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Abstract

It is very important that compiler optimization works correctly with-
out changing the semantics of a program. However, because there are
many complex optimizations, it is generally difficult to implement them
correctly. In this paper, we propose a technique for testing whether or
not the optimization transformations to the program have been performed
correctly, by using temporal logic after the execution of the optimizer. We
describe the properties that program points modified by the optimization
have to satisfy to preserve the program semantics, in terms of tempo-
ral logic. Then the system performs model checking on the optimized
program, to check if these program points satisfy the logical formulas
described. This technique has the advantages that it can be applied to
complex optimizers that already exist, and that checking occurs within
a realistic time. We have implemented and executed this technique and
found an unknown bug in an optimizer within a widely-used compiler.

1 Introduction

1.1 Background

Optimization in compilers is an important technique and is being actively inves-
tigated. However, optimizations are often complex, and bugs which change the
program semantics may easily be introduced in several phases, including algo-
rithm design and implementation. Moreover, bugs in optimizations are generally
difficult to find and to remove, for the following reasons:

• Even if the optimization seems to be achieved normally, the optimized
object code may cause unintended behavior. This cannot be discovered
until the object code is run, and sometimes not even then.

• When we find a bug that changes the meaning of the object code, it
is difficult to identify which part of the optimizer created the erroneous
transformation.

If bugs exist in optimizers, the program compiled with optimization is not guar-
anteed to behave correctly. This background shows that techniques for assuring
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that there are no bugs in optimizers are quite important. Even if it is not possi-
ble to completely assure that there are no bugs in optimizers, at least we must
guarantee that the semantics of the optimized program is not changed.

Previous work that improves the reliability of compiler optimizers includes:

• Validating that the optimizers themselves are correct. Validated optimiz-
ers can optimize any program without changing its behavior.

• Verifying by checking that the transformation did not change the seman-
tics of the program after executing the optimizers. Checked programs can
be inferred to be correctly optimized.

Validation studies include Lacey et al.’s work [12] and Lerner et al.’s work
[13, 14]. However, they cannot deal with complex optimizations. Verification
studies include Rinard and Marinov’s work [16] and Necula’s work [15]. Rinard
and Marinov’s work can show the strict correctness of program transformation,
but it is not clear how practical it is if applied in a real setting. The work
of Necula is, by contrast, quite practical, but there is no guarantee of strict
correctness.

1.2 Outline

In this paper, we propose a method that checks whether program transformation
by the optimizer preserves the behavior of the program after the execution of
the optimization.

We use the temporal logic formula CTL-FV [12]. We first describe, in terms
of CTL-FV, a property that each part of the program changed by optimization
transformation must satisfy to preserve the program semantics. Then we check
whether the property is satisfied, by model checking after execution of the
optimization. If all checks succeed, the optimization has executed correctly,
and we can conclude that the program semantics is preserved.

The advantages of our method are as follows:

• It can be applied to existing optimizers.

• It can check a broader range of optimizers than those that can be handled
by Lacey et al.

• Identification of cause is easy when bugs are found.

• Checking occurs within a practicable time.

In order to confirm the applicability of our method, we applied this method
to several optimizers implemented in the widely-used COINS (COmpiler INfraS-
tructure) compiler [6]. As a result, we found an unknown bug in the optimizer
for loop invariant code motion.

The details of the proposed method and consideration of its usefulness are
presented in section 4 and section 6, respectively.
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(a) before optimization (b) after optimization

Figure 1: Example of loop invariant code motion

2 Program Optimization

Program optimization is a program transformation made by the compiler for
the purpose of improving the execution speed or the compactness of the pro-
gram. The optimization is generally made by analyzing the characteristics of
the program, and transforming it based on these results.

2.1 Correctness of optimization

What is required, in optimization, is at least to have the same program behavior
before and after optimization. For example, if the return value of a function
call differs before and after optimization, this will change the behavior of the
program. When the behavior of the program does not change, we say that
the program semantics is preserved. Optimization that does not preserve the
program semantics is an incorrect optimization.

Apart from the correctness of optimization, an optimization is required to
raise the efficiency of the program. However,

• There are cases where a combination of optimizations gives a better result
than applying each of them individually.

• Usually, an optimizer improves only conservatively if no profile information
is given.

Therefore, whether or not efficiency is really improved by an optimizer is a dif-
ficult problem and cannot be shown in general. However, this is not a necessary
condition for program semantics preservation, and we do not consider the issue
in this paper. From now on, when we say “optimization is executed correctly”,
this means that at least the optimized program preserves its semantics.
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(a) before optimization (b) after optimization

Figure 2: Example of incorrect optimization of loop invariant code motion

2.2 Example of optimization and its correctness

2.2.1 Loop invariant code motion

An expression whose value is always the same during a loop is called a loop
invariant expression. An example of a loop invariant expression is an expression
whose operands are all variables defined outside the loop or are constants. A
loop invariant expression has the same value even if its computation is made
outside the loop. Therefore an optimization to compute its value before entering
the loop reduces the number of computations at runtime. This optimization is
called loop invariant code motion.

Fig. 1 is an example of loop invariant code motion. In Fig. 1(a), because
a + b is an expression whose value does not change inside the loop, we compute
a + b before the loop and assign its value to a temporary t as in Fig. 1(b). Use
of the original a + b in the loop is replaced by the temporary t. Such a move
of the point of computation of an expression from the original point to a point
before the loop is called hoisting an expression.

2.2.2 Correctness of loop invariant code motion

In the example of loop invariant code motion in Fig. 1, modification for opti-
mization takes place at the following two points:

• hoisting a + b, that is, inserting a + b before the loop

• use of the original a + b is replaced by a temporary t.

We call these the insertion point and replacement point, respectively.
Below, we explain the property that each transformation must satisfy, so

that loop invariant code motion does not change the program semantics.
Insertion of hoisted expression

In order that insertion of t = a + b does not change the program semantics,
the following condition must hold:

• the value of t defined at inserted statement t = a + b is not used at points
other than the replacement point.
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If the value of t is used at points other than replacement point, the original
value of t at that point should be other than the value of a + b, so the program
semantics will change.

If the expression to be hoisted is an expression that might cause an exception
such as a/b, further caution is necessary. Fig. 2 is an example of hoisting a/b,
but it is incorrect for the following reason. In Fig. 2(a), there may be an
execution path that does not go through node 3. Therefore, an execution such
as the following exists: “Although the value of b is 0, the execution exits the
loop without passing node 3, causing no exception.” However, if we hoist a/b
as in Fig. 2(b), a/b is always computed, and it may cause an exception that
did not occur originally.

According to Aho et al.[1] and others, hoisting and inserting an expression
that may cause an exception must further satisfy the following condition:

• We do not insert a computation in an execution path that did not origi-
nally contain the computation. 1

Replacement of use of expression
For the replacement of a + b by t to preserve the program semantics, the

following condition must be satisfied:

• the values of a + b and t are equal.

In other words, if there are no statements that define t, a and b between the
insertion point and the replacement point, the program semantics does not
change.

3 Temporal Logic

Our method uses model checking based on the temporal logic CTL-FV. In this
section, we first describe the model of the program that is subject to being
checked, and then present the syntax and semantics of CTL-FV.

3.1 Model of the program

In order to perform model checking by CTL-FV, we must formally represent
the program as a state transition model. As the optimization of a program is
performed on a control flow graph, it is natural for the state transition model
used in our method to be based on a control flow graph [1, 2].
Definition1 (Control flow model) We consider a control flow model G =
(N,E) where each node corresponds to a statement. Here, N is a set of nodes
and E is a set of directed edges between nodes.

The set of all atomic propositions is denoted by AP . For each node n ∈ N ,
we denote the mapping which gives the set of atomic formula L(n) that holds
at that node by the mapping L : N → 2AP . The triplet M = (N,E,L) is called
the control flow model. This is a Kripke structure [5], where N corresponds to
the set of states, and E ⊆ N ×N corresponds to the transition between states.
If there is a transition between states n and n′, i.e., (n, n′) ∈ E, it is often

1Strictly speaking this is not correct because this will change the number of calls of the
signal handler which captures exceptions, but most optimizers rarely consider it.
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L(n) =
{ node(N) | n = N 3}

∪ { block(B) | n is a statement in basic block B }
∪ { use(X) | variable X is used in n }
∪ { def(X) | variable X is defined in n }
∪ { comp(E) | expression E is computed in n }
∪ { trans(E) | expression E is not changed in n, that is,

variables in E are not defined in n }
∪ { mark(M) | n has a mark M }

Table 1: Definition of L(n)

denoted by n → n′. From now on, the term model refers to this control flow
model.
Definition2 (Path on a control flow model) In a control flow model M =
(N,E,L), if an infinite sequence of states n0, n1, n2, ... satisfies ni → ni+1 for any
i ≥ 0, this infinite sequence is called an infinite path. If a finite sequence of states
n0, n1, ..., nm satisfies ni → ni+1 for any i (0 ≤ i < m), and ∀n ∈ N,¬(nm → n),
this finite sequence is called a finite path. An infinite path and a finite path
together are called a path.

When n1 → n2 holds, the reverse of this transition relation is called a reverse
transition, and it is denoted by n2 →◦ n1. The path defined for this reverse
transition is called a reverse path.

The definition of L(n) in a control flow model M = (N,E,L) is shown in
Table 1. 2

3.2 CTL-FV

The temporal logic used in our method is CTL-FV [12] proposed by Lacey et
al. It is a logic based on CTL [4, 5], which is a type of branching-time temporal
logic, and has the following distinctive features:

• It can use quantifiers
←−
E and

←−
A , which can deal with reverse paths.

• Atomic propositions are generalized to propositions that can use free vari-
ables as parameters.

Intuitively,
←−
E and

←−
A are path quantifiers made by just reversing the direction

of the usual path quantifiers E and A, respectively.
There are three reasons for our adoption of CTL-FV from among the many

temporal logics:

• It is a logic following the execution paths, and is easy to understand intu-
itively.

• It can handle the reverse paths naturally, and is suited to describing the
characteristics of control flow and dataflow.

2The correct definition depends on the subject programming language. The definition for
the COINS intermediate representation LIR can be found in [7].

3What is attached to node 1 is node(1).
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φ ::= true
φ ::= false
φ ::= α
φ ::= ¬φ
φ ::= φ ∧ φ

φ ::= E ψ
φ ::= A ψ

φ ::=
←−
E ψ

φ ::=
←−
A ψ

ψ ::= X φ
ψ ::= φ U φ
ψ ::= φ W φ

Table 2: Syntax of CTL-FV

φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)
φ1 → φ2 ≡ ¬φ1 ∨ φ2

EF φ ≡ E (true U φ)
AF φ ≡ A (true U φ)←−
EF φ ≡ ←−

E (true U φ)←−
AF φ ≡ ←−

A (true U φ)

Table 3: Syntax sugar of CTL-FV

• It is possible to perform model checking efficiently.

Syntax of CTL-FV
The syntax of CTL-FV is shown in Table 2. φ is a nonterminal deriving

expression concerning states (state expressions), ψ is a nonterminal deriving
expression concerning paths (path expressions), and α is a proposition with free
variables as parameters.

Combinators that are often used, but which do not appear in the syntax
rules, are defined as abbreviations, as shown in Table 3.
Semantics of CTL-FV

We write M,n |= φ when state expression φ holds at state n on model M .
We write M,p |= ψ when path expression ψ holds on path p. In both cases,
we often omit M when M is understood, and simply write n |= φ and p |= ψ,
respectively.

The definition of the semantics of CTL-FV for the control flow model is
shown in Table 4 4.

4 Proposed Method

4.1 Outline of the proposed method

In this paper, as outlined in section 1.2, we propose a method that checks
whether the program transformation made by the optimizer has preserved the
program semantics after the execution of optimization.

Fig. 3 shows the outline of the proposed method. The check is made as
follows:

• We call the points of the subject program transformed by the optimizer
transformed points. For each transformed point use the temporal logic

4Strictly speaking, the semantics is defined on formulas by binding all free variables in the
formulas by the symbols of the program.
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state formula
n |= true iff true
n |= false iff false
n |= α iff α ∈ L(n)
n |= ¬φ iff not n |= φ
n |= φ1 ∧ φ2 iff n |= φ1 and n |= φ2

n |= Eψ iff ∃p = n→ n1..., p |= ψ
n |= Aψ iff ∀p = n→ n1..., p |= ψ

n |=←−Eψ iff ∃p = n→◦ n1..., p |= ψ

n |=←−Aψ iff ∀p = n→◦ n1..., p |= ψ

path formula (p = n0 →′ n1... , →′ is → or →◦)
p |= Xφ iff n1 exists and n1 |= φ

p |= φ1Uφ2 iff ∃i ≥ 0 [ ni |= φ2 and
∀j [ 0 ≤ j < i implies nj |= φ1 ]]

p |= φ1Wφ2 iff (p |= φ1Uφ2) or
(∀k ≥ 0 [ nk |= φ1 and nk+i exists ])

Table 4: Semantic definition of CTL-FV

CTL-FV to describe, beforehand, the property of the point that must
hold to preserve the program semantics.

• Check, by model checking, whether all transformed points satisfy the de-
scribed formulas after the execution of optimization.

• If all checks succeed, we judge that the optimization was executed cor-
rectly. If any check fails, the corresponding transformation is erroneous,
and we judge that there are bugs in the optimizer.

To check the transformed points of the subject program after execution of
the optimizer, we put marks corresponding to the type of transformation at
the transformed points during optimization. We can include the marking by
extending the optimizers. We will now introduce some terminology. We denote
the parts of the optimizer that perform transformations to the subject program
for the purpose of optimization as transformation points. In addition, we also
denote the transformation points of the optimizer extended for adding marks
to the subject program as extension points. Therefore, we introduce code to
add marks to the transformed points of the subject program at the extension
points of the optimizer. This extension can be made easily, with almost no
modification to the source code of the optimizer itself, by using aspect-oriented
programming.

Our method does not validate the correctness of the optimizer itself, but it
is a method that checks whether the result of the execution of the optimizer is
correct.

The check used in our method simply checks if the transformed points satisfy
the CTL-FV formulas. It does not validate if the semantics of the whole program
is preserved in a strict sense. However, we think the method of Lacey et al. [12],
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Figure 3: Outline of the proposed method

which proposed a method of proving preservation of the program semantics, can
be also utilized in our method. Proof of preservation of the program semantics
will be one of our future considerations.

4.2 Steps to realization of the proposed method

The proposed method comprises the following five steps:

¥ Preparation:

1. For each optimization, describe the condition for the correctness of the
optimization, as a specification to be checked.

2. Extend the existing optimizer so that marks can be added to points trans-
formed during optimization.

¥ Before optimization:

3. Make the model of the program.

¥ During the execution of the optimization:

4. Mark the points of the program transformed by the optimizer.

¥ After the optimization:

5. Perform model checking.

The details of each step will be explained in the following. We will use the
optimization of loop invariant code motion shown in section 2.2 as an example
during the explanation. The points that are transformed in loop invariant code
motion were the insertion point and the replacement point. Fig. 4(b) is the flow
graph after the optimization, where marks are added at each transformed point.
The insertion point is marked by (ins, t, a + b), and the replacement point is
marked by (rpl, t, a + b), showing the type of transformation at each point.
Step1 : Description of the checking specification
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(a) before optimization (b) with marks

Figure 4: Example of loop invariant code motion (with marks)

In our method, we describe in advance, using CTL-FV, the specification to
be checked, which the transformed points of the optimization must satisfy to
preserve the program semantics. We call this description the checking spec-
ification, or simply the specification. Because the method of transformation
and the property that the transformation should satisfy will differ, depending
on the optimization, the description must be individually described for each
optimization.

As presented in section 4.1, each transformed point of the subject program
requires its own way of marking, and so each is marked individually. Therefore,
it is natural that a description is given for each type of mark. If we denote a
mark by m and the corresponding CTL-FV formula by φ, the specification is
expressed as their pair 〈m,φ〉.

In the following, we consider the description of the checking specification for
the loop invariant code motion of Fig. 4.
The point where the hoisted expression is inserted

As presented in section 2.2, correctness at the point where t = a + b is in-
serted requires that:

• The value of t, defined at the inserted statement t = a + b, is not used at
points other than the replacement point.

In other words,

• There are no paths starting from the insertion point such that “t is used
at points other than the replacement point without redefinition of t”.

If we denote t by the free variable t, expression a + b by the free variable e,
and consider that the replacement point is marked by (rpl, t, e), the CTL-FV
formula expressing this is:

¬E (¬def(t) U (use(t) ∧ ¬mark(rpl, t, e))) (1)

Therefore, if we denote formula (1) by φ1, the specification to be satisfied is
〈(ins, t, e), φ1〉.
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(a) before optimiza-
tion

(b) with marks

Figure 5: An example of erroneous loop invariant code motion (with marks)

In cases where an expression which may cause an exception, such as a/b, is
hoisted and inserted, the following condition, presented in section 2.2, is also
necessary:

• Do not insert a computation of a/b in the execution path where there was
originally no computation of a/b.

In order to distinguish this from the hoisting of expressions that do not cause
exceptions, the point where an exception-prone expression such as division is
hoisted and inserted is marked by (insex, t, e), as in Fig. 5(b). We can rephrase
the above as:

• In all paths starting from the insertion point with this mark, we reach the
replacement point.

If we denote a/b by a free variable e, the CTL-FV formula expressing this is5:

A (true W mark(rpl, t, e)) (2)

Therefore, if we denote formula (1) by φ1 and formula (2) by φ2, the specifica-
tion to be satisfied is 〈(insex, t, e), φ1 ∧ φ2〉.
The point where use of an expression is replaced

As presented in section 2.2, correctness at the point where use of a + b is
replaced by t requires that:

• The values of a + b and t at the replacement point are equal.

In other words,

• In all reverse paths starting from the replacement point, the values of
a + b and t do not change until they reach the insertion point.

5The reason why we use a W operator instead of a U operator is to avoid considering paths
that do not reach the exit point, such as an infinite loop.
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Unlike the case of the insertion point, this same condition is sufficient for re-
placement of an expression that may cause an exception, such as a/b.

If we denote a temporary variable t by a free variable t and an expression
a + b by a free variable e, the replacement point is the node marked by either
the mark (ins, t, e) or the mark (insex, t, e). Therefore, the CTL-FV formula
is5:

←−
A ((¬def(t) ∧ trans(e)) W (mark(ins, t, e) ∨ mark(insex, t, e))) (3)

Therefore, if we denote formula (3) by φ3, the specification to be satisfied is
〈(rpl, t, e), φ3〉.
Step2 : Extension of the existing optimizer

In our method, in order to realize the marking to the transformed part of
the program6 during the execution of the optimizer, we need to insert code for
adding marks into those sections of the source code of the optimizer that perform
program transformation.

This insertion of code into the optimizer can utilize aspect-oriented pro-
gramming, which can minimize the direct modification of the source code in the
existing optimizer. The only modification of the optimizer source code is the
reluctant insertion of the method call with an empty statement, for specifying
the code insertion point. We implemented this using the Java aspect-oriented
system GluonJ [3].
Step3 : Modeling of the program

In the proposed method, we model the control flow graph as a control flow
model, as presented in section 3.1. With respect to the model, we could consider
utilizing the control flow graph as is, which is an intermediate form of the
compiler. However, this approach has the following problem:

• In an optimization such as dead code elimination, which deletes state-
ments, if we delete a node of the graph itself, we cannot identify the
deleted node in the post-optimization flow graph. If we cannot identify
the point of deletion, we cannot check the transformed point.

There might be an implementation of the optimizer such that, when deleting
a statement, the node is replaced by a “skip” or “nop” statement, which means
“do nothing”, instead of actually deleting the node. However, most optimizers
generally delete the node itself in the control flow graph in such cases, so we
will have to handle this issue.

The simplest and most robust solution to this issue is to make a copy of
the control flow graph before optimization, and use it as the model. Each time
the optimizer performs a transformation on the original program, we make a
matching modification to the model copy. Then, for a transformation that
deletes a node, we cope with it by changing the node copy to “skip”.

Our implementation uses this method to handle the issue of node deletion.
Step4 : Marking the transformed points

During optimization, we add marks to the program according to the trans-
formation, as shown in Fig. 4(b). This occurs automatically because we have
extended the optimizer.
Step5 : Model checking

6The program may be in an intermediate form such as a control flow graph.
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After execution of the optimization, the model of the subject program to
be checked and the set of checking specifications are obtained. Using them, we
check whether the transformed points of the program satisfy the property that
preserves the semantics.

Because specification 〈m,φ〉 means

• φ should hold at the node marked by m,

this has the same meaning as the following formula:7

∀n ∈ N, n |= mark(m)→ φ (4)

The model checking is done by translating the specification into a single CTL-
FV formula in the form of formula (4).

Incidentally, a CTL-FV formula containing free variables cannot be model-
checked as is. We have to bind free variables in the CTL-FV formula to symbols
actually appearing in the program, and transform it into a formula containing
no free variables. This binding is performed by utilizing the marks added during
the optimization.

In the example of Fig. 4(b), we added two marks. The CTL-FV formula
corresponding to mark (ins, t, a + b) is formula (1). If we consider the corre-
spondence between the actual mark and formula (1), t corresponds to t and
a + b corresponds to e. Therefore, we bind formula (1) using them. This gives
formula (5):

¬E (¬def(t) U (use(t) ∧ ¬mark(rpl, t, a + b))) (5)

Similarly, if we bind formula (3), which corresponds to (rpl, t, a + b), we get
formula (6):

←−
A ((¬def(t) ∧ trans(a + b)) W

(mark(ins, t, a + b) ∨mark(insex, t, a + b))) (6)

From these two formulas and formula (4), the final formulas to be used in the
model checking are:

|= mark(ins, t, a + b)→ φ′1 (7)

|= mark(rpl, t, a + b)→ φ′3 (8)

Here, φ′1 is formula (5), and φ′3 is formula (6).
According to Fang and Sassa [10], when we want to generate optimizers

using CTL-FV formulas, the number of combinations of binding of free variables
greatly influences the time required for model checking. However, in our method,
the binding is made using actual marks. Therefore, it is possible to reduce the
number of combinations to only a few.

There are several ways of performing model checking. Our implementation
used the algorithm based on classical CTL model checking given in [4].

7The meaning is the same if we omit n and write |= mark(m) → φ.

13



5 Application to Actual Optimizers

In the backend of the COINS compiler [6], many optimizers that handle its
Low-level Intermediate Representation (LIR) [7] are implemented, especially a
rich set of optimizers based on the Static Single Assignment (SSA) form.

We applied our proposed method to the following optimizers which operate
on LIR:

¥ In the SSA form:

• loop invariant code motion

• constant propagation with conditional branches

• copy propagation

• common subexpression elimination

• dead code elimination

¥ In the normal (non-SSA) form:

• lazy code motion8[11]

Hereafter, we will describe details of the application to loop invariant code
motion and constant propagation with conditional branches in the SSA form.

5.1 SSA form

An SSA form is a program representation in which the definition of each variable
appears only once in the program text [2, 9]. The SSA form is said to be
favorable for program optimization.

The SSA form has the following advantageous properties:

• Only one definition reaches a use of a variable.

• When different definitions of a variable v merge at a node n in the control
flow graph, a φ function is inserted at the beginning of n, which can
distinguish the values of v reaching that point.

5.2 Loop invariant code motion

In COINS, loop invariant code motion in the SSA form is implemented. This
optimization is effectively the same as the loop invariant code motion in the
normal (non-SSA) form explained in section 2.2 and section 4.2. It comprises
two transformations:

• Hoist the loop invariant expression and insert it before the loop.

• Replace the use of the loop invariant expression by a temporary variable.

8Not included in the standard COINS distribution.
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However, the properties that these transformed points must satisfy to preserve
the program semantics are slightly different from those in section 4.2. They are
properties utilizing the characteristics of the SSA form.
Point where hoisted expression is inserted

In the SSA form, redefinition of variables is not allowed. Therefore, when
t = e is inserted, the condition of correctness is now that t is not defined in other
nodes, instead of formula (1). If we denote the node where t = e is inserted by
n, the CTL-FV formula which must hold at the insertion-point node n is:

¬EF (¬node(n) ∧ def(t)) ∧ ¬←−EF (¬node(n) ∧ def(t)) (9)

In other words, this is a formula that specifies that there are no nodes defining
t other than n. In addition, if e is an expression which may cause an exception,
such as a/b, formula (2) is necessary as a condition of correctness, similarly to
the normal-form case.
Point where use of expression is replaced

The condition for the point where expression e is replaced by temporary
variable t is sufficient if we use formula (3), as in the case for the normal form.
However, for SSA form, it is guaranteed by formula (9) that t is not defined at
any position other than the insertion point. Therefore, ¬def(t) in formula (3)
can be omitted. Then, the CTL-FV formula to be satisfied at the node of the
replacement point can be written as:

←−
A (trans(e) W (mark(ins, t, e) ∨mark(insex, t, e))) (10)

As described above, the proposed method can similarly handle both opti-
mization for the normal form and optimization for the SSA form, by paying
attention to the difference between their properties.

5.3 Constant propagation with conditional branches

COINS implements a powerful constant propagation algorithm in SSA form
called “constant propagation with conditional branches” [20].

In this section, a node of the control flow graph may contain several state-
ments instead of one statement. Fig. 6 is an example in which constant prop-
agation with conditional branches is applied. If we traverse the graph of Fig.
6(a) in sequence from the entry point, we know that t1 always has the value 0
and block B4 is unreachable. This optimization is not based on analysis using
dataflow equations. Rather, it is an optimization based on the framework of the
abstract interpretation, in which values are checked by traversing the control
flow graph.

After optimization, the program becomes as shown in Fig. 6(b). The use of
variables that are known to always have constant values, such as t0, t1, and
k0, are replaced by constants, and assignments to these variables are eliminated.
Furthermore, statements in unreachable blocks such as B4 and branches to those
blocks are eliminated.

We consider that this optimization of constant propagation with conditional
branches cannot be performed by the method of Lacey et al. However, with our
method, we can check whether this optimization was correctly executed. The
reason will be explained in section 5.3.2.
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(a) before optimization (b) after optimization (with marks)

Figure 6: Example of constant propagation with conditional branches

5.3.1 Correctness of constant propagation with conditional branches

The set of transformed points of constant propagation with conditional branches
can be classified into the following five types:

1. The point where an assignment is deleted because the value of variable x
becomes a constant c by assignment to x. We mark it by (rm, x, c).

2. The point where the use of variable x is replaced by constant c. We mark
it by (rpl, x, c).

3. The point where a branch to block b is deleted. We mark it by (rm e, b).

4. The point where statements in the node of an unreachable block are
deleted. We mark it by (unreach).

5. The point where a parameter of a φ function corresponding to an unreach-
able block p is deleted. We mark it by (nouse, x, p).

In the following, we briefly present the correctness of these transformations and
give their specifications that we described.
Point where assignment of constant is deleted

If the right-hand side e of assignment x = e can be evaluated to constant c,
the value of x is c, and all later use of x can be replaced by c. Therefore, this
assignment can be deleted.

The method of evaluation differs depending on whether or not the right-hand
side e is a φ function:

• In the case when e is a φ function, e is evaluated to c, if each variable used
in e has the constant value c or is a variable evaluated when the control
flow comes from unreachable nodes.
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• In the case when e is not a φ function, if the variables used in e are all
constants9, and the result of evaluation of the expression is c, e is evaluated
to c.

Note that if x is a variable whose value is a constant c, the node where this
statement resides is marked by (rpl, x, c). Note also that if variable x in a φ
function is a variable coming from an unreachable block p, the node where this
statement resides has the mark (nouse, x, p).

This method of evaluation is defined in the function eval as follows:

eval(c) = c

eval(x) =




> if marked (nouse, x)
c if marked (rpl, x, c)
⊥ otherwise

eval(x op y) =





c if eval(x) = c1
∧ eval(y) = c2
∧ c1 op c2 = c

⊥ otherwise

eval(φ(x1, ..)) =





c if ∀xi, eval(xi) = c
∨ eval(xi) = >

⊥ otherwise

Here, > is a symbol indications that the variable may be some as yet unde-
termined constant (undetermined), and ⊥ is a symbol indicating that a constant
value cannot be guaranteed (indefinite) [20]. In addition, c, c1, and c2 refer to
constants, x and y refer to variables, and op refers to an arithmetic operation.

If eval(e) = c, the statement x = e can be deleted, and the node is marked
by (rm, x, c). The formula checked at this node is:

eval(e) = c (11)

Strictly speaking, this formula is not a CTL-FV, as defined in section 3.2. How-
ever, it can be checked at the time of marking by investigating the statements of
the node and the marks attached at that time, and needs no validation by model
checking. Therefore, we perform this check concerning the marks by computing
eval(e) at the time of marking.
Point where use of variable is replaced by constant

Use of variable x at a node, where the value of x is the constant c, can be
replaced by c. The condition that the value of x is c at a node n is that there
is a node m equivalent to the statement x = c in a predecessor path, and m
dominates n. At a node m where a statement equivalent to x = c resides, the
statement is deleted, and the mark (rm, x, c) is attached.

If we also consider deleting an unreached block, it suffices that, in all pre-
decessor paths of n, a node m that dominates node n exists or an unreachable
block exists. Therefore, the formula to be checked at node n is:

←−
A (true W (mark(rm, x, c) ∨mark(unreach))) (12)

A little more care is needed when replacing parameter x of a φ function by a
constant c. If x is a parameter evaluated when control flows from a predecessor

9Cases such as x in 0× x can be handled specially.
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block p, the last statement of p must be dominated by a node m that contains
a statement equivalent to x = c, but the last statements of predecessor blocks
other than p may not be dominated by m. For example, in Fig. 6, t3 is replaced
by 0 at t1 = φ(t0, t3) of block B2. t3 must be defined to have the value 0 when
control comes from B5, but it may undefined if control comes from B1. From
the above, if we denote by b the block where node n resides, and consider that
another φ function node may exist in b before n, replacement of x by c is correct
if the following condition holds:

• In all reverse paths from n, a node of block b (this is the node of the φ
function) may appear several times, and after these appearances, a node
of another block (this is the predecessor block of b) appears. If the latter
block is p, the formula (12) must hold at the last node of that block.

If we put a special mark (rplφ, x, c) at the replacement point of the parame-
ter x of a φ function, the formula to be checked at node n with mark (rplφ, x, c)
attached is: ←−

A (block(b) U (block(p)→ φ)) (13)

Here, φ is formula (12).
Point where branch is deleted

If the conditional expression e of a conditional branch can be evaluated
to either true or false, the branch can be decided at compile time, and an
unnecessary branch can be deleted. Similarly to the handling of points where
constant assignment statements are deleted, this check can also be made at the
time of marking. This is similar to the computation of the eval function, and
model checking is not necessary.
Point where statements of unreachable block are deleted

If there are no edges to block b, b is an unreachable block. We mark nodes
in b by (unreach). If all branches to b are deleted, b becomes an unreachable
block. A node in an unreachable block satisfies one of the following conditions:

• If the node is at the beginning of a block, the previous node should have
been a node that is a statement where a branch was deleted (it is marked
by (rm e, b)).

• If the node is not at the beginning of a block, the previous node is a node
whose statement was deleted. The node whose statement was deleted
should have been either an unreachable node (marked by (unreach)) or a
node deleted because it was a constant assignment statement (marked by
(rm, x, c)).

From the above, the formula to be checked at a node marked by (unreach) is:

←−
AX (mark(rm e, b) ∨mark(unreach) ∨mark(rm, x, c)) (14)

Point where a parameter from an unreachable node in a φ function is
deleted

All parameters of a φ function are related to some predecessor block. If a
parameter x of a φ function is related to a predecessor block p, this parameter
can be deleted if either p is an unreachable block or if the last node of p is the
node where a branch to block b, in which this φ function resides, is deleted. If we
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denote the block where this φ function resides by b, the formula to be checked
at the node marked by (nouse, x) is the following, using similar considerations
to the case of formula (13):

←−
A (block(b) U (block(p) → (mark(unreach) ∨ mark(rm e, b))) (15)

5.3.2 The reason why checking is possible by our method

Constant propagation with conditional branches is not an optimization that
can be performed by solving the dataflow equation on the control flow graph.
Rather, it is an optimization based on an abstract interpretation of the program.
In a method whereby a dataflow equation on the flow graph is solved, there is
the premise that all edges may be executed. Therefore, we cannot deduce that
t1, for example, is a constant in any execution, and we cannot deduce that B4
is unreachable.

Dataflow equations are said to have a computational power equal to the µ
computation [18]. The method of Lacey et al. uses model checking by CTL-
FV, whose computational power is less than µ computation, for the program
analysis. Therefore, it cannot handle this optimization.

By contrast, our method only checks whether the result of transformation by
the optimization, as shown in Fig. 6(b), is truly correct. This can be performed
by the model checking of CTL-FV. In other words, we are given the result of
the analysis that node B4 is unreachable and variable t1 always has the value
0. Therefore, the formulas to check whether they are correct can be described
as in section 5.3.1.

6 Experiments and Discussion

In this section, we describe experiments that apply the proposed method to the
optimizers in COINS, and consider the usefulness of our method based on the
experimental results.

6.1 Discovery of an unknown bug

We found an unknown bug by checking, via our method, the loop invariant code
motion optimizer in SSA form implemented in COINS. This is a bug that causes
erroneous hoisting of an expression that may cause an exception such as that in
Fig. 5.

This bug was found when compiling and checking the program 254.gap of
the SPEC CPU2000 benchmark [19]. This program generated object code that
ran normally even when we performed SSA optimizations of COINS. Actual
execution of this object code does not cause division by 0, and so no bugs are
found this way. However, by using our method, the latent bug is found. This is
a remarkable feature of our method.

The bug was found as follows:

1. During checking, a counterexample was detected in the model checking of
the specification corresponding to mark (insex, t, e). This specification is
the one for checking if an expression can be hoisted.
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Optimizer Lines Extension Rewriting

Loop invariant code motion 357 2 0
Constant propagation with conditional branches 1143 5 2
Copy propagation 143 3 2
Common subexpression elimination 498 7 1
Dead code elimination 480 3 0
Lazy code motion 1259 2 0

Table 5: Number of extension points for each optimizer

2. When we referred to the corresponding point in the source code of the
optimizer, it gave no consideration to the case of an expression that could
cause an exception.

In our method, the fact that model checking detects a counterexample means
that there was an error in the transformed point (the part of the program or the
control flow graph changed by the optimizer) corresponding to the specification
being checked. In other words, our method has the characteristic features that
we can directly find which transformation in optimization contains a bug from a
counterexample, and that identification of the cause is easy after a bug is found.

6.2 Number of extension points of the optimizers

In our method, we have to extend the optimizer so that the transformed points
of the subject program changed by the optimizer can be marked. In general,
since the transformation points of the optimizers are few, this extension requires
little effort. Furthermore, by utilizing aspect-oriented programming, there are
quite a few points where it is actually necessary to rewrite the source code of
the optimizer.10

Table 5 shows the number of extension points for each optimizer. The
columns refer to the following:

• Lines · · · Number of lines of the source code of the optimizer

• Extension · · · Number of extension points of the optimizer

• Rewriting · · · Number of lines of source code rewritten in the optimizer.

From Table 5, we see that the number of extension points for adding marks
was quite small compared to the number of lines in the optimizer. Moreover, the
extension points, which correspond to the points where program transformation
is performed, are often distinctive11. Therefore, it is easy for authors who have
a general knowledge of optimizers to find them.

However, for a checking user who does not have much knowledge of optimiz-
ers, it will not be easy to find the extension points. It is an issue for the future
to devise a technique that finds the extension points automatically, or enables
them to be found easily.

10In our research, we did not complete the implementation of dead code elimination, but
the number of extension points and rewriting points would not be increased.

11For example, method calls that operate on the control flow graph.
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CPU Intel Pentium 4 CPU 2.80GHz
OS Linux 2.6.17-13msmp
JavaVM 1.5.0 08
Heap Size 256Mbyte
Stack Size 2048Kbyte
COINS 1.4.1
Benchmark SPEC CPU 2000 version 1.2

Table 6: Environment for the experiments

6.3 Cost of describing the checking specification

In our method, we need to describe the specification to be checked, correspond-
ing to each type of mark for each optimizer. Here, we discuss how much effort
is needed to describe the checking specification.
Amount of description

A checking specification must be described for each kind of mark. The
number of types of marks corresponds to the number of extension points in
Table 5. As shown above, there are few extension points. Moreover, a checking
specification can usually be described in one to three lines, with a maximum of
about five lines. From the above, we can say that the quantity of description in
the specification is small.
Ease of description

To describe the checking specification in our method, it is necessary to accu-
rately understand the algorithm and characteristics of each optimizer. There-
fore, not everyone can easily describe it. If users are not optimizer writers, they
must understand how the optimizer behaves, by reading the specification of the
optimizer, or the research papers about the optimizer, or its source code.

Therefore, not all users can easily write a description for the checking spec-
ification, However, considering the short length of the description, this will not
be too difficult if the user knows the optimizer relatively well and is accustomed
to temporal logic. In our case, writing the checking specification of the six opti-
mizers in Table 5 required about three weeks, including the time to understand
the precise behavior of the optimizers from a reading of the source code. The
reason why one of the authors should read not only the specification but also
the source code of the optimizers is that there were some differences between
the specification and the actual implementation.

6.4 Experiments on efficiency of checking

As presented in section 4.1, our method performs a check each time an opti-
mization is executed. Therefore, it is necessary that the checking time is within
realistic limits. In this section, we describe experiments which measure how
much time was needed by the checker implemented in the optimizers, using our
method. The environment for the experiments is shown in Table 6.

The experiments were performed by measuring and comparing the compila-
tion time with and without checking. There were four items measured:

A The sum of times needed for executing optimizations without checking.
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A B B
A

C D D
C

175.vpr 6.85 43.56 6.35 325.79 487.49 1.49
181.mcf 1.78 8.99 5.05 47.86 98.45 2.05
186.crafty 14.21 380.29 26.74 303.51 834.97 2.75
197.parser 5.92 29.49 4.97 364.93 504.66 1.38
254.gap 27.17 400.42 14.73 1541.74 2303.60 1.49
255.vortex 21.32 112.57 5.27 1175.71 1675.16 1.42
256.bzip2 1.25 11.74 9.34 108.85 149.58 1.37
300.twolf 25.03 475.61 19.00 459.80 1234.32 2.68
171.swim 0.52 12.46 23.70 10.21 27.59 2.70
172.mgrid 0.81 17.10 21.02 19.12 42.81 2.23
177.mesa 29.53 540.70 18.30 1654.83 2622.32 1.58
179.art 0.53 3.66 6.89 30.43 43.41 1.42
183.equake 1.00 23.69 23.68 50.63 88.18 1.74
188.ammp 9.88 140.19 14.18 281.46 554.08 1.96

sum(A) sum(B) sum(B)
sum(A)

sum(C) sum(D) sum(D)
sum(C)

sum 145.86 2200.52 15.08 6374.93 10666.66 1.67

Table 7: Comparison of compilation time with and without checking (unit:
second).

B The sum of times needed for executing optimizations with checking by our
method.

C Total compilation time without checking.

D Total compilation time with checking by our method.

The optimization used was the set of SSA optimizations performed when option
O2 is specified. (The SSA optimizations performed when option O2 is specified
comprises common subexpression elimination, constant propagation with con-
ditional branches, global value numbering by question propagation and partial
redundancy elimination, operator strength reduction and test replacement for
induction variables, copy propagation, loop invariant code motion, and dead
code elimination.) 12

The measurements are shown in Table 7. According to this table, the sum
of execution times for optimizations increases by a factor of 15.08, and the
sum of total compilation time increased by a factor of 1.67, when checking is
performed.13 The times of optimization and compilation with checking are by
no means fast. However, considering that the increase of compilation time by
adding checking is from 27 minutes (without checking) to 43 minutes (maximum
time with checking) for 177.mesa, we think this is a realistic time.

We consider that the checking in our method could be made more efficient,
as follows. In our method, we perform model checking after binding the free
variables in the CTL-FV formula of the checking specification, as explained in
section 4.2. This means that, from a single checking specification, checking
formulas for as many as the number of attached marks are generated. We think

12Lazy code motion is not included because it was only at the prototype stage.
13The reasons why B−A = D− C does not hold seem to include the influence of the time

of weaving by GluonJ, the timing of JIT compilation, and the execution time for garbage
collection.
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that the formulas generated from a single specification could be checked together
instead of checking them individually, similarly to the bit-vector method in
dataflow equations [2]. Just as the computation of dataflow equations can be
made very rapid by the bit-vector method, we might expect that the checking
in our method could also be made much more rapid.

From the above experimental results, we can conclude that our method can
be checked in realistic time and is therefore reasonably practical.

7 Related Work

Much research concerning the correctness of optimization exists. In this sec-
tion, we compare our method with other research that is closely related to our
method.

Lacey et al. proposed a method that describes the dataflow analysis of
optimizers using the temporal logic CTL-FV, and that executes the optimizer by
model checking [12]. They also showed that, for a few optimizers, it is possible to
prove simply that the optimizers realized by their method preserve the program
semantics. The proven optimizers are guaranteed to always execute correctly,
and are bug free. However, their method can realize only the relatively simple
optimizers that can be described by dataflow equations alone. For example, the
constant propagation with conditional branches presented in section 5.3 can be
handled by our method, but cannot be handled by the method of Lacey et al.

Lerner et al. proposed a system that describes the optimizer using an original
domain-specific language based on temporal logic, and executes the optimizer.
[13, 14]. This is similar to the system of Lacey et al., but it has the feature
of being able to perform the proof of the correctness of the optimizer almost
automatically, by using a theorem prover. However, the system of Lerner et al.
cannot handle complex optimizations, similarly to Lacey et al.’s method.

Necula proposed a method that checks the equality of the program semantics
before and after the optimization by symbolic inference and evaluation [15]. This
checking method does not depend on the optimization, in principle. Therefore,
the cost of its realization would seem to be lower than our method, which makes
a checking specification for each optimization. In addition, the checking time
efficiency seems to be high. However, in their method, there are cases where
inference or evaluation fails, and there is the defect that strict preservation of
the program semantics is not guaranteed. Our method also does not guarantee
the strict preservation of the program semantics, but we think it may be possible
to give a strict proof. Moreover, after a bug is found, identification of its cause
in Necula’s method seems more difficult than in our method.

Rinard and Marinov proposed a method that infers the condition of the val-
ues of variables, so that the program semantics is preserved before and after the
optimization. It also proves whether or not the program semantics is preserved
after the execution of the optimization [16]. This method seems to guarantee
the preservation of strict program semantics, but it is unclear how practical it
might be, because no algorithms have been written.
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8 Conclusion

We have proposed a method that checks if the execution of optimizers has
preserved the program semantics, utilizing the model checking of CTL-FV. The
proposed method describes, in terms of CTL-FV, a property that must hold to
preserve the program semantics at each transformation point in the optimization
of the program, and then uses model checking to confirm that the property holds
after the execution of the optimizer.

Using this method, checks of various existing optimizers were performed.
In addition, by implementing the proposed method and doing experiments, we
found an unknown bug in an optimizer. The checking time was realistic, when
compared to the compilation time.

Future work will mainly involve the following three items:
Strict proof

The specification of transformation points of optimization described by our
method does not guarantee the correctness of optimization by itself. Many of
them are intuitively trivial, or are already proved in other references. However,
strictly speaking, we must correctly define the formal semantics of the subject
program, and then give a proof that “it is correct if it satisfies the specification.”
Lacey et al. did this by hand, and Lerner et al. used a theorem prover. We
think our method can perform this strict proof similarly to them.
Application to more complex optimizations

In the COINS SSA optimization modules, rather complex optimizations are
implemented, including operator strength reduction of induction variables and
test replacement for induction variables [8], and global value numbering based
on question propagation and partial redundancy elimination [17]. We suspect
that there is a bug in at least one of these optimizers. We want to check these
optimizers using the proposed method.
Making the check faster

It was not an aim of this paper to achieve rapid model checking, so little
consideration was given to making the detailed algorithms faster. However, we
expect to make the checking time much shorter by using the method presented
in section 6.4.
Automatically finding the extension points

As suggested in section 6.2, finding the extension points in the optimizer
will be difficult when the checking user does not have sufficient knowledge of
optimizers. A method for automatically finding the extension points or finding
them more easily is one of the problems for the future.
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