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Abstract

We present a direct construction for an identification scheme provably secure against concurrent
attacks under the assumptions on therst-casehardness of hard lattice problems such as the gap
version of the Shortest Vector Problem. We also construct an ad hoc anonymous identification scheme
based on the lattice problems by modifying this direct construction.
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1 Introduction

Background: Many researchers have so far developed cryptographic schemes based on combinatorial
problems related to knapsacB[[35], codes[B7 B39 37, and lattices, 3 [14,[1g], due to the intractability

of the underlying problems and théieiency of primitive operations. The combinatorial problems have
attracted more attention from cryptographic point of view since Shor’'s quantum algorB3nyealed

the threat of quantum computers to number-theoretic schemes.

The cryptographic schemes employ combinatorial problems computationally intractableworsdte
casesuch as NP-hard problems in order to guarantee their security. They usually assuswertyge-
casehardness of the underlying problem because they have to deal with randomly generated cryptographic
instances like keys, plaintexts, and ciphertexts. This implies a security risk in such schemes since it is
generally hard to show the average-case hardness. In fact, several attacks against such schemes were found
in the practical setting$3B, (19 [4 28]. The cryptographic schemes only with the security based on the
average-case hardness are more likely to be at risk of these kinds of attacks.

It is therefore significant to guarantee the security under the average-case hardnesg] #mived
that the average-case hardness of some lattice problem is equivalent to its worst-case hardness. His seminal
result opened the way to the cryptographic schemes based on the worst-case hardness of lattice problems.
The public-key encryption schemes were proposed by Ajtai and DVB)rkRegev B3 B4] and Peikert
and Waters[3]], and hash functions by AjtaP] and its improvements bYIB [6, 23 2§. The public-key
schemes based only on the average-case hardness of lattice problems were also proposed by Goldreich,
Goldwasser, and Hale\@]] and Hdfstein, J&rey, and Piphefld.

Among many varieties of lattice-based public-key schemes, there are very few results on the identifi-
cation (ID) schemes based on the worst-case hardness of lattice problems. As a major result, Micciancio
and Vadhan proposed ID schemes based on the worst-case hardness of lattice problems, such as the gap
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versions of the Shortest Vector Problem. These schemes are obtained from their statistical zero-knowledge
protocol with dficient proversZ4.

In general, it is much harder to prove strong security against active attacks directly from the worst-case
hardness of lattice problems than standard number-theoretic ones. For example, one of the long-standing
open problems was the construction for a lattice-based public-key encryption scheme secure against the
chosen ciphertext attack based on the worst-case hardness, which was most recently resolved by Peikert
and Waters[31]. Except for their result, there is no direct construction for lattice-based cryptographic
schemes secure against active attacks under the worst-case hardness assumption.

Our results: In this paper, we propose direct construction for lattice-based ID scheroencurrently
secure under the assumption on wharst-casenardness of the gap version of the Shortest Vector Problem

(GapSVP) with approximation factdd(n+/logn) (GapSVI%(mOgl/zn)) and the Shortest Vector Problem

(SVP) for ideal lattices with approximation facton log® n) (A(f)-SVP(’)"(n log? n)).

The gap version of the Shortest Vector Problem GapSVP has already been used in the known lattice-
based cryptographic constructiof&[2g. The SVP for ideal lattices\ (f)-SVP was recently proposed
by Lyubashevsky and Miccianci@{] to improve the fficiency of lattice-based schemes. They actually
constructed compact hash functions using this problem. Tihgemcy of our ID scheme can be also
improved by using SVP for ideal lattices.

Our ID scheme basically follows the same framework as StdB8k He presented a statistical zero-
knowledge argument secure under the assumption of the average-case hardness of Syndrome Decoding
Problem (or a generalized version called Modular Knapsack Problem) and the existence of a collision
resistant hash function. Changing the assumption from the average-case hardness of such combinatorial
problems to the worst-case hardness, we successfully remove the assumption on the collision resistant hash
functions since we can build all the primitives we need from the lattice problems.

Actually, we can construct a concurrently secure ID scheme based on the worst-case hardness of lattice
problems from Micciancio and Vadhan's ID scheme (the MV scheme, for skft) Applying a general
technique by Feige and Shanild, a modification of the MV scheme can be proven to have concurrent
securityd. On the contrary, our construction does not depend on the general modification technique, and
the security can be proven directly from the worst-case assumption.

Moreover, our direct construction yieldfieient schemes for ad hoc anonymous identification (AID)
based on the worst-case hardness of Ga[%?.n\élllggl/2 . andA(f)—SVF’g’(n2 logé )’ which are secure against

the concurrent chosen-group attack. The AID scheme was originally proposed and formulated by Dodis,
Kiayias, Nicolosi, and Shouff. The protocol is done by two parties, a prover and verifier, but we
implicitly suppose a group that is made ad hoc. Given public keys of all members of the group to the verifier
(and the prover), the goal is to convince the verifier that the prover belongs to the group, without being
specified who the prover is of the group, if and only if the prover is an actual member of the group. Dodis
et al. presented a general construction of AID scheme from any accumulator with one-way domain and
showed that constant-size sigher-ambiguous group and ring signatures can be obtained from AID schemes
by using the Fiat-Shamir transformation.

Again by a simple modification of the MV scheme, we can obtain an AID scheme based on the worst-
case hardness of lattice problems. Unfortunately, the simple modification requires a large overhead cost
involving the size of the ad hoc group. Lebe the number of the members of the group andle¢ the
security parameter. In the simple modification, the size of the public kéy8(8?2) and the communication
cost for single execution is- O(n) in the modified version of the GapSVP-based MV scheme, where
O(f(n)) = O(f(n) poly log f(n)) for a functionf in n.

In contrast to the simple modification, the size of the public keg3(i#) + 1 - O(n) and the communica-
tion cost for a single executid®(n + 1) in our GapSVP-based AID scheme, which improves tfieiency
of the simple modification.

! Feige and Shamif[] actually showed a general construction technique for ID schemes secure against active attacks. But,
by Bellare and Pracio’s observatid [we can construct concurrently secure ID schemes by the same technique.


c:/tex/share/tex�
html:</a>are/tex�
TEXMF.tex#cite.F�

We also modify the above concurrently secure ID scheme into our AID scheme based on a similar
strategy to Wu, Chen, Wang, and Wan@&J] which gave an AID scheme secure under the average-case
hardness of the Weak Dependence Problem. We formally define a concurrent version of the security notion,
the security against impersonation under concurrent chosen-group attacks, and prove that our AID scheme
has this security notion.

As suggested ifI[l], we can also obtain ring signature schemes secure in the random oracle model
under the our assumptions by applying the Fiat-Shamir transform to our AID schemes.

Overview of our constructions: We first construct key-generation algorithms and string commitment
schemes based on the lattice problems. Then, plugging these algorithms and schemes into the standard
structure, we obtain the ID schemes based on the worst-case hardness of the underlying problems.

Our construction has a standard structure of 3-move public-coin protocols, and can be considered as
a modification of Stern’s zero-knowledge argument protd8@).[ As already mentioned, the assumption
of his protocol is the average-case hardness of certain combinatorial problems. Also, his protocol has no
explicit string commitment protocol constructed from the assumption. To obtain the security proof of our
scheme only from the worst-case assumption of the lattice problems, we prepare two components; one is a
string commitment scheme and the other is a key-generation algorithm.

These two components consist of the same ingredient, collision-resistant hash functions based on
GapSVP and SVP for ideal lattices. These functions were introduced by Micciancio and R8gand
Lyubashevsky and Miccianci@{], respectively.

We construct string commitment schemes from these functions. General constructions of string com-
mitment schemes from collision resistant hash functions were shown by Damgard, Pedersen, and Pfiz-
mann [B, [IJ and Halevi and Micali[[3. Our constructions for string commitment schemes are more
direct and simpler than the general one.

A key-generation algorithm for an ID scheme generates public and secret keys of a prover. We imple-
ment this algorithm from the collision-resistant hash function&&f and by appropriately adjusting
their parameters for our security proofs.

Plugging these algorithms and schemes into Stern’s structure, we obtain ID schemes based on the worst-
case hardness of the underlying problems. The important point for our concurrent security is the format of
the common inputs which consist of a system parameter and a public key and the relation between public
and secret keys the prover wants to prove. We now compare the MV scheme with ours to briefly describe
why our scheme has concurrent security.

In the MV scheme, a prover and verifier are given a mairias a common input, and a prover has a
binary vectorx as secret information. The task of the prover is to convince the verifier tfgtidhknows
x satisfying the relation thadx = 0 andx is relatively short. In our scheme, a prover has a binary vector
x with a fixed Hamming weight as hiser secret key. We also feed to the prover and verifier a maAtrix
as a system parameter and a vegtas the corresponding public kgyto x. The task of the prover is to
convince the verifier that ighe knows a correct secret kegatisfying a relatiodx =y in our case.

To show concurrent security of an ID scheme, we usually give a reduction from the concurrent attack
for the scheme to the underlying problem. That is, by using an adversary capable of the concurrent attack
for the scheme, we construct afieient algorithm for the underlying problem. It should be noted that the
algorithm needs to simulate the behaviour of the prover since the algorithm must answer the queries that
the adversary makes in its concurrent attack in order to run the adversary correctly.

In both cases of ours and the MV scheme, the underlying problem is reduced to Small Integer Solution
Problem (SIS). Given a matrik, the task of SIS is to find a relatively short veckosatisfyingAx = 0.

In our reduction, when we are givel, by generating just a dummy secret k€y we can simulate
the prover withA andx’ the adversary concurrently accesses. On the other hand, in the case of the MV
scheme, it looks diiicult to directly simulate the prover since we have to prepare a dummy short xéctor
satisfyingAx’ = 0 for the simulation, but that is the task of SIS itself.

Our construction for AID schemes also has a similar structure. Eachmefmbers in the ad hoc group
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has avectox; (i = 1,...,1). Then, the common inputs of the scheme are a system paratnatet a set of
public keysys, ...,y of the members, which satisfy = Ax; (i = 1,...,,1). We can show that the prover
can anonymously convince the verifier that the prover kngwerresponding to one gf, ..., Yy, based on
a similar argument to the proof of our concurrently secure ID scheme.

As mentioned above, we can construct a lattice-based AID scheme in a straightforward manner from
the MV scheme. We just feelly, ..., A| as the common inputs to the prover and verifier. In this case, the
prover convinces the verifier that/se has a short vectgy satisfyingA;x; = 0 for somei.

While our scheme requires mamgctorsproportional to the size of the group, this straightforward
scheme requires manyatricesproportional to the size of the group, which shows the advantage of our
scheme on thefciency. Moreover, in contrast to our AID scheme, it seentSadilt to prove that this
straightforward scheme is secure against impersonation under concurrently chosen-group attacks.

Organization: The rest of this paper is organized as follows. We introduce basic notations and notions,
and review the cryptographic schemes we consider in this pajfgedfion 2 In[Seciion B we give a
key-generation algorithm and a commitment scheme based on the Micciancio-Regev hash functions for
our ID and AID schemes. [Bection 4 we construct the ID scheme by combining the framework of Stern’s
scheme with our key-generation algorithm and string commitment scheme. We present the AID scheme in
Section $

In this extended abstract, due to lack of space, we only describe the schemes based on GapSVP since
the construction from SVP for ideal lattices follows a similar strategy to that from GapSVP. We argue the
constructions from SVP for ideal lattices|fppendix A

2 Preliminaries

Basic notions and notations: We define a negligible amount imas an amount that is asymptotically
smaller tham™¢ for any constant > 0. More formally, f(n) is a negligible function imif lim ., n°f(n) =

0 for anyc > 0. Similarly, a non-negligible amount is one which is at leastfor somec > 0. We say

that a problem is hard in the worst case if there exists no probabilistic polynomial-time algorithm solves the
problem in the worst case with a non-negligible probability. We sometime©(&@)) for any function

f in nasO(f(n)-polylog(f(n))). We assume that all random variables are independent and uniform if not
specified. We denote hythe security parameter of cryptographic schemes throughout this paper, which
corresponds to the rank of the underlying lattice problems.

For anyp > 1, thel, norm of a vectox = '(xq, . .., X,) € R", denoted byiX|lp, is e, xip)l/p. For ease
of notation, we defingx|| := |[X||,. The infty norm is defined a|l., = limp_ (X, = max [X.

Let wy(X) denote the Hamming weight of i.e., the number of nonzero elementsxinLet B(m, w)
denote the set of binary vectors{ity 1}™ whose Hamming weights are exactly equaitd.e., B(m w) :=
X e {0, )™ wH(X) = w}.

Given two probability density functiong; and¢, on a finite setS, we define the statistical distance
between them a&(¢1, ¢2) := % Yxes [91(X) — ¢2(X)|. We also use the same notation for two arbitrary func-
tions. Note that the acceptance probability of any algorithm on inputs Katifters from its acceptance
probability on inputs fron¥ by at mostA(X, Y).

If A(-,-,...) is a randomized algorithm, thgn— A(x1, X2, ... ;r) means thay is assigned the unique
output of the algorithm on inputsy, X2, ... and coinsr. We often use the notation « A(xy, Xo,...) as
shorthand for first picking at random and then setting <« A(X1, X2,...,;r). If Sis a finite set then
s «R S indicates thas is chosen uniformly at random fro.

Provers and verifiers: An interactive algorithnA is a stateful algorithm that on input an incoming mes-
sageMj, and state informatioStoutputs an outgoing messaljk,; and updated statgt (We will write it
as Mout, St) <« A(Min, S9).
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We say that accepts ifSt= 1 and rejects iSt= 0. An interaction between a proverand a verifielV
ends wherV either accepts or rejects. We will write

(Tr,Ded) — Run[P(p1,...)°" & V(vg,...)°V]

to indicate that we leP interact withV, having provided bott andV with fresh random coins, to get a
transcriptTr and a boolean decisiddec

Hash functions: We here define collision-resistant hash functions family.

Definition 2.1. Let H,, = {hx : My — Dy | k € K} be a family of hash functions. L&t = {Hp}new. Let
A be an adversary. We define the following experimentgldbr the collision-resistant property of a hash
function.

ExpS(n): k —r Kn; (X, X) « AL, K);
If X', x e Mp, Xx# X, andhg(x) = h(x') then return 1. Otherwise, return O.
Let the advantage af be AdvS?'(n) = Pr[ExpSS', (n) = 1]. We say thatH is collision resistant if, for
any probabilistic polynomial-time adversa#, Advgj"ﬂ(n) is negligible inn.

String commitment schemes: We consider a string commitment scheme in the trusted setup model. the
trusted setup model is often required to construct practic#ilgient cryptographic schemes such as non-
interactive string commitment schemes. In this model, we assume that a trusted plaotyestly sets
up a system parameter for a sender and receiver. In our case, therpdigyributes a description of a
commitment function randomly chosen from a family of commitment functions as the system parameter.
LetCph = {Cony : My x Ry — Cy, | k € Ky} be a family of commitment functions and @t= {C}nen.
First, 7 on input I distributes the system paramelee K, to a sender and receiver. Both parties then
share a common function by a givenAfter sharing the function Cognthe scheme executes two phases,
called committing and revealing phases. In the committing phase, the sender comjinitsdesision, say,
a strings € M, to a commitment string = Con(s, p) with a random string € R,. He/She then sends the
commitment string to the receiver. In the revealing phase, the receiver verifies the sender’s dexision
the committing phase. To do so, the sender gives the receiver the dexaiohthe random string. The
receiver can then easily verify the validity oby computing Cor(s; p). The security notion of the string
commitment schemes we require can be formalized as follows:

Definition 2.2. We say a string commitment scheifiés statistically hiding and computationally binding
if it has the following properties:

Statistical-hiding property:
For any two strings, s € My, the statistical distance between Gggyp) and Com(s’; p’) is negli-
gible inn for random string® andp’.
Computational-binding property:
Let A be an adversary. We consider the following experimeisof
Exp,(n): k «r Kn; ((S.0). (S.0)) « AL K);
If s, € My, s# s, and Com(s; p) = Com(s’; p) then return 1.
Otherwise, return 0.
We define the advantage af asAdv2, (n) = Pr|Exp%,(n) = 1|. Then,Adv2%,(n) is negligible in
n for any probabilistic polynomial-time adversa#y.

Intuitively, if C is statistically hiding, any computationally unbounded adversarial receiver cannot distin-
guish two commitment strings generated from two distinct strings. Also, it is computationally hiding, any
polynomial-time adversarial sender cannot change the committed string after sending the commitment.



Canonical identification schemes: We adopt the definition of identification schemes giverlih [Let
STI = (SetUp,KG, P, V) be an identification scheme, wheetUp is the setup algorithm which on input 1
outputsparam KG is the key-generation algorithm which on ingagramoutputs pk, sk, P is the prover
algorithm taking inpusk, V is the verifier algorithm taking inpugsaramandpk. We sayS7 is a canonical
identification scheme if it is a public-coin 3-move protocol.

Security against impersonation under concurrent attacks: We are interested in concurrent attacks,
which are stronger than active and passive attacks. So, we review the definition of concurrent security
in [[4].

In concurrent attacks, the adversary would play the role of a cheating verifier prior to impersonation,
but could interact many fferent prover “clones” concurrently. Each clone has the same secret key, but has
independent random coins and maintain its own state.

Let an impersonataf = (CV, CP) be a pair of probabilistic polynomial-time algorithms, the cheating
verifier and cheating prove€V would interacts with each of clones, which is identified by a sessios 1D

We describe the formal definition as follows. Consider the experilﬁgpg}f}ca(n) between the chal-
lenger and the impersonatdr= (CV, CP).

Experiment Expi;}p}ca(n): (See als@able 1in [Appendix B)

Setup Phase:The challenger obtainsaram < SetUp(1"). Next, it obtains jfk, sk «— KG(param)
and set®S := 0, wherePS denotes the set of prover’s sessions. The impersogatas given
the system parametparam

Learning Phase: The impersonato€V can query to the prover oracled?.

e The oracle Rov receives inputs, Mi,. If s¢ PSthen it addssto PS, pick a random coin
p, and sets a state of the prov&[s] := (param sk p). Next, it obtains Moy, Sk[S]) «
P(Min, St[9]). It returnsMgyt.

Challenge Phase:CV outputsStp. The challenger giveStp to CP. Finally, the challenger obtains
(Tr,Deg « Run[CP(Stp) « V(param pk)] and returndDec

Definition 2.3. Let ST = (SetUp,KG, P,V) be an ID scheme/ = (CV, CP) an impersonator, and a

security parameter. We define the advantagg aJEEAdvig‘}’fa(n) = Pr[Expg’}ca(n) = 1] . We say thatST
p-ca

is secure against impersonation under concurrent attaéldyig}] (-) is negligible for every polynomial-
time 7. ’

Ad hoc anonymous identification schemes: An AID scheme[[]] allows an user to anonymously prove
hisher membership in a group if and only if the user is an actual member of the group, where the group
is formed in an ad hoc fashion without help of a group manager. We then assume that every user registers
hig/her public key to the public key infrastructure.

An ad hoc anonymous identification (AID) scheme is four tupléD = (SetUp, Reg, P, V), where
SetUp is the setup algorithm which on input butputsparam Reg is the key generation and registration
algorithm which on inpuparamoutput fk, sk, P is the prover algorithm taking inpufgaram a set of
public keysR = (pkj,...,pk), and one of secret kegk such thatpk; € R, V is the verifier algorithm
taking inputsparamandR. We omit the group public key construction and group secret key construction
algorithms in the definition off[1] to simplify notations.

There are two goals for security of AID schemes: security against impersonation and anonymity.

Security against impersonation under concurrent chosen-group attacks: In the setting of chosen-
group attacks, an adversary could force the prover to prove the membership in an arbitrary group if the
prover is indeed a member of the group. “Concurrent” attacks allow the cheating verifier and prover to
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interact with the clones of provers except for target provers, whereas only the cheating verifier can interact
with the clones of a prover _

We describe the formal definition of the security as follows. Consider the following experﬁnpgﬁz_flfa(n)
between a challenger and the impersondter (CV, CP).

Experiment Exp;%c;a(n): (See als@able 2in [Appendix B)
Setup Phase: The challenger obtaingaram « SetUp(1") and initializesHU, CU, AU, PS := 0,
whereHU, CU, andTU denote the sets of honest users, corrupted users, and target users,

respectively, andS denotes the set of prover's session. The impersor@ibis given the
system parametgraram

Learning Phase: The impersonatoCV can query to the three oraclesi, Corr, and Rov.

e The oracletir receives input. If i e HUUCUUTU then returnsL. Otherwise, it obtains
(pk;, sk) < Reg(param pj), adds to HU, and provides with pk;.

e The oracle ©Grr receives input. If i ¢ HU \ TU then returnsL. Otherwise, it addsto
CU, deletes in HU, and returng; to 7.

e The oracle Rov receives input®, i, s, andM;,. If pk ¢ Rori ¢ HU \ TU then returns
L. (Note that the public keys iR need not to be registered.) IR(i,s) ¢ PS then it
adds R, i, s) to PS, pick a random coimp, and sets a state of the prov®p[(R,i, 9)] :=

(param R, sk, p). Next, it obtains Moy, Sh[(R, i, S)]) « P(Min, SE[(R.i, 9)]). It returns
Mout.

Challenge Phase:CV outputs a set of public keyR = (pk_,...,pk;) andSicp. If R ¢ HU then
the challenger outputs 0 and halts. Otherwise, the challengef Ebts R, and givesStp to
CP. CP can query to the oraclesik, Corr, and Rov as in the learning phase. Finally, the
challenger obtainslf, Dec) «— Run[CP(Stcp)'N™CorPRov ; v(param R;)] and outputDec

Definition 2.4. Let ATD = (SetUp, Reg, P, V) be an AID scheme anél = (CV, CP) an impersonator. Let
n be a security parameter. The advantagé of attackingAZD is defined by
imp-cc . imp-cc _
Advi e 7n) 1= Pr[Expin 7 = 1.

We say thatAID is secure against impersonation under concurrent chosen-group attAcké;{]]?z_)cjfa(-)
is negligible for every polynomial-timé.

We note that our definition is the concurrent version of the soundness definit@fj.in [

Anonymity against full key exposure: This security notion captures the property that an adversary can-
not distinguish two transcripts even if the adversary has secret keys of all the members. Anonymity against
full key exposure for an AID schem@& 7D is defined by using the following experim%kpg‘;gge(n)
between a challenger and adversaty

Experiment Exp;‘;gf;e(n): (See als@lable 3in[Appendix B)

Setup Phase:The challenger runs the algorith&etUp with input 1" and obtaingparam The ad-
versaryA is given the system paramefggiram

Challenge Phase:A requests a challenge by sending to the challenger the values
((pki,» Sko). (Pk;,.sk,),R). Here the set of public keyR containspk, and pk_ , where
(Pk,, Sk,) and Pk, sk,) are valid key pairs. The challenger chooses a randorh bit{0, 1}
and runs the protocol as a prover who B&s. Run[P(param R, sk,) < A].

Output Phase: A finally outputs its guesk* for b. If b = b* the challenger returns 1. Otherwise
returns 0.


html#theorem.2.3�

Definition 2.5. Let A7D = (SetUp,Reg,P,V) be an AID scheme/A an adversary, and a security
parameter. The advantagedfin attackingAZD is defined by
AdvaorTe(n) = ‘Pr[Exp;‘_}’g *em =1]-3

We say thatAZD has anonymity with full key exposureAfdv;‘;g;fe(-) is negligible for every polynomial-
time A.

3 Main Tools

We first review fundamental notions of lattices, well-known lattice problems, and a related problem. An
n-dimensional lattice ilR™ is the set_(bs,...,bn) = {X{L, @ibi | @i € Z} of all integral combinations of

n linearly independent vectols, ..., b, € R™. The sequence of vectols, ..., b, is called abasisof

the latticeL. We also denot® as the sequence of vectdrs, . .., b, For more details on lattices, see the
textbook by Micciancio and Goldwass&4. We give the definitions of well-known lattice problems, the
Shortest Vector Problem (SVPand its approximation version.

Definition 3.1 (SVP?). Given a basi8 of a latticeL, the problem is finding a non-zero vecioe L such
that for any non-zero vectore L, V||, < [IX]|p.

Definition 3.2 (SVP?). Given a basi8 of a latticeL, the problem is finding a non-zero vecioe L such
that for any non-zero vectore L, [[vll, < ¥ [IX|[p.

A few lattice-based cryptographic schemes are based on the worst-case hardnes%fof Sviney, e.qg.,
@ BE3[E4.

We next give the definition of the gap version of $/R/hich is the underlying problem of Micciancio-
Regev hash functiong§].

Definition 3.3 (GapSVFﬁ). For a gap functiory, an instance of GapS\/Rs a pair 8,d) whereB is a
basis of a latticd. andd is a rational number. In YES input there exists a non-zero vectot. such that
[IVllp < d. In NO input, for any non-zero vectere L, ||v||, > yd.

We also define the Small Integer Solution problem SIS (inliheorm), which is often considered in
the context of average-cdsmrst-case connections and a source of lattice-based hash functions as we see
later.

Definition 3.4 (SISp ) For a fixed integeq and rea)3, given a matrixA € Z”X”‘ the problem is finding
a non-zero mteger vectare Z™\ {0} such thatAz = 0 modq and||z|, < 3.

Hash functions based on lattice problems: Next, we review a family of collision-resistant hash func-
tions given by Micciancio and RegdZd].

Let n be a security parameter (or a rank of an underlying lattice problem). For a gringgén) = n©1)
and an integem = m(n) > nlogq(n), we define a family of hash functiong{(q, m) = {fa : {0, 1)™ —

nlAE Z”Z(r)”(”)} wherefa(x) = Ax modg(n).

Orlglnally, Ajtai [ showed, for suitably chosetq(n) and m(n), the problem, which is, glveﬁHq ms
finding a short non-zero vectarin a lattice Aq(A) = {x € Z" | Ax = 0 (mod g)} such thatfjv|| <
i.e., solving Slﬁmn, is hard on average under the assumption that,S¥PRard in the worst case within
some polynomial approximation facter It is known thatH (g, m) is indeed collision resistant for suitably
choseng andm by Goldreich, Goldwasser, and Haleflid. They observed that finding a collisior, k')
for fa € H(qg, m) implies finding a short non-zero vectoe x — x’ such thatz|| < vYmandAz = 0 modq,
i.e, solving SI§ i Cai and Nerurkafd] and Micciancio 23] improved an approximation factor of the

underlying Iattlce problems. Recently, Micciancio and Regev showedFitfgim) is collision resistant
under the assumption that the gap version of g(\n/)F?s hard in the worst casg{].
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Theorem 3.5([2g]). For any polynomially bounded functiogs= A(n), m = m(n), q = q(n), with q >
4+/mr??B andy = 147 /B, there exists a probabilistic polynomial-time reduction from sol\iB“apSVI%
in the worst case to solvinglsgmﬁ on the average with non-negligible probability.

Setup and key-generation algorithms: Next, we restrict the domain of hash functions to work the hash
function for the key-generation algorithm in Stern’s ID scheme. The restricted version is given as follows:
/ _ . m(n)
H'(g.mw) = {ha : B(mw) - Z0) [A € Zaga" b
whereha(x) = Ax modq(n). Observe that finding a collisiorx(x’) for ha € H’(g, m, w) implies finding
a short vectoz = x — X’ such that|z]] < V2w andAz = 0 modq, i.e, solving the instancey(A, v2w) of

S|s§m "

The setup algorithm on inpuf' butputs a random matri& € ngm. The key-generation algorithm on
input A chooses a random vectore B(m, w), computey = Ax, and outputsgk, sk = (y, X).

String commitment scheme: In this section, we describe a statistically hiding and computationally bind-
ing string commitment scheme based on the Micciancio-Regev hash functions.

For a primeg = g(n) = n®Y and an integem = m(n) > nlog q(n), we define a family of hash functions,
H(gm) = {fa {0, - 70 | Ae zg(xnr)”(”)}, wherefa(x) = Ax modq(n).

General constructions of a statistically hiding and computationally binding string commitment scheme
are known from a family of collision-resistant hash functidBd1d, [I5. Their constructions used uni-
versal hash functions for the statistical-hiding property. Meanwhile, we can give more direct and simpler
construction from the Micciancio-Regev hash functions without the universal hash functions.

We now describe our string commitment scheme. The input of the commitment functiomibiawec-
tor x obtained by concatenating a random stiging (o1, . . ., pmy2) and a message strirgy= (Sy, . . ., Sw2),
i.e,x="og,... ,Pmy2, St, - - - » Smy2). We then define the commitment function on inpsiendp as

Coma (s, p) := Ax modq(n) = A'(o1, ..., omy2, St - - - » Sy2) modg(n).

Lemma 3.6. For any polynomially bounded functions snm(n), g = q(n), ¥y = y(n), with q > 4mr?/?,
vy = 147 +/nm, and m> 10nlogq, if GapSVI% is hard in the worst case theDomy is a statistically hiding
and computationally binding string commitment scheme in the trusted setup model.

In particular, for any nfn) = ®(nlogn), there exists ) = O(n>°logn), andy(n) = O(n+/logn), such
that m(n) > 10nlogq and ifGapSVé is hard in the worst case theBomy is a statistically hiding and
computationally binding string commitment scheme in the trusted setup model.

Proof. The computational-binding property immediately follows from the collision-resistant property. We
now show the statistical-hiding property.

LetA = [a1 - - an). We then have CoRrl(s, p) = Zi”:‘/lzpiai + Zi”:‘/lz Saj+m/2. The following claim proves
a random subset sum afis statistically close to the uniform distribution.

Claim 3.7 (Claim 5. 3 in B4]). Let G be a finite Abelian group and let* clog|G|. If ¢ > 5,

G,rq,...,ne{0,1) and ue G.
In our proof, we consideLy as the finite grous. A(((as, . . .,am/g),zﬂ/fpia,-), (a1, ...,amp2), ) is
then negligible with probability exponentially close to 1, where Zg is a uniform random variable. Thus,

A((A, Coma (0™, p)), (A, u)) is negligible. Since\((A, u + 217 Saim2), (A, ZF pidi + T S@iamy2))
is also negligibleA((A, Coma(s; p)), (A, u)) is negligible for any message By the triangle inequality, we
have

A((A, Coma(s1; p1)), (A, Coma(sz; p2))) < A((A, Coma(st; p1)), (A, U)) + A((A, Coma(sz; p2)), (A, u))

for any messagess; and s, and uniform random stringspr and po. It follows that
A((A, Coma(st; 1)), (A, Coma(sz; p2))) is negligible inn, which completes the proof. O O
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Using the Merkle-Damgard techniqUZl[g], we obtain the string commitment scheme whose commitment
function is Com : {0, 1}* x {0, 1™? — Z] rather than Com : {0, 1)™? x {0, 1}"™2 — Zg. We use this
commitment scheme in the rest of the paper.

4 |dentification Scheme

Plugging the setup and key-generation algorithms and the string commitment scheme into Stern’s ID
schemel3d], we obtain a concrete identification scheme. Our key-generation algorithm onAnpEg*™
outputs a vectox € B(m, w) as the secret key and a vecyoe Ax as the public key.

Our protocol is obtained by modifying Stern’s ID schel8§|[ which presents a zero-knowledge argu-
ment protocol based on the decoding problem on binary codewords called Syndrome Decoding Problem.
Since his protocol deals with binary codewords, it works on the binary figldStern also proposed that
an analogous schemefy, whereq is extremely small number (typically 3, 5, or B. We adjust this
parameter to connect his framework to our assumptions of the lattice problems.

The following is our ID scheme based on GapSVP. Note that this protocol is in parallel repeated
times to achieve an exponentially small soundness error. (The soundness error is at3nhastie single
repetition.)

SetUp: The setup algorithm, on input'loutputs a random matrik € Zg“™ asparam

KG: The key-generation algorithm, on inpAt chooses a random vectere B(m,w), computesy =
Ax modq. Outputs pk, sk = (y, x).

P, V. The common inputs ar& andy. The prover’s auxiliary input ig. They interact as follows:

Step P1: For everyi € {1,...,n}, choose a random permutatianover{1,...,m}, a random vec-
torr; € ZQ“, and random strings; 1, pi.2, andpj 3. Computeci; = Coma (7, Ari; pi1), G2 =
Coma (7i(ri); pi.2) andci 3 = Coma (i (X+1); pi,3). SendCmt:= ((C1,1,C1,2,C13), ..., (Cn1,Cn2,Cn3))
toV.

Step V1 V sends random challeng€$ := (Chy,...,Ch,) € {1,2,3}" to P.
Step P2 ParseChas Chy, ..., Chy).
1. If Ch = 1, P revealsci 2 andc; 3. SetRsp = (ni(X), 7i(ri), pi 2, pi.3)-
2. If Ch = 2, P revealsci 1 andc; 3. SetRsp = (i, X + I'i, 0i.1, 0i.3)-
3. If Ch = 3, P revealsci 1 andci 2. SetRsp = (7, I'i, pi.1, 0i 2)-
SetRsp:= (Rsp, ..., Rsp,) and sendkspto V.
Step V2 ParseRspas Rsp, . - ., RsR).
1. If Ch = 1, parseRsp as @1,zi2,pi2 pi3). Check whether the weight of and the
commitmentsci > andc; 3 are correct, that iszi1 € B(m,w), Ci2 2 Coma(zi2; pi2), and
Ci3 2 Coma(zi1 + zi2; pig). If they are correct, sddeg = 1 and otherwise séeg = 0.
2. If Ch = 2, parseRsp as (i, z, pi1,pi3). Check whether the commitments; andc; 3
are correct, that isg; 1 2 Coma (nj, Azi — Y; pi1) andc; 3 2 Coma (7i(z); pi3). If they are
correct, seDeg = 1 and otherwise séeg = 0.
3. If Ch = 3, parseRsp as (i, zi, pi 1, pi2). Check whether the commitmergg andc; are

. 2 ?
correct, that isgi 1 = Coma (7, Azj; pi1) andci2 = Coma(ni(zi); pi2). If they are correct,
setDeg = 1 and otherwise s&egqg = 0.

If Deg = 1 for alli, setDec= 1. Otherwise seDec= 0. OutputDec

We next give the security proof of our ID protocol, which concerns impersonation under concurrent
attacks. Before the proof of security, we need to note the following trivial lemma.
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Lemma 4.1. For any fixedA, let Y := {y € Zg | [{x e B((m w) | Ax = y}| = 1}, i.e., a set of vectorg such
that the preimage of y is uniquely determined fak. If g™/ |B(m, w)| is negligible in n, then the probability
that, if we obtainly, X) <« KG(A), theny € Y is negligible in n.

We now show the security of the above ID scheme as follows.

Theorem 4.2. For any polynomially bounded functions g m(n), g = q(n), with q > 4mr®/?, y =
147 +/nm, m> 10nlogq, and ¢/ |B(m, w)| is negligible in n, ifGapSVF§ is hard in the worst case then the
above ID scheme is secure against impersonation under concurrent attacks.

In particular, for any ngn) = ®(nlogn), there exists ) = O(n*°logn), y(n) = O(n+/logn), and
w(n) = ®(m(n)) such that §/ |B(m, w)| is negligible in n and iGapSVFﬁ is hard in the worst case then the
ID scheme is secure against impersonation under concurrent attacks.

Proof. We show that if there exists an impersonafowhich succeeds impersonation under concurrent
attacks with non-negligible probability there existsA that solves Slqém,wn on average. Then there exists

any instance of GapS\{fbyTheorem 3.6

We first overview the strategy ofi. The algorithm#A can control the impersonatdr by feeding a
random tape and a challenge. Giv&nA chooses a random secret keg B(m,w) and computs := AX.
A executes on inputs A,y). We note thatA can simulate the oracleso&v and Rov, sinceA has the
secret key. A executed three times with random challenges and a fixed random tape. Thebtains
three transcripts@mt”), Ch®), Rsg), Ded") for i = 1,2, 3 as the results of the interactions betwdeand
A. Note thatCmft) = Cm{? = Cmt® since fixes the random tape to wotk. By the assumptionl
obtain good transcript such that with non-negligible probabligd” = (Ded,...,Ded)) are all 1 for
everyi. Then,A can findx’ from (A,y) or find (s,p) # (S, p’) such that Com(s;p) = Coma(S’;p’) by
using the fact tha€mtt) = Cmf? = Cmf®. In the former case, we will show that # x with probability
at least 2. A outputsz = x’ — x. Sincez € {-1,0,+1}™, the norm||z]] < +/m. In the latter caseA
computexz # Z’ € {0, 1} from (s, p) and §, p’) such that Com(s, p) = Az and Com(s’;p’) = Az’. Thus,
A outputsz” = 7/ — z, where||z|| < v/m.

A then executes the following procedure.

1. Choose arandom tapeof 7.

2. Choose challengegh®, ch®, Ch® randomly.

3. For each = 1,2, 3, execute the experiment with random challengt® and a fixed random tape
and thenZ outputs three tuples of transcrip@raf), Ch), Rsp)), DedV).

We have that the probability that &lled?) are 1 is at leasi(2)® by the Heavy Row Lemm#&H]. Also,
we have PAlj : Chgl) # Chﬁz),ChEZ) # Chgs),Ch?) # Ch(jl)] = 1- (7/9)" by a simple calculation.A
therefore obtains good three transcripts with non-negligible probakéig){ — (7/9)".

We next show howA obtain a secret key or violate the binding property of the string commitment
scheme by using three good transcripts. Assumehatas three transcript€mt?, Ch®), Rsp), Ded?)
fori = 1, 2,3 such thaCmfY = Cmf? = Cm®, Ded) = 1 for alli, and{ChEl), Chgz), Chﬁ?’)} ={1,2 3} for
somej € {1,...,n}. Without loss of generality, we assume tierl) = i. we parsequi) as in Step V2.
From the assumption, we have four equations as follows (We pfaitsimplification):

¢ =Com(r®,Az® —y;p?) = Comn(n®, Az); p),
c2 = Comn(z; o) = Coma (x¥(z); o),
s = Coma\(2§l) +29,00) = Comu(x®(z?); o9,
z(ll) € B(mw)
If there exists a distinct pair of arguments of Gon¥ obtains a collision foA and solves SIg;, 7 as in
the overview.

Next, we suppose that there exist no distinct pair of arguments ofaCdret = denote the inverse
permutation of®. From the first equation, we hawe! = 7® = 2. Thus, we obtaiz® = x(Z" + 2
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from the third equation. Combining it with the first equation, we hagé = A(zr(z(ll)) + 7r(Z(21))) -y. We
obtainy = Aﬂ(Z(ll)) sincen‘l(z(zl)) = 7z in the second equation. We already hag?ée B(m, w). Then,A
setx’ := (z).

We now have to show that # x with probability at least 122. By[Lemma 4.] there must be an-
other secret kex’ with overwhelming probability. Note that the protocol is indeed a statistical witness-
indistinguishable protocol anf's view is independent aft’s choice ofx with overwhelming probability,
since Com is a statistically hiding string commitment scheme. Thus weiaxex with probability at
least J/2. In this caseA solves SI§m ym @s in the overview. O O

Note that, combining the witness-indistinguishability property of Stern’s schem
indeed show that our scheme has the witness-hiding property.

In the case of the parameters specifieligorem 4.Rthe size of the system parameteis O(n?) and
the size of the public key is O(n). The cost of communication in the single repetitio®i®) and the total
cost of communication i€(n?) by the parallel repetition.

al\witimma 4.1 we

5 Ad Hoc Anonymous Identification Scheme

Our construction for lattice-based AID schemes is inspired by the results in Wu, Chen, Wang, an@@)/ang [
which proposed an AID scheme based on the Weak Dependence Fobltwm idea of Q) is as fol-
lows: Let @y,...,am) be a system parameter. Each user chooses a secrgt kej-1,0, +1} and com-
putes a public key; = Y ey @j. In their AID scheme, a group is specified by the set of public keys
(y1....,y)) and heshe proves that lighe has a partitiorn’ = '(’x;'-q) € {-1,0, +1}™' for an instance
(a,...,amY1,-.., %), whereg is anl-dimensional vector(0 ...,010... 0) whose-th element is 1.

Our construction is as follows: L&t be a system parameter. Each user has a secreq kefd(m, w)
and public keyy; := Ax;. In the AID scheme, a group is specified by a set of public kgys (.,y;) of
the members. A user in the group, who has a secretxkegonvinces the verifier that fshe know that
X' :='('x'q ) such thatAy; ... y|]x’ = 0, the number of 1 irx’ is w, and the number of1 inx’ is 1.

We here construct an AID scheme based on GapSVP. We defimevd as{x € {-1,0,+1}" |
w,1(X) = wandw_;(x) = 1}, wherew, 1(X) denotes the number efl in x andw_;(x) denotes the number
of —1inx.

Similarly to the ID scheme ifEection 4 the protocol is repeated times in parallel to achieve an
exponentially small soundness error. (The soundness error is at p3dfsir2he single repetition again.)

SetUp: On input 1!, output a random matriR € Zg™.

Reg: On inputparam choose a random vectarfrom B(m, w) and computeg/ := Ax. Output Pk, sK) :
(v, %)

P,V: The common inputs ar@& and §/1,...,y)). The prover’s auxiliary input isk = x. Let A’ :

[Ay1...y] € ng(mﬂ) andx’ := t(‘xt—aj). They interact according to the following protocol:

Step P1 Forevernyi € {1,...,n}, choose a random permutatigjover{l, ..., m+l}, arandom vector

r € Zg“', and random strings; 1, pi.2, andpj 3. Computec; 1 := Coma (i, A'ri; pi1), Ci2 =

Coma (7ri(ri); pi2) andci 3 := Coma (i (X" +ri); pi.3). SendCmt:= ((Cy,1,C1,2,C13), - - -» (Cn1,Cn2, Cn3))
to V.

Step V1 V sends random challeng€$ := (Chy,...,Ch,) € {1,2,3}" to P.
Step P2 ParseChas Chy,...,Chy).
1. If Chy = 1, P revealsci 2 andc; 3. SetRsp := (mi(X’), 7i(ri), pi 2, pi 3)-

2 The Weak Dependence Problem s, givan (. ., a,) wherea; is anl-bit natural number, to find a partitione {—1, 0, +1}*\{0}
such thatzjik=1 xg = 0, i.e., to find two non-empty subses andS, in {1,..., ki suchthaS; N S; = 0 andYics, & = Yics, &-
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2. If Ch = 2, P revealsci 1 andc; 3. SetRsp := (i, X" + I'i, pi.1, 0i.3)-
3. If Ch = 3, P revealsci 1 andc; 2. SetRsp := (7, I'i, pi.2, £i.3)-
SendRsp:= (Rsp,...,Rsp) to V.
Step V2 ParseRspas Rsp, . - ., RsR).

1. If Ch = 1, parseRsp as @1,z 2,0i2 pi3). Check whether the weight of and the
commitments; , andc; 3 are correct, that i 1 € B’'(m+1,w), G2 2 Coma(zi2; pi2), and
Ci3 2 Coma(zi1 + zi 2; pi3)- If they are correct sddeg := 1 and otherwis®eg := 0.

2. If Ch = 2, parseRsp as (i, zj, pi 1, pi.3)- Check whether the commitmertgs andc; 3 are
correct, that isg; 1 2 Coma (rrj, A’zi; pi1) andci 3 2 Coma(7i(zi); pi3). If they are correct
setDeg := 1 and otherwis®eg := 0.

3. If Ch = 3, parseRsp as (i, Z;, pi 1, pi.2)- Check whether the commitmergs andc; » are

correct, that isg; 1 2 Coma (nj, A’z; pi 1) andci 2 2 Coma(7i(z); pi2). If they are correct
setDeg := 1 and otherwis®eg := 0.

If Deg = 1foralli € {1,...,n}, then seDec:= 1. OtherwiseDec:= 0. OutputDec

Theorem 5.1. Let3 := max(w + 1)¥2, vYm}. Assume that there exists an impersonafdhat succeeds
impersonation under concurrent chosen-group attacks with non-negligible probability. Then there exists a
probabilistic polynomial-time algorithn# that solvesSISimﬁ.

Proof. The algorithm#, given inputA, feedsA to the impersonataf. In the experiment, the impersonator
I will call Init, Corr, Conv, and Rov. If 7 calls it with inputi, thenA chooses at random, computes
yi := Asj, and returngyj to 7. If I calls Grr with inputi, Conv with inputsi, R, or Prov with inputs
i,R, s, M;, thenA can simulate the oracledgr, sinceA has a secret key with respect to a public key;.

At the end of the experimeng, will impersonate as a group which is specified by the set of public
keysR = (y1,...,Y)). RewindingZ three times,A obtain a collision §, o) and §, p’) for the commitment
scheme Com or a vectorx = '(tx; 'x2) such that Ay1 ... yi]x = O, wherex; € {—~1,0,1)™ andx, €
{-1,0,1)' andx € B’(m+ |, w) as in the proof

In the former caseAl computes # Z' € {0, 1}™ such that Com(s; p) = Az and Com(s’;p’) = AZ'.
Hence,A can outputz” = 2/ — z such that|z”’|| < vm.

In the latter case, we havix; + YI_; xpiyi = O, that is,Ax; + Y|_; x2iAs; = 0. Hence, we obtain
that A(x1 + Z!:l x2iS) = 0. Recall that the numbers efl in x is w and that of-1 in x is 1. Hence,
%1+ 2i_q Xeis|| < Ixall + Zi_q [xei| ISl < Vw+1 + (w+ 1)yw < (w+ 1)*2 By the same argument as
in the proof ofThearem ZPwe have thak; + 3 XS # 0 with probability at least A2. Thus,A outputs
Z:= X1+ 2 X2iS and solves Slqé,m,(w+1)3/2 with non-negligible probability. m| O

CombinindTheorem 5.1with[Theorem 3. bwe obtain the following theorem.

Theorem 5.2. For any polynomially bounded functions#m(n), g = q(n), with q > 4 vmr¥/2 max(w +
132, yim}, y = 14r yAmax(w + 1*2, ym}, m > 10nlogq and(fj)/q" = 2#0°9", if GapSVE is hard
in the worst case then the above scheme is secure against impersonation under concurrent chosen-group
attacks.
In particular, for any nfn) = ®(nlogn), there exists ) = O(n°logn), y(n) = O(n?+/logn), and
w(n) = ®(m(n)) such that §/|B(m, w)| is negligible in n and iGapSVI% is hard in the worst case then the
above scheme is secure against impersonation under concurrent chosen-group attacks.

Since the statistical anonymity of the above scheme is directly implied by the witness-indistinguishability
of Stern’s scheme, we omit the proof.

In the case of the parameters specifiedfeorem 5.Rthe cost of communication in the single repeti-
tion is O(n + 1) and the total cost of communicationris O(n + I).
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A Constructions from the Lyubashevsky-Micciancio Hash Functions

Several families of lattice-based hash functions are known to have small description sizes B4&BG@s [
[2d. In this section, we construct the ID scheme and the AID schemes based on the compact hash functions
of Micciancio and LyubashevskiZ{l]]. We basically use the notations &].

Let f € Z[x] be a monic and irreducible polynomial of degmeeConsider the quotient ring[x]/{f).
We use the standard set of representatfi@snod f) : g € Z[X]}. In this section we identify a polynomial
a(x) = ag + arX + - - - + a1 X"t € Z[x]/(f) with ann-dimensional integer vectar = ‘(ag, ..., a,-1). We
define a norm with respect toas follows: Forg € Z[X], |[(g + (f))I|l; = [lg mod f||.,. We write||g||; instead
of g + (FHlle-

We note that any idedl C Z[x]/(f) defines the correspondimgdimensional integer lattick(l) c Z".
Notice that a class of the lattices representable in this way is contained in a general class of all integer
latticesL(B) € Z". If a given lattice in SVP is restricted in a clasa of lattices, we denote by-SVPP the
problem over such restricted latticesAn We also denote by (f) the set of lattices that are isomorphic to
ideals ofZ[x]/(f). See[E] for the details. We here deal with(f)-SVP}’, i. e. , SVP with approximation
factory for |, norm whose input lattices are restrictedAif).

A.1 The Lyubashevsky-Micciancio Hash Functions

Lyubashevsky and Micciancio constructed a family of collision-resistant hash functions based on the worst-
case hardness of(f)-SVP for suitablef.

We review whatf is suitable for the construction of Lyubashevsky and Micciancio. The property of
f is defined as that the ring norfigl|; is not much bigger thaiigl|,, for any polynomialg. Formally,
Lybashevsky and Micciancio capture this property asstkgansion factoof f:

EF(f.K) = lall /119l -

max
geZ[x],deg@)<k(deg(f)-1)
For example, a simple calculation shows that R 1,k) < kand EF&"™ + x"2 + ... + 1. k) < 2k. We

say a polynomialf is suitable if f is a monic and irreducible iZ[X] and there is a constantsuch that
EF(f,k) < ckfor any natural numbek. The security of the Lyubashevsky-Micciancio hash functions is
based on the worst-case hardnesa @)-SVP for a suitable polynomidl. See[E{] for more details. They
adopt a family of polynomials such &8 + 1 andx™! + x"2 + ... + 1 for n such that the polynomials are
irreducible inZ[x]. Let D(m,d) = {x € Z™ | |IX||l, < d}. We now describe a family of hash functions given

in [20.
Hr(f.q.m.d) = {ha: D(M.d) > Zaw[X/(F) | A= (a..... ammym) € Zam/(F)™M),

whereha(x) = Zi”:‘/l”a; X X = (X1,...,Xmn) € Z™ and® means a product operator over the ring
Zg[X] /(1))
They showed the following theorem.

Theorem A.1 ([20)). Let E = EF(f,3). Let m > nlogqg/log2d and q> 2Edmr¥?logn. Then for
y = 8E2dmnlog? n, if A(f)-SVP} is hard in the worst case theH(f, g, m,d) is collision resistant.

Next, IetfH}(f, g, m) be a restricted version of the above hash functions:
H(f,6,m) = [ha 1 (0, 1™ - Zgy[X/(F) | A= (@1..... Bminyn) € Zgm/(E)™).
Corollary A.2. For any n(n) = ©(nlogn), there exists @) = ®(m+/nlogn) andy = G(mlog?n), such

that, for a suitable polynomial f, if(f)-SVP} is hard in the worst case thef( (f,qg, m) is collision
resistant.
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Finally, we introduce a restricted version®f;(f, g, m) for use in our identification scheme:
H(f.q.mw) = {ha s BIMW) - Zad /() | A= (@1, 8moyn) € Zgr [/

We can consideA = (ay, ..., amn) asA’ = [Roti(a),. .., Rot(@mwn)] andy = Y™ 'a ® x; asy = A’x,
where Rot(a) = [a,e1 ® a,...,6,.1 ® a] and g denotes a vector whoseth coordinate is 1 and other
coordinates are 0. Thus, we can plug it into the extended version of Stern’s scheme as the setup and
key-generation algorithms.

The setup algorithm on input'butputsA = (ay, ..., amn) from Zq/(f) independently and uniformly
at random. The key-generation algorithm on inputchooses a random vectore B(m, w) uniformly at

random, computes a vectpr= A’x, and outputsgk, sk) = (y, X).

A.2 String Commitment Scheme

Using H(f, g, m), we also obtain a simple string commitment scheme if a suithldeZ[x] is irreducible
polynomial inZq[x].

We first explain why we need the irreducibility dfin Zq[x]. We need to estimate a lowerbound of
m for the statistical-hiding property as in the proofl@mma 3.6 Suppose that is reducible inZg[x].
Even in this case, we can obtain a lowerbo@?logq) of m using Theorem 4. 2 iri24]. However,
this lowerbound loses the advantage (i. e. , compactness) of the Lyubashevsky-Micciancio construction
since that makes the size of the hash function much larger. On the other hand, if we assumis that
irreducible inZq[X], then we obtain a much better lowerbouf2¢hlogq), which preserves the advantage
of their construction.

Here, we say a polynomidl of degreen is strongly suitable foq if f is an suitable polynomial and
irreducible inZq[X]. For example, considefi(x) = (X" - 1)/(x— 1) = X1+ x"2 + ... + 1. The polynomial
f(X) is irreducible polynomial irZ[X] if nis prime and used if2[0, 0. We note that ifg modn is a
primitive root of Z;, then f(X) is irreducible inZq[X]. Thus, we apply the following lemma t&((f, g, m)
and obtain the statistical-hiding property of a string commitment scheme.

Lemma A.3. Let q be a prime g= q(n) = n°Y and m an integer such that = m(n) > 2nlogq.
Let f € Zy[X] of degree n be a strongly suitable polynomial for q. The statistical distance between
m/n

(@ ..., amn, X7 & ® x;) and the uniform distribution over the s@g[X]/( f))™"* is negligible in n.

Proof. We bound the collision probability of two random variablag (. ., amn, 3 a®Xj) and @, . . ., a;n/n, 2ia®
x{), where the elements, a € Zg[x]/(f) andx;, x{ € {0,1)}" are all chosen independently and uniformly at
random from their respective sets. The collision probability is

1 ,
=q—mPr{Zai®(xi—xi):0}.

By Cemma A.4below, the probability over the random choiceapfthat }; & ® (xi — x) = 0 equals to
1/ KX =X, oo Xmyn — x;n/n> . We note thaZq[x]/(f) is a field and ideals in it are onk0) andZq[x] /().
Thus, we have

Pr[Collision] = Prfa; = & for all i] - Pr[z a®x =) a®ex|a=aforalli

1/1
= (@ Prixe = X}, Xayn = Xy = Za[X]/CE] + Pr[(xa = X4, .. Xy = Xy ) = <0>])

(oLt
_q qn om om

m
n_
= ! (1+q 1).

Pr[Collision] =
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By Lemma ABbelow, we have the statistical distance is at mgég" — 1)/(4 - 2M). Hence, the assumption
thatm > 2nlogq implies the above upperbound is negligiblenin O O

Lemma A.4 (Lemma 4. 4 in[4]). Let R be a finite ring, and;z...,z, € R a sequence of arbitrary
ring elements. Ifa ..., an € R are independently and uniformly distributed ring elements, fhen- z is
uniformly distributed over the idedt,, . . ., Z,) generated bysz. . ., zy. In particular, forany z,...,zn € R
and randomly chosema. .., an € R, the probability tha’ a - z = 0is exactlyl/ |(z1,..., Zn)l.

LemmaA.5([1g). LetV and V be independent and identically distributed random variables taking values
in a finite set S. If V and Mhave collision probabilityPr]V = V'] < (1 + 4€?)/|S|, then the statistical
distance between V and the uniform distribution over S is at most

ForA = (ay,...,amwn), we define the commitment function on inpatr) = (S1, ..., Swan. 1, - - -, Fmy2n)
as

m/2n m/2n
Comu(s;r) := Z rNea+ S ® di+m/2n.
i=1 i=1

Now, we obtain the following lemma as[lemma 3.6

Lemma A.6. For any nin) = ©(nlogn), there exists @) = ®(m+/nlogn) andy = ®(mlog? n), such that,

m(n) > 2nlogq and for a strongly suitable polynomial f fo(m, if A(f)-SVP;} is hard in the worst case
thenComy is a statistically hiding and computationally binding string commitment scheme in the trusted
setup model.

Using the Merkle-Damgard techniqUE 8], we obtain the string commitment scheme whose commitment
function is Com : {0, 1}* x {0, ™2 — Zj rather than Com: {0, 1}™2 x {0, 1}™? — Zj.

A.3 Identification scheme and Ad Hoc Identification Scheme

We obtain the ID scheme and AID scheme by combining the above setup and key-generation algorithms
and the string commitment scheme with the extended version of Stern’s scheme as in@actnOne
can prove the securities of the schemes in the same manner to the proof of THédtandb.2

Theorem A.7. Let f be a polynomial and E= EF(f,3). Let m= m(n), g = q(n), and w= w(n) be
polynomially bounded functions such thatn2nlogq, > 2Emr¥’2logn, and ¢/ [B(m, w)| is negligible

in n. Assume that f is a strongly suitable polynomial for g. Theny/fer 8E2mnlog? n, if A(f)-SVP} is

hard in the worst case then the ID scheme which uses the above setup and key-generation algorithms and
the above string commitment scheme is secure against impersonation under concurrent attacks.

Sketch of proof: We show that if there exists an impersonafomwhich succeeds impersonation un-
der concurrent attacks with non-negligible probabilitythere existsA that finds a collision 4, z,) for
H(f,q,m).

GivenA = (ay,...,amn), A chooses a random secret key B(m, w) and compute/ := Ax, where
A := [Rot¢(a1) ... Rotf(amn)]. A executes! on inputs A,y). We note thatA can simulate the oracles
Conv and Rov, sinceA has the secret key. ‘A executes! three times with random challenges and
a fixed random tape. Therd obtains three transcript€mt), Ch), Rsp), Ded) for i = 1,2,3 as the
results of the interactions betwegrandA. Note thatCm{) = Cmt? = Cmf® since fixes the random
tape to workZ. By the assumptionA obtain good transcript such that with non-negligible probability
Ded) = (Deél'), ..., DedY) are all 1 for everyi. Then, A can findx’ from (A,y) or find (s, p) # (S,p")
such that Com(s; p) = Coma(s’; p’) by using the fact thaEmt? = Cmf? = Cmt®. In the former case,
we can show that’ # x with probability at least 12 as in the proof oifheorem 4.2 A outputs K, X’).
Sincex, x’ € B(m,w) C {0,1}™, A indeed finds a collision f(ﬂ{}(f,q, m). In the latter caseA computes
z+ Z €{0,1™from (s,p) and §, p’) such that Com(s; p) = Az and Com(S’; p’) = AZ’. Thus, A outputs
(z,Z') as a collision forH’(f, g, m). O
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Theorem A.8. Let f be a polynomial and E= EF(f,3). Let m = m(n), g = q(n), and w = w(n)

be polynomially bounded functions such that-n2nlogg/ log 2w + 1), g > 2E(w + 1)mr®’?logn, and
g"/|B(m,w)| is negligible in n. Assume that f is a strongly suitable polynomial for q. Then fer
8E2(w+1)mnlog? n, if A(f)-SVP;} is hard in the worst case then the AID scheme which uses the above setup
and key-generation algorithms and the above string commitment scheme is secure against impersonation
under concurrent attacks.

Sketch of proof: We show that if there exists an impersonafowhich succeeds impersonation under
concurrent chosen-group attacks with non-negligible probakilitihere existsA that finds a collision
(z1,22) for Hy(f,q,mw+ 1).

The algorithm#, given inputA = (ay, . . ., awn), feedsAto the impersonataf. LetA := [Rotf(a;) ... Rott(amn)].
In the experiment, the impersonatbwill call | nit, Corr, Conv, and Rov. If 7 calls it with inputi, then
A chooses € B(m,w) at random, computeg := As;, and returng; to 7. If 7 calls Gorr with inputi,
Conv with inputsi, R, or Prov with inputsi, R, s, Mj, then#A can simulate the oracledgr, sinceA has a
secret keys with respect to a public key;.

At the end of the experimenf, will impersonate as a group which is specified by the set of public
keysR = (y1,...,Y1). RewindingZ three timesA obtain a collision §, p) and @, p’) for the commitment
scheme Comor a vectorx = '('x1 ') such that Ay; ... y|]x = 0, wherex; € {—-1,0,1)™ andx, €
{-=1,0,1)" andx € B’(m+ |, w) as in the proof offheorem 4.2

In the former caseA computes # z’ € {0, 1}™ such that Com(s; p) = Az and Com(s';p’) = AZ'.
Hence,A outputs g, ') as a collision forHr(f,q, m w+ 1).

In the latter case, we havex; + 3|_; %oiyi = 0, that is,Ax1 + Y|_; XeiAs; = 0. Hence, we obtain that
A(x1+Z!:1 X2iS) = 0. By the same argument as in the prooifdeorem 4. Pwe have thax; + Y x2S # 0
with probability at least 12. Recall that the numbers efl in x is w and that o1 in x is 1. Thus we can
split the vectorxy + Y X2,;S into two vectorz; andz; such thatxy + Y X2;S = z1 + 2, Az3 = Az, and
Z1,22 € D(m,w+ 1). Hence,A outputs £1, z,) as a collision forH(f, g, m w+ 1). O
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B Tables

imp—ca

ExperimentExpg; ;

Input: n
Run: 1.param« SetUp(1")

2. (pk sK) « KG(param)

3.PS«0

4. Step « CV(1", param pk)Prov

5. (Tr, Ded « Run[CP(Sicp) « V(param pK)]
Output: Dec

Prover oracle: Rov

Input: S, Min
Run: 1. Ifs¢ PSthen
1-1.PS « PSuU (s}
1-2. Pick a random coip for P
1-3. Sk[s] « (paramsk p)
2. Mout, S[s]) < P(Min, Sk[9])
Output: Mgyt

Table 1:Experiment and Oracles fiefinition 2.3
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Experiment:Exp"Th 2

AID.T
Input: n
Run: 1.param« SetUp(1")
2.HU,CUTUPS <0
3. (R{, StP) — CV(ln, paran-)|NIT,CORR,PROV
4. If R ¢ HU then return O;
5TU <« R
5. (Tr, Dec) « Run[CP(Step)NCorrPRov ., v/(param Ry)]
Output: Dec
User initiation oracle:nir User corruption oracle: &r
Input: i Input: i
Run: 1. Ifie CUUHU UTU then return. | Run: 1. Ifi ¢ HU \ TU then returnt
2. (pKi], sKi]) <« Reg(param p[i]) 2.CU « CU U {i}
3.HU « HU U {i} 3. HU « HU \ {i}
Output:  pKi] Output:  p[i]
Prover oracle: Rov
Input: i,R's Mi
Run: 1. IfpKi] ¢ Rthen returnt
2. Ifi ¢ HU \ TU then return.
3. If(i,R s) ¢ PSthen
3-1.PS « PSU{(i,R s)}
3-2. Pick a random coip for P
3-3.5p[i,R g « (sk,R p)
4. Mout, SB[i, R, 8]) « P(Min, Sk[i, R, 9])
Output: Mgyt

Table 2:Experiment and oracles f@efinition 2.4

Experiment:Exp3on ke

Input: n
Run: 1.param« SetUp(1")
2. ((Pkg- SKo). (P, k). R Str) « A(param).
3.b <R {0, 1.
4.b* « Run[P(param R, sk,) < A(Stx)]
5. If b = b* thenDec:= 1. OtherwiseéDec:= 0.
Output: Dec

Table 3:Experiment and oracles fiefinition 2.5
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