first define the algorithm and show its correctness, and then I analyze its time complexity. Then
I show that by this parsing a class of typical highly ambiguous grammars given by Kipps (1991)
that need O(n?®) by his algorithm can be parsed in O(n?). Finally some study is made on the
range of prunable grammars and application for natural language processing.

1 Introduction

Many parsing algorithms for general context-free grammars have been presented, in which there
are mainly two approaches: the tabular approach [1], [4], and the stack approach [3], [5], [11].
The tabular approach uses an n X n matrix for an input a; ...a, where the (i,5) element of
this matrix corresponds to a set of items that represents recognition of the part of the input
@jy1-..aj. On the other hand, the stack approach uses stacks whose elements are states [3], [11]
or items [5]. In order to parse a grammar with ambiguity, these algorithms use a set of stacks, or
a graph structured stack that is a directed graph whose nodes correspond to stack elements and
edges correspond to pointers to previous elements, which are called parent pointers. An example
of stacks whose top elements are D and a corresponding graph structured stack is shown in the
left part of Fig. 1.

As for efficiency, the tabular approaches are generally better than stack approaches, since
time complexity of the former is O(n3), and the latter is O(n?*1!) in the original implementation
[11], where p is the longest length of the right-hand side of productions. There are modified
versions of the stack approaches as in [3] and [5], whose theoretical time complexities are O(n?).
However, the implementation in [5] is presented only in its outline, and according to [3], its
implementation is not practical. For practical situations the stack approaches seem to be better
than the tabular approaches [§].

The algorithm presented here, named Pruned Graph-Structured Stack Parsing, is a modifi-
cation of the algorithm by Nederhof [5]. In this algorithm when a new node is generated during
parsing, we prune some of parent pointers of the new generated node if possible. The graph struc-
tured stack after pruning and its corresponding stack set is shown in the right part of Fig. 1.
The graph structured stack in the right part is same as the one in the left part except that the

Stack3 [A[|B|D]
Stack2 [A]CID] Stack2 [A]CID]

Stackl [A]BICID] Stackl [A|BICID]
A Stack Set A Graph Structured Stack A Stack Set A Graph Structured Stack

Figure 1: Stack sets and corresponding graph structured stacks

edge from node D to node B is pruned. Pruning this edge corresponds to delete stack 3 from the
stack set in the left part.

In this algorithm stack elements are extended items that are pairs of an item and an input
string, whereas elements in stack are items and tokens in the algorithm by Nederhof [5]. By
adding more information of input strings to items, we can distinguish items generated from
different input strings. Thus, we can prune parent pointers in a reduce action, so that the parent
pointer set for every stack element does not have more than one element whose items are same
and inputs are different. By this pruning we can reduce the time complexity to O(n?), since
the size of a set of parent pointers becomes less than constant (= the size of the set of items),
although we cannot obtain all possible parse trees.

In Sect. 2, T introduce definitions and notations used in this report. I state an algorithm
based on a set of parse stacks in Sect. 3, and modify it to a graph-structured stack in Sect. 4.
The methods in Sect. 3 and 4 seem rather known, and the chief contribution here is to formulate
them in formal descriptions. In Sect. 5, by introducing the idea of pruning into the algorithm
in Sect. 4, I state the improved algorithm, and its correctness. In Sect. 6 I analyze the time
complexity of this algorithm. In Sect. 7 as an example of this algorithm, I show that grammars
called S,,, (m > 3) whose time complexity of parsing is O(n™*!) in [11] and O(n?) in [3], can be
parsed in O(n?) by this algorithm. In Sect. 8 some study is made on the range of grammars that
can be applicable for this algorithm. In Sect. 9, application of this algorithm for natural language
processing is stated. Finally in conclusion, I state characteristics of pruning approach compared
with the current approaches to improve the complexity. In Appendix I prove that the parsing
algorithms in Sect. 3 and Sect. 4 corresponds exactly to each other which are rather routine.

2 Definitions and Notations

Definition 1 (Context-free grammar). A context-free grammar (CFG) G is a 4-tuple (Vy, Vr, S, P)
where Vi is a finite set of nonterminal symbols, Vi o finite set of terminal symbols, S € Vy a
start symbol, and P is a set of productions. For r € P, {r denotes the length of the right part of

a production v, rj the j-th element in the right part of r. Thus, a production r is expressed as

ot T1r2. .. Tp-

As usual we augment a CFG with the new start symbol S’ and a production S’ : § .
Throughout this report we assume that all CFGs are e-free.
Example 1. Let G1 be a context-free grammar with the following productions.
() Ss:5 4 (HS:XYd (*)X:a (r¥)X:ab
(rYY:Ze (%) Z : c (r%) Z:bec
Parse trees of G'1 are shown in Fig. 2. For G1, ambiguity exists for an input "abced".
This grammar will be used as a primary example throughout this report.

Definition 2 (item). For r € P and a nonnegative integer n (0 < n < fr), an item is a pair
(r,n), and the set of all items is denoted by Ig. For a production r of the form ro : riry... .74,

2

Figure 2: Parse trees for G1

(rt, 1y 45 rt S | (rt, 1) 4 r8 S
“Xdr Y N Y
_ X__
/\
Z et 7 ¢
@ O’

Figure 3: Examples of |

an item (r,n) can be expressed as o : 71Ty ... Ty_Tpy1 --- Ty In particular, the item (S": S H)
15 denoted by 1.

Definition 3 (extended item or e-item). Fort € Ig and o € V*, an estended item (or an
e-item) is a pair (t,c), and the set of all e-items are denoted by Jg. For x = (t,a) € Jg, we
define body(x) and input(x) by body(xz) = t and input(x) = «, respectively. In particular, the
e-item (ig,€) is denoted by ey.

For a sequence 7, §n denotes the length of n, n; the j-th element of 7, and 7y the last element
of n.

Definition 4 ({, |}). For (r,n) € Ig, r' € P and w € Vy U Vp, we define (r,n) | v’ if
Tne1 = 1r'o. We define (r,n) | ' if there exist r™,... ,r™ =o' € P (k > 1) that satisfy the
following conditions:

1. {r,n) L r™,
2. (r™i,0) LMt pMiy #Fw (1< j <Fk),
3. rMk = w.

Ezample 2. Let G1 be a CFG in example 1. We have (r', 1) | r*, (r1,1) |} r*, and (r',1) ;5 rS.
We recall that r! = S: XYd, r* =Y : Ze, and 7% = Z : be. The situation for (r,1) |} r* and
(r',1y |7 7% are shown in Fig. 3.

Definition 5 (SOeitemg, Sleitemg). For a CFG G, a € Vi, we define
SOeitemg (a) = {((r,n), @) | rp41 = a for some r € P, € V3,0 <n < fr},
Sleitemg(a) = {{{r,n),a) | (r,n) |F 7' for some r,7' € P,0 <n < fr}.

Hereafter we fix a CFG G and we often omit G in notations like SOeitem.

Definition 6 (Shift0, Shiftl). Fora € Vi, xo = ({(r%, ng), ap) € SOeitem(a), z1 = ((r',n1), 1) €
Sleitem(a), we define Shift0(xg,a) and Shiftl(xzy,a) C Jg by

Shift0(xg, a) = {{({r®,ng + 1), g - a)},

Shift1(z1,a) = {{((r', 1), a1 -a) | (r',n1) | 7'}

3

S

S
X/)L\i X v
A 0
R /7.
aZ b_c,ab) a :be_, abe)

xo = (Z : b_c,ab) € SOeitem(c) x1 = (S : X _Yd, ab) € Sleitem(c)
(Z : be_,abe) € Shift0(zo, c) (Z :c_,abc) € Shiftl(zq,c)

Figure 4: Examples of SOeitem(c) , ShiftO(x, c¢) and Sleitem(c), Shift1(z, c)
S

(S:X Yd a)
s s N
NS X _Yd, ab) S: XY d,abce) A :Z e, abe)
& _ VD Z ey
N\ Y : Ze , abce) VAN (Z bc_, abe)
Z e - Z € a ab ¢
= (Y : Ze_,abce) € Redex x1 = (Z :bc_,abc) € Redex
6 =(5:X Yd ab) € ROeltem(mO) zi =(S: X _Yd, a) € Rleitem(z)
(S:XY _d abce) € Reduce0(zg, zo) (Y : Z_e,abc) € Reducel(z},z1)

Figure 5: Example of ROeitem(z),Reduce0(z’, x) and Rleitem(x),Reducel (',)

Example 3. Let G1 be a CFG in example 1,
(X :a_b,a) € SOeitem(b), Shift0((X :a_b,a),b) ={(X :a b_,ab)}
(S:X _Y d,a) €Sleitem(b), Shift1({S: X Y d,a),b) ={(Z:b_c,ab)}
The situation of this example is shown in Fig. 4.

Definition 7 (Redex). We define Redexg C Jg by
Redexg = {z € Jg | body(x) = (r,4r) for some r € P}.

Definition 8 (ROeitem, Rleitem). For x € Redex we define ROeitem(x) and Rleitem(z) C
Ja by

RoOeitem(z) = {{{(r',n"), @) | 'y1 = 1o for r’ and n’' where z = ((r, fr), @)},

Rleitem(z) = {((r',n),a) | (',n) L;5 " for some 1" € P}.

Definition 9 (Reduce0, Reducel). For z = ((r,fr),a) and 2’g = ((r'°,n'o), /o) € ROeitem(z),
we define Reduce0(z'y,) C Jg by
Reduce0(2'o, 2) = {{(r'°,n'o + 1), a)}.
For z = ({r,#r),a) and 2’1 = ((F"',n 1} '1) € Rleitem(z), we define Reducel(z'y,z) C Jg by
Reducel(xllax) = {<<7a”v 1>v > | < ! 1> J/ro ”}

Ezample 4. Let G1 be a CFG in example 1, 2 = (Y : Z e_,abce), zy=(S: X Y d,ab)
x € Redex, zj, € ROeitem(), ReduceO(z(,z) = {(S: XY d, abce)}.
Forz=(Z:bc_,abc), z{ =(S:X Y d,a)
x € Redex, 2/ € Rleitem(z), Reducel(x’l,x) ={(Y :Z e, abe)}.
The situation of this example is shown in Fig. 5.

3 Parsing Algorithm for Parse Stacks

First we formulate a parsing method similar to [4], but using e-items instead of items. For an
input string a € Vp* we define a set of sequences of e-items L* C Jg* inductively on substrings
of & and an integer n, which can be seen as a parsing for a.

s’ s’

—
reduce/T\4
d

Y

>j>%

b's K d /X\ Y d X
[S7:_S Hic[5:X _Ydiab]
4 © alE‘ freduce
/\ [S":_S Hic][X:ab_iab]
a c

[S7:_Ss Hic[S:X_Ydia]Z:b_ciab]

Figure 6: parse stacks in L% and corresponding parse trees

Ezample 5. Let G1 be a CFG in example 1, parse stacks in L and their corresponding parse
trees are shown in Fig. 6. In these parse trees paths from eg (the root) to b (a leaf) are expressed
in thick lines and nodes corresponding to the elements of parse stacks are expressed in boxes.

Algorithm 1 (Parse Stack Parsing).
1. Lf = {60}.

In the following case 2 and case 8 we define elements of L™* generated by a shift action
from elements of L%.

2. For p-x €L p-y€ LY where xz € SOeitem(a) and y € Shift0(zx, a).

3. Forp-ze€L® p-x-y€ L** where x € Sleitem(a) and y € Shiftl(x,a).

In the following case 4 and case 5 we define elements of L*® generated by a reduce action
from elements of L™® by induction on n. The induction base is defined by
Reduce® (L*, a) = Shift0(®) (L2, a) U Shift1(®) (L*, a)
where Shift0(®) (L%, a) is a set of sequences of e-items (u-y) defined in case 2 and Shift1(©) (L%, a)
is a set of sequences of e-items (- x - y) defined in case 3.

4. Forp-x'-x € Reduce™ (L*,a), p-y € LY where x € Redex, z' € R0eitem(z) and y €
Reduce0(z',).

5. For p-z' - € Reduce™ (L% a), p-2' -y € L% where © € Redex, &' € Rleitem(z) and
y € Reducel(2/, z).

Case 4 and case 5 generate Reduce(n"'l)(La,a) from Reduce(n)(La,a) where n corresponds to the
times of reduce action. Reduce™ (L, a) is defined by
Reduce™) (L2, a) = Reduce0™) (L2, a) U Reducel ™V (LY, a)
where Reduce0" V(L% a) is a set of sequences of the e-items (u - y) defined in case 4 and
Reducel ™tV (L2, q) is a set of sequences of the e-items (1 - 2 - y) defined in case 5.

Ezxample 6. Let G1 be a CFG in example 1, L® of G'1 for an input string “abced” and its substrings
are shown in Fig. 7. Each element of L® is a sequence of e-items and corresponds to a parse
stack in [5].

Let u? = (eg), 22 = (X :a_b,a), and y> = (X : ab_, ab).
As p? - 2% € L, 2? € SOeitem(b) and y? € ShiftOg(z2,b),
p? - y? € L by case 2 of the stack set parse algorithm.

Let u® = (ep), 23 =(S: X Y d,a), y>=(Z :b_c,ab).
As p?, 23, y? satisfy p3 - 2% € L, 23 € Sleitem(b), y3 € Shiftlg(z3,b),

p3 -2 -3 € L% by case 3 of the stack set parse algorithm.

5

re oo _5AE]

o31[S":_SHIe[S:X_Yd | a [Zbec_ | abe |
Jreduce
o[s:_SH4Te[S:X_Yd | a | 32[s":_SHIe[S:X_Yd | a [Y:iZ_e ! abe |
fireduce abe
L* o12[s’s sHle] Xwa_ T a] o33[s"s SHTe[S:X_Y d [ab | Y:Z_e ! abe |
fireduce
o13[s": SHie] X:a b T a | o34[s7. SHie[S:X_Y d T ab | Zic_ | abc |
o21[s": SH4ie] S:X_Yd | a [Zidb_c i ab o417 SHie[S:X_Yd | a [Y:Ze_labee]
Jreduce
Lo 522[s"s SHie] S:X_Y d | ab | rabee ,42[S"s SHie| S:X Y _d | abee |
fireduce fireduce
c23[s":_SHie] Xwab T ab | o43[S":_SHs[S:X Y d [ab |Y:Z e_|abee]

Figure 7: examples of L® for an input “abce”

generation by case 2 generation by cas :i
o Y wm al m Y w0 Sy T\ T i v3
g }\0|sx YdaZbciaM T \eo[5:X _vdiafzbe_ labg leofS: X _vdiay) 50}\SX yda/}\zc labd]
Z :b_c,aby € SOeitem(c) xr3 = S X_Yd ab) € Sleitem(c)
yg = (- be~, abc) € Shift0(z,,) ys = (Z : ¢_abc) € Shiftl(zs, c)
generation by case 4 generation by case 5
oALfEy Y \ = _a2(Fay” wva) 31fksy” <'s Y — 32(_7/ VAT
0 ED co R o ey B S g T O I eany
xy = (Y : Ze ,abce) € Redex Z :bc_,abc) € Redex
'y =(5:X Vd, a) € ROeitem a:4) a: 5 ={S: X Vd ,a)y € Rle1tem(a:5)
ye = (S: XY d, abce) € Reduce0(z}, z4) = :7Z e abc> € Reducel(zf, x5)
Figure 8: Example of parse stack generation
Let pu* (), (S X Y d,a), v* = (Y : Z e ,abce), y* =(S: X Y d,abce).
As pt 2t o', ot satisfy pt -2 2t € Reduce()E*(L“bc,e),x4 € Redex, 2! € ROeitem(z*),y* €

Reduce0g (z 4, zt),
pt -yt € Lobee by case 4 of the stack set parse algorithm.
Let,u (), (S X Y d,a), 2°=(Z:bc_,abc), y> = (Y : Z_e,abc).
As pb, 2, 2", P satisfy p5- 2" - 25 € Reduce®) g« (L9, ¢), 25 € Redex, 2'° € Rleitem(2%), y° €
ReducelE(b)),
ud - 2’ y® € L% by case 5 of the stack set parse algorithm.

Examples of parse stack generation are shown in Fig. 8.

As shown in the example above, we can get all parse stacks for an input string by starting
from LF as the initial state and construct L®® from L% if the current input is a and the next
symbol is a.

4 Graph-Structured Stack Parsing

In this section I modify Algorithm 1 utilizing the idea of graph-structured stacks [3], [5], [11].
Each element of a stack has parents, i. e. , those pointed by the element, which are its previous
elements in the parse stack. In this algorithm, the parents of a stack element, an e-item x, are a
set of e-items, denoted by Parent(z).

Algorithm 2 (Graph-structured stack parsing).
For o € V* we define E, C Jg, and Parent(x) for x € E,, inductively on elements of a string
«a and a positive integer n, as follows:

1. E. = {ep},Parent(eg) = 0.

In the following case 2 and case 8 we define elements of Eq. generated by a shift action
from elements of E,.

2. For x € Ey, y € Eq.q where z € SOeitem(a),y € Shift0(z, a).
For this y,Parent(y) is defined by
Parent(y) = {w | w € Parent(z) for z where z € E,, z € SOeitem(a),
y € Shift0(z,a)}

3. For x € Ey, y € Eqy.q where x € Sleitem(a),y € Shiftl(z,a).
For this y, Parent(y) is defined by
Parent(y) = {z | z € Eq, z € Sleitem(a),y € Shiftl(z,a)}.

In the following case 4 and case 5 we define elements of E,., generated by a reduce action
from elements of Es., by induction on n. The induction base is defined by
Reduce(g)(Eq, a) = Shift0g) (Eq,a) U Shiftl gy (Eq, a)
where Shift0g)(Eq,a) is a set of e-items (y) defined in case 2 and Shiftl) (Eq,a) is a set
of e-items (y) defined in case 3.

4. For x € Reduce(,)(Eq,a), y € Ey.q where 2’ € Parent(z),r € Redex, 2’ € R0eitem(z),y €
Reduce0(z',).
For this y,Parent(y) is defined by
Parent(y) = {w | w € Parent(%') for z,2" where z € Reduce(,)(Eq,a),
z' € Parent(z), z € Redex, 2’ € R0eitem(z),y € Reduce0(2',z)}

5. For x € Reduce(,)(Eqy,a), y € Eq.q where 2’ € Parent(x), z € Redex, 2’ € Rleitem(x),y €
Reducel (2,).
For this y, Parent(y) is defined by
Parent(y) = {2' | for 2’ where 2 € Reduce,)(Eq, a),
2" € Parent(z), z € Redex, 2’ € Rleitem(z),y € Reducel(?/, 2)}.

Case 4 and case 5 generate Reduce(,11)(Eqa,a) from Reduce(,)(FEq,a) where n corresponds to the
times of reduce action. Reduce(, 1)(Eq,a) is defined by
Reduce(, y1)(Fq, a) = ReduceO(,11)(Eq, a) U Reducel 4 1)(Fa, a)
where ReduceO(, 11y (Eq, a) is a set of e-items (y) defined in case 4 and Reducel, 11)(Eq,a) is a
set of e-items (y) defined in case 5.

Example 7. Let G1 be a CFG in example 1. The graph structured stack of G'1 for an input string
“abced” is shown in Fig. 9, where elements of Parent(x) are denoted by an arrow from z to each
elements when Parent(x) # {ep}. For example, there is an arrow from = = (Y : Z e, abc) to
(S : X _Yd, ab) since Parent(z) = {(S: X _Yd, a), (S: X _Yd, ab)} and there is no arrow
from ' = (S : X _Yd, ab) to ey since Parent(z') = {eg}.

Let 22 = (X :a_b,a), y>= (X :ab_,ab).
As 22, y? satisfy 22 € E,, 22 € SOeitem(b), y? € ShiftOz(x2,b),
y? € E, and Parent(y?) = Parent(z2) = {eg} by case 2 of the graph structured stack parse
algorithm.

Let 2> = (S: X Y d,a), v> =(Z :b_c,ab).
As 23, y? satisfy 2® € E,, 2® € Sleitem(b), y* € Shiftlz(z3,b),
y® € By and Parent(y®) = {x3} by case 3 of the graph structured stack parse algorithm.

Let #'* = (S: X Y d,a), 2t = (Y : Ze_,abce), y* =(S: X Y _d,abce).
Asz?t, 2/, yt satisfy 2t € Reduce® g(Egpe, €), z* € Redex, e ROeitem(z4), y* € ReduceOE(m’4,x4),
y* € Egpee and Parent(y*) = Parent(z’ 4) = {ep} by case 4 of the graph structured stack parse
algorithm.

Let #° = (S: X Y d,a), 2 =(Z:bc_,abc), y° = (Y : Z_e,abc).
AsaP, 2%, P satisfy 25 € Reducel) (F,, ¢), 25 € Redex, 2/° € Rleitem(z?), y° € Reducel (2, 2%),

Jreduce
fireduce
4 Z:c i abc

S:X_Y d a i~
p: B
ﬂreduce \ b
Xia_ ia

- ‘S Xy d a.b [‘! Y:Z e_ ‘abce
ﬂreduce Jreduce
= [X:ab_ ab] [S:X Y _diabee] S: XY d_ iabced
a {reduce
Eapee S'i5_ 1 Tabecd
Fap Eapced

Figure 9: Graph structured stack for the input “abced”

Generation by case 2 Generation by case 3
m [co N/ ws N/ ws N
\S:X_Y d | = N Zibe_ {abc) \S:X_Y dia}e\S:X_Y diapfe— Zic_ Tabc)
x3 € Sleitem(c), Parent(z3) = {eo}
zo € SOeitem(c), Parent(z2) = {z}} Shiftl(z3,¢) = {ys}, Parent(ys) = {23}

Shift0(z2, ¢) = {y2}
Parent(y.) = Parent(z2) = {z4}

Generation by case 4 Generation by case 5

‘ Y:Z e_ abce)

_ A Ureduce
—
S:X Ydab/{ SXY dabcej

xy, x) € ROeitem(z4), Parent(zy) = {z}, 24} «L € Rleitem(xs), Parent(zs) = {x}}
Reduce0(z}, x4) = ReduceO(a:4,:r4) = {ya} zi € Rleitem(zs), Parent(zs) =

{
Parent(z}) = Parent(z}) = {eo} Reducel(zf, x5) = Reducel(zs, z5) = {ys
Parent(ys) = Parent(z}) U Parent(z}) = {eo} Parent(ys) = Parent(zs) U Parent(zs) = {25, z{

Figure 10: Example of Graph Structured Stack Generation

y® € Egpe and Parent(y®) = {(S: X Y d,a),(S: X Y d,ab),} by case 5 of the graph structured
stack parse algorithm.
Examples of graph structured stack generation are shown in Fig. 10.

The following Lemma 1 holds from definitions of Shift0(z,a) and Reduce0(z', z).

Lemma 1. Fora € Vi and x, y € Jg, if * € SOeitem(a) and y € Shift0(x, a), then Parent(y) =
Parent(x).

Proof. If y is expressed as ((r,n), a-a), = is expressed as ({r,n — 1), a) and is unique. Therefore,
x is the only e-item that satisfies the conditions for z in the definition of Parent(y) in Case 2 of
Algorithm 2. O

Definition 10 (E%). For a € Vp*, E* C Jg* is defined by
@ = {o | Parent(o1) = 0,0, € Parent(c;41)(1 < j < f0),045 € Eq}.

Ezample 8. For G1 of example 1, E? = {¢',0% 53} where
01 (011,012) (60,<X a b ab))
0? = (0%1,02%) = (€0, (S : X Y d,ab)),
03 = (031,032,0 3) (60, (S XY d a) (Z b C, ab))
Relations between elements of o, 02, o3 are shown in Fig. 11, where every element of Parent(x)
is denoted by an arrow from =z to each element. For example, for o'y = (X : ab_, ab),
Parent(c's) = {ep} and there is an arrow from z to ep.

8

0-32|S:X7Yd§a]<—| Zb_c ;ab]0-33

Figure 11: Elements of o', 02, 0>

We have the basic theorems about L® and E®. They are proved inductively based on defini-
tions of case (1) to case 5 in Algorithm1 and Algorithm2.

Theorem 1. For a € V™, if A € L then A € E*.

Theorem 2. For o € Vp*, if A € E® then X\ € L¢.

5 Pruned Graph Structured Stack Parsing

5.1 Outline of Pruned Graph Structured Stack Parsing
We denote the size of a finite set H by |H|.

Definition 11 (—). For e-items x,y € Jg, we define x — y if one of the following is satisfied:
1.z € SOeitem(a) and y € Shift0(x, a),
2. x € Sleitem(a) and y € Shiftl(z,a),
3. z € Redex and y € Reduce0(z', x) for some z’ € R0eitem(z),
4. = € Redex and y € Reducel(z’, z) for some 2’ € Rleitem(z).
The transitive closure of — is denoted by —*.

Example 9. For G1 in example 1,

(Z :b_c,ab)—(Z : be_,abe) holds because (Z : bc_,abe) is generated from (Z : b_c,ab) from
case 2 of Algorithm 2, as stated in example 6.

Similarly, (S : X _Yd,a)—*(S: XY _d,abce) holds because

(S": SHe)» (X :a_,a)—(S: X _Yd,a)y—= (Z:b_c,aby—(Z : bc_,abc) =Y : Z e, abcy—
(Y : Ze_,abce)—(S : XY _d,abce)— (S’ :S_ -, abced) hold

By definitions of —* and Parent(z), we easily have:
Proposition 1. If y € Parent(x) then y —* x.

Definition 12 (separable). For a set of e-items D C Jg, D is called separable if body(z) =
body(y) implies x =y for xz,y € D.

For a separable set D we can naturally embed D into I by ignoring the input parts of the
elements. By this embedding we obtain the following easy proposition.

Proposition 2. For a set of e-items D C Jg, if D is separable then |D| < |Ig|. In particular,
a separable set is a finite set.

Following lemma holds for separable parent sets in case 4of Algorithm 2.

Lemma 2. Forz,z’ and y that satisfy x € Redex, 2’ € R0eitem(z)NParent(z), y € Reduce0(z', x),
if Parent(z) is separable then Parent(y) = Parent(z').

Proof. If there exists 2’ € ROeitem(z)NParent(z) satisfying y € Reduce0(z’, z), body(z')=body(z’)
holds from y € Reduce0(z’,) and y € Reduce0(z’,z). Therefore 2’ = 2’ holds if Parent(z) is
separable. It means that 2’ that satisfy y € Reduce0(z’, z) is unique and Parent(y) = Parent(z’)
holds from definition of Parent(y) in case 4of Algorithm 2. O

9

i~<_
U
b

P Em N

T
F:_ ST X _Yda) 5 _

S’)
- * Y *
— —
)Ag\d X/)I’\ /1L\d

X
| N | —
{S":_Sb—ﬁs |\§:X_§/2d{ab 5’1_;4EEGX_?dED§)ng_ZaID/1 }S”:_;%is}\S:XdeiabceA

Figure 12: example of Theorem 3: Parse process for “abce”

4

IS4
-

Unfortunately, all parent sets are not separable.

Ezample 10. As is seen from Fig. 2, Parent((Y : Z e, abc)) is not separable, because it contains
(S:X Yd, a)and (S: X Yd, ab).

For parent sets which are not separable, we have the following important theorem.

Theorem 3. Let x1, 29 € Parent(x) for an e-item x, and assume that body(z1) = body(z2) =
(r,n) and input(r1) # input(ze). If x —* ((r,n + 1),«a) for some a € Vr*, then z; —*
({ryn+ 1),) and xo —* ((r,n+ 1), a).

Proof. 1 —* x and 2o —* z hold because 1, x5 € Parent(z). Therefore, z; —* x —*
({ryn+ 1),) and z9 —* —* ((r,n + 1),) are satisfied. O

Ezample 11. Let z1,22,2 and 2’ be 21 = (S : X _Yd, a),zo = (S : X _Yd, ab),z = (Y :
Z e, abc) and ' = (S : XY d, ab). In this case 1 —* 2’ and z9 —* 2’ holds since z1,x9 €
Parent(z) and x —* 2.

This situation is shown in Fig. 12, in which the upper part indicates a parse process cor-
responding to 1 —* = —* 2’ and the lower part indicates a parse process corresponding to
xo —* —* /. As Parent(z) is not separable, two different parse trees exist for an input “abc’
that are indicated in the center of Fig. 12. The right part of Fig. 12 shows that after the reduction
of “Y : Ze”, there exists 2 different parse trees but their parse stack is same because the contents
of parse stack do not depend on the substructures of X and Y after the reduction of productions
for X and Y.

As top elements of stacks in the middle part are same (x), moves of both stacks are same until
their top elements are reduced. After top elements are reduced, elements under top elements
(z1,9) are shifted to a same element (2') and both stacks become same. Therefore moves of
both stacks are same after their top elements is reduced that means moves of both stacks in
the middle part are same for any input string. It means that we can prune one of stacks in the
middle part.

5.2 Definition of Pruned Graph Structured Stack Parsing
Definition 13 (F). We define E as E = Uyey,+ Ey.

10

Definition 14 (I%*, E*, I*). For a € V*,x € E,, we define
I* = {p| Jo € E* where §p = fo, p; =body(c;) (1 <j <fp)}.
E* ={o |0 € E* o4 = z}.
Ix:{p|pela7pﬂ = z}.

Elements of I are body parts of elements of E“ and E* is a subset of E* whose element o
satisfies oy = x.

Ezample 12. For G1 in example 1, I®¢ = {p', p?, p*} where
pt=(p'1,p" 9 p"3) = (10,5 : X_Yd, Z :be_).
P2 = (P21,,022,,023) = (i0,S: X_Yd,Y : Z_e),
pt = (p*1, 0%, 0%) = (i0,S: X _Yd, Z:c_).

For z = (Y : Z_e,abc), I* = {p?}.

From the definition of I®, we have

Lemma 3. Forz € E,
I° = UyEParent(m){p ’ bOdY(x) | pE Iy}'

From proposition 11 in Sec 5.3, we can prune z if I* C IY holds for z,y € Parent(z). We
define a binary relation that shows I C IY over x,y € Parent(z) that satisfy body(z) = body(y).

Definition 15 (<). For z,y € E that satisfy body(z) = body(y),
we define x <y if the following condition is satisfied,
V' € Parent(z), Ty € Parent(y) . 2’ =4 ora’ <y

Proposition 3. If z <y then I* C IY.

Proof. As context free grammars in this report are e-free, we have (A),(B) from Algorithm 2.
(A) For z,y € E, if x € Parent(y) then finput(z) < finput(y).

(B) For z € E if finput(z)=0 then = = ep. Let L(x,y) be L(x,y)=max(finput(z), finput(y))
and we prove this proposition by induction on L(z,y).

1. L(z,y) = 1 As finput(z)=finput(y)=1 holds in this case, Parent(x) = Parent(y) = {eo}
holds from (A), (B) and this proposition is satisfied.

2. We assume that this proposition is satisfied for L(z,y) < k and prove this proposition for
L(z,y) = k+ 1. From z < y, for any 2’ € Parent(z) there exists y' € Parent(y) that
satisfies 2’ = ' or 2’ < ¢/.

For case of 2/ = ¢/, I* C IV holds.

For case of 2’ < 4/, finput(z’) < k, finput(y') < k holds from z' € Parent(z),y’ € Parent(y)
and (A). Therefore L(z',4') < k holds and I* C IY' holds from the induction hypothesis.
In both cases 1% C IY¥ holds. From lemma3, for any p € I*, there exist 2’ € Parent(z),
ol € I that satisfy p = p' - body(z). From I* C I¥, p/ € I¥ holds. This proposition
holds from p = p' - body(x) = p’ - body(y) € 1.

0

Definition 16 (representative, representable). For D C E, x € D and D, = {y | y €
D,body(y) = body(x)}, ps € Dy is called the representative of x if and only if z < py holds for
any z € D,. Dis called representable if and only if the representative of x exists for any x € D.

D, is a set of elements whose body parts are same as the body part of and the representative
of x is the unpruned element of D,. If D is representable, we can prune elements of D to their
representative.

11

Figure 13: Prune(Parent((Y : Z_e,abc))) in G1
,}S:a T g Ea’<—|T:X_Y d Eabk—' Z:c_ Eabcl

Figure 14: Unprunable case in G2

Example 13. For z, x1, zo in example 11, z; and zs are both representative of x because
Parent(x) = {z1,x2}, ©1 < 2, ©2 < z1 holds. The case for Prune(Parent(z))={z2} is shown in
Fig. 13.

From proposition 3 and Definition 16, we have
Proposition 4. If p, and p', are representatives of x then IP» = I,

Definition 17 (Prune). For a representable set D C E, Prune(D) is a set whose elements are
one of representative for each element of D.

As shown in example 13, there may be more than one representatives for one element of D.
However we can choose any one of them as the element of Prune(D) from proposition 4.
From definition 17, we have

Proposition 5. For D C E, if D representable then Prune(D) is separable.
We define context free grammars for this parsing algorithm.

Definition 18 (prunable). A context free grammar G is called prunable if and only if Parent(z)
1s representable for any x € E.

Ezample 14. G1 is prunable because Parent(x) is representable from example 13.
Example 15. Let G2 be a context free grammar with following productions.

() S:S4 (PHS:Tf () S:aTg ()T:XYd

(rY) X :a (r%) X : b Y :Ze (r')Z:c (r®) Z:bec
Relations of elements of E%¢ = {o!,0%, 0% 0%} are shown in Fig. 14. From Fig. 14, neither
(T:X Yda)<(T:X Ydabynor (T:X Y dab) < (T :X Y d,a) hold. Therefore G2
is not prunable because Parent({(Y : Z e, abc)) is not representable.

Algorithm 3 (Pruned Graph-Structured Stack Parsing). An algorithm in which "Parent(y) =
P'(y)" in case Sof Algorithm 2 is modified to "Parent(y) = Prune(P'(y))" is called a Pruned
Graph-Structured Stack Parsing algorithm.

Proposition 6. For x, y in Algorithm?2,
if Parent(x) is separable then Parent(y) defined in case 2, 3, 4 is separable.

Proof. In Case 2, Parent(z) = Parent(y) from lemma 1 and Parent(y) is separable because
Parent(z) is separable. In Case 3, Parent(y) C E, and Parent(y) is separable because E, is
separable. In Case 4, Parent(z) is separable and Parent(y) is separable from lemma. O

12

From this proposition, Parent(y) defined in case 2, 3, 4, 5 of Pruned Graph-Structured Stack
Parsing are separable.
From proposition 3, definition 16, definition 17, we have

Theorem 4. For x € F satisfying D is representable,
UyEPa.rent(:v) IV = UyEPrune(Parent(:v)) Iv.

From this theorem, I = {J,cpasent () I? 18 conserved if Parent(z) is modified to Prune(Parent(x)).
It means that the result of Pruned Graph-Structured Stack Parsing in which Parent(x) of
Graph-Structured Stack Parsing is modified to Prune(Parent(z)) is same as the result of Graph-
Structured Stack Parsing.

5.3 Correctness of the Pruned Graph-Structured Stack Parsing

In this section, I show the correctness of Pruned Graph-Structured Stack Parsing by showing
that the result (whether the input is a word of the grammar) of Graph-Structured Stack Parsing
is not changed if Parent(x) is modified to Prune(Parent(x)).

From definition 13, we have

Proposition 7. For o € Vr*
a 1s a word of G
if and only if (ig,e) = (S": S H,e) =»*(§": S) = (Succ(ip), ') holds

Proposition 8. For o € V",
there exists B € V™ that satisfies o+ 3 is a word of G
if and only if o € E* that satisfy (ig,€) —* oy —* (Succ(ip), - B) exists.

Ezample 16. For oo = ab, B = ced,

o - 3 = abced is a word of G1 and 0% € E* = E® in example 8 satisfies

(ig,e) = (S": S H ey —* UnQ =(S: X _Yd,aby—* (S": S_ H abced) = (Succ(ip), - §) from
example 9.

For o that satisfies condition of proposition 8, every elements(o;) of o will be popped while
reading and parsing . After o; will be popped, body(c;_1), which is the body part of an element
of the parent set of o; will shift to Succ(body(c;—1)). After this shifted element will be popped,
the body part of oj_5 will shift to Succ(body(c;_2)) and so on. From this, we have

Proposition 9. For o € V™,
there exists 3 € V™ that satisfy o - 3 is a word of G if and only if there exist o € E%, (3; €
Vr*, 0l € E*Pi (1 < j <o — 1) that satisfy following conditions.

1. to) =40 —j

2. 00y =0, (1<k<fol —1=40—-75-1)
3. o7y = (Succ(body (o4, 5)), - ;)

4. Bgo—1 =0

Ezxample 17. For o = abc € V™,

there exists 8 = ed € Vp* that satisfy « - 3 is a word of G1.

For ¢?',0% in Fig. 7

02021)61267 ﬁ?zﬁ:eda

ol =o% ¢ pobee = Ebr 52 = ((S': S A abced)) € Eeed = pohe

satisfy conditions of proposition 9. Relations between elements of o, o', o2

are shown in Fig. 15.

13

o1 o2 oy

c=0o20 [87:_SH4T = [S:X_Ydi a |Zib_cliab]

oly =0y oly = (Succ(body(cz)), @ - A1)

ol =02 [Si_541 ¢ [S:XY_d | abee |

o2y = (Succ(body(c'1)), & - B2)

o?
Figure 15: example of proposition.9 in G1

Between top elements of o and o7,
oy =" oty = (Succ(body(oys 1)), a - Bi),
(Succ(body(oys—j)), - B) = 07y —=* 07ty = (Succ(body(0ys—j—1)), @ - Bj+1) holds for 1 < j <
fo — 2 and we have

Proposition 10. For « € V¥,
there exists 3 € Vp* that satisfy «- 3 is a word of G
if and only if o € E*,B; € V™ (1 < j < fo) that satisfy following conditions

1. oy =* (Succ(body(oys—1)),a - B1).
2. (Succ(body(a,—j)), a - f5) = (Succ(body(op—g—1)),a- Bi1) (1< <o —2).

We have a following proposition because conditions of above proposition depend on the body
part of o.

Proposition 11. For a, 3 € Vip*, 0 € E® that satisfy the following condition
(i, €) =" oy —=* (Succ(ip), o - B)

and for x,y € Parent(oy) that satisfy I* = 1Y,

if there exist v € V™, 0, € E* that satisfy

o3 =" (Suce(body((04);), a - 7) —* (Succ(io), - B),

there exist oy € EY that satisfy

oy —* (Succ(body((oy)s)), o -) = (Succ(ip), o - 5).

From proposition 11, let z,y be elements in Parent(z) that satisfy I* = IY,
for any o, € E” there exists o, € Ey, whose parse process is same as o, for all input.

Ezample 18. For x,x1,xo in example 11,

let 041,042 be 041 = (€9, x1),042 = (€9, x2) then E*t = {0,1}, E*2 = {049} hold. As [*1 = [*2
holds,

x = oy =" (Succ(body((041)y)), abc - e) —* (Succ(ip), abc - ed) and

x = oy =" (Succ(body((o2)y)), abe - e) —* (Succ(ip), abe - ed) hold for o € E*.

6 Complexity of Pruned Graph-Structured Stack Parsing

The modified algorithm Pruned Parsing is shown in Algorithm 4 and Algorithm 5. In this
pseudo-code the scopes of nesting structures such as loops are specified by indentation. In this
algorithm Parent sets are expressed by an array whose index is an e-item and its component
is a set of e-items, and Reduce is an array whose n-th component (Reduce[n]) corresponds to
Reduce™ (Eq,a) in Algorithm 2. In Is_prec of Algorithm 5, duplicate calculation is suppressed
by a table PrecTab. The initial value of elements of PrecTab is 0 and for z,y € E satisfying
body(z)=body(y)=i, the value of PrecTab|i, #input(x), #input(y)| is 1 if z < y holds, -1 if
x < 4y does not hold and 0 otherwise.
I analyze the time complexity of Pruned Parsing.

14

Algorithm 4 (Pruned Graph-Structured Stack Parsing a)
Parse (o) /*returns true if alpha is a word, false otherwise*/

1) Etop:={eo}; Parent[eg]:=0;

for 7 from 0 to fa for k from 0 to fo
PrecTab[z, 7, k] := 0;

(

(2)

(3)

(4)

(5) for j from 1 to fa

(6) Eropi=Goto(Erop, o5);

(7) Etop:=Goto(Etop, 1);

(8) return (Beop# 0);

Goto(Eq,a) /* Generate Eq.q from Eq and a */

(9) Reduce base:=0; PrecTab[i,ffor + 1, 71:=FALSE;

10) for @ € Eq

if ¢ € SOeitem(a) then /* For Case 2 */

12) E_shift0:=Shift0(z,a);
Reduce_base:=Reduce baseUE shift0;

—_~ o~ o~
—
—
N

(13) for y € E_shift0 /* Parent[y] in Case 2 */

(14) Parent[y]:=Parent[z]; /* From lemma 1 */

(15) if & € Sleitem(a) then /* For case 3 */

(16) E_shift1:=Shift1(z,a);
Reduce_base:=Reduce baseUE shift1;

(17) for y € E_shiftl /* Parent[y] in Case 3 */

(18) Parent[y]:=0 ;

(19) for z € Faq

(20) if z € Sleitem(a)Ay € Shift1(z,a) then

(21) Parent[y]:=Parent[y]U{z};

(22) return Rclosure(Reduce base);

Rclosure(D) /* case 4, , 5 of Algorithm 3 */

Reduce[n + 1]:=Reduce[n + 1]JUE_reduce0;

(29) for y € E_reduce0 /* Parent[y] in case 4*/
(30) Parent[y]:=Parent[z']; /* From lemma 2 */
(31) if &/ € Rleitem(z) then/* For case 5%/
(32) E_reducel:=Reducel(z’, z);

Reduce[n + 1]:=Reduce[n + 1]UE_reducel;
(33) for y € E_reducel /* Parent[y] in case 5*/
(34) Parent(y]:= 0 ;
(35) for z € Reduce[n]NRedex

(23) n:=0;Reduce[0]:=D; Reduce[1]:=0; E_return:=Reduce[0];
(24) loop /* The exit of this loop ((24) 0 (42)) is (42) */
(25) for « € Reduce[n]nRedex

(26) for &’ € Parent[z]

(27) if ' € ROeitem(z) then /* For case 4%/

(28) E reduce0:=Reduce0(z’, z);

(36) for z/ € Parent[z]NR1eitem(z)
(37) if y € Reducel (', z) then
(38) Parent[y]:=Parent[y]U{z'};
(39) Parent[y]:=Prune(Parent[y]);
(40) if Reduce[n+ 1]#£ 0
(41) then E_return:=E returnUReduce[n + 1];
n:=n + 1; Reduce[n + 1]:=0;
(42) else return E_return; /*exit for loop ((24)-(42)) */

Algorithm 5 (Pruned Graph-Structured Stack Parsing b)
Prune(D)

43) D_result := §;

44) for i € I D x[i]:=0;

45) for « € D

46) Dx[body(x)]:=Dx[body(z)]u{z};

47) for: € Iz

48) if | Dx[i] | = 1 then

49) D _result:=D resultU D_x[{] ;

50) elseif | Dx[¢] |[> 1 then

pz:= any element of D_x[s];

52) for z € D_x[i] /* choose representatives */

53) if Is_prec(pz, z) then

54) Po = T

55) for z € Dx[¢] /*error if p; is NOT representative®/
56) if not Is_prec(z,pz)

57) then Error /* This grammar is NOT prunable */
58) D _result:=D _resultU {p, };

59) return D_result;

Is_prec(z,y) /* returns true if z < y holds, false otherwise */

(60) :=body(x); Iz := finput(z);l, := finput(y);

(61) if PrecTabli,lz,ly]=1 then /* z < y holds */

(62) return True;

(63) if PrecTabli, s, ly]= —1 then /* 2 < y does NOT hold */

(64) return False;

(65) flag:=True;

(66) for z' €Parent[x] (67) x_flag:=False;

(68) for y' €Parent[y]

(69) xflagi=x{flagV(z’' = ')
V((body(z")=body(y"))Als_prec(z’, y'))

(70) flag:=flagAx flag;

(71) if flag then PrecTabli,l, {y]:=1;

(72) else PrecTabl7, Iz, ly]:= —1;

(

73) return flag;

Figure 16: Pruned Graph-Structured Stack Parsing

15

Definition 19 (degenerated). For D C Jg, D is called degenerated if body(z) = body(y) for
Vz,y € D.

From definitions 12 and 14, we have
Lemma 4. Let D, D, Dy C Jg. If D is degenerated then D 1is separable.

Lemmas 5 and 6 state that the time complexity of basic operations such as computation of
Shift0(z, a) and assignment in this algorithm are constant in n.

Lemma 5. For x,2' € Jg and a € Vr, the sets ShiftO(z, a), Shift1(z,a), ReduceO(z’,z) and
Reducel(2', z) are degenerated and computed in constant time in n (exactly, (O(|Ig]))).

Proof. Let y be an element of these 4 sets. From Definitions 6 and 9, body(y) depends only on
body(z') and body(z). As a body part of an e-item is an element of the finite set I, we can
compute the body part of these 4 sets for each body(x) and body(z') before parsing, and we
can get them in constant time in parsing. From Definitions 6 and 9, for each of these 4 sets, all
elements of the set have the same input part. Thus all these sets are degenerated.

Since each of the 4 sets is degenerated, the number of its elements is at most O(|Ig|). The
body part of each element is obtained before parsing, its input part is identical, so that the set
can be decided in O(|I¢]). O

Lemma 6. For x € Ji and the sets of e-items D, D' C Jg, if D is separable then both the time
complezities of membership x € D and assignment D' := D are constant in n.

Lemmas 7, 8 and 9 show that some of the important sets appearing in Pruned Parsing are
separable. From Lemma 6 we obtain the following lemma.

Lemma 7. If D is degenerated then the sets Rclosure(D) and Goto(D, a) in Pruned Parsing are
degenerated.

As the set {eg} is degenerated we obtain the following lemma from Lemma 7.
Lemma 8. E_top and E_alpha in Pruned Parsing is always separable.
Lemma 9. For y € E_top, Parent(y) is separable.

Proof. For y € E_top, one of the following is satisfied:

a) y € Shift0(x, a) for some z € E_alpha,
b) y € Shiftl(z,a) for some z € E_alpha,

¢) y € ReduceO(z’, z) for some = € E_alpha,z’ € Parent(x),

d) y € Reducel(a’, z) for some « € E_alpha, 2’ € Parent(z).
For a), Parent(y) is separable from induction hypothesis, because Parent(y) := Parent(z) at (13).
For b), this lemma holds because Parent(y) = {z' | ' € E_alphanSleitem(a),y € Shiftl(z', a)}
from (16) — (20), therefore Parent(y) C E_alpha. For c¢), this lemma holds from the induction
hypothesis, because Parent(y) := Parent(z’) at (30). For d), the element of Parent(y) is inserted
by Prunelnsert at (39) that returns a separable set. O

Hereafter we denote the time complexity of a function f as |f|.

Proposition 12. The time complezity of Algorithm 4 is O(n?) except for the time complezity of
Prune.

16

Le [s:[55a_

[s: SsHie] S:S_a lad]

[S:_SHic] Sia_ ia] [- S47<[5:5_5 5 faa]
T, 1
v
[s": sHic] S:S_a [a] Lea

[S:_SHic]S:S_SSia] Sia_ iaa]

[S": SHic[S:S_SStia]

[S":_S-ie|S5:S _SSia] 5:5 a [aa|]

[S":_S-ie]S5:S_SSia]S:S_S 5 aa]

[S":_SHic]S:S S_S lad]

Figure 17: example of L* in S3

Proof. The time complexity of the pruned parsing is |Parse| that is equal to n x |Goto| from
the loop of (2) where n is the length of a. As operations in loops of (10), (13), (17) and (19)
are executed less than constant (|I¢|) time from lemmas 5 and 9, and the complexity of these
operations are constant from lemmas 4 and 7. Therefore, |Goto| is equal to |[Rclosure|. The
complexity of operations in the loop (24) is also constant, and the number of execution of these
operations in the loop is equal to the number of reductions for each input that is at most n.
Therefore, |Rclosure| is equal to O(n). From these considerations the time complexity of this
algorithm is O(n?). O

Proposition 13. The time complexity of Prune is O(n?).

Proof. As Reduce(n] in (35) and Parent|z] in (36) are separable, the number of Parent[y] which

is a parameter of Prune at (39) is less than |I|. Loops in (52) and (55) does not depend on n

because |D,[i]| < |Ig|? from D,[i] C Parent[y](i € I¢). Therefore |[Prune| = |Is_prec| holds.
AsParent[z] in (66) and Parent[y] in (68) are separable, the time complexity to get PrecTabl[i, [, [,]

at (71) and (72) from known values of PrecTab is O(1). Therefore the time complexity to get

all values of PrecTab[i, j, k] is O(n?). O

From Proposition 12 and Proposition 13, we have the following theorem.

Theorem 5. The time complezity of Pruned Parsing is O(n?).

7 An Example for a Grammar with Strong Ambiguity

In this section, as an example of this Pruned Graph-Structured Stack Parsing, we show that a
grammar S,,,(m > 3) is parsed in O(n?). The time complexity for parsing S, is O(n?) in [3] and
O(n™*1) in [11].

Example 19. Let S3 be a context free grammar with following productions.
(S :54 (r')S:588 (r?))S:Sa (r}) S:a

S3 is a grammar used in [3] as an example grammar that forces the worst-case behavior for
algorithms in [11] and [3]. We call a grammar that has same productions with S3 except that r!
has m nonterminals (S) in the right hand side.

Example 20. For S3 in example 19, L® for inputs ’aa’ and ’aaa’ is shown in Fig. 17. In Fig. 17,
fireduce and |Jreduce is omitted.

Stack tops of parse stacks in L% and Lo for $3 are shown in Fig. 18. In Fig. 18, o™ in an
input part is denoted as n.

17

o [$7:_SHie] S:S_a In] ra® [87. 54 [<[5:5_55n]

[s": sHic[S:Sa_ n+1] [S: sH4ic[S:S_SSin] Sia_ in+1]
partD) [s7: S 47| S:S_a [n+1] LalntD) [S":_SH4i=[S:S_SSin]| S:S_a in+1]
[S":_SHic[S:S_SSin+1] [S":_SH4i=[S:S_SSin][S:S_SSin+1]

[":_sHic[S:SS_Sin+1

ra” |S:S_SSE[I S:S_a in] ra™ |S:S_SSE[IS:S_SSEn]
|S:S_S S i I S:S a_ in+ll |S:S_S E IS:S_S SinIS: a_ in+1l
La("Jrl)
La("+1) |S:575551| S:S _a in+ll |S:5755 ilIS:S 5755n+ll

[SS_SS{{[55_S8Sinti]

e [855_8511[55_551n]

[S55_5 [1[55_55 n][8:a_in+ti]

La("+1)
[$:SS_Sii[S:SS_Sint]]
g [ESS STI] S5 a 7]
|S:SS_SEIIS:SCL_ En-‘,—ll |S:SS_SEn| Sia_ En-‘,—ll
a1 [S:SS_STi[S:S_a in+1] a1 [S:85_Sin] S:S_a in+1]
[S:SS_Si1[S:5_SSinti] [S:S5_Sin][S:S_SSint1i]

Figure 18: Generation stack top elements of L2 from Lo in S3

From Fig. 18, we have

Proposition 14.
Parent((S : S_a,n +1)) = {e
Parent((S:S_S S,n+1)) =
Parent((S:S S_S,n +1))

0, (S S_8 S,k),(S: S S_S, 1<k <n,2<I<n),
{e0,(S:S_S Sk),(S:SS_S,1)} 1<k<n,2<1<n),
{e0,{(S:S_ S Sk),(S:5S S,H}(1<k<n-12<I<n-1).

From the definition of < and above proposition, we have

Proposition 15. For k and [that satisfy k < [,
(S:8 ak)y<(S:5_a,l),
(S:8 S Sk)y<(S:5 85,1,
(S: 58 Sk)y<(5:585_5,1).

From the definition of Prune and above proposition, we have

Proposition 16. For case of n > 2
Prune(Parent((S : S_a,n+1))) ={ep,(S:S5_5 S,n),(S: S5 S_S,n)},
Prune(Parent((S: S_ S S,n+1))) ={ep,(S:S_S Sn),(S:5S S,n)},
Prune(Parent((S:S S_S,n+1)) ={ep,(S:5_ S S,n—-1),(S:5S5_S,n—1)}.

From above proposition, S3 is prunable and we have

Proposition 17. The Time complexity for parsing S3 by Pruned Graph-Structured Stack Parsing
is O(n?).

Similar in proposition 17, S,, (m > 3) is also prunable and the time complexity for parsing
Sm by Pruned Graph-Structured Stack Parsing is O(n?).

Ezample 21. Relations between (S : S S S/k) (1 < k < 4)and their parent sets in S3 in
Structured Graph Stack Parsing and Pruned Structured Graph Stack Parsing are shown in
Fig. 19 in which the upper part indicates the case for Structured Graph Stack Parsing and the

18

/el
3

Graph Structured Stack Parsing

5:5_S5 511
‘ 5:5_S Sz 'I

5:5_S 513

5:5_S5 511 5:5_55 1 5:5_5 51
‘s:s_ss;g ' ‘s:s_ss;g ' Pruning ‘5:5_5552 '
5:5_5 513 = H

¥ s:sssgg
'5:575554'

Pruned Graph Structured Stack Parsing

EREEEE
's:sfs 554'

Figure 19: Generation of (S: S S S,4) in S3 (pruned and unpruned version)

lower part indicates the case for Pruned Structured Graph Stack Parsing. In this figure, a” in
an input part is denoted as n and S : S S S is denoted as i.

The left part shows relations between (i,k)(1 < k£ < 3) and their parent sets after read-
ing "aaa". In unpruned case (upper left part), (i,j) € Parent({i,k))(1 < j < k < 3), ey €
Parent((¢, k)) hold from proposition 15. In pruned case (lower left part), (i, k—1) € Parent((i,k))(1 <
k < 4), ey € Parent((i,k)) hold from proposition 16.

The middle part shows relations between (i, k)(1 < k < 4) and their parent sets after reading
"aaaa". In unpruned case (upper middle part), (i,j) € Parent((i,4)) and (1 < j < 4), ¢ €
Parent((i,4)) hold. In pruned case (lower middle part), (i,j) € Parent((i,4)) (j = 2,j = 3) and
ep € Parent((7,4)) hold.

The right part shows relations between (i,k)(1 < k < 4) and their parent sets after prun-
ing. As (4,2) < (4,3) holds, (i,2) is deleted from Parent((i,4)) by pruning. Therefore (i,3) €
Parent((i,4)), eo € Parent holds. In this case, I"¥) (1 < k < 4) is conserved after pruning.

8 Applicable and Inapplicable grammars

In this section, we show examples of grammars that can be parsed or can not be parsed in O(n?)
by Graph Structured Stack Parsing and Pruned Graph Structured Stack Parsing.

From proposition 13, for a grammar G, if Parent(x) is separable for any z € E, then G can be
parsed in O(n?) by Graph Structured Stack Parsing. From proposition 13 and 14, if G is prunable,
then G can be parsed in O(n?) by Pruned Graph Structured Stack Parsing. Furthermore, similar
for proposition 13 and 14, we can prove that for a grammar G, if |Parent(z)| is constant(not
depend on n), then G can be parsed in O(n?).

The condition for not parsing in O(n?) by Graph Structured Stack Parsing and Pruned Graph
Structured Stack Parsing is that there exists # € E whose parent set has elements yy, - --,%; that
satisfy following conditions.

1.1 =0(n),
2.y; < yg does not hold for any j,k(1 < j,k <1).

Example 22. Let Gy, be context free grammar with following productions.
(r%) §":84 (r')S:aS (*)S:X () X:Xa () X:a
Hereafter we denote S:a_Sasiand X : X a asi'.
|Parent((i",n))| = O(n) holds because Parent((i',n)) = {(i,k)}(2 < k < n) and < relation does
not hold between (i, k)(1 < k < n) because Parent((i,1)) = {ep}, Parent({i,n)) = {{(i,n—1)}(2 <
n). Ggrr can NOT be parsed in O(n?) by neither Graph Structured Stack Parsing nor Pruned
Graph Structured Stack Parsing.

19

Figure 20: Relations among Parent sets

Example 23. Let Grr be context free grammar with following productions.
(r) §":84 (r')S:aS (*)S:X () X:aX (") X:a
Hereafter we denote S:a_S asiand X :a_X asi'.
Parent((i,n)) and Parent((i’,n)) is separable because Parent((i,1)) = {eg}, Parent({(i,n)) =
{(i,m — 1)}, Parent((i',n)) = {(i,n — 1), (#’,n — 1)}(2 < n) hold. Grr can be parsed in O(n?)
by Graph Structured Stack Parsing.

Example 24. Let G be context free grammar with following productions.
(S8 :54 (FHS:SX () S: X () X:Xa (Y X:a
Hereafter we denote S:a_S asiand X : X _a asi'.
Grr is prunable because (i,7) < (i,k)(1 < j < k < n) hold from Parent((i,n)) = {eo},
Parent((i',n)) = {(i,k)}(1 < k < n). Gy, can NOT be parsed in O(n?) by Graph Structured
Stack Parsing but can be parsed by Pruned Graph Structured Stack Parsing .

Parent relation between (i, 5), (¢',k) (1 < j,k <n)in Grr, Ggrr, G are shown in Fig. 20.

9 Application for Natural Language Processing

In this section, application of this algorithm for natural language processing is stated. In natural
language processing, large-scale grammars are prerequisite for parsing a great variety of sentences.
Such grammars are derived from a large-scale syntactically annoted corpus because it is difficult
to build such grammars by hand [6]. As these grammars are derived automatically, they are
highly ambiguous and some input sentence generates many parse trees.

Current approaches to reduce ambiguity are

(A) Use of probabilistic context free grammars [2].
(B) Modifying the language grammar [6].

Probabilistic context free grammar is a context free grammar in which probabilities are as-
signed to each productions or shift/reduce actions in an LR table. Therefore probabilistic con-
text free grammar can be regarded to assign total order(probabilities) between productions or
shift /reduce actions to determine the production or action to be selected. On the other hand,
as < relation of definition 15 can be regarded as partial order over e-items (to be exact, < is
preorder because it is reflexive and transitive but not antisymmetric), this algorithm assigns
partial order between e-items to be selected. As probabilities are assigned to each productions,
it is difficult to assign consistent probabilities over productions. In this algorithm, < relation is
consistent over e-items because it is defined recursively over e-items.

According to [6], the major ambiguities of a grammar for Japanese are the following.

(B-1) Compound noun structure

(B-2) Adnominal phrase attachment

(B-3) Conjunctive structure
The production for the compound noun structure is "CompoundNoun : CompoundNoun Com-
poundNoun" and it is modified to "CompoundNoun : Noun CompoundNoun" to reduce ambi-

guity.

20

The productions for the adnominal phrase attachment are "NounPhrase : AdnominalPhrase
NounPhrase" and "AdnominalPhrase : NounPhrase Particle" . The latter production is modi-
fied to "AdnominalPhrase : NounPhrase’ Particle" where NounPhrase’ is a nonterminal symbol
that derives same symbols as NounPhrase except AdnominalPhrase.
The productions for the conjugate structure is "NounPhrase : NounPhrase Particle NounPhrase"
and it is modified to "AdnominalPhrase : NounPhrase’ Particle".
The situations of above modifications are shown in Fig.21, Fig.22 and Fig.23. These figures are
modified from figures in [6].

As these modifications are done manually, it is difficult to make consistent modifications over
large-scale grammar. Productions mentioned above are essentially similar to the production(r!)
of Sy, therefore ambiguities are reduced by this algorithm without modifying productions.

10 Conclusion

In this report, I introduce a parsing algorithm that improves the time complexity by pruning the
edges of the graph structured stack. Many approaches such as use of tables and memo functions
have been proposed to improves the time complexity of parsing. These approaches improve the
complexity by suppressing redundant process that are already executed. This approach(pruning)
improves the complexity by suppressing redundant process that will be executed. This approach
uses stacks and data in stack can be regarded as data processed in future because all data in
stack will be processed and popped in future. Therefore it is possible to find redundant process
that will be executed in future in this algorithm.

References

[1] Earley, J. : An efficient context free parsing algorithm, Comm. ACM, 13 (1970) 94-102.

[2] Inui, K., Sornlertlamvanich, V., Tanaka, H. and Tokunaga, T. : Probabilistic GLR Parsing:
A New Formalization and Its Impact on Parsing Performance, Journal of Natural Language
Processing, 5 (1998) 33-52.

[3] Kipps, J. R. : GLR parsing in time O(n?), in [10], Chap. 4, 43-59.
[4] Leemakers, R. : A recursive ascent Earley parser, Info. Process. Lett. , 41 (1992) 87-91.

[5] Nederhof, M. J. : Generalized left-corner parsing, Proc. 6th Conf. on European Chapter
of the ACL, 1993, 305-314.

[6] Noro, T. , Hashimoto, T. , Tokunaga, T. and Tanaka, H. : Building a Large-Scale Japanese
Grammar. Journal of Natural Language Processing, 12 (2005) 3-31. (in Japanese)

[7] Schabes, Y. : Polynomial time and space shift-reduce parsing of arbitrary context-free gram-
mars, Proc. 29th ACL, 1991, 106-113.

[8] Shann, P. : Experiments with GLR and chart parsing, in [10], Chap. 2, 17-34.

[9] Sippu, S. and Soisalon-Soininen, E. : Parsing Theory, Vols. I and II, Springer-Verlag,
Berlin, 1988, 1990.

[10] Tomita, M. , ed. : Generalized LR Parsing, Kluwer Academic Publishers, 1991.

[11] Tomita, M., Ng, S. K. : The generalized LR parsing algorithm, in [10], Chap. 1, pp. 1-16
(1991).

21

CompeundNounPhrase : CompoundNeunPhrase CempoundNounPhrase CompeundNounPhrase : Noun CompoundNounPhrase

CompcundNounPhrasc
CompeundNounPhrase Noun CompoundNounPhrase
CompoundNounPhrase CompoundNounPhrase :> Ngun CompoundNounPhrase
Noun Noun Noun Nciun Noun Nciun
kuukou kal!ren umetate chi kuukou kanren umetate chi
(airport) (relatec) (reclaimed) (ground) (airport) (related) (reclaimed) (ground)

Figure 21: Praduction modification for Compound Noun Struc:ure

NounPhrase : AdnominalPhrase NounPhrase NounPhrase : AdnominalPhrase NounPhrase
AdnominalPhrase : NounPhrase Particle AdnominalPhrase : NounPhrase™ Particle

NP (Noun Prrase)
NP

W i > /\
NP P (Particle))P\ /NP\
NP’ P AP NP

[T
kaisha no keieisha no taifin kaisha ro keieisha no taijin
(company) (of) (executive) (of) {resignation) (company) (cf) (executive) (of) (resignation)

Figure 22: Production modificaticn for Adnominal Phrase Attachment

NounPhrase : AdnominalPhrase NounPhrase NounPhrase : AdnominalPhrase NounPhrase

NounPhrase : NounPhrase Particle NounPhrase
AdnominalPhrase : NounPhrase Particle AdnominalPhrase : NounPhrase’ Particle

AP (Adngminel Phrase) P AP NP

P :> N/\ AP/\P
le) I

nihon to chuugcku no kankei nihon to chuugoku no kankei

(and) (China) (of (relation) {Japan) (and) (China) (off (relation)

(Japan)

Figure 23: Production moditication tor Conjunctive Structure

22

Appendix Proofs of Theorem 1 and Theorem 2

I hereafter abbreviate Reduce(™ (L%, a) by R™ (L%, a), and Reduce,) (E%, a) by R,)(E“, a).

Theorem 1. Fora € Vp*, if A € L® then \ € E“.
Proof. From Algorithm 1, A € L® is expressed as one of the following five forms:

1. a=¢e, A =ep.

2. a=d -a,\=p-yforz € Jg, where N = -z € LY, z € SOeitem(a), y € Shift0(z, a).

3. a=d a, \=p-xz-yforz € Jg, where N = -2 € LY | € Sleitem(a), y € Shiftl(z, a).

4. o= a, \=p-yfor x,2’ € Jg where N = p-2' -2 € RO(LY, a) C E* n
x € Redex, z' € R0eitem(z), y € Reduced(z',).

5a=a -a, \=p-2 -yforx € J; where N = p-2' -2 € RW(LY a) C E* n
z € Redex, 2’ € Rleitem(z), y € Reducel (z/, z).

For Case 1, this theorem holds, because L* = {ey} = E*.
For Cases 2, 3, 4 and 5 following relations (A) and (B) hold from the induction hypothesis.
Parent(A1) =0, (A)
Aj € Parent(A(j1))(1 <j<gr—1). (B)
Moreover, (C) and (D) hold in cases 2, 3, 4 and 5.
>\ﬂ € B, (C)
Agr—1) € Parent(Ny). (D)
From (B) and (D)
Aj € Parent(A(j 1)) (1 < j < iA) (E)
holds. By (A), (C) and (E), A is in E%, and this theorem is satisfied.
Proofs for (C) and (D) in cases 2, 3, 4 and 5 are as follows.
(2—C) As X\j =y € Shift0(z,a) and = = /\g €Ly, M=y€EEy,=E, holds.
(2-D) As py = N(yn_1) € Parent(\'y) = Parent(x) (by induction hypothesis)
and Parent(y) = Parent(z) (from lemma 1),
Agr—1) = py € Parent(z) = Parent(y) = Parent();) holds.
(3—C) As M\ =y € Shiftl(z,a) and 2 = X, € Eyy, N =y € Ey.q, = Ey holds.
(3-D) As z =), € Ey (by induction hypothesis) and
Parent(y) = {2z | 2 € Ey,z € Sleitem(a),y € Shift1(z,a)} (from case 3 in Algorithm 2),
Agr—1) = T € Parent(y) = Parent();) holds.
(4—C) As Ay =y € ReduceO(z',z) and = € E,, 2’ € Parent(z), M\ =y € E, holds.
(4-D) As 2’ = X (yv_1) € Parent(\'y) = Parent(x) (by induction hypothesis)
and Parent(z) C Parent(y) (from case 4 of Algorithm 2),
Agr—1) = «' € Parent(x) C Parent(y) = Parent()\;) holds.
(6—C) As Ay =y € Reducel(z',z) and = € E,, z' € Parent(r) M\ =y € E, holds.
(5-D) As 2’ = >‘I(u/\'—1) € Parent(\;,,) = Parent(z) (by induction hypothesis) and
' € Parent(y) (from case 5 of Algorithm 2 and = = Xy € Ey C R,y (E%, a)),
Agr—1) = #' € Parent(y) = Parent()\;) holds.

Theorem 2. For a € Vp*, if o0 € E® then o € L®.

Proof. From Algorithm 2, o € E* is expressed as one of the following five forms:
1. a=¢,0=c¢y.

23

> 0,

v

0,

2. a=d-a, o=71-yforx € Jg where 7-x € B 2 € SOeitem(a), y € Shift0(z,a).
3.a=d -a, o=71-x-y where 7-2 € E¥, x € Sleitem(a), y € Shift1(x, a).

4. o =o' -a, o =71-yfor ', x € Jg where 7-2' -z € E,
n >0, z € Redex, 2’ € R(n)(Ea,, a), = € ROeitem(z),y € Reduced(2', z).

5. a=a' -a, o=1-2' -y forz € Jg where 7-2' -2 € B,
n >0, z € Redex, 2z’ € R(n)(EO", a), x € Rleitem(z), y € Reducel(z', z).

For Case 1, this theorem holds, since E* = {eg} = L*.

For case 2, as 7-x € LY (by -z € E® and induction hypothesis) and x € SOeitem(a), y €
Shift0(x,a) hold, o = 7 -y € L% = L® s satisfied from case 2 of Algorithm2.
For case 3, o € LY@ = Lo is satisfied similar to case 2.

For case 4, as 7-a' -z € LY (by 7-2'-z € E* and induction hypothesis) and z € Redex, ' €
R(n)(Ea,,a), x € ROeitem(z),y € ReduceO(z’,z) hold, 0 = 7-y € L® is satisfied from case 4
of Algorithm2.

For case 5, o € L% is satisfied similar to case 4. [l

24

