
Research Reports on
Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: CCC ooommm ppp uuu ttt eee rrr SSS ccc iii eee nnn ccc eee

ISSN 1342-2812

Belief Propagation and Spectral Methods

Masaki Yamamoto and Osamu Watanabe

Nov. 2007, C–248

Belief Propagation and Spectral Methods∗

Masaki Yamamoto† Osamu Watanabe‡

Research Report C-248

Abstract
We investigate an algorithm derived based on the belief propagation method of
Pearl [11] applied to the (Min-)Bisection problem under the standard planted
solution model (or more precisely the Most Likely Partition problem under the
same planted solution model). We first point out that the algorithm (with-
out thresholding) is nothing but the standard power method for computing an
eigenvector with the largest eigenvalue used by some spectral method for the
Bisection problem. We then show that the thresholding helps to improve an
approximate solution (by the spectral method) to the exact solution. Through
our analysis, we prove that, at least for the Bisection problem, the belief prop-
agation can be regarded as a unified spectral type algorithm for obtaining the
exact solution with high probability.

1 Introduction

The purpose of this work is to give some theoretical analysis to an algorithm designed by the belief
propagation method, or more specifically, “Pearl’s belief propagation” [11]. Such an algorithm will
be called the belief propagation in the following.

Roughly speaking, the belief propagation is a way to compute the marginal probability of a
state at each node in a given Bayesian network. It computes iteratively the “belief” of each state;
that is, it updates these beliefs in parallel at every round until all the beliefs get converged. It is
shown [11] that this process converges in a constant number of rounds and that the correct marginal
probabilities can be computed from the obtained beliefs provided that the Bayesian network has
no cycle. Such a convergence cannot be guaranteed in general Bayesian networks. Nevertheless,
researchers have started using the belief propagation for various problems that can be modeled by
Bayesian networks with cycles, and surprisingly, it has been shown experimentally that the belief
propagation works in many cases; see, e.g., [9, 10, 8] for decoding problems and, e.g., [3] for the
SAT and related problems. For such success reports of the belief propagation on cyclic Bayesian
networks, several attempts have been also made to give some theoretical justification to such
applications. For example, Luby etal [8] proved a certain average-case performance of a message
passing algorithm that is similar to but simpler than the belief propagation when applied to the
LDPC decoding problem; Feige, Mossel, and Vilenchik [6] analyzed a message passing algorithm as

∗This research is supported in part by Grant-in-Aids for Scientific Research on Priority Areas “New Horizons

in Computing” and “Deepening and Expansion of Statistical Mechanical Informatics”, and by JSPS Global COE

program “Computationism As Foundations of Sciences”.

†Grad. School of Informatics, Kyoto Univ., Kyoto 606-8501, Japan (masaki.yamamoto@kuis.kyoto-u.ac.jp)

‡Dept. of Math. and Comput. Sci., Tokyo Inst. of Tech., Tokyo, 152-8552, Japan (watanabe@is.titech.ac.jp)

1

a model of “survey propagation”, an extension of the belief propagation, and give some theoretical
justification that it works for the 3CNF SAT problem on average. It has been still open, however,
to prove that the original belief propagation indeed works for some problem.

Here we consider the (Min-)Bisection problem and investigate the average-case performance of
the belief propagation applied to this problem. For the distribution for discussing the average-case
analysis, we consider the standard planted solution model [7]. Onsjö and Watanabe [12] derived
an algorithm — pseudo-bp (the one given in Figure 1) — for the Bisection problem (under the
planted solution model) following the belief propagation recipe of [10]. Though some modification
has been made for simplifying the algorithm, detail parameter values have been kept from the
original belief propagation (see the next section and Appendix for the detail). While they gave
some very preliminary analysis on the performance of pseudo-bp, the full and general analysis has
been left open. Here we first point out that their derived algorithm (if we ignore thresholding)
is indeed the power method for computing an eigenvector with the largest eigenvalue. Thus, by
using a somewhat standard spectral method [1, 4], we can show that the algorithm (without the
thresholding) computes a good approximation of the target portion with high probability. While
it is sometimes hard to analyze the nonlinear computation with the thresholding, we can again use
some technique from [1, 4] to prove that the thresholding indeed helps to clean up the approximate
solution to get the exact solution. It should be mentioned that for the sake of analysis the algorithm
is further modified to a simpler two phase algorithm (see the next section), we may expect that
its execution is similar to pseudo-bp if an appropriate initial value is used. Thus we may claim
that this is the first concrete example such that the belief propagation applied to some nontrivial
problem is justified theoretically.

From the view point of spectral methods, it has been open to develop a simple method for
obtaining exact solutions after obtaining approximate solutions by a spectral method. Here we
show, on this simple example, that a message passing algorithm with a certain thresholding can be
used as an unified algorithm for obtaining exact solutions.

Problem and Average-Case Scenario

For our example problem, we consider here the following simple (Min-)Bisection problem: Given an
undirected graph G = (V,E) over 2n vertices, find a minimum bisection of G, that is, a partition
[VL, VR] of V such that |VL| = |VR| and |(VL × VR) ∩ E| is minimum. Throughout this paper, we
consider graphs with 2n vertices and we use V = {1, . . . , 2n} to denote the vertex set.

Although this problem is NP-hard, since the seminal work of Boppana [2], many researchers
have shown algorithms that perform well on this problem on average, and the planted solution model
of [7] has been often used for defining an input instance distribution. Here we follow this model
and, for given probability parameters r < p, consider the following distribution of input graphs
for the problem: Given n for specifying the set V of 2n vertices, and given equal size partition
[VL, VR] of V , we generate, for every pair (i, j), an edge (i, j) with probability p if i and j are in
the same partition, and with probability r if i and j are in the different partition. A self-loop (i, i)
is also generated with probability p, for simplifying our presentation. The given partition [VL, VR]
is called a planted solution. We assume that input graphs are generated in this way from some
planted solution, and in the following, we use Gn(p, n)[VL, VR] to denote the probability distribution
of generated graphs (of 2n vertices). Without losing generality, we may fix VL and VR to {1, . . . , n}
and {n + 1, . . . , 2n}, in which case the distribution is simply denoted by Gn(p, r) or Gn.

Under this planted solution model, the Bisection problem can be regarded as the following
more natural statistical inference problem: Given an undirected graph G = (V, E) over 2n vertices
and parameters p and r, find a partition [V+, V−] that gives the max. probability of generating G

2

under the planted solution model. Precisely, the partition maximizing the following probability:

Pr{G|V+, V−} =
∏

(i,j)∈E

p[ai=aj]r[ai 6=aj] ·
∏

(i,j)6∈E

(1− p)[ai=aj](1− r)[ai 6=aj], (1)

where ai = +1 (resp., −1) if vertex i belongs to V+ (resp., V−), and [· · ·] takes 1 if · · · holds and 0
otherwise. Intuitively, this max. probability partition is the most likely partition for the observed
G. Thus, we may call this the Most Likely Partitioning problem (in short, the MLP problem). Note
that for the MLP problem we do not require that a solution partition is of equal size. We may also
consider the parameterless version where neither p nor r is given; we will also show a simple way
of adjusting our algorithm for solving this general problem.

It has been shown, see, e.g., [4] that if p − r is large enough (e.g., p − r = Ω(log n/n)), then
the planted solution is the unique optimal solution for the Bisection problem with high probability.
Also it is not hard to show [13] a similar claim for the MLP problem; for example, if p > 4r and
p = Ω(log n/n), then the planted solution (which is an equal size partition) is the unique optimal
solution for the MLP problem with high probability. Thus, under a certain range of parameters p

and r, two problems are asking for essentially the same solution.

2 Algorithms and Our Result

We state algorithms that we analyze and give the precise statement of our analysis. Here and in the
following analysis, we consider the MLP problem (for given p and r) where graphs are generated
from the fixed planted solution VL = {1, . . . , n} and VR = {n + 1, . . . , 2n}. We use +1 and −1
(either computed or target) classification labels. The target label of each vertex i is denoted as
e(i), where we fix labels as e(1) = · · · = e(n) = +1 and e(n + 1) = · · · = e(2n) = −1. Clearly,
algorithms does not know these labels and it is their task to compute these labels. But without
losing generality, we may assume that the label of vertex 1 is fixed to +1, and algorithms can make
use of this knowledge.

First we state in Figure 1 the algorithm that is derived by the belief propagation method (see
Appendix for the derivation of the algorithm).

We explain the outline of the algorithm. The algorithm computes “belief” for each vertex
in V , whose sign means ±1 classification label of the vertex and whose absolute value means the
confidence or the belief for this classification. Initially, all beliefs are set 0 except for b1 that is
assigned some large positive value, meaning that we know that a(1) = +1. Then beliefs are updated
in rounds. Let us see this belief update focusing on some vertex i. The updating formula can be
interpreted as follows: at each round (i) its current belief bi is propagated to all the other vertices j,
which we call a “message” from i to j, (ii) a message to j has the same sign as bi for j ∈ Ni and has
the opposite sign for j 6∈ Ni, and (iii) the new belief bi is computed by summing up those messages
to bi. This update process is executed in parallel on all vertices. The algorithm terminates when
all beliefs get stabilized. We may consider several different conditions for stabilization, but here
we simply consider the situation when the algorithm is executed for enough number (specified by
Tmax) of updating rounds.

We remark on two simplifications introduced when deriving our algorithm from the original
belief propagation. First one is on the updating rule. In the belief propagation, for computing a
message from vertex i to vertex j, a message coming from j at the previous round is not used. That
is, at each vertex i, slightly different beliefs bij are computed for every j ∈ V , where bij is computed
by messages from vertices other than j and it is used to compute the next round message to j (from
i). But, for the efficiency and the simplicity of the algorithm, we ignore this difference, thereby

3

procedure pseudo-bp (G, p, r);
begin

set all bi to 0;
b1 ← +∞;
repeat Tmax times do {

for each i ∈ V do in parallel {
bi ←

∑

j∈Ni

f+(bj)−
∑

j 6∈Ni

f−(bj);

}
if all bi’s get stabilized then break;

}
output (+1, sg(b2), ..., sg(b2n));

end-procedure

parameters & functions (for r < p < 0.5)

h− =
p + r

2
, h+ =

2− (p + r)
2

,

c− =
1− p

1− r
, c+ =

p

r
,

θ− =
4h−h2

+(− ln c−)
(p− r)2

, θ+ =
4h+h2− ln c+

(p− r)2
,

f±(x) =





h± · θ±, if θ± < x,
h± · x, if −θ± ≤ x ≤ θ±,
−h± · θ±, if x < −θ±,

(By, e.g., f±, we mean f+ and f− resp.)

sg(z) = the sign of z, and

Ni = the set of vi’s neighbors.

Figure 1: The belief propagation based algorithm for the MLP problem

deriving our simplified updating rule. We should mention here that this simplification may not be
appropriate for some applications; but at least for the MLP problem (or the Bisection problem) no
essential difference can be found by this simplification from our preliminary computer experiments.
The second one is a minor simplification for the definitions of functions f+ and f−. Originally these
are sigmoid functions, but we approximate them to linear functions with thresholds.

Now we simplify this algorithm slightly more for the sake of our analysis. First we ignore
the difference between two threshold values θ+ and θ−; let θ for this unified threshold. Then the
updating formula of pseudo-bp can be simplified as

bi =
∑

j∈Ni

f+(bj)−
∑

j 6∈Ni

f−(bj) =
∑

j∈Ni

h+ · b′j −
∑

j 6∈Ni

h− · b′j , (2)

where b′i is min(bi, θ) if bi is positive and max(bi,−θ) if bi is negative. These bounded beliefs b′i can
be computed by thresholding updated beliefs bi at the end of each round. It turns out that the
actual value of θ is not essential for our analysis so long as it is large enough relative to the initial
value of b1. In the following we simply assume that θ is some large constant and we set b1 = 1
initially.

Next we assume that the thresholding is not applied for some number of initial rounds. By
executing the algorithm we observe that most beliefs take similar (absolute) values after enough
number of rounds. In particular, the following phenomenon is usually observed: Almost no belief
reaches the threshold θ or −θ up to some T th round, and then at the T th round, many beliefs
suddenly exceed the threshold. Since we have not been able to prove such a sharp behavior, for
the sake of our analysis, we consider the modification of the algorithm so that the thresholding is
not applied for first T0 rounds for a given parameter T0.

We analyze the algorithm obtained by these two simplifications; let us refer this algorithm
as pseudo-bp-for-analysis. Our main technical result is to show the following performance of
pseudo-bp-for-analysis under the planted solution model. (Throughout this paper, we say that
an event occurs with high probability (abbreviated as whp) if the probability that the event occurs
approaches to one as n →∞.)

Theorem 2.1. For some sufficiently large constant c > 0, let p and r be any parameters such that
p, r ≥ c log n/n and p/r ≥ c, and let n be any sufficiently large number. Let d = pn. Consider the

4

execution of pseudo-bp-for-analysis on G ∈ Gn(p, r) with T0 = Ω(log n/ log d) and Tmax = log n.
Then it yields the planted solution of G whp.

Remark 2.1. From technical reason, we need to assume that (∗) |ê1(i) − e1(i)| ≤ ε/(8
√

n) holds
on vertex i = 1 for some ε (see the next section for the notations). While this bound may not hold
on vertex 1, we can surely find such a vertex i for which (∗) holds from the first ` = o(n) vertices.
Thus, very precisely speaking, we need to execute pseudo-bp-for-analysis from ` = o(n) different
initial values.

Remark 2.2. Though we assume here that r also satisfies r ≥ c log n/n. But the case where
r < c log n/n can be handled by a similar and in fact a rather easier way. Thus, this condition is
not necessary (see Remark 3.1).

3 The analysis for our algorithm

In this section, we prove Theorem 2.1. We first prepare some notations used throughout this section.
Fix parameters p and r satisfying the condition of the theorem, and let d = pn and d′ = rn. We
use a vector b to denote the value of beliefs (b1, . . . , b2n) computed in the algorithm; in particular,
let b(k) be the beliefs after the kth round. For each vertex i, let b(i) denote its ith component.
Recall that e(i) ∈ {+1,−1} is the label of the planted solution. Now we state the following two
lemmas from which the theorem follows.

Lemma 3.1. Let G ∈ Gn(p, r) be a random graph for which (∗) of Remark 2.1 holds with i = 1.
Consider the execution of pseudo-bp-for-analysis on G for the first T0 rounds, i.e., the rounds
where no thresholding is applied. Then whp the following holds: The number of vertices i such that
|b(T0)(i)| < θ or the sign of b(T0)(i) disagrees with e(i) is o(n).

Lemma 3.2. Let G ∈ Gn(p, r) be a random graph for which the previous lemma holds. Then at
the end of the execution of pseudo-bp-for-analysis after Tmax rounds, the following holds whp:
The sign of the obtained beliefs b(Tmax) completely agree with e.

3.1 Spectral arguments

We first prove Lemma 3.1. We fix any random G ∈ Gn(p, r) for which (∗) of Remark 2.1 holds with
i = 1, and let Â be the adjacency matrix of G.

First consider the belief updating formula (2). Since no thresholding is applied, we have bj = b′j
for all j ∈ V ; hence (2) is restated as follows:

bi =
∑

(i,j)∈E

h+ · bj −
∑

(i,j)6∈E

h− · bj , =
∑

j

aij · h+ · bj − (1− aij) · h− · bj ,

where aij is the value of Â at the (i, j) entry. Thus, with all 1 matrix J , we can state the computation
of the kth round (i.e., the computation of b(k) from b(k−1) as follows:

b(k) = h+Âb(k−1) + h−(J − Â)b(k−1) =
(
h+ − h−)Â + h−J

)
b(k−1) =

(
Â− p + r

2
J

)
b(k−1).

Thus, for any k, 1 ≤ k ≤ T0, the beliefs after the kth round is computed as

b(k) = Ûkb(0), where Û
def= Â− p + r

2
J,

5

and this is nothing but the standard power method for computing the eigenvector of Û with the
largest eigenvalue. On the other hand, Coja-Oghlan [4] made a detail spectral analysis of Û and
we borrow his analysis here (see Section 3.3).

Let λ̂1 ≥ · · · ≥ λ̂2n be eigenvalues of Û , and ê1, . . . , ê2n be the corresponding orthonormal
eigenvectors of Û . Note first that (i) E[Û] = U , (ii) the largest eigenvalue of U is λ1 = 2(p− r)n,
and (iii) its corresponding unit eigenvector is e1, where

U =
1
2

(
p− r r − p

r − p p− r

)
⊗ Jn, and e1 =

1√
2n

((
1
0

)
⊗ 1n −

(
0
1

)
⊗ 1n

)
.

Note that e1 is parallel to the planted label vector e. Thus, roughly speaking, we can expect with
high probability that λ̂1 ≈ λ1 and ê1 ≈ e1; hence, b(k) that approximates ê1 can be used to detect
the planted labels. We make this argument precise below.

Recall that the initial belief vector is b(0) = (1, 0, . . . , 0) ∈ R2n. We express it as a linear
combination of orthonormal eigenvectors of Û , that is,

b(0) = c1ê1 + · · ·+ c2nê2n, where ci = (b(0), êi).

Then we have

b(k) = Ûkb(0) = λ̂k
1


c1ê1 +

(
λ̂2

λ̂1

)k

c2ê2 + · · ·+
(

λ̂2n

λ̂1

)k

c2nê2n


 . (3)

Now for some sufficiently small constant ε (which will be specified later), define S ⊂ V be a
set of vertices i such that |ê1(i)− e1(i)| ≥ ε/(8

√
n). That is, V \S is the set of vertices i such that

ê1(i) is close to e1(i) (= ±1/
√

2n). From Corollary 3.7 we have |S| = o(n) whp. Note that what
we assumed at Remark 2.1 is that 1 6∈ S. Then noting c1 = (b(0), ê1) = ê1(1), we can easily see
that this assumption implies the following claim.

Claim 1. For all 1 ≤ i ≤ 2n such that i 6∈ S, we have

i ∈ VL :
1

(2 + ε)n
≤ c1ê1(i) ≤ 1

(2− ε)n

i ∈ VR : − 1
(2− ε)n

≤ c1ê1(i) ≤ − 1
(2 + ε)n

.

This claim estimates the first term of (3). On the other hand, as shown by the next claim, the
other terms can be bounded small.

Claim 2. For any k = Ω(log n/ log d) (its constant depends on ε), the following holds whp: For
all j ∈ V , ∣∣∣∣∣∣

2n∑

i=2

(
λ̂i

λ̂1

)k

ciêi(j)

∣∣∣∣∣∣
≤ ε

n
.

Proof. It suffices to bound
∑2n

i=2 |λ̂i/λ̂1|k because |ci| ≤ 1 due to
∑2n

i=1 c2
i = 1 and |êi(j)| ≤ 1 due

to ‖êi‖ = 1. By using the constant c > 0 of Corollary 3.6, whp we have |λ̂i/λ̂1| ≤ c/
√

d for all i,
2 ≤ i ≤ 2n. Then (if these bounds hold) for any k ≥ c′ log n/ log d (where c′ is some appropriate
constant) we have

∑2n
i=2 |λ̂i/λ̂1|k ≤ 2n/(

√
d/c)k ≤ ε/n.

Now fix ε = 1/4 and let k ≥ c′′ log n/ log d for some c′′ chosen appropriately depending on ε

and θ. Consider the situation such that (i) |S| = o(n), (ii) the bound of Claim 2, and (iii) λ̂1 ≥ d/2

6

(see Corollary 3.6), all hold. Then for any i 6∈ S, we have the following,

i ∈ VL : b(k)(i) ≥ λ̂k
1

(
1

(2 + ε)n
− ε

n

)
≥ θ,

i ∈ VR : b(k)(i) ≤ −λ̂k
1

(
1

(2 + ε)n
− ε

n

)
≤ −θ.

The lemma is immediate from this observation.

3.2 Counting arguments

We prove Lemma 3.2. For our argument, the following lemma, which is similar to the one used in
[1], plays an important role. (When using this lemma for the later analysis, we use parameters n

and p that are used for specifying the distribution Gn(p, r).)

Lemma 3.3. Let G′ = (V ′, E′) be a random graph with n vertices whose undirected edges are
given independently with probability p, and let d = pn. Then we have the following with probability
1− n−Ω(d): There are no two subsets S1 and S2 of V ′ such that

(i) |S1| ≤ n/1000 and |S2| = |S1|/2, and
(ii) every vertex of S2 has at least 0.1d neighbors in S1.

(4)

Proof. The proof is similar to the one in [1], and we only state its outline.
Fix arbitrarily S1 and S2 such that |S1| ≤ n/1000 and |S2| = |S1|/2. Let |S2| = s, hence we

have |S1| = 2s. Suppose that |S1 ∩ S2| = t where 0 ≤ t ≤ s. Observe that if every vertex of
S2 has at least 0.1d neighbors in S1, then we have |(S1 × S2) ∩ E′| ≥ 0.1d|S2| − α for some α,
0 ≤ α ≤ 0.1d|S2|/2. Thus, the probability that S1 and S2 satisfy (4) is

(
2s2 − (t + 1)t/2

0.1ds− α

)(
d

n

)0.1ds−α

≤
(

40es

n

)0.05ds

.

Then by using the union bound, the probability that such S1 and S2 exist is bounded by n−Ω(d).

We also need the following lemma, which is obtained easily by the Chernoff bound.

Lemma 3.4. Consider a random graph G following Gn(p, r). Then we have the following with
probability 1−O(n)2−Ω(d′):

For every i ∈ V , the number of edges to vertices in the same planted class is between
0.9d and 1.1d, and to vertices in the different planted class is between 0.9d′ and 1.1d′.

(5)

Remark 3.1. Note that if r is too small, then the bound like 1−O(n)2−Ω(d′) does not make sense;
thus, we need that r ≥ c log n/n for sufficiently large c. But on the other hand, this lemma is only
the point where we need this condition, and the lemma and the following argument can be modified
easily for the case where r is not large enough.

Now consider any G for which Lemma 3.1 holds, and the execution of the algorithm after the
T0th round. For any k ≥ 0 (letting k′ = T0 + k), let S

(k)
L (resp. S

(k)
R) be the set of vertices i ∈ VL

(resp. i ∈ VR) such that the value of its belief after the k′th round satisfies either |b(k′)(i)| < θ, or
|b(k′)(i)| = θ and sg(b(k′)(i)) 6= e(i). Then the following claim holds for S

(k)
L and S

(k)
R .

Claim 3. For any k ≥ 0, suppose that |S(k)
L | = o(n) and |S(k)

R | = o(n). Then, we have the following
with probability 1−O(n)2−Ω(d′):

Every i ∈ S
(k+1)
L has at least 0.1d neighbors in S

(k)
L , and the corresponding statement

also holds for S
(k+1)
R .

(6)

7

Proof. We assume that (5) holds, and this implies (6). Then the lemma follows from Lemma 3.4.
For showing (6), we argue as follows: consider any i ∈ VL and assume that the number of

neighbors j of i such that j ∈ S
(k)
L is less than 0.1d. From which we show that i 6∈ S

(k+1)
L .

Estimate the value of the belief of i after the (k′ + 1)th round (where k′ = T0 + k). Let
b
(+)
L (i) ≥ 0 and b

(−)
L (i) ≤ 0 (resp. b

(+)
R (i) ≥ 0 and b

(−)
R (i) ≤ 0) be the values of the positive and

negative beliefs that the vertex i receives from vertices of VL (resp. VR) at the k′th round. Let
sL = |S(k)

L | and sR = |S(k)
R |. Note that any i ∈ VL \ S

(k)
L (resp., i ∈ VR \ S

(k)
R) satisfies b(k′)(i) = θ

(resp., b(k′)(i) = −θ), and that any i ∈ S
(k)
L ∪ S

(k)
R satisfies either |b(k′)(i)| < θ, or |b(k′)(i)| = θ and

sg(b(k′))(i) 6= e(i). Then by using (5) and our assumption on i, we have the following:
∣∣∣b(+)

L (i)
∣∣∣ ≥ (0.9d− 0.1d)(1− (p + r)/2)θ

∣∣∣b(−)
L (i)

∣∣∣ ≤ 0.1d(1− (p + r)/2)| − θ|+ n((p + r)/2)θ,
∣∣∣b(+)

R (i)
∣∣∣ ≥ (n− sR − 1.1d′)((p + r)/2)| − θ|, and

∣∣∣b(−)
R (i)

∣∣∣ ≤ 1.1d′(1− (p + r)/2)| − θ|+ sR((p + r)/2)θ.

Here by using p+ r ≤ 3/2, which is implied by p/r À 1, we estimate the total beliefs sent to i after
the (k′ + 1)th round, thereby deriving the following bound for the belief of the next round (before
the thresholding).

b(k′+1)(i) = b
(+)
L (i) + b

(+)
R (i)− b

(−)
L (i)− b

(−)
R (i)

≥ (0.7d(1− (p + r)/2)− 1.1d′(1− (p + r))− sR(p + r))θ
≥ ((0.7d− 2.2d′)(1− (p + r)/2)− o(d))θ (∵ sR = o(n))
≥ (0.1d− o(d))θ (∵ p + r ≤ 3/2, d/d′ À 1).

This value is larger than θ since d ≥ log n; hence we can conclude that i 6∈ S
(k+1)
L . The same

argument also holds for i ∈ VR.

Now we are ready to prove Lemma 3.2. Consider first the (T0+1)th round. Since we consider a
graph G for which Lemma 3.1 holds, we have |S(0)

L ∪S
(0)
R | = o(n). Below we show that the size of S

(1)
L

(resp., S
(1)
R) becomes half whp, and for this purpose, consider the probability Pr{ |S(1)

L | ≥ |S(0)
L |/2 }.

Let (6) denote the event that (6) of Claim 3 holds. Then we have

Pr{ |S(2)
L | ≥ |S(1)

L |/2 } = Pr{¬(6) ∧ |S(2)
L | ≥ |S(1)

L |/2 }+ Pr{ (6) ∧ |S(2)
L | ≥ |S(1)

L |/2 }
≤ Pr{¬(6) }+ Pr{ (6) ∧ |S(2)

L | ≥ |S(1)
L |/2 }.

Since |S(0)
L ∪ S

(0)
R | = o(n), by Claim 3, we have Pr{¬(6) } ≤ O(n)2−Ω(d′). On the other hand, by

Lemma 3.3, regarding S
(1)
L as S1 in the lemma and any size |S(1)

L |/2 subset of S
(2)
L as S2, we have

Pr{ (6) ∧ |S(2)
L | ≥ |S(1)

L |/2 } = n−Ω(d).

Thus,
Pr{ |S(1)

L | ≥ |S(0)
L |/2 } = O(n)2−Ω(d′) + n−Ω(d) = 2−Ω(d′).

The same argument also holds for S
(0)
R and S

(1)
R . Therefore, we can conclude that both |S(1)

L | <

|S(0)
L |/2 and |S(1)

R | < |S(0)
R |/2 hold with probability 1− 2−Ω(d′).

Now by induction, we also have the same bound for S
(k)
L and S

(k)
R for any k ≥ 1, and by

using the union bound, the probability that this halving event occurs for enough number of rounds
(≤ log n rounds) is bounded by 1− (log n)2−Ω(d′) = 1− o(1). This implies the lemma.

8

3.3 Bounds on eigenvalues of Û

In [4], a detail spectral analysis of Û is given, and we use its results, in particular, Lemma 23 of
[4]. In our context, the lemma is stated as follows.

Lemma 3.5. For some constant c0 > 0, the following properties for Û holds whp:

(i) ∀v ∈ R2n : ‖v‖ = 1 ∧ (v, e1) = 0
[
‖Ûv‖ ≤ c0

√
pn

]
, and

(ii) ‖(p− r)ne1 − Ûe1‖ ≤ c0
√

pn.

By using this lemma, we derive some bounds used in our analysis.

Corollary 3.6. For some constant c1 > 0, we have whp that λ̂1 ≥ d/2, and max{|λ̂2|, |λ̂2n|} ≤
c1

√
d.

Proof. We make use of Rayleigh quotient principle, or Courant-Fischer min-max theorem (see, e.g.,
[5]). Note first that by the symmetry of Û , we have |vtÛv| = ‖Ûv‖ for any unit vector v. For the
bound for λ̂1, we first derive the following from the second item of Lemma 3.5.

(p− r)n− ‖Ûe1‖ ≤ c0
√

pn = c0

√
d.

Then by our assumption of p/r À 1, we have

λ̂1 ≥ |et
1Ûe1| = ‖Ûe1‖ ≥ (p− r)n− c0

√
d ≥ d/2.

An upper bound for λ̂2 can be obtained from the first item Lemma 3.5; that is, λ̂2 ≤ c0
√

pn =
c0

√
d. For bounding λ̂2n, consider any unit vector v, and we express v as v = αe1 + βw, where w

is a unit vector perpendicular to e1. (Note that α2 + β2 = 1 because v is a unit vector.) We first
bound et

1Ûe1. Since Û = Â− ((p + r)/2)J , we have

et
1Ûe1 = et

1Âe1 − p + r

2
et

1Je1 = et
1Âe1.

By using Chernoff bound, we can easily show that et
1Âe1 is (1 ± ε)(p − r)n for any ε > 0 whp.

Thus, we have et
1Ûe1 > 0, and hence the following holds whp:

vtÛv = α2et
1Ûe1 + 2αβet

1Ûw + β2wtÛw

≥ 2αβet
1Ûw + β2wtÛw (∵ et

1Ûe1 > 0 whp)
≥ −2‖Ûw‖ − ‖Ûw‖
≥ −3c0

√
pn.

Therefore, we have λ̂2n ≥ −3c0

√
d.

Corollary 3.7. For any ε > 0, we have whp that the number of vertices i such that |ê1(i)−e1(i)| ≥
ε/
√

n is o(n).

Proof. We express ê1, the unit eigenvector corresponding to the largest eigenvalues of Û , as ê1 =
αe1 + βw, where w is a unit vector perpendicular to e1. (Note that α2 + β2 = 1 because v is a
unit vector.) We may assume that α ≥ 0. The second item of Lemma 3.5 is equivalent to

(p− r)n− ‖Ûe1‖ ≤ c0
√

pn, and (7)

‖Ûe1‖ − (p− r)n ≤ c0
√

pn. (8)

9

Thus, we have the following whp:

(p− r)n− c0

√
d ≤ ‖Ûe1‖ (∵ (7))

= ‖et
1Ûe1‖ ≤ ‖êt

1Û ê1‖
= α2et

1Ûe1 + 2αβet
1Ûw + β2wtÛw

≤ α2|et
1Ûe1|+ 2|et

1Ûw|+ |wtÛw|
≤ α2|et

1Ûe1|+ 3‖Ûw‖
≤ α2‖Ûe1‖+ 3c0

√
d (∵ the first item of Lemma 3.5)

≤ α2(p− r)n + 4c0

√
d. (∵ (8))

The above inequality implies 1− α2 = O(
√

d/d); hence 1− α = O(
√

d/d) and |β| = O(d1/4/d1/2).
Let ` be the number of vertices i such that |ê1(i)− e1(i)| ≥ ε/

√
n. Then we have

√
`

n/ε2
≤ ‖ê1 − e1‖ = ‖βw − (1− α)e1‖ ≤ (1− α) + β = O

(√√
d/d

)
.

Therefore, we can conclude that for any ε > 0, we have `/n ≤
√

d/(ε2d), that is, ` = o(n) whp.

4 Concluding Remarks

We analyzed an algorithm for the Most Likely Partitioning problem based on the belief propagation.
Since the algorithm uses the information on the parameters p and r, some consideration is necessary
for using it to the Bisection problem (under the planted solution model). Note here that, besides
the two threshold parameters, what we need for the algorithm is the value p + r, and that, as our
analysis indicates, the algorithm works so long as thresholds are large enough. On the other hand,
under the assumption that the graph is generated from some solution of the Bisection problem,
p+r can be estimated with reasonable accuracy from the total number of edges of a given graph G.
Thus, we can use our algorithm for the Bisection problem as well. More generally, the robustness
to the probability parameter estimation is left open.

Acknowledgments

The relation between our algorithm based on the belief propagation (i.e., pseudo-bp) and a spectral
method has been pointed out first by Professor Amin Coja-Oghlan to the second author. With-
out this advice this research would not have existed, and the authors would like to express deep
appreciation to his advice.

References

[1] N. Alon and N. Kahale, A spectral technique for coloring random 3-colorable graphs, SIAM
J. Comput. 26(6), 1733–1748, 1997.

[2] R.B. Boppana, Eigenvalues and graph bisection: an average-case analysis, in Proc. Symposium
on Foundations of Computer Science, 280–285, 1987.

[3] A. Braunstein, M. Mezard, and R. Zecchina, Survey propagation: an algorithm for satisfiabil-
ity, Random Struct. and Algorithms 27(2), 201–226, 2005.

[4] Amin Coja-Oghlan, A spectral heuristic for bisecting random graphs, Random Struct. and
Algorithms 29(3), 351–398, 2006.

10

[5] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

[6] U. Feige, E. Mossel, and D. Vilenchik, Complete convergence of message passing algorithms
for some satisfiability problems, in Proc. RANDOM and APPROX 2006.

[7] M. Jerrum and G. Sorkin, The Metropolis algorithm for graph bisection, Discrete Appl. Math
82(1-3), 155–175, 1998.

[8] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, Improved low-density parity-
check codes using irregular graphs, IEEE Trans. on Information Theory, 47(2), 585–598, 2001.

[9] D. MacKay, Good error-correcting codes based on very sparse matrices, IEEE Trans. Inform.
Theory, IT-45(2), 399–431, 1999.

[10] R. McEliece, D. MacKay, and J. Cheng, Turbo decoding as an instance of Pearl’s “Belief
Propagation” algorithm, in IEEE J. on Selected Areas in Comm. 16(2), 1998.

[11] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Mor-
gan Kaufmann Publishers Inc., 1988.

[12] M. Onsjö and O. Watanabe, A simple message passing algorithm for graph partition problem,
in Proc. 17th Int’l Sympos. on Algorithms and Computation (ISAAC’06), LNCS 4288, 507–516,
2006. (A longer version has been submitted for the publication.)

[13] M. Onsjö and O. Watanabe, Finding most likely solutions, submitted.

11

Appendix: Derivation of Algorithm pseudo-bp

The algorithm stated in Figure 1 is obtained from the standard belief propagation algorithm for the
MLP problem. Although this derivation has been stated in [12] (journal submission version), we
state it (and its slight modification) here for the sake of completeness. Here we show its derivation
and explain the points that differ from the belief propagation.

Let G = (V, E) be an input graph with 2n vertices; let V = {1, ..., 2n}. Our task is to compute,
for given probability parameters p and r, a partition maximizing Pr[G|V+, V−] defined by (1). For
this, we use the belief propagation computing the following marginal probabilities P (i) for each
i ∈ V .

P (i) = Pr[i ∈ V+ |G] =
∑

(V+, V−)

s.t. i ∈ V+

Pr[(V+, V−) |G]

Then we simply assign ai = +1 (i.e., i ∈ V+) if and only if P (i) > 0.5.
We first explain this algorithm. Below we follow [10] for notions and notations on the belief

propagation. (Although we will not explain the precise meaning of such notations, it is not essential
for our derivation.) For any i, j ∈ V , we let eij = +1 if there exists an edge between i and j in
E, and eij = −1 otherwise. A Bayesian network for G is a graph consisting of nodes {Ni}1≤i≤2n

corresponding to vertices in V nodes {Zij}1≤i<j≤2n corresponding to all unordered pairs in V ×V .
The belief propagation updates beliefs on these nodes by exchanging messages between them. But
since those messages are quite simple in our case, we can simplify this scheme so that messages are
exchanged between nodes corresponding to vertices in V . For each pair of vertices i, j ∈ V , where
i 6= j, two messages πij(−1) and πij(+1) sent from node Ni to Nj are computed as follows from
messages πki that node Ni received at the previous round. (In the following, the domain of the
subscript k (sometimes j) of

∏
or

∑
is {1, ..., 2n} − {i}.)

πij(x) = αqi(x)
∏

k:k 6=j

(δij(r)πki(−x) + δij(p)πki(x)), (9)

Here qi, α, and δij have the following meaning: qi(x) is a priori probability of ai = x (in our case,
qi(+1) = qi(−1) = 1/2 except for the vertex 1); α is a normalization factor to keep πij(+1) +
πij(−1) = 1; and δij(y) = y if eij = +1, and δij(y) = 1 − y otherwise. Notice here that for
computing a message πij from node Ni to node Nj , the previous value of πji, i.e., a message from
node Nj , is not used. This is the point we will relax later in our modification. A belief Beli at
node Ni, intuitively the belief for ai = +1, is then computed as follows:

Beli =

∏
j πji(+1)∏

j πji(+1) +
∏

j πji(−1)
.

Now we make several simplifications for our problem. First in order to reduce the number of
variables, we use mij = πij(+1)/πij(−1) and Bi =

∏
j mji; also let ρi = qi(+1)/qi(−1). Note that

we can now consider ai = +1 if Bi > 1 and ai = −1 if Bi < 1. The following updating rule is
obtained from (9).

mij = ρi

∏

k:k 6=j

feij (mki),

where feij (x) is defined by

feij (x) =
cijx + 1
x + cij

, cij =





c+ =
p

r
, if eij = +1, and

c− =
1− p

1− r
, if eij = −1.

(10)

12

-1

-0.5

0

0.5

1

-4 -2 0 2 4

Figure 2: lex+ and lex− and their approximations l̃ex+ and l̃ex− (for p = 0.4 and r = 0.2)

At this point, we introduce one a priori knowledge. Without losing generality, we may fix the
classification of vertex 1 and assume that 1 ∈ V+ and a1 = +1. This means that q1(+1) = 1 and
q1(−1) = 0, implying that ρ1 = +∞ and m1j = +∞. For the other i’s, we have qi(+1) = qi(−1) =
0.5, and hence, ρi = 1. Thus, we have the following simplified rule.

m1j = +∞, and mij =
∏

k:k 6=j

feij (mki).

Here we may define feij (+∞) = cij .
Let us convert this updating rule to additive one. For this purpose, we introduce `ij = ln(mij)

and a function lex defined by
lexeij (x) = ln(feij (e

x)). (11)

Then, for all i, j ∈ V , where i 6= 1 and i 6= j, we have

`ij =
∑

k:k 6=j

lexeki
(`ki), (12)

Note that `1j = +∞. The logarithmic belief ln(Bi) is computed as
∑

j∈V `ij , and ai is determined
whether it is positive or negative.

Up to this point, our modification does not change the essential meaning of the belief propaga-
tion. Now we introduce two approximations for simplifying the updating rule. As shown in Figure 2,
both functions lex+ and lex− can be approximated well by some linear functions with thresholds.
More specifically, we consider the following functions for approximating lexσ, σ ∈ {+,−}.

l̃exσ(x) =





h′σ · θ′σ, if θ′σ < x,
σh′σ · x, if −θ′σ ≤ x ≤ θ′σ, and
−h′σ · θ′σ, if x < −θ′σ,

(13)

where h′σ (i.e., h′+ and h′−) and θ′σ (i.e., θ′+ and θ′−) are determined as follows, by some simple
calculation from (10), (11), and (12). (Here we assume that r < p < 0.5.)

h′+ =
∣∣∣∣
c+ − 1
c+ + 1

∣∣∣∣ =
p− r

p + r
, h′− =

∣∣∣∣
c− − 1
c− + 1

∣∣∣∣ =
p− r

2− (p + r)
, θ′− =

− ln c−
h′−

, θ′+ =
ln c+

h′+
.

A (linearized version of) belief propagation algorithm is to compute messages by (12) by using
l̃ex± for lex±. (Yet simpler parameters h+, h−, θ+, and θ− of Figure 1 are obtained by multiplying
(2− (p + r))(p + r)/(2(p− r)) to all the above parameters.)

13

Finally we introduce the second approximation. When computing a message mij from node
Ni to node Nj , the previous value of mji, a message that Ni received from Nj , is excluded. But
our preliminary experiments show that the behavior of the algorithm becomes more stable if mij

is computed by using all previous messages coming to Ni. Thus, we modify the algorithm so that
`ij is computed by using `ki for all k. Then there is no distinction between messages to Nj and to
Nj′ , and we only need to consider the following quantity:

bi =
∑

j

l̃exeij (bj), (14)

which we may interpret as a message from vertex i to any other vertex in V . Furthermore, we may
now consider it also as a quantity corresponding to ln(Bi), which we will call a pseudo belief. It is
easy to see that our base algorithm pseudo-bp computes this pseudo belief by using the updating
formula (14).

14

