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Abstract

We present a direct construction for an identification scheme provably secure against concurrent
attacks under the assumptions on theworst-casehardness of hard lattice problems such as the gap
version of the Shortest Vector Problem. We also construct an ad hoc anonymous identification scheme
based on the lattice problems by modifying this direct construction.
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1 Introduction

Background: Many researchers have so far developed cryptographic schemes based on combinatorial
problems related to knapsacks [22, 35], codes [37, 39, 32], and lattices [2, 3, 14, 16], due to the intractability
of the underlying problems and the efficiency of primitive operations. The combinatorial problems have
attracted more attention from cryptographic point of view since Shor’s quantum algorithms [38] revealed
the threat of quantum computers to number-theoretic schemes.

The cryptographic schemes employ combinatorial problems computationally intractable in theworst
casesuch as NP-hard problems in order to guarantee their security. They usually assume theaverage-
casehardness of the underlying problem because they have to deal with randomly generated cryptographic
instances like keys, plaintexts, and ciphertexts. This implies a security risk in such schemes since it is
generally hard to show the average-case hardness. In fact, several attacks against such schemes were found
in the practical settings [36, 19, 7, 28]. The cryptographic schemes only with the security based on the
average-case hardness are more likely to be at risk of these kinds of attacks.

It is therefore significant to guarantee the security under the average-case hardness. Ajtai [2] showed
that the average-case hardness of some lattice problem is equivalent to its worst-case hardness. His seminal
result opened the way to the cryptographic schemes based on the worst-case hardness of lattice problems.
The public-key encryption schemes were proposed by Ajtai and Dwork [3], Regev [33, 34] and Peikert
and Waters [31], and hash functions by Ajtai [2] and its improvements by [13, 6, 23, 26]. The public-key
schemes based only on the average-case hardness of lattice problems were also proposed by Goldreich,
Goldwasser, and Halevi [14] and Hoffstein, Jeffrey, and Pipher [17].

Among many varieties of lattice-based public-key schemes, there are very few results on the identifi-
cation (ID) schemes based on the worst-case hardness of lattice problems. As a major result, Micciancio
and Vadhan proposed ID schemes based on the worst-case hardness of lattice problems, such as the gap
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versions of the Shortest Vector Problem. These schemes are obtained from their statistical zero-knowledge
protocol with efficient provers [27].

In general, it is much harder to prove strong security against active attacks directly from the worst-case
hardness of lattice problems than standard number-theoretic ones. For example, one of the long-standing
open problems was the construction for a lattice-based public-key encryption scheme secure against the
chosen ciphertext attack based on the worst-case hardness, which was most recently resolved by Peikert
and Waters [31]. Except for their result, there is no direct construction for lattice-based cryptographic
schemes secure against active attacks under the worst-case hardness assumption.

Our results: In this paper, we propose adirect construction for lattice-based ID schemeconcurrently
secure under the assumption on theworst-casehardness of the gap version of the Shortest Vector Problem
(GapSVP) with approximation factorO(n

√
logn) (GapSVP2

O(n log1/2 n)
) and the Shortest Vector Problem

(SVP) for ideal lattices with approximation factorO(n log3 n) (Λ( f )-SVP∞
O(n log3 n)

).

The gap version of the Shortest Vector Problem GapSVP has already been used in the known lattice-
based cryptographic constructions [27, 26]. The SVP for ideal latticesΛ( f )-SVP was recently proposed
by Lyubashevsky and Micciancio [20] to improve the efficiency of lattice-based schemes. They actually
constructed compact hash functions using this problem. The efficiency of our ID scheme can be also
improved by using SVP for ideal lattices.

Our ID scheme basically follows the same framework as Stern’s [39]. He presented a statistical zero-
knowledge argument secure under the assumption of the average-case hardness of Syndrome Decoding
Problem (or a generalized version called Modular Knapsack Problem) and the existence of a collision
resistant hash function. Changing the assumption from the average-case hardness of such combinatorial
problems to the worst-case hardness, we successfully remove the assumption on the collision resistant hash
functions since we can build all the primitives we need from the lattice problems.

Actually, we can construct a concurrently secure ID scheme based on the worst-case hardness of lattice
problems from Micciancio and Vadhan’s ID scheme (the MV scheme, for short) [27]. Applying a general
technique by Feige and Shamir [12], a modification of the MV scheme can be proven to have concurrent
security1. On the contrary, our construction does not depend on the general modification technique, and
the security can be proven directly from the worst-case assumption.

Moreover, our direct construction yields efficient schemes for ad hoc anonymous identification (AID)
based on the worst-case hardness of GapSVP2

O(n2 log1/2 n)
andΛ( f )-SVP∞

O(n2 log4 n)
, which are secure against

the concurrent chosen-group attack. The AID scheme was originally proposed and formulated by Dodis,
Kiayias, Nicolosi, and Shoup [11]. The protocol is done by two parties, a prover and verifier, but we
implicitly suppose a group that is made ad hoc. Given public keys of all members of the group to the verifier
(and the prover), the goal is to convince the verifier that the prover belongs to the group, without being
specified who the prover is of the group, if and only if the prover is an actual member of the group. Dodis
et al. presented a general construction of AID scheme from any accumulator with one-way domain and
showed that constant-size signer-ambiguous group and ring signatures can be obtained from AID schemes
by using the Fiat-Shamir transformation.

Again by a simple modification of the MV scheme, we can obtain an AID scheme based on the worst-
case hardness of lattice problems. Unfortunately, the simple modification requires a large overhead cost
involving the size of the ad hoc group. Letl be the number of the members of the group and letn be the
security parameter. In the simple modification, the size of the public keys isl ·Õ(n2) and the communication
cost for single execution isl · Õ(n) in the modified version of the GapSVP-based MV scheme, where
Õ( f (n)) = O( f (n) poly log f (n)) for a function f in n.

In contrast to the simple modification, the size of the public keys isÕ(n2)+ l · Õ(n) and the communica-
tion cost for a single executioñO(n+ l) in our GapSVP-based AID scheme, which improves the efficiency
of the simple modification.

1 Feige and Shamir [12] actually showed a general construction technique for ID schemes secure against active attacks. But,
by Bellare and Pracio’s observation [4], we can construct concurrently secure ID schemes by the same technique.
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We also modify the above concurrently secure ID scheme into our AID scheme based on a similar
strategy to Wu, Chen, Wang, and Wang’s [40], which gave an AID scheme secure under the average-case
hardness of the Weak Dependence Problem. We formally define a concurrent version of the security notion,
the security against impersonation under concurrent chosen-group attacks, and prove that our AID scheme
has this security notion.

As suggested in [11], we can also obtain ring signature schemes secure in the random oracle model
under the our assumptions by applying the Fiat-Shamir transform to our AID schemes.

Overview of our constructions: We first construct key-generation algorithms and string commitment
schemes based on the lattice problems. Then, plugging these algorithms and schemes into the standard
structure, we obtain the ID schemes based on the worst-case hardness of the underlying problems.

Our construction has a standard structure of 3-move public-coin protocols, and can be considered as
a modification of Stern’s zero-knowledge argument protocol [39]. As already mentioned, the assumption
of his protocol is the average-case hardness of certain combinatorial problems. Also, his protocol has no
explicit string commitment protocol constructed from the assumption. To obtain the security proof of our
scheme only from the worst-case assumption of the lattice problems, we prepare two components; one is a
string commitment scheme and the other is a key-generation algorithm.

These two components consist of the same ingredient, collision-resistant hash functions based on
GapSVP and SVP for ideal lattices. These functions were introduced by Micciancio and Regev [26] and
Lyubashevsky and Micciancio [20], respectively.

We construct string commitment schemes from these functions. General constructions of string com-
mitment schemes from collision resistant hash functions were shown by Damgård, Pedersen, and Pfiz-
mann [9, 10] and Halevi and Micali [15]. Our constructions for string commitment schemes are more
direct and simpler than the general one.

A key-generation algorithm for an ID scheme generates public and secret keys of a prover. We imple-
ment this algorithm from the collision-resistant hash functions of [26] and [20] by appropriately adjusting
their parameters for our security proofs.

Plugging these algorithms and schemes into Stern’s structure, we obtain ID schemes based on the worst-
case hardness of the underlying problems. The important point for our concurrent security is the format of
the common inputs which consist of a system parameter and a public key and the relation between public
and secret keys the prover wants to prove. We now compare the MV scheme with ours to briefly describe
why our scheme has concurrent security.

In the MV scheme, a prover and verifier are given a matrixA as a common input, and a prover has a
binary vectorx as secret information. The task of the prover is to convince the verifier that he/she knows
x satisfying the relation thatAx = 0 andx is relatively short. In our scheme, a prover has a binary vector
x with a fixed Hamming weight as his/her secret key. We also feed to the prover and verifier a matrixA
as a system parameter and a vectory as the corresponding public keyy to x. The task of the prover is to
convince the verifier that he/she knows a correct secret keyx satisfying a relationAx = y in our case.

To show concurrent security of an ID scheme, we usually give a reduction from the concurrent attack
for the scheme to the underlying problem. That is, by using an adversary capable of the concurrent attack
for the scheme, we construct an efficient algorithm for the underlying problem. It should be noted that the
algorithm needs to simulate the behaviour of the prover since the algorithm must answer the queries that
the adversary makes in its concurrent attack in order to run the adversary correctly.

In both cases of ours and the MV scheme, the underlying problem is reduced to Small Integer Solution
Problem (SIS). Given a matrixA, the task of SIS is to find a relatively short vectorx satisfyingAx = 0.

In our reduction, when we are givenA, by generating just a dummy secret keyx′, we can simulate
the prover withA andx′ the adversary concurrently accesses. On the other hand, in the case of the MV
scheme, it looks difficult to directly simulate the prover since we have to prepare a dummy short vectorx′

satisfyingAx′ = 0 for the simulation, but that is the task of SIS itself.
Our construction for AID schemes also has a similar structure. Each ofl members in the ad hoc group
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has a vectorxi (i = 1, . . . , l). Then, the common inputs of the scheme are a system parameterA and a set of
public keysy1, . . . , yl of the members, which satisfyyi = Ax i (i = 1, . . . , , l). We can show that the prover
can anonymously convince the verifier that the prover knowsxi corresponding to one ofy1, . . . , yl based on
a similar argument to the proof of our concurrently secure ID scheme.

As mentioned above, we can construct a lattice-based AID scheme in a straightforward manner from
the MV scheme. We just feedA1, ...,A l as the common inputs to the prover and verifier. In this case, the
prover convinces the verifier that he/she has a short vectorxi satisfyingA ixi = 0 for somei.

While our scheme requires manyvectorsproportional to the size of the group, this straightforward
scheme requires manymatricesproportional to the size of the group, which shows the advantage of our
scheme on the efficiency. Moreover, in contrast to our AID scheme, it seems difficult to prove that this
straightforward scheme is secure against impersonation under concurrently chosen-group attacks.

Organization: The rest of this paper is organized as follows. We introduce basic notations and notions,
and review the cryptographic schemes we consider in this paper inSection 2. In Section 3, we give a
key-generation algorithm and a commitment scheme based on the Micciancio-Regev hash functions for
our ID and AID schemes. InSection 4, we construct the ID scheme by combining the framework of Stern’s
scheme with our key-generation algorithm and string commitment scheme. We present the AID scheme in
Section 5.

In this extended abstract, due to lack of space, we only describe the schemes based on GapSVP since
the construction from SVP for ideal lattices follows a similar strategy to that from GapSVP. We argue the
constructions from SVP for ideal lattices inAppendix A.

2 Preliminaries

Basic notions and notations: We define a negligible amount inn as an amount that is asymptotically
smaller thann−c for any constantc > 0. More formally, f (n) is a negligible function inn if lim n→∞ nc f (n) =
0 for anyc > 0. Similarly, a non-negligible amount is one which is at leastn−c for somec > 0. We say
that a problem is hard in the worst case if there exists no probabilistic polynomial-time algorithm solves the
problem in the worst case with a non-negligible probability. We sometimes useÕ( f (n)) for any function
f in n asO( f (n)·polylog(f (n))). We assume that all random variables are independent and uniform if not
specified. We denote byn the security parameter of cryptographic schemes throughout this paper, which
corresponds to the rank of the underlying lattice problems.

For anyp ≥ 1, thelp norm of a vectorx = t(x1, . . . , xn) ∈ Rn, denoted by∥x∥p, is (
∑n

i=1 xp
i )1/p. For ease

of notation, we define∥x∥ := ∥x∥2. The infty norm is defined as∥x∥∞ = limp→∞ ∥x∥p = maxi |xi |.
Let wH(x) denote the Hamming weight ofx, i.e., the number of nonzero elements inx. Let B(m,w)

denote the set of binary vectors in{0,1}m whose Hamming weights are exactly equal tow, i.e., B(m,w) :=
{x ∈ {0, 1}m | wH(x) = w}.

Given two probability density functionsϕ1 andϕ2 on a finite setS, we define the statistical distance
between them as∆(ϕ1, ϕ2) := 1

2

∑
x∈S |ϕ1(x) − ϕ2(x)|. We also use the same notation for two arbitrary func-

tions. Note that the acceptance probability of any algorithm on inputs fromX differs from its acceptance
probability on inputs fromY by at most∆(X,Y).

If A(·, ·, . . . ) is a randomized algorithm, theny ← A(x1, x2, . . . ; r) means thaty is assigned the unique
output of the algorithm on inputsx1, x2, . . . and coinsr. We often use the notationy ← A(x1, x2, . . . ) as
shorthand for first pickingr at random and then settingy ← A(x1, x2, . . . , ; r). If S is a finite set then
s←R S indicates thats is chosen uniformly at random fromS.

Provers and verifiers: An interactive algorithmA is a stateful algorithm that on input an incoming mes-
sageMin and state informationStoutputs an outgoing messageMout and updated stateSt′ (We will write it
as (Mout,St′)← A(Min,St)).
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We say thatA accepts ifSt= 1 and rejects ifSt= 0. An interaction between a proverP and a verifierV
ends whenV either accepts or rejects. We will write

(Tr,Dec)← Run[P(p1, . . . )
OP1,... ↔ V(v1, . . . )

OV1,...]

to indicate that we letP interact withV, having provided bothP andV with fresh random coins, to get a
transcriptTr and a boolean decisionDec.

Hash functions: We here define collision-resistant hash functions family.

Definition 2.1. LetHn = {hk : Mn → Dn | k ∈ Kn} be a family of hash functions. LetH = {Hn}n∈N. Let
A be an adversary. We define the following experiments ofA for the collision-resistant property of a hash
function.

Expcol
H ,A(n): k←R Kn; (x, x′)← A(1n, k);

If x′, x ∈ Mn, x , x′, andhk(x) = hk(x′) then return 1. Otherwise, return 0.

Let the advantage ofA beAdvcol
H ,A(n) = Pr

[
Expcol

H ,A(n) = 1
]
. We say thatH is collision resistant if, for

any probabilistic polynomial-time adversaryA, Advcol
H ,A(n) is negligible inn.

String commitment schemes: We consider a string commitment scheme in the trusted setup model. the
trusted setup model is often required to construct practically efficient cryptographic schemes such as non-
interactive string commitment schemes. In this model, we assume that a trusted partyT honestly sets
up a system parameter for a sender and receiver. In our case, the partyT distributes a description of a
commitment function randomly chosen from a family of commitment functions as the system parameter.

Let Cn = {Comk : Mn × Rn → Cn | k ∈ Kn} be a family of commitment functions and letC = {Cn}n∈N.
First,T on input 1n distributes the system parameterk ∈ Kn to a sender and receiver. Both parties then
share a common function by a givenk. After sharing the function Comk, the scheme executes two phases,
called committing and revealing phases. In the committing phase, the sender commits his/her decision, say,
a strings ∈ Mn to a commitment stringc = Comk(s; ρ) with a random stringρ ∈ Rn. He/She then sends the
commitment stringc to the receiver. In the revealing phase, the receiver verifies the sender’s decisions in
the committing phase. To do so, the sender gives the receiver the decisions and the random stringρ. The
receiver can then easily verify the validity ofc by computing Comk(s; ρ). The security notion of the string
commitment schemes we require can be formalized as follows:

Definition 2.2. We say a string commitment schemeC is statistically hiding and computationally binding
if it has the following properties:

Statistical-hiding property:
For any two stringss, s′ ∈ Mn, the statistical distance between Comk(s; ρ) and Comk(s′; ρ′) is negli-
gible inn for random stringsρ andρ′.

Computational-binding property:
LetA be an adversary. We consider the following experiment ofA:

Expbd
C,A(n): k←R Kn; ((s, ρ), (s′, ρ′))← A(1n, k);

If s, s′ ∈ Mn, s, s′, and Comk(s; ρ) = Comk(s′; ρ) then return 1.
Otherwise, return 0.

We define the advantage ofA asAdvbd
C,A(n) = Pr

[
Expbd

C,A(n) = 1
]
. Then,Advbd

C,A(n) is negligible in
n for any probabilistic polynomial-time adversaryA.

Intuitively, if C is statistically hiding, any computationally unbounded adversarial receiver cannot distin-
guish two commitment strings generated from two distinct strings. Also, it is computationally hiding, any
polynomial-time adversarial sender cannot change the committed string after sending the commitment.
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Canonical identification schemes: We adopt the definition of identification schemes given in [1]. Let
SI = (SetUp,KG,P,V) be an identification scheme, whereSetUp is the setup algorithm which on input 1n

outputsparam, KG is the key-generation algorithm which on inputparamoutputs (pk, sk), P is the prover
algorithm taking inputsk, V is the verifier algorithm taking inputsparamandpk. We saySI is a canonical
identification scheme if it is a public-coin 3-move protocol.

Security against impersonation under concurrent attacks: We are interested in concurrent attacks,
which are stronger than active and passive attacks. So, we review the definition of concurrent security
in [4].

In concurrent attacks, the adversary would play the role of a cheating verifier prior to impersonation,
but could interact many different prover “clones” concurrently. Each clone has the same secret key, but has
independent random coins and maintain its own state.

Let an impersonatorI = (CV,CP) be a pair of probabilistic polynomial-time algorithms, the cheating
verifier and cheating prover.CV would interacts with each of clones, which is identified by a session IDs.

We describe the formal definition as follows. Consider the experimentExpimp−ca
SI,I (n) between the chal-

lenger and the impersonatorI = (CV,CP).

Experiment Expimp−ca
SI,I (n): (See alsoTable 1in Appendix B.)

Setup Phase:The challenger obtainsparam← SetUp(1n). Next, it obtains (pk, sk) ← KG(param)
and setsPS := ∅, wherePS denotes the set of prover’s sessions. The impersonatorCV is given
the system parameterparam.

Learning Phase: The impersonatorCV can query to the prover oracle Prov.

• The oracle Prov receives inputss,Min. If s < PS then it addss to PS, pick a random coin
ρ, and sets a state of the proverStP[s] := (param, sk, ρ). Next, it obtains (Mout,StP[s]) ←
P(Min,StP[s]). It returnsMout.

Challenge Phase:CV outputsStCP. The challenger givesStCP to CP. Finally, the challenger obtains
(Tr,Dec)← Run[CP(StCP)↔ V(param,pk)] and returnsDec.

Definition 2.3. Let SI = (SetUp,KG,P,V) be an ID scheme,I = (CV,CP) an impersonator, andn a
security parameter. We define the advantage ofI asAdv imp−ca

SI,I (n) = Pr
[
Expimp−ca

SI,I (n) = 1
]
.We say thatSI

is secure against impersonation under concurrent attacks ifAdv imp−ca
SI,I (·) is negligible for every polynomial-

timeI.

Ad hoc anonymous identification schemes: An AID scheme [11] allows an user to anonymously prove
his/her membership in a group if and only if the user is an actual member of the group, where the group
is formed in an ad hoc fashion without help of a group manager. We then assume that every user registers
his/her public key to the public key infrastructure.

An ad hoc anonymous identification (AID) scheme is four tupleAID = (SetUp,Reg,P,V), where
SetUp is the setup algorithm which on input 1n outputsparam, Reg is the key generation and registration
algorithm which on inputparamoutput (pk, sk), P is the prover algorithm taking inputsparam, a set of
public keysR = (pk1, . . . , pkl), and one of secret keyski such thatpki ∈ R, V is the verifier algorithm
taking inputsparamandR. We omit the group public key construction and group secret key construction
algorithms in the definition of [11] to simplify notations.

There are two goals for security of AID schemes: security against impersonation and anonymity.

Security against impersonation under concurrent chosen-group attacks: In the setting of chosen-
group attacks, an adversary could force the prover to prove the membership in an arbitrary group if the
prover is indeed a member of the group. “Concurrent” attacks allow the cheating verifier and prover to
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interact with the clones of provers except for target provers, whereas only the cheating verifier can interact
with the clones of a prover inDefinition 2.3.

We describe the formal definition of the security as follows. Consider the following experimentExpimp−cca
AID,I (n)

between a challenger and the impersonatorI = (CV,CP).

Experiment Expimp−cca
AID,I (n): (See alsoTable 2in Appendix B.)

Setup Phase:The challenger obtainsparam← SetUp(1n) and initializesHU,CU,AU,PS := ∅,
whereHU, CU, andTU denote the sets of honest users, corrupted users, and target users,
respectively, andPS denotes the set of prover’s session. The impersonatorCV is given the
system parameterparam.

Learning Phase: The impersonatorCV can query to the three oracles Init, Corr, and Prov.

• The oracle Init receives inputi. If i ∈ HU∪CU∪TU then returns⊥. Otherwise, it obtains
(pki , ski)← Reg(param; ρi), addsi to HU, and providesI with pki .

• The oracle Corr receives inputi. If i < HU \ TU then returns⊥. Otherwise, it addsi to
CU, deletesi in HU, and returnsρi toI.

• The oracle Prov receives inputsR, i, s, andMin. If pki < R or i < HU \ TU then returns
⊥. (Note that the public keys inR need not to be registered.) If (R, i, s) < PS then it
adds (R, i, s) to PS, pick a random coinρ, and sets a state of the proverStP[(R, i, s)] :=
(param,R, ski , ρ). Next, it obtains (Mout,StP[(R, i, s)]) ← P(Min,StP[(R, i, s)]). It returns
Mout.

Challenge Phase:CV outputs a set of public keysRt = (pki1, . . . , pki l ) andStCP. If R * HU then
the challenger outputs 0 and halts. Otherwise, the challenger setsTU := Rt and givesStCP to
CP. CP can query to the oracles Init, Corr, and Prov as in the learning phase. Finally, the
challenger obtains (Tr,Dec)← Run[CP(StCP)Init,Corr,Prov ↔ V(param,Rt)] and outputsDec.

Definition 2.4. LetAID = (SetUp,Reg,P,V) be an AID scheme andI = (CV,CP) an impersonator. Let
n be a security parameter. The advantage ofI in attackingAID is defined by

Adv imp−cca
AID,I (n) := Pr

[
Expimp−cca

AID,I (n) = 1
]
.

We say thatAID is secure against impersonation under concurrent chosen-group attacks ifAdv imp−cca
AID,I (·)

is negligible for every polynomial-timeI.

We note that our definition is the concurrent version of the soundness definition in [11].

Anonymity against full key exposure: This security notion captures the property that an adversary can-
not distinguish two transcripts even if the adversary has secret keys of all the members. Anonymity against
full key exposure for an AID schemeAID is defined by using the following experimentExpanon−fke

AID,A (n)
between a challenger and adversaryA:

Experiment Expanon−fke
AID,A (n): (See alsoTable 3in Appendix B.)

Setup Phase:The challenger runs the algorithmSetUp with input 1n and obtainsparam. The ad-
versaryA is given the system parameterparam.

Challenge Phase:A requests a challenge by sending to the challenger the values
((pki0, ski0), (pki1, ski1),R). Here the set of public keysR containspki0 and pki1, where
(pki0, ski0) and (pki1, ski1) are valid key pairs. The challenger chooses a random bitb ∈ {0,1}
and runs the protocol as a prover who hasskib. Run[P(param,R, skib)↔ A].

Output Phase: A finally outputs its guessb∗ for b. If b = b∗ the challenger returns 1. Otherwise
returns 0.

7

html#theorem.2.3�


Definition 2.5. Let AID = (SetUp,Reg,P,V) be an AID scheme,A an adversary, andn a security
parameter. The advantage ofA in attackingAID is defined by

Advanon−fke
AID,A (n) :=

∣∣∣∣∣Pr
[
Expanon−fke

AID,A (n) = 1
]
− 1

2

∣∣∣∣∣ .
We say thatAID has anonymity with full key exposure ifAdvanon−fke

AID,A (·) is negligible for every polynomial-
timeA.

3 Main Tools

We first review fundamental notions of lattices, well-known lattice problems, and a related problem. An
n-dimensional lattice inRm is the setL(b1, . . . , bn) = {∑n

i=1αibi | αi ∈ Z} of all integral combinations of
n linearly independent vectorsb1, . . . , bn ∈ Rm. The sequence of vectorsb1, . . . , bn is called abasisof
the latticeL. We also denoteB as the sequence of vectorsb1, . . . , bn For more details on lattices, see the
textbook by Micciancio and Goldwasser [25]. We give the definitions of well-known lattice problems, the
Shortest Vector Problem (SVPp) and its approximation version.

Definition 3.1 (SVPp). Given a basisB of a latticeL, the problem is finding a non-zero vectorv ∈ L such
that for any non-zero vectorx ∈ L, ∥v∥p ≤ ∥x∥p.

Definition 3.2 (SVPp
γ). Given a basisB of a latticeL, the problem is finding a non-zero vectorv ∈ L such

that for any non-zero vectorx ∈ L, ∥v∥p ≤ γ ∥x∥p.

A few lattice-based cryptographic schemes are based on the worst-case hardness of SVPp
γ for someγ, e.g.,

[2, 33, 34].
We next give the definition of the gap version of SVPp

γ , which is the underlying problem of Micciancio-
Regev hash functions [26].

Definition 3.3 (GapSVPp
γ). For a gap functionγ, an instance of GapSVPγ is a pair (B, d) whereB is a

basis of a latticeL andd is a rational number. In YES input there exists a non-zero vectorv ∈ L such that
∥v∥p ≤ d. In NO input, for any non-zero vectorv ∈ L, ∥v∥p > γd.

We also define the Small Integer Solution problem SIS (in thel2 norm), which is often considered in
the context of average-case/worst-case connections and a source of lattice-based hash functions as we see
later.

Definition 3.4 (SISp
q,m,β). For a fixed integerq and realβ, given a matrixA ∈ Zn×m

q , the problem is finding
a non-zero integer vectorz ∈ Zm \ {0} such thatAz = 0 modq and∥z∥p ≤ β.

Hash functions based on lattice problems: Next, we review a family of collision-resistant hash func-
tions given by Micciancio and Regev [26].

Let n be a security parameter (or a rank of an underlying lattice problem). For a primeq = q(n) = nO(1)

and an integerm = m(n) > n logq(n), we define a family of hash functions,H(q,m) = { fA : {0,1}m(n) →
Zn

q(n) | A ∈ Z
n×m(n)
q(n) }, where fA(x) = Ax modq(n).

Originally, Ajtai [2] showed, for suitably chosenq(n) andm(n), the problem, which is, givenHq,m,
finding a short non-zero vectorv in a latticeΛq(A) = {x ∈ Zn | Ax ≡ 0 (mod q)} such that∥v∥ ≤ n,
i.e., solving SIS2q,m,n, is hard on average under the assumption that SVPγ is hard in the worst case within
some polynomial approximation factorγ. It is known thatH(q,m) is indeed collision resistant for suitably
chosenq andm by Goldreich, Goldwasser, and Halevi [13]. They observed that finding a collision (x, x′)
for fA ∈ H(q,m) implies finding a short non-zero vectorz = x− x′ such that∥z∥ ≤

√
mandAz = 0 modq,

i.e, solving SIS2
q,m,
√

m
. Cai and Nerurkar [6] and Micciancio [23] improved an approximation factor of the

underlying lattice problems. Recently, Micciancio and Regev showed thatH(q,m) is collision resistant
under the assumption that the gap version of SVP2

Õ(n)
is hard in the worst case [26].
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Theorem 3.5([26]). For any polynomially bounded functionsβ = β(n), m = m(n), q = q(n), with q ≥
4
√

mn3/2β andγ = 14π
√

nβ, there exists a probabilistic polynomial-time reduction from solvingGapSVP2γ
in the worst case to solvingSIS2

q,m,β on the average with non-negligible probability.

Setup and key-generation algorithms: Next, we restrict the domain of hash functions to work the hash
function for the key-generation algorithm in Stern’s ID scheme. The restricted version is given as follows:

H ′(q,m,w) =
{
hA : B(m,w)→ Zn

q(n) | A ∈ Z
n×m(n)
q(n)

}
,

wherehA(x) = Ax modq(n). Observe that finding a collision (x, x′) for hA ∈ H ′(q,m,w) implies finding
a short vectorz = x − x′ such that∥z∥ ≤

√
2w andAz = 0 modq, i.e, solving the instance (q,A,

√
2w) of

SIS2
q,m,
√

2w
.

The setup algorithm on input 1n outputs a random matrixA ∈ Zn×m
q . The key-generation algorithm on

inputA chooses a random vectorx ∈ B(m,w), computesy = Ax, and outputs (pk, sk) = (y, x).

String commitment scheme: In this section, we describe a statistically hiding and computationally bind-
ing string commitment scheme based on the Micciancio-Regev hash functions.

For a primeq = q(n) = nO(1) and an integerm= m(n) > n logq(n), we define a family of hash functions,
H(q,m) = { fA : {0,1}m(n) → Zn

q(n) | A ∈ Z
n×m(n)
q(n) }, where fA(x) = Ax modq(n).

General constructions of a statistically hiding and computationally binding string commitment scheme
are known from a family of collision-resistant hash functions [9, 10, 15]. Their constructions used uni-
versal hash functions for the statistical-hiding property. Meanwhile, we can give more direct and simpler
construction from the Micciancio-Regev hash functions without the universal hash functions.

We now describe our string commitment scheme. The input of the commitment function is anm-bit vec-
tor x obtained by concatenating a random stringρ = (ρ1, . . . , ρm/2) and a message strings= (s1, . . . , sm/2),
i.e.,x = t(ρ1, . . . , ρm/2, s1, . . . , sm/2). We then define the commitment function on inputss andρ as

ComA(s; ρ) := Ax modq(n) = At(ρ1, . . . , ρm/2, s1, . . . , sm/2) modq(n).

Lemma 3.6. For any polynomially bounded functions m= m(n), q = q(n), γ = γ(n), with q ≥ 4mn3/2,
γ = 14π

√
nm, and m> 10n logq, if GapSVP2γ is hard in the worst case thenComA is a statistically hiding

and computationally binding string commitment scheme in the trusted setup model.
In particular, for any m(n) = Θ(n logn), there exists q(n) = O(n2.5 logn), andγ(n) = O(n

√
logn), such

that m(n) > 10n logq and if GapSVP2γ is hard in the worst case thenComA is a statistically hiding and
computationally binding string commitment scheme in the trusted setup model.

Proof. The computational-binding property immediately follows from the collision-resistant property. We
now show the statistical-hiding property.

Let A = [a1 · · · am]. We then have ComA(s; ρ) =
∑m/2

i=1 ρiai +
∑m/2

i=1 siai+m/2. The following claim proves
a random subset sum ofai is statistically close to the uniform distribution.

Claim 3.7 (Claim 5. 3 in [34]). Let G be a finite Abelian group and let l≥ c log |G|. If c ≥ 5,
Prg1,...,gl∈G

[
∆

((
(g1, . . . , gl),

∑l
i=1 r igi

)
, ((g1, . . . , gl), u)

)
> 2
|G|

]
≤ 1

|G| for random variables g1, . . . , gl ∈
G, r1, . . . , r l ∈ {0, 1} and u∈ G.

In our proof, we considerZn
q as the finite groupG. ∆(((a1, . . . , am/2),

∑m/2
i=1 ρiai), ((a1, . . . , am/2), u)) is

then negligible with probability exponentially close to 1, whereu ∈ Zn
q is a uniform random variable. Thus,

∆((A,ComA(0m/2; ρ)), (A, u)) is negligible. Since∆((A, u +
∑m/2

i=1 siai+m/2), (A,
∑m/2

i=1 ρiai +
∑m/2

i=1 siai+m/2))
is also negligible,∆((A,ComA(s; ρ)), (A, u)) is negligible for any messages. By the triangle inequality, we
have

∆((A,ComA(s1; ρ1)), (A,ComA(s2; ρ2))) ≤ ∆((A,ComA(s1; ρ1)), (A, u)) + ∆((A,ComA(s2; ρ2)), (A,u))

for any messagess1 and s2 and uniform random stringsρ1 and ρ2. It follows that
∆((A,ComA(s1; ρ1)), (A,ComA(s2; ρ2))) is negligible inn, which completes the proof. � �
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Using the Merkle-Damgård technique [21, 8], we obtain the string commitment scheme whose commitment
function is ComA : {0, 1}∗ × {0, 1}m/2 → Zn

q rather than ComA : {0, 1}m/2 × {0, 1}m/2 → Zn
q. We use this

commitment scheme in the rest of the paper.

4 Identification Scheme

Plugging the setup and key-generation algorithms and the string commitment scheme into Stern’s ID
scheme [39], we obtain a concrete identification scheme. Our key-generation algorithm on inputA ∈ Zn×m

q
outputs a vectorx ∈ B(m,w) as the secret key and a vectory = Ax as the public key.

Our protocol is obtained by modifying Stern’s ID scheme [39], which presents a zero-knowledge argu-
ment protocol based on the decoding problem on binary codewords called Syndrome Decoding Problem.
Since his protocol deals with binary codewords, it works on the binary fieldZ2. Stern also proposed that
an analogous scheme inZq, whereq is extremely small number (typically 3, 5, or 7) [39]. We adjust this
parameter to connect his framework to our assumptions of the lattice problems.

The following is our ID scheme based on GapSVP. Note that this protocol is in parallel repeatedn
times to achieve an exponentially small soundness error. (The soundness error is at most 2/3 for the single
repetition.)

SetUp: The setup algorithm, on input 1n, outputs a random matrixA ∈ Zn×m
q asparam.

KG: The key-generation algorithm, on inputA, chooses a random vectorx ∈ B(m,w), computesy :=
Ax modq. Outputs (pk, sk) = (y, x).

P, V: The common inputs areA andy. The prover’s auxiliary input isx. They interact as follows:

Step P1: For everyi ∈ {1, . . . , n}, choose a random permutationπi over {1, . . . ,m}, a random vec-
tor r i ∈ Zm

q , and random stringsρi,1, ρi,2, andρi,3. Computeci,1 = ComA(πi ,Ar i ; ρi,1), ci,2 =

ComA(πi(r i); ρi,2) andci,3 = ComA(πi(x+r i); ρi,3). SendCmt := ((c1,1, c1,2, c1,3), . . . , (cn,1, cn,2, cn,3))
to V.

Step V1 V sends random challengesCh := (Ch1, . . . ,Chn) ∈ {1, 2, 3}n to P.

Step P2 ParseChas (Ch1, . . . ,Chn).

1. If Chi = 1, P revealsci,2 andci,3. SetRspi = (πi(x), πi(r i), ρi,2, ρi,3).

2. If Chi = 2, P revealsci,1 andci,3. SetRspi = (πi , x + r i , ρi,1, ρi,3).

3. If Chi = 3, P revealsci,1 andci,2. SetRspi = (πi , r i , ρi,1, ρi,2).

SetRsp:= (Rsp1, . . . ,Rspn) and sendRspto V.

Step V2 ParseRspas (Rsp1, . . . ,Rspn).

1. If Chi = 1, parseRspi as (zi,1, zi,2, ρi,2, ρi,3). Check whether the weight ofx and the

commitmentsci,2 andci,3 are correct, that is,zi,1 ∈ B(m,w), ci,2
?
= ComA(zi,2; ρi,2), and

ci,3
?
= ComA(zi,1 + zi,2; ρi,3). If they are correct, setDeci = 1 and otherwise setDeci = 0.

2. If Chi = 2, parseRspi as (πi , zi , ρi,1, ρi,3). Check whether the commitmentsci,1 andci,3

are correct, that is,ci,1
?
= ComA(πi ,Azi − y; ρi,1) andci,3

?
= ComA(πi(zi); ρi,3). If they are

correct, setDeci = 1 and otherwise setDeci = 0.

3. If Chi = 3, parseRspi as (πi , zi , ρi,1, ρi,2). Check whether the commitmentsci,1 andci,2 are

correct, that is,ci,1
?
= ComA(πi ,Azi ; ρi,1) andci,2

?
= ComA(πi(zi); ρi,2). If they are correct,

setDeci = 1 and otherwise setDeci = 0.

If Deci = 1 for all i, setDec= 1. Otherwise setDec= 0. OutputDec.

We next give the security proof of our ID protocol, which concerns impersonation under concurrent
attacks. Before the proof of security, we need to note the following trivial lemma.
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Lemma 4.1. For any fixedA, let Y := {y ∈ Zn
q | |{x ∈ B(m,w) | Ax = y}| = 1}, i.e., a set of vectorsy such

that the preimagex of y is uniquely determined forA. If qm/ |B(m,w)| is negligible in n, then the probability
that, if we obtain(y, x)← KG(A), theny ∈ Y is negligible in n.

We now show the security of the above ID scheme as follows.

Theorem 4.2. For any polynomially bounded functions m= m(n), q = q(n), with q ≥ 4mn3/2, γ =
14π
√

nm, m≥ 10n logq, and qn/ |B(m,w)| is negligible in n, ifGapSVP2γ is hard in the worst case then the
above ID scheme is secure against impersonation under concurrent attacks.

In particular, for any m(n) = Θ(n logn), there exists q(n) = O(n2.5 logn), γ(n) = O(n
√

logn), and
w(n) = Θ(m(n)) such that qn/ |B(m,w)| is negligible in n and ifGapSVP2γ is hard in the worst case then the
ID scheme is secure against impersonation under concurrent attacks.

Proof. We show that if there exists an impersonatorI which succeeds impersonation under concurrent
attacks with non-negligible probabilityϵ, there existsA that solves SIS2

q,m,
√

m
on average. Then there exists

any instance of GapSVP2
γ by Theorem 3.5.

We first overview the strategy ofA. The algorithmA can control the impersonatorI by feeding a
random tape and a challenge. GivenA,A chooses a random secret keyx ∈ B(m,w) and computey := Ax.
A executesI on inputs (A, y). We note thatA can simulate the oracles Conv and Prov, sinceA has the
secret keyx. A executesI three times with random challenges and a fixed random tape. Then,A obtains
three transcripts (Cmt(i),Ch(i),Rsp(i),Dec(i)) for i = 1,2,3 as the results of the interactions betweenI and
A. Note thatCmt(1) = Cmt(2) = Cmt(3) sinceA fixes the random tape to workI. By the assumption,A
obtain good transcript such that with non-negligible probabilityDec(i) = (Dec(i)

1 , . . . ,Dec(i)
n ) are all 1 for

every i. Then,A can findx′ from (A, y) or find (s, ρ) , (s′, ρ′) such that ComA(s; ρ) = ComA(s′; ρ′) by
using the fact thatCmt(1) = Cmt(2) = Cmt(3). In the former case, we will show thatx′ , x with probability
at least 1/2. A outputsz = x′ − x. Sincez ∈ {−1, 0,+1}m, the norm∥z∥ ≤

√
m. In the latter case,A

computesz , z′ ∈ {0, 1}m from (s, ρ) and (s′, ρ′) such that ComA(s; ρ) = Az and ComA(s′; ρ′) = Az′. Thus,
A outputsz′′ = z′ − z, where∥z∥ ≤

√
m.

A then executes the following procedure.

1. Choose a random taper of I.
2. Choose challengesCh(1),Ch(2),Ch(3) randomly.
3. For eachi = 1, 2, 3, execute the experiment with random challengesCh(i) and a fixed random taper,

and thenI outputs three tuples of transcripts (Cmt(i),Ch(i),Rsp(i),Dec(i)).

We have that the probability that allDec(i) are 1 is at least (ϵ/2)3 by the Heavy Row Lemma [29]. Also,
we have Pr[∃ j : Ch(1)

j , Ch(2)
j ,Ch(2)

j , Ch(3)
j ,Ch(3)

j , Ch(1)
j ] = 1 − (7/9)n by a simple calculation.A

therefore obtains good three transcripts with non-negligible probability (ϵ/2)3 − (7/9)n.
We next show howA obtain a secret key or violate the binding property of the string commitment

scheme by using three good transcripts. Assume thatA2 has three transcripts (Cmt(i),Ch(i),Rsp(i),Dec(i))
for i = 1,2,3 such thatCmt(1) = Cmt(2) = Cmt(3), Dec(i) = 1 for all i, and{Ch(1)

j ,Ch(2)
j ,Ch(3)

j } = {1,2,3} for

some j ∈ {1, . . . , n}. Without loss of generality, we assume thatCh(i)
j = i. We parseRsp(i)j as in Step V2.

From the assumption, we have four equations as follows (We omitj for simplification):

c1 = ComA(π(2),Az(2) − y; ρ(2)
1 ) = ComA(π(3),Az(3); ρ(3)

1 ),
c2 = ComA(z(1)

2 ; ρ(1)
2 ) = ComA(π(3)(z(3)); ρ(3)

2 ),
c3 = ComA(z(1)

1 + z(1)
2 ; ρ(1)

3 ) = ComA(π(2)(z(2)); ρ(2)
3 ),

z(1)
1 ∈ B(m,w)

If there exists a distinct pair of arguments of ComA ,A obtains a collision forA and solves SISq,m,√m as in
the overview.

Next, we suppose that there exist no distinct pair of arguments of ComA . Let π denote the inverse
permutation ofπ(2). From the first equation, we haveπ−1 = π(2) = π(3). Thus, we obtainz(2) = π(z(1)

1 + z(1)
2 )
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from the third equation. Combining it with the first equation, we haveAz(3) = A(π(z(1)
1 ) + π(z(1)

2 )) − y. We

obtainy = Aπ(z(1)
1 ) sinceπ−1(z(1)

2 ) = z(3) in the second equation. We already havez(3)
1 ∈ B(m,w). Then,A

setx′ := π(z(3)
1 ).

We now have to show thatx′ , x with probability at least 1/2. By Lemma 4.1, there must be an-
other secret keyx′ with overwhelming probability. Note that the protocol is indeed a statistical witness-
indistinguishable protocol andI’s view is independent ofA’s choice ofx with overwhelming probability,
since Com is a statistically hiding string commitment scheme. Thus we havex′ , x with probability at
least 1/2. In this caseA solves SISq,m,√m as in the overview. � �

Note that, combining the witness-indistinguishability property of Stern’s scheme withLemma 4.1, we
indeed show that our scheme has the witness-hiding property.

In the case of the parameters specified inTheorem 4.2, the size of the system parameterA is Õ(n2) and
the size of the public keyy is Õ(n). The cost of communication in the single repetition isÕ(n) and the total
cost of communication is̃O(n2) by the parallel repetition.

5 Ad Hoc Anonymous Identification Scheme

Our construction for lattice-based AID schemes is inspired by the results in Wu, Chen, Wang, and Wang [40],
which proposed an AID scheme based on the Weak Dependence Problem2. The idea of [40] is as fol-
lows: Let (a1, . . . , am) be a system parameter. Each user chooses a secret keyxi ∈ {−1,0,+1} and com-
putes a public keyyi =

∑
j∈xi

a j . In their AID scheme, a group is specified by the set of public keys
(y1, . . . , yl) and he/she proves that he/she has a partitionx′ = t(txi

t−ei,l) ∈ {−1, 0,+1}m+l for an instance
(a1, . . . , am, y1, . . . , yl), whereei,l is anl-dimensional vectort(0 . . . , 0 1 0 . . . 0) whosei-th element is 1.

Our construction is as follows: LetA be a system parameter. Each user has a secret keyxi ∈ B(m,w)
and public keyyi := Ax i . In the AID scheme, a group is specified by a set of public keys (y1, . . . , yl) of
the members. A user in the group, who has a secret keyxi , convinces the verifier that he/she know that
x′ := t(txi

tei,l) such that [A y1 . . . yl ]x′ = 0, the number of 1 inx′ is w, and the number of−1 in x′ is 1.
We here construct an AID scheme based on GapSVP. We define B′(m,w) as {x ∈ {−1, 0,+1}m |

w+1(x) = w andw−1(x) = 1}, wherew+1(x) denotes the number of+1 in x andw−1(x) denotes the number
of −1 in x.

Similarly to the ID scheme inSection 4, the protocol is repeatedn times in parallel to achieve an
exponentially small soundness error. (The soundness error is at most 2/3 for the single repetition again.)

SetUp: On input 1n, output a random matrixA ∈ Zn×m
q .

Reg: On inputparam, choose a random vectorx from B(m,w) and computey := Ax. Output (pk, sk) :=
(y, x).

P, V: The common inputs areA and (y1, . . . , yl). The prover’s auxiliary input isski = x. Let A′ :=
[A y1 . . . yl ] ∈ Zn×(m+l)

q andx′ := t(tx t−ei,l). They interact according to the following protocol:

Step P1 For everyi ∈ {1, . . . , n}, choose a random permutationπi over{1, . . . ,m+ l}, a random vector
r i ∈ Zm+l

q , and random stringsρi,1, ρi,2, andρi,3. Computeci,1 := ComA(πi ,A′r i ; ρi,1), ci,2 :=
ComA(πi(r i); ρi,2) andci,3 := ComA(πi(x′+r i); ρi,3). SendCmt := ((c1,1, c1,2, c1,3), . . . , (cn,1, cn,2, cn,3))
to V.

Step V1 V sends random challengesCh := (Ch1, . . . ,Chn) ∈ {1, 2, 3}n to P.

Step P2 ParseChas (Ch1, . . . ,Chn).

1. If Chi = 1, P revealsci,2 andci,3. SetRspi := (πi(x′), πi(r i), ρi,2, ρi,3).

2 The Weak Dependence Problem is, given (a1, . . . , ak) whereai is anl-bit natural number, to find a partitionx ∈ {−1, 0,+1}k\{0}
such that

∑k
i=1 xiai = 0, i.e., to find two non-empty subsetsS1 andS2 in {1, . . . , k} such thatS1 ∩ S2 = ∅ and

∑
i∈S1

ai =
∑

i∈S2
ai .
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2. If Chi = 2, P revealsci,1 andci,3. SetRspi := (πi , x′ + r i , ρi,1, ρi,3).

3. If Chi = 3, P revealsci,1 andci,2. SetRspi := (πi , r i , ρi,2, ρi,3).

SendRsp:= (Rsp1, . . . ,Rspn) to V.

Step V2 ParseRspas (Rsp1, . . . ,Rspn).

1. If Chi = 1, parseRspi as (zi,1, zi,2, ρi,2, ρi,3). Check whether the weight ofx′ and the

commitmentsci,2 andci,3 are correct, that is,zi,1 ∈ B′(m+ l,w), ci,2
?
= ComA(zi,2; ρi,2), and

ci,3
?
= ComA(zi,1 + zi,2; ρi,3). If they are correct setDeci := 1 and otherwiseDeci := 0.

2. If Chi = 2, parseRspi as (πi , zi , ρi,1, ρi,3). Check whether the commitmentsci,1 andci,3 are

correct, that is,ci,1
?
= ComA(πi ,A′zi ; ρi,1) andci,3

?
= ComA(πi(zi); ρi,3). If they are correct

setDeci := 1 and otherwiseDeci := 0.

3. If Chi = 3, parseRspi as (πi , zi , ρi,1, ρi,2). Check whether the commitmentsci,1 andci,2 are

correct, that is,ci,1
?
= ComA(πi ,A′zi ; ρi,1) andci,2

?
= ComA(πi(zi); ρi,2). If they are correct

setDeci := 1 and otherwiseDeci := 0.

If Deci = 1 for all i ∈ {1, . . . , n}, then setDec := 1. OtherwiseDec := 0. OutputDec.

Theorem 5.1. Let β := max{(w + 1)3/2,
√

m}. Assume that there exists an impersonatorI that succeeds
impersonation under concurrent chosen-group attacks with non-negligible probability. Then there exists a
probabilistic polynomial-time algorithmA that solvesSIS2

q,m,β.

Proof. The algorithmA, given inputA, feedsA to the impersonatorI. In the experiment, the impersonator
I will call I nit, Corr, Conv, and Prov. If I calls Init with input i, thenA choosessi at random, computes
yi := Asi , and returnsyi to I. If I calls Corr with input i, Conv with inputs i,R, or Prov with inputs
i,R, s,Mi , thenA can simulate the oracle Corr, sinceA has a secret keysi with respect to a public keyyi .

At the end of the experiment,I will impersonate as a group which is specified by the set of public
keysR= (y1, . . . , yl). RewindingI three times,A obtain a collision (s, ρ) and (s′, ρ′) for the commitment
scheme ComA or a vectorx = t(tx1

tx2) such that [A y1 . . . yl ]x = 0, wherex1 ∈ {−1,0,1}m andx2 ∈
{−1, 0, 1}l andx ∈ B′(m+ l,w) as in the proof ofTheorem 4.2.

In the former case,A computesz , z′ ∈ {0,1}m such that ComA(s; ρ) = Az and ComA(s′; ρ′) = Az′.
Hence,A can outputz′′ = z′ − z such that∥z′′∥ ≤

√
m.

In the latter case, we haveAx1 +
∑l

i=1 x2,iyi = 0, that is,Ax1 +
∑l

i=1 x2,iAsi = 0. Hence, we obtain
that A(x1 +

∑l
i=1 x2,isi) = 0. Recall that the numbers of+1 in x is w and that of−1 in x is 1. Hence,∥∥∥x1 +

∑l
i=1 x2,isi

∥∥∥ ≤ ∥x1∥ +
∑l

i=1

∣∣∣x2,i

∣∣∣ ∥si∥ ≤
√

w+ 1+ (w+ 1)
√

w ≤ (w+ 1)3/2. By the same argument as
in the proof ofTheorem 4.2, we have thatx1 +

∑
i x2,isi , 0 with probability at least 1/2. Thus,A outputs

z := x1 +
∑

i x2,isi and solves SIS2
q,m,(w+1)3/2

with non-negligible probability. � �

CombiningTheorem 5.1with Theorem 3.5, we obtain the following theorem.

Theorem 5.2. For any polynomially bounded functions m= m(n), q = q(n), with q≥ 4
√

mn3/2 max{(w+
1)3/2,

√
m}, γ = 14π

√
nmax{(w + 1)3/2,

√
m}, m ≥ 10n logq and

(
m
w

)
/qn = 2ω(logn), if GapSVP2γ is hard

in the worst case then the above scheme is secure against impersonation under concurrent chosen-group
attacks.

In particular, for any m(n) = Θ(n logn), there exists q(n) = O(n3.5 logn), γ(n) = O(n2
√

logn), and
w(n) = Θ(m(n)) such that qn/ |B(m,w)| is negligible in n and ifGapSVP2γ is hard in the worst case then the
above scheme is secure against impersonation under concurrent chosen-group attacks.

Since the statistical anonymity of the above scheme is directly implied by the witness-indistinguishability
of Stern’s scheme, we omit the proof.

In the case of the parameters specified inTheorem 5.2, the cost of communication in the single repeti-
tion is Õ(n+ l) and the total cost of communication isn · Õ(n+ l).

13

����#theorem.5.1�
����#theorem.3.5�


References

[1] Abdalla, M., An, J. H., Bellare, M., and Namprempre, C. From identification to signatures via the
Fiat-Shamir transform: Minimizing assumptions for security and forward-security. InAdvances in
Cryptology – EUROCRYPT 2002, L. Knudsen, Ed., vol. 2332 ofLecture Notes in Computer Science,
Springer-Verlag, pp. 418–433.

[2] Ajtai, M. Generating hard instances of lattice problems (extended abstract). InProceedings on 28th
Annual ACM Symposium on Theory of Computing (STOC ’96), ACM, pp. 99–108. See also ECCC
TR96-007.

[3] Ajtai, M., and Dwork, C. A public-key cryptosystem with worst-case/average-case equivalence. In
Proceedings on 29th Annual ACM Symposium on Theory of Computing (STOC ’97), ACM, pp. 284–
293. See also ECCC TR96-065.

[4] Bellare, M., and Palacio, A. GQ and Schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. InAdvances in Cryptology – CRYPTO 2002,
M. Yung, Ed., vol. 2442 ofLecture Notes in Computer Science, Springer-Verlag, pp. 162–177.

[5] Brassard, G., Ed. Advances in Cryptology – CRYPTO ’89, vol. 435 ofLecture Notes in Computer
Science, Springer-Verlag.

[6] Cai, J.-Y., and Nerurkar, A. An improved worst-case to average-case connection for lattice prob-
lems. In38th Annual Symposium on Foundations of Computer Science (FOCS ’97), IEEE Computer
Society, pp. 4 68–477.

[7] Coster, M. J., Joux, A., LaMacchia, B. A., Odlyzko, A. M., Schnorr, C.-P.,and Stern, J. Improved
low-density subset sum algorithms.Computational Complexity 2(1992), 111–128.

[8] Damgård, I. A design principle for hash functions. In Brassard [5], pp. 416–427.

[9] Damgård, I. B., Pedersen, T. P.,and Pfizmann, B. On the existence of statistically hiding bit com-
mitment schemes and fail-stop signatures.Journal of Cryptology 10, 3 (1997), 163–194. Preliminary
version inCRYPTO ’93, 1993.

[10] Damgård, I. B., Pedersen, T. P.,and Pfizmann, B. Statistical secrecy and multibit commitments.IEEE
Transactions on Information Theory 44, 3 (May 1998), 1143–1151.

[11] Dodis, Y., Kiayias, A., Nicolosi, A., and Shoup, V. Anonymous identification inad hocgroups. In
Advances in Cryptology – EUROCRYPT 2004, C. Cachin and J. Camenisch, Eds., vol. 3027 ofLecture
Notes in Computer Science, Springer-Verlag, pp. 609–626.

[12] Feige, U., and Shamir, A. Witness indistinguishable and witness hiding protocols. InProceedings on
22nd Annual ACM Symposium on Theory of Computing (STOC ’90), ACM, pp. 416–426.

[13] Goldreich, O., Goldwasser, S.,and Halevi, S. Collision-free hashing from lattice problems.Elec-
tronic Colloquium on Computational Complexity (ECCC) 3, 42 (1996).

[14] Goldreich, O., Goldwasser, S., and Halevi, S. Public-key cryptosystems from lattice reduction
problems. InAdvances in Cryptology – CRYPTO ’97, B. S. Kaliski, Jr., Ed., vol. 1294 ofLecture
Notes in Computer Science, Springer-Verlag, pp. 112–131.

[15] Halevi, S., and Micali, S. Practical and provably-secure commitment scheme from collision-free
hashing. InAdvances in Cryptology – CRYPTO ’96, N. Koblitz, Ed., vol. 1109 ofLecture Notes in
Computer Science, Springer-Verlag, pp. 201–215.

14

html#cite.CRYPTO�


[16] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J. H.,andWhyte, W. NTRUSign: Digital
signature using the NTRU lattice. InTopics in Cryptology – CT-RSA 2003, M. Joye, Ed., vol. 2612 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 122–140.

[17] Hoffstein, J., Pipher, J., and Silverman, J. H. NTRU: A ring-based public key cryptosystem. In
Algorithmic Number Theory, Third International Symposium, ANTS-III, J. Buhler, Ed., vol. 1423 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 267–288.

[18] Impagliazzo, R., and Zuckerman, D. How to recycle random bits. In30th Annual Symposium on
Foundations of Computer Science (FOCS ’89), IEEE Computer Society, pp. 248–253.

[19] Lagarias, J. C.,and Odlyzko, A. M. Solving low-density subset sum problems.Journal of the ACM
32, 1 (1985), 229–246.

[20] Lyubashevsky, V., and Micciancio, D. Generalized compact knapsacks are collision resistant. In
Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Part II,
M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds., vol. 4052 ofLecture Notes in Computer
Science, Springer-Verlag, pp. 144–155.

[21] Merkle, R. C. One way hash functions and DES. In Brassard [5], pp. 428–446.

[22] Merkle, R. C.,and Hellman, M. E. Hiding information and signatures in trap door knapsacks.IEEE
Transactions on Information Theory 24, 5 (September 1978), 525–530.

[23] Micciancio, D. Almost perfect lattices, the covering radius problem, and applications to Ajtai’s con-
nection factor.SIAM Journal on Computing 34, 1 (2004), 118–169. Preliminary version inSTOC
2002, 2002.

[24] Micciancio, D. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from
worst-case complexity assumptions.Computational Complexity(2006). To be appeared.

[25] Micciancio, D., and Goldwasser, S. Complexity of Lattice Problems: a cryptographic perspective,
vol. 671 ofThe Kluwer International Series in Engineering and Computer Science. Kluwer Academic
Publishers, Boston, Massachusetts, March 2002.

[26] Micciancio, D., and Regev, O. Worst-case to average-case reductions based on Gaussian measures. In
45th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004), IEEE Computer
Society, pp. 372–381.

[27] Micciancio, D., and Vadhan, S. Statistical zero-knowledge proofs with efficient provers: Lattice
problems and more. InAdvances in Cryptology – CRYPTO 2003, D. Boneh, Ed., vol. 2729 ofLecture
Notes in Computer Science, Springer-Verlag, pp. 282–298.

[28] Nguyen, P. Q.,andRegev, O. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures.
In Advances in Cryptology – EUROCRYPT 2006, S. Vaudenay, Ed., vol. 4004 ofLecture Notes in
Computer Science, Springer-Verlag, pp. 271–288.

[29] Ohta, K., and Okamoto, T. On concrete security treatment of signatures derived from identification.
In Advances in Cryptology – CRYPTO ’98, H. Krawczyk, Ed., vol. 1462 ofLecture Notes in Computer
Science, Springer-Verlag, pp. 354–369.

[30] Peikert, C.,and Rosen, A. Efficient collision-resistant hashing from worst-case assumptions on cyclic
lattices. InTheory of Cryptography, 3rd Theory of Cryptography Conference, TCC 2006, S. Halevi
and T. Rabin, Eds., vol. 3876 ofLecture Notes in Computer Science, Springer-Verlag, pp. 145–166.

[31] Peikert, C.,andWaters, B. Lossy trapdoor functions and their applications.Electronic Colloquium
on Computational Complexity (ECCC) 14, 080 (2007).

15



[32] Pointcheval, D., and Poupard, G. A new NP-complete problem and public-key idenitification.De-
signs, Codes and Cryptography 28, 1 (January 2003), 5–31.

[33] Regev, O. New lattice-based cryptographic constructions.Journal of the ACM 51, 6 (2004), 899–942.
Preliminary version inSTOC 2003, 2003.

[34] Regev, O. On lattices, learning with errors, random linear codes, and cryptography. InProceedings on
the 37th Annual ACM Symposium on Theory of Computing (STOC 2005), H. N. Gabow and R. Fagin,
Eds., ACM, pp. 84–93.

[35] Shamir, A. A zero-knowledge proof for knapsacks. Presented at a workshop on Probabilistic Algo-
rithms, Marseille, March 1976.

[36] Shamir, A. A polynomial-time algorithm for breaking the basic Merkle-Hellman cryptosystem.IEEE
Transactions on Information Theory 30, 5 (1984), 699–704.

[37] Shamir, A. An efficient identification scheme based on permuted kernels (extended abstract). In
Brassard [5], pp. 606–609.

[38] Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer.SIAM Journal on Computing 26, 5 (1997), 1484–1509.

[39] Stern, J. A new paradigm for public key identification.IEEE Transactions on Information Theory
42, 6 (November 1996), 749–765. Preliminary version inCRYPTO ’93, 1993.

[40] Wu, Q., Chen, X., Wang, C., and Wang, Y. Shared-key signature and its application to anonymous
authentication in ad hoc group. InInformation Security, 7th International Conference, ISC 2004,
K. Zhang and Y. Zheng, Eds., vol. 3225 ofLecture Notes in Computer Science, Springer-Verlag,
pp. 330–341.

16



A Constructions from the Lyubashevsky-Micciancio Hash Functions

Several families of lattice-based hash functions are known to have small description sizes such as [24, 30,
20]. In this section, we construct the ID scheme and the AID schemes based on the compact hash functions
of Micciancio and Lyubashevsky [20]. We basically use the notations of [20].

Let f ∈ Z[x] be a monic and irreducible polynomial of degreen. Consider the quotient ringZ[x]/⟨ f ⟩.
We use the standard set of representatives{(g mod f ) : g ∈ Z[x]}. In this section we identify a polynomial
a(x) = a0 + a1x+ · · · + an−1xn−1 ∈ Z[x]/⟨ f ⟩ with ann-dimensional integer vectora = t(a0, . . . , an−1). We
define a norm with respect tof as follows: Forg ∈ Z[x], ∥(g+ ⟨ f ⟩)∥ f = ∥g mod f ∥∞. We write∥g∥ f instead
of ∥g+ ⟨ f ⟩∥∞.

We note that any idealI ⊆ Z[x]/⟨ f ⟩ defines the correspondingn-dimensional integer latticeL(I ) ⊆ Zn.
Notice that a class of the lattices representable in this way is contained in a general class of all integer
latticesL(B) ⊆ Zn. If a given lattice in SVPp is restricted in a classΛ of lattices, we denote byΛ-SVPp the
problem over such restricted lattices inΛ. We also denote byΛ( f ) the set of lattices that are isomorphic to
ideals ofZ[x]/⟨ f ⟩. See [20] for the details. We here deal withΛ( f )-SVP∞γ , i. e. , SVP with approximation
factorγ for l∞ norm whose input lattices are restricted inΛ( f ).

A.1 The Lyubashevsky-Micciancio Hash Functions

Lyubashevsky and Micciancio constructed a family of collision-resistant hash functions based on the worst-
case hardness ofΛ( f )-SVP for suitablef .

We review whatf is suitable for the construction of Lyubashevsky and Micciancio. The property of
f is defined as that the ring norm∥g∥ f is not much bigger than∥g∥∞ for any polynomialg. Formally,
Lybashevsky and Micciancio capture this property as theexpansion factorof f :

EF(f , k) = max
g∈Z[x],deg(g)≤k(deg(f )−1)

∥g∥ f / ∥g∥∞ .

For example, a simple calculation shows that EF(xn ± 1, k) ≤ k and EF(xn−1 + xn−2 + · · · + 1, k) ≤ 2k. We
say a polynomialf is suitable if f is a monic and irreducible inZ[x] and there is a constantc such that
EF(f , k) ≤ ck for any natural numberk. The security of the Lyubashevsky-Micciancio hash functions is
based on the worst-case hardness ofΛ( f )-SVP for a suitable polynomialf . See [20] for more details. They
adopt a family of polynomials such asxn + 1 andxn−1 + xn−2 + · · · + 1 for n such that the polynomials are
irreducible inZ[x]. Let D(m,d) = {x ∈ Zm | ∥x∥∞ ≤ d}. We now describe a family of hash functions given
in [20].

HI( f , q,m, d) =
{
hA : D(m,d)→ Zq(n)[x]/⟨ f ⟩ | A = (a1, . . . , am(n)/n) ∈ (Zq(n)/⟨ f ⟩)m(n)/n

}
,

wherehA(x) =
∑m/n

i=1 ai ⊗ xi (x = (x1, . . . , xm/n) ∈ Zm and⊗ means a product operator over the ring
Zq[x]/⟨ f ⟩).

They showed the following theorem.

Theorem A.1 ([20]). Let E = EF(f ,3). Let m > n logq/ log 2d and q > 2Edmn3/2 logn. Then for
γ = 8E2dmnlog2 n, if Λ( f )-SVP∞γ is hard in the worst case thenHI( f , q,m, d) is collision resistant.

Next, letH ′I( f , q,m) be a restricted version of the above hash functions:

H ′I( f , q,m) =
{
hA : {0,1}m(n) → Zq(n)[x]/⟨ f ⟩ | A = (a1, . . . , am(n)/n) ∈ (Zq(n)/⟨ f ⟩)m(n)/n

}
.

Corollary A.2. For any m(n) = Θ(n logn), there exists q(n) = Θ(m
√

n logn) andγ = Θ(mlog2 n), such
that, for a suitable polynomial f , ifΛ( f )-SVP∞γ is hard in the worst case thenH ′I( f ,q,m) is collision
resistant.
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Finally, we introduce a restricted version ofHI( f , q,m) for use in our identification scheme:

H ′I( f ,q,m,w) =
{
hA : B(m,w)→ Zq(n)[x]/⟨ f ⟩ | A = (a1, . . . , am(n)/n) ∈ (Zq(n)[x]/⟨ f ⟩)m(n)/n

}
.

We can considerA = (a1, . . . , am/n) asA′ = [Rotf (a1), . . . ,Rotf (am/n)] andy =
∑m/n

i=1 ai ⊗ xi asy = A′x,
where Rotf (a) = [a,e1 ⊗ a, . . . , en−1 ⊗ a] and ei denotes a vector whosei-th coordinate is 1 and other
coordinates are 0. Thus, we can plug it into the extended version of Stern’s scheme as the setup and
key-generation algorithms.

The setup algorithm on input 1n outputsA = (a1, . . . , am/n) from Zq/⟨ f ⟩ independently and uniformly
at random. The key-generation algorithm on inputA, chooses a random vectorx ∈ B(m,w) uniformly at
random, computes a vectory = A′x, and outputs (pk, sk) = (y, x).

A.2 String Commitment Scheme

UsingH ′I( f , q,m), we also obtain a simple string commitment scheme if a suitablef ∈ Z[x] is irreducible
polynomial inZq[x].

We first explain why we need the irreducibility off in Zq[x]. We need to estimate a lowerbound of
m for the statistical-hiding property as in the proof ofLemma 3.6. Suppose thatf is reducible inZq[x].
Even in this case, we can obtain a lowerboundΩ(n2 logq) of m using Theorem 4. 2 in [24]. However,
this lowerbound loses the advantage (i. e. , compactness) of the Lyubashevsky-Micciancio construction
since that makes the size of the hash function much larger. On the other hand, if we assume thatf is
irreducible inZq[x], then we obtain a much better lowerboundΩ(n logq), which preserves the advantage
of their construction.

Here, we say a polynomialf of degreen is strongly suitable forq if f is an suitable polynomial and
irreducible inZq[x]. For example, considerf (x) = (xn− 1)/(x− 1) = xn−1+ xn−2+ · · ·+ 1. The polynomial
f (x) is irreducible polynomial inZ[x] if n is prime and used in [20, 30]. We note that ifq modn is a
primitive root ofZ∗n then f (x) is irreducible inZq[x]. Thus, we apply the following lemma toH ′I( f , q,m)
and obtain the statistical-hiding property of a string commitment scheme.

Lemma A.3. Let q be a prime q= q(n) = nO(1) and m an integer such that m= m(n) > 2n logq.
Let f ∈ Zq[x] of degree n be a strongly suitable polynomial for q. The statistical distance between
(a1, . . . , am/n,

∑m/n
i=1 ai ⊗ xi) and the uniform distribution over the set(Zq[x]/⟨ f ⟩)(m/n)+1 is negligible in n.

Proof. We bound the collision probability of two random variables (a1, . . . , am/n,
∑

i ai⊗xi) and (a′1, . . . , a
′
m/n,

∑
i a′i⊗

x′i ), where the elementsai , a′i ∈ Zq[x]/⟨ f ⟩ andxi , x′i ∈ {0, 1}n are all chosen independently and uniformly at
random from their respective sets. The collision probability is

Pr[Collision]= Pr[ai = a′i for all i] · Pr

∑
i

ai ⊗ xi =
∑

i

a′i ⊗ x′i | ai = a′i for all i


=

1
qm Pr

∑
i

ai ⊗ (xi − x′i ) = 0

 .
By Lemma A.4below, the probability over the random choice ofai that

∑
i ai ⊗ (xi − x′i ) = 0 equals to

1/
∣∣∣∣⟨x1 − x′1, . . . , xm/n − x′m/n⟩

∣∣∣∣. We note thatZq[x]/⟨ f ⟩ is a field and ideals in it are only⟨0⟩ andZq[x]/⟨ f ⟩.
Thus, we have

Pr[Collision]=
1

qm

(
1
qn Pr[⟨x1 − x′1, . . . , xm/n − x′m/n⟩ = Zq[x]/⟨ f ⟩] + Pr

[
⟨x1 − x′1, . . . , xm/n − x′m/n⟩ = ⟨0⟩

])
=

1
qm

(
1
qn

(
1− 1

2m

)
+

1
2m

)
=

1
qm+n

(
1+

qn − 1
2m

)
.
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By Lemma A.5below, we have the statistical distance is at most
√

(qn − 1)/(4 · 2m). Hence, the assumption
thatm> 2n logq implies the above upperbound is negligible inn. � �

Lemma A.4 (Lemma 4. 4 in [24]). Let R be a finite ring, and z1, . . . , zm ∈ R a sequence of arbitrary
ring elements. If a1, . . . , am ∈ R are independently and uniformly distributed ring elements, then

∑
ai · zi is

uniformly distributed over the ideal⟨z1, . . . , zm⟩ generated by z1, . . . , zm. In particular, for any z1, . . . , zm ∈ R
and randomly chosen a1, . . . , am ∈ R, the probability that

∑
ai · zi = 0 is exactly1/ |⟨z1, . . . , zm⟩|.

Lemma A.5 ([18]). Let V and V′ be independent and identically distributed random variables taking values
in a finite set S . If V and V′ have collision probabilityPr[V = V′] ≤ (1 + 4ϵ2)/ |S|, then the statistical
distance between V and the uniform distribution over S is at mostϵ.

ForA = (a1, . . . , am/n), we define the commitment function on input (s, r) = (s1, . . . , sm/2n, r1, . . . , rm/2n)
as

ComA(s; r) :=
m/2n∑
i=1

r i ⊗ ai +

m/2n∑
i=1

si ⊗ ai+m/2n.

Now, we obtain the following lemma as inLemma 3.6.

Lemma A.6. For any m(n) = Θ(n logn), there exists q(n) = Θ(m
√

n logn) andγ = Θ(mlog2 n), such that,
m(n) > 2n logq and for a strongly suitable polynomial f for q(n), if Λ( f )-SVP∞γ is hard in the worst case
thenComA is a statistically hiding and computationally binding string commitment scheme in the trusted
setup model.

Using the Merkle-Damgård technique [21, 8], we obtain the string commitment scheme whose commitment
function is ComA : {0, 1}∗ × {0, 1}m/2→ Zn

q rather than ComA : {0,1}m/2 × {0,1}m/2→ Zn
q.

A.3 Identification scheme and Ad Hoc Identification Scheme

We obtain the ID scheme and AID scheme by combining the above setup and key-generation algorithms
and the string commitment scheme with the extended version of Stern’s scheme as in Section4 and5. One
can prove the securities of the schemes in the same manner to the proof of Theorems4.2and5.2.

Theorem A.7. Let f be a polynomial and E:= EF(f ,3). Let m = m(n), q = q(n), and w = w(n) be
polynomially bounded functions such that m> 2n logq, q> 2Emn3/2 logn, and qn/ |B(m,w)| is negligible
in n. Assume that f is a strongly suitable polynomial for q. Then forγ = 8E2mnlog2 n, if Λ( f )-SVP∞γ is
hard in the worst case then the ID scheme which uses the above setup and key-generation algorithms and
the above string commitment scheme is secure against impersonation under concurrent attacks.

Sketch of proof: We show that if there exists an impersonatorI which succeeds impersonation un-
der concurrent attacks with non-negligible probabilityϵ, there existsA that finds a collision (z1, z2) for
H ′I( f , q,m).

Given A = (a1, . . . , am/n), A chooses a random secret keyx ∈ B(m,w) and computey := Ax, where
A := [Rotf (a1) . . . Rotf (am/n)]. A executesI on inputs (A, y). We note thatA can simulate the oracles
Conv and Prov, sinceA has the secret keyx. A executesI three times with random challenges and
a fixed random tape. Then,A obtains three transcripts (Cmt(i),Ch(i),Rsp(i),Dec(i)) for i = 1, 2, 3 as the
results of the interactions betweenI andA. Note thatCmt(1) = Cmt(2) = Cmt(3) sinceA fixes the random
tape to workI. By the assumption,A obtain good transcript such that with non-negligible probability
Dec(i) = (Dec(i)

1 , . . . ,Dec(i)
n ) are all 1 for everyi. Then,A can findx′ from (A, y) or find (s, ρ) , (s′, ρ′)

such that ComA(s; ρ) = ComA(s′; ρ′) by using the fact thatCmt(1) = Cmt(2) = Cmt(3). In the former case,
we can show thatx′ , x with probability at least 1/2 as in the proof ofTheorem 4.2. A outputs (x, x′).
Sincex, x′ ∈ B(m,w) ⊆ {0,1}m,A indeed finds a collision forH ′I( f ,q,m). In the latter case,A computes
z , z′ ∈ {0, 1}m from (s, ρ) and (s′, ρ′) such that ComA(s; ρ) = Az and ComA(s′; ρ′) = Az′. Thus,A outputs
(z, z′) as a collision forH ′I( f , q,m). �
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Theorem A.8. Let f be a polynomial and E:= EF(f , 3). Let m = m(n), q = q(n), and w = w(n)
be polynomially bounded functions such that m> 2n logq/ log 2(w+ 1), q > 2E(w + 1)mn3/2 logn, and
qn/ |B(m,w)| is negligible in n. Assume that f is a strongly suitable polynomial for q. Then forγ =

8E2(w+1)mnlog2 n, ifΛ( f )-SVP∞γ is hard in the worst case then the AID scheme which uses the above setup
and key-generation algorithms and the above string commitment scheme is secure against impersonation
under concurrent attacks.

Sketch of proof: We show that if there exists an impersonatorI which succeeds impersonation under
concurrent chosen-group attacks with non-negligible probabilityϵ, there existsA that finds a collision
(z1, z2) forHI( f ,q,m,w+ 1).

The algorithmA, given inputA = (a1, . . . , am/n), feedsA to the impersonatorI. LetA := [Rotf (a1) . . . Rotf (am/n)].
In the experiment, the impersonatorI will call I nit, Corr, Conv, and Prov. If I calls Init with input i, then
A choosessi ∈ B(m,w) at random, computesyi := Asi , and returnsyi to I. If I calls Corr with input i,
Conv with inputsi,R, or Prov with inputsi,R, s,Mi , thenA can simulate the oracle Corr, sinceA has a
secret keysi with respect to a public keyyi .

At the end of the experiment,I will impersonate as a group which is specified by the set of public
keysR= (y1, . . . , yl). RewindingI three times,A obtain a collision (s, ρ) and (s′, ρ′) for the commitment
scheme ComA or a vectorx = t(tx1

tx2) such that [A y1 . . . yl ]x = 0, wherex1 ∈ {−1, 0, 1}m andx2 ∈
{−1, 0, 1}l andx ∈ B′(m+ l,w) as in the proof ofTheorem 4.2.

In the former case,A computesz , z′ ∈ {0,1}m such that ComA(s; ρ) = Az and ComA(s′; ρ′) = Az′.
Hence,A outputs (z, z′) as a collision forHI( f , q,m,w+ 1).

In the latter case, we haveAx1 +
∑l

i=1 x2,iyi = 0, that is,Ax1 +
∑l

i=1 x2,iAsi = 0. Hence, we obtain that
A(x1+

∑l
i=1 x2,isi) = 0. By the same argument as in the proof ofTheorem 4.2, we have thatx1+

∑
i x2,isi , 0

with probability at least 1/2. Recall that the numbers of+1 in x is w and that of−1 in x is 1. Thus we can
split the vectorx1 +

∑
i x2,isi into two vectorz1 andz2 such thatx1 +

∑
i x2,isi = z1 + z2, Az1 = Az2, and

z1, z2 ∈ D(m,w+ 1). Hence,A outputs (z1, z2) as a collision forHI( f , q,m,w+ 1). �
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B Tables

Experiment:Expimp−ca
SI,I

Input: n
Run: 1.param← SetUp(1n)

2. (pk, sk)← KG(param)
3. PS← ∅
4. StCP ← CV(1n, param,pk)Prov

5. (Tr,Dec)← Run[CP(StCP)↔ V(param, pk)]
Output: Dec

Prover oracle: Prov
Input: s,Min

Run: 1. If s < PS then
1-1. PS← PS∪ {s}
1-2. Pick a random coinρ for P
1-3. StP[s] ← (param, sk, ρ)

2. (Mout,StP[s]) ← P(Min,StP[s])
Output: Mout

Table 1:Experiment and Oracles forDefinition 2.3.
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Experiment:Expimp−cca
AID,I

Input: n
Run: 1.param← SetUp(1n)

2. HU,CU,TU,PS← ∅
3. (Rt,StCP)← CV(1n,param)Init,Corr,Prov

4. If Rt * HU then return 0;
5. TU ← Rt

5. (Tr,Dec)← Run[CP(StCP)Init,Corr,Prov ↔ V(param,Rt)]
Output: Dec

User initiation oracle: Init User corruption oracle: Corr
Input: i Input: i
Run: 1. If i ∈ CU ∪ HU ∪ TU then return⊥ Run: 1. If i < HU \ TU then return⊥

2. (pk[i], sk[i]) ← Reg(param; ρ[i]) 2. CU ← CU ∪ {i}
3. HU ← HU ∪ {i} 3. HU ← HU \ {i}

Output: pk[i] Output: ρ[i]

Prover oracle: Prov
Input: i,R, s,Min

Run: 1. Ifpk[i] < R then return⊥
2. If i < HU \ TU then return⊥
3. If (i,R, s) < PS then

3-1. PS← PS∪ {(i,R, s)}
3-2. Pick a random coinρ for P
3-3. StP[i,R, s] ← (ski ,R, ρ)

4. (Mout,StP[i,R, s]) ← P(Min,StP[i,R, s])
Output: Mout

Table 2:Experiment and oracles forDefinition 2.4.

Experiment:Expanon−fke
AID,A

Input: n
Run: 1.param← SetUp(1n)

2. ((pki0, ski0), (pki1, ski1),R,StA)← A(param).
3. b←R {0, 1}.
4. b∗ ← Run[P(param,R, skib)↔ A(StA)]
5. If b = b∗ thenDec := 1. OtherwiseDec := 0.

Output: Dec

Table 3:Experiment and oracles forDefinition 2.5.
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