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Abstract

The key substitution property is introduced by Blake-Wilson and Menezes [1] and formalized
by Menezes and Smart [8] as attacks. The key substitution property is as follow: another person
other than true signer can produce another public (and secret) key such that a message and
signature pair created by the signer is valid under the public key. The research of the key
substitution attacks [8, 6, 10, 2, 11, 12] is only to attack a certain signature scheme or only to
detect the attacks so far. In this paper, we introduce key-substitutable signature scheme. In
the key-substitutable signature scheme, it is basically infeasible to produce a substitute public
key, however, an user can create a substituted key pair by interaction with the original signer.
We propose the formal model of the key-substitutable signature scheme and formalize the
security requirements, unforgeability and non-substitutability. We also propose a construction
of key-substitutable signature scheme based on ElGamal signature scheme and prove that the
construction satisfies the all security requirements. Furthermore, we construct a new certified-
signature scheme achieving higher security based on key-substitutable signature schemes. We
also show that the “traditional” certified-signature scheme in [3] does not satisfy this higher
security.

Keywords: signature scheme, key substitution attack, certified-signature scheme.

1 Introduction

Background. Digital signatures should be “unforgeable”, which means that it is infeasible to
produce signatures of other users on documents that they did not sign. This property provides a
clear statement of the essential requirements of handwritten signatures. However, in contrast to
handwritten signatures, we cannot recognize that a digital signature produced by Alice is Alice’s
signature at a glance. It is not ascertained that the signature is Alice’s until the signature is
verified with Alice’s public key. Therefore, it may be ascertained that the signature is Bob’s when
it verified with Bob’s public key. It is an interesting property that a signature may be regarded as
both Alice’s and Bob’s.

Blake-Wilson and Menezes [1] introduced this property as the duplicate-signature key selection
property on signature schemes. Menezes and Smart [8] argued that the duplicate-signature key
selection property seems to be a considerable attack, called it the key substitution attack, in the
“multi-user setting”. In this setting, there may be more than two signers that use the same system
and different public keys. The research of the key substitution attacks [8, 6, 10, 2, 11, 12] consider
the key substitution mainly as the negative property.
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Contribution. Let (mA, σA) be a message and signature pair produced by a user A with a
public and secret key pair (pkA, skA). We call A the original signer of (mA, σA). We say that a
public key pkB is a substitute public key for pkA on (mA, σA) if (mA, σA) is valid under the public
key pkB and pkB ̸= pkA. We say that a public and secret key pair (pkB , skB ) is a substitute public
and secret key pair for (pkA, skA) on (mA, σA) if pkB is a substitute public key for pkA on (mA, σA)
and skB is the corresponding secret key.

In this paper, we consider the key substitution as the positive property and formalize it as key-
substitutable signature. The key substitution attack on standard signature schemes was introduced
by Blake-Wilson and Menezes [1] and studied in [8, 10, 11, 12]. In the key substitution attack, users
other than the original signer can generate substitute public keys. In our model of key-substitutable
signature schemes, it is infeasible for any user to independently perform the key substitution attack
without the assistance of the original signer. By running an interactive protocol with the original
signer A, another user B ( ̸= A) can generate a substitute public and secret key pair for (pkA, skA).
We call such an interactive protocol as a key substitution protocol and call the signature schemes
with key substitution protocols as key-substitutable signature schemes. Furthermore, we require
that, after running the key substitution protocol, the original signer A cannot forge the signatures
signed by B who owns a substitute public key (and its corresponding secret key), and that B also
cannot forge A’s signatures. We formalize these security requirements as non-substitutability and
unforgeability. In our model, we propose a construction based on the ElGamal signature scheme.
Furthermore, we construct a new certified-signature scheme achieving higher security based on key-
substitutable signature schemes. We also show that the “traditional” certified-signature scheme
in [3] does not satisfy this higher security.

Certified-Signature Schemes. Public-key cryptosystem implicitly relies on the existence of
public-key infrastructure (PKI). Each user associated with some PKI has a public and secret key
pair for the cryptosystem where the public key is authenticated and publicly available. The design-
ers of public-key cryptosystems always define how the public and the secret keys are generated and
used, but almost never carefully specify how to bind keys with user identities. Recently, Boldyreva,
Fischlin, Palacio, and Warinschi [3] studied PKIs with respect to security of encryption and digital
signature. They consider the security of joint constructions of the algorithms of an encryption or
a signature scheme and a key-registration protocol between the certification authority (CA) and
the users. Boldyreva, Fischlin, Palacio, and Warinschi [3] call the model of signature schemes with
PKI as certified-signature scheme.

The adversary in their model attempts the forgery by outputting a user identity ID, a public
key pk , a message m and, a signature σ. Roughly, the adversary wins if the signature σ is valid on
m under the chosen public key pk , and either (1) the honest user ID has registered the public key
pk and has not signed the message m, (2) the public key pk has not been registered with an honest
CA, or (3) the same public key pk has been registered by another honest user ID′ with an honest
CA. The condition (1) corresponds to the existential unforgeability for standard digital signature
schemes, and we require that it holds even if the CA is corrupted. The condition (2) guarantees
that signatures on the keys that are not bound to the identities of the users (i.e., “outside of the
PKI”) are not valid on the assumption that CA is honest. The condition (3) prevents attacks
where, for example, a malicious user claims the authorship of a message signed by a different user
on the assumption that CA is honest.

Weakening the assumption that CA is honest is one of important issues in PKI. The security
definition of the paper [3] guarantees the condition (3) on the assumption that the CA is honest.
In this paper, our proposed scheme of certified signature based on key substitutable signature
guarantee the security with respect to the condition (3) even if the CA is corrupted.
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Organization. In the next section, we review some cryptographic tools on which our main
construction is based. We describe the model of key-substitutable signature in Section 3 and
formally define the security requirements in Section 4. In Section 5, we propose two concrete key-
substitutable signature schemes based on the ElGamal signature scheme [5, 9], and prove that the
scheme satisfies the security requirements in the random oracle model. Furthermore, in Section 6,
we suggest that key-substitutable signature schemes can be applied to certified signature.

2 Preliminaries

Let X be a finite set. We denote by x
R←− X that an element of x ∈ X is randomly chosen. If A is

a randomized algorithm, then [A(x, y, · · · )] denotes the set of all elements output by A on inputs
x, y, · · · with positive probability. If G is a group, 〈g〉 denotes a group generated by g ∈ G. We
call a function neg : N → R negligible, if for every positive polynomial p(·) there exists an N such
that for all n > N , neg(n) < 1

p(n) .

The ElGamal signature scheme. We review the ElGamal signature scheme [5, 9] which we
employ in our proposed scheme. In order to apply the ElGamal scheme into our scheme, we require
that the subgroup of Z∗

p is restricted to that with the prime p of the form p = 2q + 1 and q ≡ 3
(mod 4) where q is also prime.

• The setup algorithm: it chooses a random large prime p of size λ and a random element g
whose order is prime q where p = 2q + 1 and q ≡ 3 (mod 4). The common parameter is
(p, g).

• The key generation algorithm: it chooses x
R←− Zq and computes y = gx mod p. The secret

key is x. The public key is y.

• The signing algorithm: in order to sign a message m, one generates k
R←− Z∗

q and computes
r = gk mod p and s = k−1(H(m, r) − xr) mod q. The signature is σ = (s, r).

• The verification algorithm: it checks the equation: gH(m,r) = yrrs (mod p).

The scheme employs a hash function H over Zq modeled as the random oracle in the security
proof. In this paper, we use the following fact [9]: the ElGamal signature scheme is existential
unforgeable against the key-only attack under the assumption that the discrete logarithm problem
is hard in the random oracle model. In precise, we assume that the ElGamal signature scheme
is (t, ϵ, qH)-EU-KOA, that is, there is no adversary A who takes as input a public key generated
by the key generation algorithm, accesses to the random oracle at most qH times, and forges a
signature with advantage at least ϵ in time t.

The property of primes. In our construction, we use primes p and q such that p = 2q + 1
and q ≡ 3 (mod 4). We use the following property of primes: if g is an element whose order q in
Z∗

p then (gx mod p) mod q ̸= 0 for all x ∈ Zq. Thus, every element in Z∗
p has always its inverse

in Z∗
q . We briefly explain this fact. It is easy to see that p ≡ −1 (mod 8). From Theorem A.48

of [4] and the fact that p ≡ −1 (mod 8), we obtain (2
p) = 1, where (x

p ) is the Legendre symbol

of x mod p. From Proposition A.47 of [4] and (2
p) = 1, we obtain 2

p−1
2 ≡ 1 (mod p). Therefore,

2q ≡ 2
p−1
2 ≡ 1 (mod p). Since 2q ≡ −1 (mod p), we have (2q)q ≡ −1 (mod p). Hence, we can see

qq ≡ −1 (mod p), that is, q /∈ 〈g〉. This implies (gx mod p) mod q ̸= 0 for all x ∈ Zq.
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3 The model

In the standard signature schemes, a user generates a public and secret key pair (pk , sk). The user
produces signatures using the secret key sk for messages. The signatures are verified using the
public key pk .

The key substitution attacks on standard signature schemes were introduced by Blake-Wilson
and Menezes [1] and studied in [8, 10, 11, 12]. In the key substitution attack, users other than
the original signer can generate substitute public keys. Let (mA, σA) be a message and signature
pair produced by a user A with a public and secrete key pair (pkA, skA). We call A the original
signer of (mA, σA). We say that a public key pkB is a substitute public key for pkA on (mA, σA)
if (mA, σA) is valid under the public key pkB and pkB ̸= pkA. We say that a public and secret
key pair (pkB , skB ) is a substitute public and secret key pair for (pkA, skA) on (mA, σA) if pkB is
a substitute public key for pkA on (mA, σA) and skB is the corresponding secret key. We also say
that B is a substitute signer for A on (mA, σA) if B has a substitute public and secret key pair for
(pkA, skA) on (mA, σA).

In our model of key-substitutable signature scheme, basically, it is infeasible for any user to
independently perform the key substitution attack. However, by running an interactive protocol
with the original signer A, another user B (̸= A) can generate a substitute public and secret
key pair for (pkA, skA). We call such an interactive protocol as a key substitution protocol and
call a signature scheme with a key substitution protocol as a key-substitutable signature scheme.
Furthermore, we require the original signer A cannot forge another signer B’s signatures and B
also cannot forge A’s signatures, after running the key substitution protocol.

Algorithms. A key-substitutable signature scheme KS = (Setup, Gen, Sig, Ver, (KSA1, KSA2)) is
specified by a setup algorithm Setup, a key generation algorithm Gen, a signing algorithm Sig, a
verification algorithm Ver, and a key substitution protocol (KSA1, KSA2).

The setup algorithm Setup is a randomized algorithm which takes as input 1λ, where λ ∈ N
is the security parameter, and outputs a common parameter cp shared among signers. We
denote this as cp ← Setup(1λ).

The key generation algorithm Gen is a randomized algorithm which takes as input cp, and
outputs a pair (pk , sk), where pk is a public key and sk is a secret key. We denote this as
(pk , sk) ← Gen(cp).

The signing algorithm Sig is a randomized algorithm which takes as input (cp, pk , sk , m),
where m is a message, and outputs a signature σ. We denote this as σ ← Sig(cp, pk , sk , m).

The verification algorithm Ver is a deterministic algorithm which takes as input (cp, pk ,m, σ),
and outputs 0 or 1. We denote this as 0/1 ← Ver(cp, pk ,m, σ).

The key substitution protocol KSA is a pair of interactive randomized algorithms (KSA1, KSA2)
which takes (cp, pk ,m, σ) as common input. KSA1 takes as auxiliary input sk . KSA1 outputs
a public key pk and KSA2 outputs a pair (pk , sk) after the interaction. We denote this by
(pk ; pk , sk) ← 〈KSA1(sk), KSA2〉(cp, pk ,m, σ).

Let (mA, σA) be a message and signature pair produced by a user A with a public and secret key
pair (pkA, skA). In the key substitution protocol which takes as common input (cp, pkA,mA, σA)
and auxiliary input skA, KSA1 is an algorithm of the original signer A and KSA2 is an algorithm of
another user who wants a substitute public and secret key pair on (mA, σA). That is, the output
(pk ; pk , sk) ← 〈KSA1(sk), KSA2〉(cp, pkA,mA, σA) is supposed to satisfy Ver(cp, pk , mA, σA) = 1.

For simplifying the model, we assume that the key substitution protocol runs on the secure
channel. That is, we do not consider the attacker eavesdropping the interaction with KSA1 and
KSA2.
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Correctness. A key-substitutable signature scheme must satisfy the following correctness re-
quirements: a signature created correctly by the signing algorithm is always valid. More precisely,
for any common parameter cp generated by the setup algorithm, any public and secret key pair
(pk , sk) produced by the key generation algorithm or the key substitution protocol which takes
as input the common parameter cp, any message m, and any signature σ created by the signing
algorithm under (pk , sk), the verification algorithm must accept the message and signature pair
(m,σ) under the public key pk . We formalize this as follows.

Definition 1 (correctness). We say that a key-substitutable signature scheme KS is correct if KS
satisfies the following condition: ∀λ ∈ N, cp ∈ [Setup(1λ)], (pk , sk) ∈ [Gen(cp)]∪[〈KSA1(·), KSA2〉(cp, ·, ·, ·)],
m ∈ M , σ ∈ [Sig(cp, pk , sk ,m)], Ver(cp, pk ,m, σ) = 1.

Key-substitutability. A key-substitutable signature scheme should also satisfy the following
the key-substitutability requirement: the original signer A of a message and signature pair (m,σ)
with a public and secret key pair (pkA, skA) can allow another user B to generate a substitute
public and secret key pair (pkB , skB ) for (pkA, skA) on (m,σ) by running the key substitution
protocol 〈KSA1(skA), KSA2〉(cp, pkA, m, σ).

Definition 2 (key-substitutability). We say that a key-substitutable signature scheme KS has
key-substitutability if KS satisfies the following condition: ∀λ ∈ N, cp ∈ [Setup(1λ)], (pk , sk) ∈
[Gen(cp)] ∪ [〈KSA1(·), KSA2〉(cp, ·, ·, ·)], m ∈ M , σ ∈ [Sig(cp, pk , sk ,m)],

1 − Pr
[
(pk ′; pk ′, sk ′) ← 〈KSA1(sk), KSA2〉(cp, pk ,m, σ)

: Ver(cp, pk ′,m, σ) = 1 and pk ̸= pk ′

]
= neg(λ).

4 The Security notions

The key-substitutable signature scheme should fulfill two security requirements, unforgeability
and non-substitutability. The unforgeability means that no adversary can forge a message and
signature pair which is valid under another user’s public key. The non-substitutability means
that no adversary A can produce a substitute public key pk for another user’s public key pk ′ on
(m,σ) without the running key substitution protocol on (cp, pk ′,m, σ). We note that the key-
substitutability and the non-substitutability do not conflict. The key-substitutability assures any
user, only if they run the key substitution protocol, to produce a substitute public and secret key
pair.

In our model, there exist two types of signers, which we call the original signer and a substitute
signer. The original signer has a public and secret key pair generated by the key generation
algorithm. A substitute signer has a public and secret key pair generated by the key substitution
protocol. Therefore, we consider the unforgeability and the non-substitutability with respect to
the two type of signers.

4.1 Security requirements for the original signer

We formalize the security requirements, the unforgeability and the non-substitutability for the
original signer U1, whose public and secret key pair (pk , sk) is produced by the key generation
algorithm.

We suppose the adversary who attempts to break the unforgeability or the non-substitutability
with respect to U1. That is, the adversary wants to forge a message and signature pair which is
valid under U1’s public key, or, to produce a substitute public key pk on (m,σ) without running
the key substitution protocol with respect to (m,σ) produced by U1.

We consider the adversary who, given public key pk produced by the key generation algorithm,
not only accesses the signing oracle but also runs the key substitution protocol as the role of KSA2
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with the original signer U1. We allow the adversary to run the key substitution protocol with U1

once per each message and signature pair (m,σ). We require that such no adversary can forge
a signature on any message which is valid under the public key of U1 (unforgeability); and that
such no adversary can produce even a substitute public key pk on (m,σ) without running key
substitution protocol where (m,σ) is one of the message and signature pair generated by user U1

(non-substitutability).
For a key-substitutable signature scheme KS = (Setup, Gen, Sig, Ver, (KSA1, KSA2)), we asso-

ciate the adversary A with the following experiment. A takes as input the common parameter cp
and the original signer U1’s public key pk generated by the key generation algorithm. A can access
the signing oracle Sig(cp, pk , sk , ·). Let Ls be the list of message and signature pairs (m, σ) where
m is a query to the signing oracle and σ is the corresponding answer. A can also run the key substi-
tution protocol as the role of KSA2 with the original signer U1 with respect to each (mi, σi) ∈ Ls\Lk.
Let Lk ⊂ Ls be the list of message and signature pairs (mi, σi) such that the adversary A ran the
key substitution protocol with respect to (mi, σi). Let Lpk = {pk} ∪ {pki} where pk is the input
public key pk and pki is the output of KSA1 on the common input (cp, pk ,mi, σi) ((mi, σi) ∈ Lk)
with the adversary A. The experiment returns 1 if the adversary defeats the unforgeability, that
is, produces a forgery (m,σ) such that (1) (m,σ) is valid under the public key pk ; and (2) m is
never queried to the signing oracle. The experiment also returns 1 if the adversary breaks the non-
substitutability, that is, produce (pk ,m, σ) such that (1) (m,σ) is valid under the output public
key pk ; (2) m is queried to the signing oracle and σ is the corresponding answer; (3) pk is not one
of the public keys under which (m,σ) is valid due to the correctness or the key-substitutability.
Otherwise the experiment returns 0. Note that, it is easy to generate for the adversary such a
public key pk if the adversary runs key substitution protocol with respect to (m,σ) because of the
key-substitutability.

Experiment Expatk-1
KS,A (λ)

cp ← Setup(1λ); (pk , sk) ← Gen(cp);
(pk ,m, σ) ← A〈KSA1(sk),A〉(cp,pk ,·,·),Sig(cp,pk ,sk ,·)(cp, pk);
If atk = uf and Ver(cp, pk ,m, σ) = 1 and (m, ·) /∈ Ls then return 1;
Else if atk = ns and Ver(cp, pk ,m, σ) = 1 and (m,σ) ∈ Ls

and pk /∈ Lpk then return 1;
Else return 0;

Concerning attacks against the original signer, we define the advantage of the adversary A on the
key-substitutable signature scheme KS by the probability:

Advatk-1
KS,A (λ) = Pr[Expatk-1

KS,A (λ) = 1].

Definition 3 (unforgeability for the original signer). We say that a key-substitutable signature
scheme KS has (t, ϵ, qs, qk)-unforgeability for the original signer if there is no adversary A such
that Advuf-1

KS,A(·) is at least ϵ(·); the number of A’s signing queries is bounded by qs; A can run the
key substitution protocol with respect to qk message and signature pairs in Ls; and A’s running
time is bounded by t.

Definition 4 (non-substitutability for the original signer). We say that a key-substitutable signa-
ture scheme KS has (t, ϵ, qs, qk)-non-substitutability for the original signer if there is no adversary
A such that Advns-1

KS,A(·) is at least ϵ(·); the number of A’s signing queries is bounded by qs; A can
run the key substitution protocol with respect to qk message and signature pairs in Ls; and A’s
running time is bounded by t.

4.2 Security requirements for a substitute signer

We formalize the security requirements, the unforgeability and the non-substitutability for a sub-
stitute signer U2, whose public and secret key pair (pk , sk) is produced by the key substitution
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protocol. In this protocol, U2 plays the role of KSA2 and the original signer plays the role of KSA1.
We should consider the case that, concerning the security of the substitute signer U2, the original
signer who runs KSA1 may manipulate U2 to produce fragile keys. Therefore, concerning the key
substitution protocol to generate the substitute signer U2’s public and secret key pair, we allow the
adversary to choose the common input (pk , m, σ) and to participate the key substitution protocol
as the role of KSA1. Furthermore, the adversary can not only access the signing oracle but also
run the key substitution protocol as the role of KSA2 with the substitute signer U2. We allow the
adversary to run the key substitution protocol with U2 once per each pair (m,σ) of message and
signature.

We require that such no adversary can forge a signature on any message which is valid under
the public key of the substitute signer U2 (unforgeability); and that such no adversary can produce
a substitute public key pk (and the corresponding secret key sk) on (m, σ) without running the key
substitution protocol where (m,σ) is one of the message and signature pair (m,σ) generated by
the substitute signer U2 (non-substitutability). In our security definition, the unforgeability and
the non-substitutability are required even if the adversary is allowed to participate the substitute
signer’s key generation as the role of KSA1 by running the key substitution protocol with the
substitute signer U2.

For a key-substitutable signature scheme KS = (Setup, Gen, Sig, Ver, (KSA1, KSA2)), we asso-
ciate the adversary A = (A1, A2, A3) with the following experiment. A1 takes as input the common
parameter cp and chooses a public key pk0 and a message and signature pair (m∗, σ∗) as he likes.
Then, with respect to the common input (cp, pk0 ,m∗, σ∗), the adversary A2 and the substitute
signer U2 run the key substitution protocol as the role of KSA1 and KSA2, respectively. A2 uses
KSA2 to produce U2’s substitute public and secret key pair (pk , sk) for pk0 on (m∗, σ∗). Then, A3
receives the target public key pk output by KSA2. A can access the signing oracle Sig(cp, pk , sk , ·).
Let Ls be the list of message and signature pairs (m,σ) where m is a query to the signing oracle
and σ is the corresponding answer. A3 can also run the key substitution protocol with the substi-
tute signer U2 with respect to (mi, σi) ∈ Ls \Lk. Let Lk ⊂ Ls be the list of message and signature
pairs (mi, σi) such that the adversary A run the key substitution protocol with respect to (mi, σi).
Let Lpk = {pk} ∪ {pki} where pk is the input public key pk and pki is the output of KSA1 on the
common input (cp, pk ,mi, σi) ((mi, σi) ∈ Lk) with the adversary A3. The experiment returns 1 if
the adversary defeats the unforgeability, that is, produces a forgery (m,σ) such that: (1) (m,σ)
is valid under the public key pk ; and (2) m is never queried to the signing oracle. The experiment
also returns 1 if the adversary breaks the non-substitutability, that is, produces (pk ,m, σ) such
that: (1) (m,σ) is valid under the output public key pk ; (2) m is queried to the signing oracle and
σ is the corresponding answer; (3) pk is not one of the public keys under which (m, σ) is valid due
to the correctness or the key-substitutability. Otherwise the experiment returns 0. Note that, it is
easy to generate for the adversary such a public key pk if the adversary runs the key substitution
protocol with respect to (m,σ) because of the key-substitutability.

Experiment Expatk-2
KS,A (λ)

cp ← Setup(1λ); (pk0 , m∗, σ∗, St) ← A1(cp);
(St; pk , sk) ← 〈A2(St), KSA2〉(cp, pk0 ,m∗, σ∗);
If Ver(cp, pk ,m∗, σ∗) = 0 then return 0;
(m, σ) ← A3〈KSA1(sk),A3〉(cp,pk ,·,·),Sig(cp,pk ,sk ,·)(St, pk);
If atk = uf and Ver(cp, pk ,m, σ) = 1 and (m, ·) /∈ Ls then return 1;
Else if atk = ns and Ver(cp, pk ,m, σ) = 1 and (m,σ) ∈ Ls

and pk /∈ Lpk then return 1;
Else return 0;

Concerning the attack against a substitute signer, we define the advantage of the adversary A
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on the signature scheme KS by the probability:

Advatk-2
KS,A (λ) = Pr[Expatk-2

KS,A (λ) = 1].

Definition 5 (unforgeability for a substitute signer). We say that a key-substitutable signature
scheme KS has (t, ϵ, qs, qk)-unforgeability for a substitute signer if there is no adversary A such
that Advuf-2

KS,A(·) is at least ϵ(·); the number of A’s signing queries is bounded by qs; A can run the
key substitution protocol with respect to qk message and signature pairs in Ls; and A’s running
time is bounded by t.

Definition 6 (non-substitutability for a substitute signer). we say that a key-substitutable sig-
nature scheme KS has (t, ϵ, qs, qk, qk)-non-substitutability for a substitute signer if there is no
adversary A such that Advns-2

KS,A(·) is at least ϵ(·); the number of A’s signing queries is bounded by
qs; A can run the key substitution protocol with respect to qk message and signature pairs in Ls;
and A’s running time is bounded by t.

4.3 Additional security requirement

Let A be the original signer of (mA, σA) and B a substitute signer of (mA, σA). In some cases,
for example in key registration, the indistinguishability that B’s public (and secret) key pair is
generated by the key substitution protocol or not is required. Of cause, a person who knows
(mA, σA) can see that the public keys of A and B have some relation, that is, (mA, σA) is valid
under both the public keys of A and B. However, a person who does not know (mA, σA) may
distinguish whether there exists (m, σ) such that (m, σ) is valid under both public keys of A and
B. Furthermore, even if a person knows (mA, σA), he may not be able to judge which of A and B
is the original signer. Our construction described in Section 5 have both properties.

5 The Construction

In this section, we construct a key-substitutable signature scheme KS1 based on the ElGamal
signature scheme [5, 9].

First, we give the idea of our construction KS1. Concerning (m,σ) produced by a certain user
A, we want to prevent the key substitution attacks, where users other than the original signer can
freely produce a substitute public key on (m,σ). Note that we might have some trouble on the
construction of the key substitution protocol, when, for each message and signature pair (m,σ),
there exist only one public key pk such that (m,σ) is valid under pk . One such example is the
ElGamal signature scheme described in Section 2.

Roughly, in the key substitution attack, an attacker produces a substitute public key corre-
sponding to a signature. On the other hand, in the forgery of signatures, an attacker produces a
signature corresponding to a public key. From this point of view, the public key and the signature
can be considered as a kind of symmetric elements. In our scheme, we change the verification
equation of the ElGamal signature scheme into the one such that a public key and a signature are
symmetric. The verification equation is as follows: gH(m,r,y) ≡ yrαrys (mod p) where a public key
is (y, α) and a signature is (r, s).

This is not enough for our construction. We see the equation’s exponent H(m, r, y) ≡ xrα+kys
(mod q). Let (m, r, s) be a message and signature pair produced by the original signer A who has
the public and secret key (y, x). We assume that A allows a substitute signer B to possess a public
and secret key (y, α, x) such that (m, r, s) is valid under (y, α), that is, H(m, r, y) ≡ xrα + kys
(mod q). Unfortunately, the substitute signer B can compute k and also the original signer A’s
secret key x. Therefore, we divide the secret key x into two part x1 and x2, and the signature is
produced by using the “temporary” secret key z = x1 + cx2 where c is changed for each time and
each user. We require that it is infeasible for a substitute signer B to forge the original signer A’s
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signature even if the substitute signer B knows the temporary secret key z = x1 + cx2. Since B
cannot compute a different value z′ = x1 + c′x2 to sign a different message unless B knows x1 and
x2.

We further modify this form for our construction. We assume that the original signer A allows
a substitute signer B to possess two substitute public and secret key pair (x′

1, x
′
2, y

′
1, y

′
2, α

′) on
(m′, r′, s′) and (x′′

1, x
′′
2, y

′′
1 , y′′2 , α′′) on (m′′, r′′, s′′) where (m′, r′, s′) and (m′′, r′′, s′′) are produced by

the original signer A. Then the substitute signer B can compute k′ and k′′ where r′ = gk′
mod p

and r′′ = gk′′
mod p. The substitute signer B can compute also the original signer A’s secret key

x1 and x2. Therefore, we divide r’s exponent k into two part k1 and k2 and use k1 + dk2 where
d is changed for each time and each user. We require that it is infeasible for the substitute signer
B to produce another public key (y1, y2, α) such that (m, r1, r2, s) is valid under (y1, y2, α) even if
B knows k1 + dk2. Since B needs a different value k1 + d′k2 to produce such a public key. In our
construction, we append the random bit string w to the public key.

With the idea described above, we construct the key-substitutable signature scheme KS1. The
scheme employs hash functions H mapping to Zq and h1, h2, h3 mapping to Z∗

q , which are modeled
as the random oracles in the security proofs.

Setup(1λ) This randomized algorithm takes as input a security parameter 1λ, and proceeds as
follows. It selects λ-bit prime p such that p = 2q + 1, q is prime, and q ≡ 3 (mod 4). It
selects an element g ∈ Z∗

p whose order is q. The common parameter is cp = (g, p).

Gen(cp) This randomized algorithm takes as input a common parameter cp = (g, p), and proceeds
as follows. It selects x1

R←− Zq, x2
R←− Zq, α

R←− Z∗
q , and w

R←− {0, 1}λ and computes
y1 ← gx1 mod p and y2 ← gx2 mod p. The public key is pk = (y1, y2, α, w). The secret key
is sk = (x1, x2).

Sig(cp, pk , sk ,m) This randomized algorithm takes as input a common parameter cp = (g, p), a
public key pk = (y1, y2, α, w), a secret key is sk = (x1, x2), and a message m, and proceeds
as follows. It selects k1

R←− Z∗
q and computes r1 ← gk1 mod p, k2 ← h3(r1, x1, x2), r2 ←

gk2 mod p, c ← h1(m, r1, r2, y1, y2, w), d ← h2(m, r1, r2, y1, y2, w), y ← y1y
c
2 mod p, r ←

r1r
d
2 mod p, and s ← (H(c, r, y) − (x1 + cx2)rα)(y(k1 + dk2))−1 mod q. The signature is

σ = (r1, r2, s).

Ver(cp, pk , m, σ) This deterministic algorithm takes as input a common parameter cp = (g, p), a
public key pk = (y1, y2, α, w), a message m, and a signature σ = (r1, r2, s), and proceeds as
follows. It computes c ← h1(m, r1, r2, y1, y2, w), d ← h2(m, r1, r2, y1, y2, w), y ← y1y

c
2 mod p,

and r ← r1r
d
2 mod p. It checks gH(c,r,y) = yrαrys (mod p) (and yq

1 ≡ yq
2 ≡ rq

1 ≡ rq
2 ≡ 1

(mod p)). It returns 1 if it is true, otherwise returns 0.

〈KSA1(sk), KSA2〉(cp, pk ,m, σ) This protocol takes as common input (cp, pk ,m, σ) = ((g, p), (y1, y2,
α, w),m, (r1, r2, s)) and KSA1 takes as auxiliary input sk = (x1, x2).

KSA2’s first step. KSA2 selects x1
R←− Zq and x2

R←− Zq and computes y1 ← gx1 mod p and
y2 ← gx2 mod p. KSA2 then sends (y1, y2) to KSA1.

KSA1’s first step. KSA1 selects w
R←− {0, 1}λ and sends w to KSA2.

KSA2’s second step. KSA2 computes c ← h1(m, r1, r2, y1, y2, w), and z ← x1 + cx2 mod q. If
z mod q = 0 then KSA2 outputs ⊥, otherwise, KSA2 sends z to KSA1.

KSA1’s second step. If KSA1 receives z, computes c ← h1(m, r1, r2, y1, y2, w) and y ←
y1y2

c mod p. (If y ̸= gz mod p then KSA1 sends ⊥ to KSA2. ) KSA1 computes c ←
h1(m, r1, r2, y1, y2, w), y ← y1y

c
2 mod p, ν ← (H(c, r, y) − (x1 + cx2)rα)y−1 mod q, d ←

h2(m, r1, r2, y1, y2, w), d ← h2(m, r1, r2, y1, y2, w), k2 ← h3(r1, x1, x2), ν ← ν + (d − d)k2s,
r = r1r

d
2 mod p, and α ← (H(c, r, y) − νy)(rz)−1 mod q. KSA1 sends α to KSA2.
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KSA2’s third step. Upon receiving α, if α = 0 then KSA2 outputs ⊥, otherwise, KSA2 outputs
the public key pk = (y1, y2, α, w) and the secret key sk = (x1, x2).

It is easy to see that the key-substitutable signature scheme KS1 is correct and has the key-
substitutability. We show that the key-substitutable signature scheme KS1 satisfies all of the
security requirements as shown in Theorem 7, 8, 9, and 10. The proofs of Theorem 7, 8, 9, and 10
are in the Appendices of the full version of the paper.

Theorem 7. If the ElGamal signature scheme is (t, ϵ, qH)-EU-KOA, then the key-substitutable
signature scheme KS1 has (t′, ϵ′, qs, qk, qH , qh1 , qh2 , qh3)-unforgeability 1, where ϵ ≥ ϵ′ − δ, δ =
(2(qh1

+qh2
+2qk+2qs)

q2 + qH+qs

q ) · qs + qh1
+qh2

+2qk+2qs

2λ · qk, and t = (qh1 + qh2 + qh3)O(λ) + (qH + qs +
qk + 2)O(λ3) + t′. Here qH , qh1, qh2, and qh3 are the number of the queries to the random oracle
H, h1, h2, and h3 respectively.

Theorem 8. If the ElGamal signature scheme is (t, ϵ, qH)-EU-KOA, then the key-substitutable
signature scheme KS1 has (t′, ϵ′, qs, qk, qH , qh1 , qh2 , qh3)-non-substitutability 1, where ϵ ≥ ϵ′−δ

qsqh2
,

δ = (2(qh1
+qh2

+2qk+2qs)

q2 + qH+qs

q ) ·qs+ qh1
+qh2

+2qk+2qs

2λ ·qk, and t = (qh1 +qh2 +qh3)O(λ)+qHO(λ2)+
(qs + qk + 2)O(λ3) + t′. Here qH , qh1, qh2, and qh3 are the number of the queries to the random
oracle H, h1, h2, and h3 respectively.

Theorem 9. If the ElGamal signature scheme is (t, ϵ, qH)-EU-KOA, then the key-substitutable
signature scheme KS1 is (t′, ϵ′, qs, qk, qH , qh1 , qh2 , qh3)-unforgeability 2, where ϵ ≥ ϵ′

qh1
− δ, δ =

(2(qh1
+qh2

+2qk+2qs)

q2 + qH+2qs+qh1
+qk

q ) ·qs + 2qh1
+qh2

+3qk+3qs

2λ ·qk + qh1
+qs+qk

q ·qh1, and t = (qh1 +qh2 +
qh3)O(λ) + (qH + qs + qk + 2)O(λ3) + t′. Here qH , qh1, qh2, and qh3 are the number of the queries
to the random oracle H, h1, h2, and h3 respectively.

Theorem 10. If the ElGamal signature scheme is (t, ϵ, qH)-EU-KOA, then the key-substitutable
signature scheme KS1 is (t′, ϵ′, qs, qk, qH , qh1 , qh2 , qh3)-non-substitutability 2, where ϵ ≥ ( ϵ′

qh1
−

δ) 1
qsqh2

, δ = (2(qh1
+qh2

+2qk+2qs)

q2 + qH+qs

q ) · qs + qh1
+qh2

+2qk+2qs

2λ · qk, and t = (qh1 + qh2 + qh3)O(λ) +

(qH + qs + qk + 2)O(λ3) + t′. Here qH , qh1, qh2, and qh3 are the number of the queries to random
oracle H, h1, h2, and h3 respectively.

Extensions. Recall that the verification equation’s exponent is H(m, r, y) = (x1+cx2)rα+(k1+
dk2)ys mod q where y1 = gx1 mod p, y2 = gx2 mod p, r1 = gk1 mod p, and r2 = gk2 mod p. If the
adversary obtains only one public and secret key pair (pk , sk) per each message and signature pair
(m,σ), the adversary can know only k1+d′k2 and cannot know any of k1, k2, x1, and x2. Therefore,
if the adversary obtains only one key pair (pk , sk) per each message and signature pair, the key-
substitutable signature scheme KS1 has the unforgeability and the non-substitutability. Now,
we extends the form of signature to (r1, r2, · · · , rN , s) and the verification equation’s exponent
to H(m, r, y) = (x1 + cx2)rα + (k1 + d1k2 + · · · + dN−1kN )ys mod q. In this case, even if the
adversary obtains at most N − 1 key pairs per each pair (m,σ) of message and signature, the
adversary cannot know any of k1, · · · , kN , x1, and x2. Therefore, the extended KS1 satisfies
the unforgeability and the non-substitutability. Note that this extension is not necessary for our
application to certified-signature in Section 6.

6 An Application to Certified Signature

Public key cryptosystem implicitly relies on the existence of a public-key infrastructure (PKI),
where each user has a public and secret key pair for the cryptosystem, and an associated user
with a public key is publicly available. The designers of public-key cryptosystems always define
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how the public and the secret keys are generated and used, but almost never carefully specify
how to bind keys with user identities. In particular, the security of the combination of a key-
registration protocol with existing encryption or signature schemes does not immediately follow
from the security of the individual components.

Boldyreva, Fischlin, Palacio, and Warinschi [3] studied PKIs with respect to security of en-
cryption and digital signature schemes. Their security notions are against an adversary with broad
capabilities that take into account threats arising from the key-registration protocol, the presence
of several parties, including the users and the (possibly corrupt) certification authority. The mod-
els directly capture settings where users have multiple public keys, and where keys have additional
attributes, such as an expiration date.

Model of the PKI. Users register public-keys by interacting with a certification authority
(CA) on public, authenticated channels. After registration, parties can sign messages using the
secret keys associated to the public key the have registered. Signatures can then be verified,
the verification process involves both the public key of the CA and that of the user. Boldyreva,
Fischlin, Palacio, and Warinschi [3] call the model of signature schemes with PKI as certified-
signature scheme.

The adversary attempts a forgery by outputting a user identity ID, a public key pk , a message
m and a signature σ. Roughly, the adversary wins if the signature σ is valid on m under the chosen
public key pk , and either (1) the honest user ID has registered the public key pk and has not signed
the message m, (2) the public key pk has not been registered with an honest CA, or (3) the same
public key pk has been registered by another honest user ID′ with an honest CA. The condition
(1) corresponds to the existential unforgeability for standard digital signature schemes, and we
require that it holds even if the CA is corrupt. The condition (2) guarantees that signatures for
keys that are not bound to identities of the users (i.e., “outside of the PKI”) are not valid on the
assumption that CA is honest. The condition (3) prevents attacks where for example a malicious
user claims authorship of a message signed by another user on the assumption that CA is honest.

Weakening the assumption of CA’s trust. Weakening the assumption of CA’s trust is one
of important issues on PKI. The security definition in [3] guarantees the condition (3) on the
assumption that the CA is honest. With respect to the condition (3), our certified signature
schemes based on key-substitutable signatures guarantee the security even if the CA is corrupted.
In this section, we consider the stronger security definition of certified-signature schemes. We
review the model and security notions of certified-signature schemes, propose our certified-signature
schemes based on key-substitutable signature scheme, and show that the traditional certified-
signature schemes is not secure if CA is corrupted, with respect to the condition (3).

Overview of certified-signature schemes We first review the model of certified-signature
schemes [3]. A certified-signature scheme CS = (G,K, (C,U),S,V), is specified by a parameter-
generation algorithm G, a key generation algorithm K, a public-key registration protocol (C,U), a
signing algorithm S, and a verification algorithm V.

The parameter-generation algorithm G is a randomized algorithm which takes input 1λ,
where λ is the security parameter, and outputs a global parameter cp shared among all
parties.

The key-generation algorithm K is a randomized algorithm which takes input cp, and outputs
a public and secret key pair (pkCA, skCA) of the certificate authority (CA).

The public-key registration protocol (C,U) is a pair of interactive randomized algorithms. C
takes input CA’s secret key skCA. U takes input the identity ID of a user and the CA’s public
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key pkCA corresponding skCA. As result of the interaction, C outputs (ID, pk , cert), where
pk is a public key and cert is an issued certificate. The local output of U is (ID, pk , sk , cert),
where sk is a secret key that user ID uses to produce a signature. We denote this as
((ID, pk , cert), (ID, pk , sk , cert)) ← (C(skCA),U(ID, pkCA)). Either party can quit the exe-
cution prematurely, in which case the output of the party is set to ⊥.

The signing algorithm S is a randomized algorithm which takes as input (ID, sk , cert, pkCA,m),
where m is a message, and outputs a signature σ. We denote this as σ ← S(ID, sk , cert, pkCA, ,m).

The verification algorithm V is a deterministic verification algorithm which takes as input
(ID, pk , cert, pkCA, m, σ), and outputs 0 or 1. We denote this as 0/1 ← V(ID, pk , cert, pkCA,m, σ).

Security notions. We next review the definition of certified-signature schemes [3]. We associate
a certified-signature scheme CS = (G,K, (C,U),S,V), an adversary A, and security parameter
λ with the following experiment. The experiment maintains two virtual lists RegListPub and
RegListSec. A knows the elements of RegListPub but not those of RegListSec. In the beginning of
the experiment, the adversary A is given as input cp ← G(1λ) and then make the following request
or queries:

• Corruption of certification authority: First, A decides whether to corrupt the CA or not. If
A corrupts then A chooses the CA’s public key pkCA, else A is given a CA’s public key pkCA

where (pkCA, skCA) ← K(cp).

• Registering keys of users: During the experiment, A can specify a user ID from the set of
identities, to initiate a run of the public-key registration protocol with the honest or corrupt
certification authority. If this is the first time the user ID is activated then A first decides
whether to corrupt this user or not. In the execution with the CA, we assume that at least
one party is honest. At the end of the execution, C outputs values (ID, pk , cert) and U
outputs values (ID′, pk ′, sk ′, cert′). If U is honest, we store (ID, pk , cert) in RegListPub and
(ID′, pk ′, sk ′, cert′) in RegListSec. If only C is honest, we store (ID, pk , cert) in RegListPub.
If one of the parties is dishonest or stops prematurely then ⊥ is stored in the corresponding
list. Notice that all steps in the experiment, including steps of this interactive protocol may
be arbitrarily interleaved.

• Signature queries: A can make signature requests to a universal signing oracle USpkCA : on
a query (ID , pk , cert,m) the oracle, if user ID is honest, it looks up the corresponding
entry (ID , pk , sk , cert) in RegListSec and returns to A a signature S(ID, sk , cert, pkCA, m).
Otherwise, the answer of the oracle is ⊥.

Eventually, A stops and outputs an attempted forgery (ID, pk , cert,m, σ). The experiment returns
1 if V(pkCA, ID, pk , cert,m, σ) and the following conditions are satisfied:

1. ID is honest, and no valid signing query (ID, pk , cert′,m) was made for any cert′, or

2. CA is honest and (ID, pk , cert′) /∈ RegListPub, for any cert′, or

3. CA is honest and (ID′, pk , cert′) ∈ RegListPub, for some honest user ID′ ̸= ID,

otherwise, it returns 0.
In this paper, we reduce the limitation “CA is honest” on the third winning condition. That

is, we relax the third condition as follows:

3’. (ID′, pk , cert′) ∈ RegListPub, for some honest user ID′ ̸= ID.

We first show that the traditional certified-signature scheme is not secure on the stronger secu-
rity definition. Second, we show that our certified-signature scheme based on key-substitutable
signature guarantee the security definition.
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Traditional certified-signature schemes. Here we review the traditional approach to certified
signature, where the users’ public keys are certified by the CA using a signature scheme. Users
produce signatures by using the secret keys associated with their certificated public keys. Signature
verification consists of verifying the signature of the user and the validity of the certificates for the
users’ public-keys.

Let DS = (G0,K0,S0,V0) be a standard signature scheme. The traditional certified-signature
scheme CS1 = (G1,K1, (C1,U1),S1,V1) is defined as follows.

• The parameter generation algorithm G1 on input 1λ outputs cp ← G0(1λ).

• The key generation algorithm K1 on input cp outputs (pkCA, skCA) ← K0(cp).

• The public-key registration protocol (C1(skCA),U1(ID, pkCA)) proceeds as follows. U1 gener-
ates (pk , sk) ← K0(cp) and sends to C1. C1 sends a random “challenge” message M ′ ← {0, 1}λ

to U1. U1 computes σ′ ← S0(sk , 0||M ′) and sends it to C1. If V0(pk , 0||M ′, σ′) = 1 then C1

computes cert ← S0(skCA, (ID, pk)), sends cert to U1 and outputs (ID, pk , cert). The user
outputs (ID, sk , pk , cert).

• The signing algorithm S1 on input (ID, sk , cert, pkCA, m) outputs σ ← S0(sk , 1||m).

• The verification algorithm V1 on input (ID, pk , cert, pkCA,m) outputs 1 if V0(pkCA, (ID, pk), cert) =
1 and V0(pk , 1||m,σ) = 1. Otherwise, it outputs 0.

Boldyreva, Fischlin, Palacio, and Warinschi [3] show that the traditional certified-signature
scheme CS1 is secure if a standard signature scheme DS is existentially unforgeable under chosen
message attack [7]. However, we conclude that CS1 is not secure on our stronger security definition.
Since CA can easily produce, for any honest user who has certified (ID, pk), a certificate cert′ for
another ID′ such that V1(pkCA, (ID′, pk), cert′) = 1.

A certified-signature scheme based on key-substitutable signature. In contrast to the
traditional certified-signature scheme, our certified-signature scheme based on key-substitutable
signature satisfies the stronger security definition of certified signature. We describe our certified-
signature scheme CS2 = (G2,K2, (C2,U2),S2,V2). based on a key-substitutable signature scheme
KS = (Setup, Gen, Sig, Ver, (KSA1, KSA2)).

• The parameter generation algorithm G2 on input 1λ outputs cp ← Setup(1λ).

• The key generation algorithm K2 on input cp outputs (pkCA, skCA) ← Gen(cp).

• The public-key registration protocol (C2(skCA),U2(ID, pkCA)) proceeds as follows. U2 sends
the identity ID to C2. C2 responds a signature cert ← Sig(cp, pkCA, skCA, 0||ID) to U2.
If Ver(cp, pkCA, 0||ID, cert) = 1, then C2 and U2 run the key substitution protocol with
respect to (0||ID, cert) where C2 plays the role of KSA1 and U2 plays the role of KSA2. That
is, (pk ; pk , sk) ← 〈KSA1(skCA), KSA2〉(cp, pk , 0||ID, cert). Finally, C2 outputs (ID, pk , cert).
U2 outputs (ID, pk , sk , cert).

• The signing algorithm S2 on input (ID, sk , cert, pkCA,m) outputs σ ← Sig(cp, pk , sk , 1||m).

• The verification algorithm V2 on input C2(ID, pk , cert, pkCA,m, σ) outputs 1 if Ver(cp, pkCA,
0||ID, cert) = 1 and Ver(cp, pk , 0||ID, cert) = 1 and Ver(cp, pk , 1||m,σ) = 1. Otherwise, it
outputs 0.

The proof idea is to transform an attacker against the certified-signature scheme CS2 into
one against the key-substitutable signature scheme KS. An adversary who breaks the winning
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condition (1) and (3’) immediately yields a forgery for a substitute signer of the key-substitutable
signature scheme. It is due to the impossibility for CA to produce (1||M ′, σ′) or (0||ID′, cert′)
which is valid under honest user’s public key pk . An adversary who breaks the winning condition
(2) immediately yields a forgery for the original signer of the key-substitutable signature scheme.
It is due to the impossibility for a user to produce (0||ID′, cert′) which is valid under CA’s public
key pkCA.

7 Conclusion

We have introduced the key-substitutable signature scheme, and formalized its security require-
ment. Furthermore, we have proposed a construction based on the ElGamal signature scheme, and
proved that this construction satisfies the security requirements. Finally, we have suggested that
key-substitutable signature can be applied to certified signature with higher security requirements.
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A Proof of Theorems

A.1 Proof of Theorem 7

Proof. Given an algorithm A that breaks the (t′, ϵ′, qs, qk, qH , qh1 , qh2 , qh3)-unforgeability 1 of KS1,
we construct an algorithm B that breaks the (t, ϵ, qH)-EU-KOA of the ElGamal signature scheme.

B is given a public key (g, y2), where g ∈ Z∗
p is an element whose order is q and y2 ∈ 〈g〉, and

can access to the random oracle H ′.

Initialization of A. B chooses x1, α
R←− Z∗

q and w
R←− {0, 1}λ and sets y1 = gx1 mod p. B then

provides A the common parameter (p, g) and the public key (y1, y2, α, w).

Simulation of random oracle H. This random oracle takes as input a query (c, r, y) and
proceeds as follows. If H(c, r, y) has been determined, B answers the value. Otherwise, if y =
y1y

c
2 mod p then B answers (H ′(c, r)c + x1r)α mod q, else B answers a random value in Zq.

Simulation of random oracle h1. This random oracle takes as input a query (m, r1, r2, y1, y2, w)
and proceeds as follows. If h1(m, r1, r2, y1, y2, w) has been determined, B answers the value. Oth-
erwise, B answers a random value c ∈ Z∗

q .

Simulation of random oracle h2. This random oracle takes as input a query (m, r1, r2, y1, y2, w)
and proceeds as follows. If h2(m, r1, r2, y1, y2, w) has been determined, B answers the value. Oth-
erwise, B answers a random value d ∈ Z∗

q .

Simulation of random oracle h3. This random oracle takes as input a query (r1, x1, x2) and
proceeds as follows. If h3(r1, x1, x2) has been determined, B answers the value. Otherwise, B
answers a random value in Z∗

q .

Simulation of signing oracle. In the j-th signing query from A, B proceeds as follows. In
particular, we denote the j-th signing query m as mj .

B chooses cj , vj , dj , d
′
j(dj ̸= d′j)

R←− Z∗
q and uj , ej

R←− Zq. B sets r2j = gej (y1y
cj

2 )vj mod p, r1j =

gujr
−d′j
2j mod p, rj = r1jr

dj

2j mod p, yj = y1y
cj

2 mod p, and sj = −rjαv−1
j y−1

j (dj − d′j)
−1 mod q. If

h1(mj , r1j , r2j , y1, y2, w), h2(mj , r1j , r2j , y1, y2, w), or H(cj , rj , yj) have been determined then B out-
puts ⊥ and stops, else B sets H(cj , rj , yj) = (uj +ej(dj−d′j))yjsj mod q, h1(mj , r1j , r2j , y1, y2, w) =
cj , and h2(mj , r1j , r2j , y1, y2, w) = dj . Finally, B answers (r1j , r2j , sj). 1

1The correctness of this signing oracle:

y
rjα

j r
yjsj

j = y
rjα

j ((guj r
−d′

j

2j )r
dj

2j )yjsj

= y
rjα

j (guj (gej y
vj

j )−d′
j+dj )yj(−rjαv−1

j y−1
j (dj−d′

j)−1)

= g(uj+ej(dj−d′
j))yjsj

= gH(cj ,rj ,yj),

where cj = h(mj , r1j , r2j , y1, y2, w), dj = h2(mj , r1j , r2j , y1, y2, w) rj = r1jr
dj

2j mod p, and yj = y1y
cj

2 mod p.
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Simulation of KSA1 with respect to (mj , r1j , r2j , sj) in the list Ls. In the first step of

KSA1, B receives (y1, y2) and selects c′j
R←− Z∗

q and w
R←− {0, 1}λ. If h1(mj , r1j , r2j , y1, y2, w) or

h2(mj , r1j , r2j , y1, y2, w) has been determined then B outputs ⊥ and stops, else B sets h1(mj , r1j , r2j , y1, y2, w) =
c′j and h2(mj , r1j , r2j , y1, y2, w) = d′j . B then sends w to B.

In the second step of KSA1, B receives z, computes yj = y1y2
c′j mod p, and checks yj ̸= gz mod p.

B then computes rj = r1jr
d′j
2j mod p and α ← (H(c′j , rj , yj) − ujyjsj)(rjz)−1 mod q and sends α to

A. 2

Output. B obtains A’s output (m, r1, r2, s). B sets r = r1r
d
2 mod p and s′ = (y1y

c
2 mod p)c−1α−1s mod

q where c = h1(m, r1, r2, y1, y2, w) and d = h2(m, r1, r2, y1, y2, w). B then outputs (c, r, s′).

Analysis of success probability. We first show that if A’s output (m, r1, r2, s) satisfies the
winning conditions then B’s output (c, r, s′) satisfies the winning conditions. We assume the follows.

• gH(c,r,y) = yrαrys where c = h1(m, r1, r2, y1, y2, w), d = h2(m, r1, r2, y1, y2, w), y = y1y
c
2 mod

p, and r = r1r
d
2 mod p.

• m is not queried to the signing oracle S.

Then, we can see the following equations.

yr
2r

s′ = yr
2(r

ys)c−1α−1

= yr
2(g

H(c,r,y)y−rα)c−1α−1

= yr
2(g

H(c,r,y)(gx1yc
2)

−rα)c−1α−1

= g(H(c,r,y)α−1−x1r)c−1

= gH′(c,r),

where c = h1(m, r1, r2, y1, y2, w), d = h2(m, r1, r2, y1, y2, w), y = y1y
c
2 mod p, and r = r1r

d
2 mod p.

We next estimate the probability that B failures the simulation of the signing oracle, KSA1, and
the random oracles.

In the simulation of the signing oracle, only if h1(mj , r1j , r2j , y1, y2, w), h2(mj , r1j , r2j , y1, y2, w),
or H(cj , rj , yj) have been determined then B fails. The probability that this happens is at most
2(qh1

+qk+qs)

q2 + 2(qh2
+qk+qs)

q2 + qH+qs

q = 2(qh1
+qh2

+2qk+2qs)

q2 + qH+qs

q .
In the simulation of KSA1, only if h1(mj , r1j , r2j , y1, y2, w) or h2(mj , r1j , r2j , y1, y2, w) has been

determined then B fails. The probability that this happens is at most qh1
+qk+qs

2λ + qh2
+qk+qs)

2λ =
qh1

+qh2
+2qk+2qs

2λ .
In the mentioned above, we can see that B failures the simulation of A’s environment with

probability at most (2(qh1
+qh2

+2qk+2qs)

q2 + qH+qs

q )·qs+ qh1
+qh2

+2qk+2qs

2λ ·qk. We denote the probability
as δ. And the successful simulation is properly distributed. Therefore, we can see ϵ ≥ ϵ′ − δ.

Analysis of running time. B takes the time O(λ3) to the simulation of initialization, O(λ3)
to the random oracle oracle H, O(λ) to each random oracle oracle h1, h2, and h3, O(λ3) to the
signing oracle, O(λ3) to the key substitution algorithm KSA1, O(λ3) to produce output, and t′ to
the running time of A. The total is (qh1 + qh2 + qh3)O(λ) + (qH + qs + qk + 2)O(λ3) + t′.

2The correctness of this simulation of KSA1:

yj
rjαrj

yjsj = (gz)rj((H(c′j ,rj ,yj)−ujyjsj)(rjz)−1)(guj )yjsj

= gH(c′j ,rj ,yj),

where c′j = h(mj , r1j , r2j , y1, y2, w), d′
j = h2(mj , r1j , r2j , y1, y2, w) rj = r1jr

d′
j

2j (= guj ) mod p, and yj = y1y2
c′j mod p.
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A.2 proof of Theorem 8

Proof. Given an algorithm A that breaks the (t′, ϵ′, qs, qk, qH , qh1 , qh2 , qh3)-non-substitutability 1 of
KS1, we construct an algorithm B that breaks the (t, ϵ, qH)-EU-KOA of the ElGamal signature
scheme.

B is given a public key (g, r∗), where g ∈ Z∗
p is an element whose order is q and r∗ ∈ 〈g〉, and

can access to the random oracle H ′.

Initialization of A. If r∗ = 1 then B finds the corresponding secret key k∗(= 0), therefore,
B stops. Otherwise, B proceeds as follows. B chooses β

R←− {1, · · · , qs}, ζ
R←− {1, · · · , qh2},

b, t, x2
R←− Zq, a, d∗, dβ , d′β , cβ , α

R←− Z∗
q , and w

R←− {0, 1}λ and sets y2 = gx2 mod p, y1 =

r∗a
−1(d∗−d′β)−1

y
−cβ

2 mod p, r2β = r∗(d
∗−d′β)−1

gb mod p, r1β = r∗r−d∗

2β gt, yβ = y1y
cβ

2 mod p, rβ =

r1r
dβ

2 mod p, sβ = −a−1(d∗−d′β)−1rβα(1+(d∗−d′β)−1(dβ −d∗))−1y−1
β mod q, and H(cβ , rβ , yβ) =

(t + b(dβ − d∗))yβsβ . Finally B provides A the common parameter (p, g) and the public key
(y1, y2, α, w).

Simulation of random oracle H. This random oracle takes as input a query (c, r, y) and
proceeds as follows. If H(c, r, y) has been determined, B answers the value. Otherwise, if (c, r, y) =
(c, r∗gt, y) then B answers H ′(c, y)sβ − ty mod q, else answers a random value in Zq.

Simulation of random oracle h1. This random oracle takes as input a query (m, r1, r2, y1, y2, w)
and proceeds as follows. If h1(m, r1, r2, y1, y2, w) has been determined, B answers the value. Oth-
erwise, B answers a random value c ∈ Z∗

q .

Simulation of random oracle h2. In the l-th query from A, B receives a query (m, r1, r2, y1, y2, w)
and proceeds as follows.

If h2(m, r1, r2, y1, y2, w) has been determined, B answers the value. Otherwise, if l = ζ then B
answers d∗, else B answers a random value d ∈ Z∗

q .

Simulation of random oracle h3. This random oracle takes as input a query (r1, x1, x2) and
proceeds as follows. If h3(r1, x1, x2) has been determined, B answers the value. Otherwise, B
answers a random value in Z∗

q .

Simulation of signing oracle. In the j-th signing query from A, B proceeds as follows. In
particular, we denote the j-th signing query m as mj .

If j ̸= β, B simulates as the same way to the proof of Theorem 7. B chooses cj , vj , dj , d
′
j(dj ̸=

d′j)
R←− Z∗

q and uj , ej
R←− Zq. B sets r2j = gej (y1y

cj

2 )vj mod p, r1j = gujr
−d′j
2j mod p, rj = r1jr

dj

2j mod
p, yj = y1y

cj

2 mod p, and sj = −rjαv−1
j y−1

j (dj−d′j)
−1 mod q. If h1(mj , r1j , r2j , y1, y2, w), h2(mj , r1j , r2j , y1, y2, w),

or H(cj , rj , yj) have been determined then B outputs ⊥ and stops, else B sets H(cj , rj , yj) =
(uj + ej(dj − d′j))yjsj mod q, h1(mj , r1j , r2j , y1, y2, w) = cj , and h2(mj , r1j , r2j , y1, y2, w) = dj .
Finally, B answers (r1j , r2j , sj). 3

If j = β, B answers (r1β , r2β , sβ). If h1(mβ, r1β , r2β , y1, y2, w) has been determined then B

3The correctness of this i ̸= β-th signing oracle is the same as Theorem 7.
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outputs ⊥ and stops, otherwise, B sets h1(mβ , r1β , r2β , y1, y2, w) = cβ . 4

Simulation of KSA1 with respect to (mj , r1j , r2j , sj) in the list Ls. If j ̸= β, B simulates as the

same way to the proof of Theorem 7. In the first step of KSA1, B receives (y1, y2) and selects c′j
R←− Z∗

q

and w
R←− {0, 1}λ. If h1(mj , r1j , r2j , y1, y2, w) or h2(mj , r1j , r2j , y1, y2, w) has been determined then

B outputs ⊥ and stops, else B sets h1(mj , r1j , r2j , y1, y2, w) = c′j and h2(mj , r1j , r2j , y1, y2, w) = d′j .
B then sends w to B.

In the second step of KSA1, B receives z, computes yj = y1y2
c′j mod p, and checks yj ̸= gz mod p.

B then computes rj = r1jr
d′j
2j mod p and α ← (H(c′j , rj , yj) − ujyjsj)(rjz)−1 mod q and sends α to

A. 5

If j = β, B proceeds as follows. In the first step of KSA1, B receives (y′1, y
′
2) and selects c′β

R←− Z∗
q

and w′ R←− {0, 1}λ. If h1(mβ , r1β , r2β , y′1, y
′
2, w

′) or h2(mβ , r1β , r2β , y′1, y
′
2, w

′) has been determined
then B outputs ⊥ and stops, else B sets h1(mβ , r1β , r2β , y′1, y

′
2, w

′) = c′β and h2(mβ, r1β , r2β , y′1, y
′
2, w

′) =
d′β . B then sends w′ to B.

In the second step of KSA1, B receives z, computes y′β = y′1y
′c′β
2 mod p, and checks y′β ̸= gz mod p.

B then computes r′β = r1βr
d′β
2β mod p and α′ ← (H(c′β , r′β , y′β)− (t + b(d′β − d∗))y′βsβ)(r′βz)−1 mod q

and sends α′ to A. 6

Output. B obtains A’s output (m, r1, r2, s, y1, y2, α, w). If (m, r1, r2, s) ̸= (mβ , r1β , r2β , sβ), B out-
puts ⊥ and stops. If h2(m, r1, r2, y1, y2, w) has never been determined then B sets h2(m, r1, r2, y1, y2, w) =
d∗. Else if h2(m, r1, r2, y1, y2, w) ̸= d∗ then B outputs ⊥ and stops.

B sets y = y1y2
c mod p, r = r1r

d∗
2 mod p, and α′ = rαs−1

β mod q where c = h1(mβ , r1β , r2β , y1, y2, w).
B then outputs (c, y, α′).

Analysis of success probability. We first show that if A’s output (m, r1, r2, s, y1, y2, α, w) satis-
fies (1) the winning conditions, (2) (m, r1, r2, s) = (mβ , r1β , r2β , sβ), and (3) d∗ = h2(mβ , r1β , r2β , y1, y2, w)
then B’s output the winning conditions. We assume the follows.

• gH(c,r,y) = yrαr∗ysβ where c = h1(mβ , r1β , r2β, y1, y2, w), d∗ = h2(mβ , r1β , r2β , y1, y2, w),
y = y1y2

c mod p, and r = r1βrd∗
2β mod p.

• (m, r1, r2, s) ∈ Ls.

4The correctness of this β-th signing oracle:

y
rβα

β r
yβsβ

β = (r∗a−1(d∗−d′
β)−1

)rβα(gtr∗r
dβ−d∗

2β )yβsβ

= (r∗a−1(d∗−d′
β)−1

)rβα(gtr∗(r∗(d
∗−d′

β)−1
gb)dβ−d∗

)yβsβ

= r∗a−1(d∗−d′
β)−1rβα+(1+(d∗−d′

β)−1(dβ−d∗))yβsβ g(t+b(dβ−d∗))yβsβ

= g(t+b(dβ−d∗))yβsβ

= gH(cβ ,rβ ,yβ),

where cβ = h(mβ , r1β , r2β , y1, y2, w), dβ = h2(mβ , r1β , r2β , y1, y2, w) rβ = r1βr
dβ

2β mod p, and yβ = y1y
cβ

2 mod p.
5The correctness of this simulation is the same as Theorem 7.
6The correctness of this simulation:

y
′r′

βα′

β r
′y′

βsβ

β = (gz)r′
β(H(c′β ,r′

β ,y′
β)−(t+b(d′

β−d∗))y′
βsβ)(r′

βz)−1
(gt+b(d′

β−d∗))y′
βsβ

= gH(c′β ,r′
β ,y′

β),

where c′β = h(mβ , r1β , r2β , y′
1, y

′
2, w

′), d′
β = h2(mβ , r1β , r2β , y′

1, y
′
2, w

′) r′β = r1βr
d′

β

2β (= gt+b(d′
β−d∗)) mod p, and y′

β =

y′
1y

′c′β
2 mod p.
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• (m, r1, r2, s) /∈ Lk.

• (y1, y2, α, w) /∈ {(y′1, y′2, α′, w′)}. 7

• (y1, y2, α, w) ̸= (y1, y2, α, w) In our case, if (y1, y2, w) = (y1, y2, w) then α = α. Therefore,
we obtain (y1, y2, w) ̸= (y1, y2, w).

Then, we can see the following equations.

r∗yyα′
= (rg−t)yyαrs−1

β

= (gH(c,r,y)y−rα)s−1
β yαrs−1

β g−ty

= gH′(c,y)

where c = h1(mβ , r1β , r2β , y1, y2, w), d∗ = h2(mβ , r1β , r2β , y1, y2, w), y = y1y2
c mod p, and r =

r1βrd∗
2β(= r∗gt) mod p.
We next estimate the probability that B failures the simulation of the initialization, the signing

oracle, KSA1, and the random oracles.
In the simulation of the signing oracle, only if h1(mj , r1j , r2j , y1, y2, w), h2(mj , r1j , r2j , y1, y2, w),

or H(cj , rj , yj) have been determined then B fails. The probability that this happens is at most
2(qh1

+qk+qs)

q2 + 2(qh2
+qk+qs)

q2 + qH+qs

q = 2(qh1
+qh2

+2qk+2qs)

q2 + qH+qs

q .
In the simulation of KSA1, only if h1(mj , r1j , r2j , y1, y2, w) or h2(mj , r1j , r2j , y1, y2, w) has been

determined then B fails. The probability that this happens is at most qh1
+qk+qs

2λ + qh2
+qk+qs)

2λ =
qh1

+qh2
+2qk+2qs

2λ .
In the mentioned above, we can see that B failures the simulation of A’s environment with

at most (2(qh1
+qh2

+2qk+2qs)

q2 + qH+qs

q ) · qs + qh1
+qh2

+2qk+2qs

2λ · qk. We denote the probability as
δ. And the successful simulation is properly distributed. Therefore, we can see that A outputs
(m, r1, r2, s, y1, y2, α, w) such that (m, r1, r2, s) = (mβ , r1β , r2β , sβ) and d∗ = h2(mβ , r1β , r2β , y1, y2, w)
with the advantage ϵ′−δ

qsqh2
. As the mentioned above, ϵ ≥ ϵ′−δ

qsqh2
.

Analysis of running time. B takes the time O(λ3) to the simulation of initialization, O(λ2)qH

to the random oracle oracle H, O(λ) to each random oracle oracle h1, h2, and h3, O(λ3) to the
signing oracle, O(λ3) to the key substitution algorithm KSA1, O(λ3) to produce the output, and t′

to the running time of A. The total is (qh1 + qh2 + qh3)O(λ)+ qHO(λ2)+(qs + qk +2)O(|q||p|2)+ t′.

A.3 proof of Theorem 9

Proof. Given an algorithm A that breaks the (t′, ϵ′, qs, qk, qH , qh1 , qh2 , qh3)-unforgeability 2 of KS1,
we construct an algorithm B that breaks the (t, ϵ, qH)-EU-KOA of the ElGamal signature scheme.

B is given a public key (p, g, y2), where g ∈ Z∗
p is an element whose order is q and y2 ∈ 〈g〉, and

can access to the random oracle H ′.

Initialization of A. B provides A1 the common parameter cp = (p, g). For this simulation, B
selects z

R←− Zq and c∗
R←− Z∗

q and computes y1 ← gzy−c∗

2 mod p. B then sets Lc = {c∗} and chooses

β
R←− {1, · · · , qh1}.

7This means that h2(mβ , r1β , r2β , y1, y2, w) has never setted as {d1, · · · , dqs , d′
1, · · · , d′

qs
}. That is, it setted as d∗

with probability 1
qh2

.
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Simulation of random oracle H. This random oracle takes as input a query (c, r, y) and
proceeds as follows. If H(c, r, y) has been determined, B answers the value. Otherwise, if y =
y1y

c
2 mod p and c ̸= c∗ (mod q) then B answers (H ′(c, r)(c∗ − c) + zr)α mod q, else B answers a

random value in Zq.

Simulation of random oracle h1. In the i-th query from A, B receives a query (m, r1, r2, y1, y2, w)
and proceeds as follows.

If h1(m, r1, r2, y1, y2, w) has been determined, B answers the value. Otherwise, if i = β then B
answers c∗, else B answers a random value c ∈ Z∗

q . However, if c ∈ Lc then B outputs ⊥ and stops,
else B adds Lc ← Lc ∪ {c}.

Simulation of random oracle h2. This random oracle takes as input a query (m, r1, r2, y1, y2, w)
and proceeds as follows. If h2(m, r1, r2, y1, y2, w) has been determined, B answers the value. Oth-
erwise, B answers a random value d ∈ Z∗

q .

Simulation of random oracle h3. This random oracle takes as input a query (r1, x1, x2) and
proceeds as follows. If h3(r1, x1, x2) has been determined, B answers the value. Otherwise, B
answers a random value in Z∗

q .

The simulation of KSA2 with respect to (m∗, r∗1, r
∗
2, s

∗). In the first step, B sends (y1, y2).
In the second step, B receives w and proceeds as follows. If h1(m∗, r∗1, r

∗
2, y1, y2, w) has never

been determined then B sets h1(m∗, r∗1, r
∗
2, y1, y2, w) = c∗ and resets β as 0. Else if h1(m∗, r∗1, r

∗
2, y1, y2, w) ̸=

c∗ then B outputs ⊥ and stops. B then sends z. 8

In the third step, B receives α and provides A2 the public key pk = (y1, y2, α, w). Note that
α should satisfy gH(c∗,r∗,y) ≡ yr∗αr∗ys∗ (mod p), where y = y1y

c∗
2 mod p (= gz mod p), r∗ =

r∗1r
∗d∗
2 mod p, and d∗ = h2(m∗, r∗1, r

∗
2, y1, y2, w).

Simulation of signing oracle. In the j-th signing query from A, B proceeds as follows. In
particular, we denote the j-th signing query m as mj .

B chooses cj , vj , dj , d
′
j(dj ̸= d′j)

R←− Z∗
q and uj , ej

R←− Zq. B sets r2j = gej (y1y
cj

2 )vj mod p, r1j =

gujr
−d′j
2j mod p, rj = r1jr

dj

2j mod p, yj = y1y
cj

2 mod p, and sj = −rjαv−1
j y−1

j (dj − d′j)
−1 mod q. If

h1(mj , r1j , r2j , y1, y2, w), h2(mj , r1j , r2j , y1, y2, w), or H(cj , rj , yj) have been determined then B out-
puts ⊥ and stops, else B sets H(cj , rj , yj) = (uj +ej(dj−d′j))yjsj mod q, h1(mj , r1j , r2j , y1, y2, w) =
cj , and h2(mj , r1j , r2j , y1, y2, w) = dj . If cj ∈ Lc, B outputs ⊥ and stops. Otherwise, B sets
Lc ← Lc ∪ {cj} and answers (r1j , r2j , sj). 9

Simulation of KSA1 with respect to (mj , r1j , r2j , sj) in the list Ls. In the first step of

KSA1, B receives (y1, y2) and selects c′j
R←− Z∗

q and w
R←− {0, 1}λ. If h1(mj , r1j , r2j , y1, y2, w) or

h2(mj , r1j , r2j , y1, y2, w) has been determined then B outputs ⊥ and stops, else B sets h1(mj , r1j , r2j , y1, y2, w) =
c′j and h2(mj , r1j , r2j , y1, y2, w) = d′j . If c′j ∈ Lc, B outputs ⊥ and stops. Otherwise, B sets
Lc ← Lc ∪ {c′j} and sends w to A3.

In the second step of KSA1, B receives z, computes yj = y1y2
c′j mod p, and checks yj ̸= gz mod p.

B then computes rj = r1jr
d′j
2j mod p and α ← (H(c′j , rj , yj) − ujyjsj)(rjz)−1 mod q and sends α to

A3. 10

8The correctness of this simulation: gz ≡ y1y
c∗
2 where c∗ = h1(m

∗, r∗1 , r∗2 , y1, y2, w).
9The correctness of this simulation is the same as Theorem 7.

10The correctness of this simulation is the same as Theorem 7.
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Output. B obtains A3’s output (m, r1, r2, s). B sets r = r1r
d
2 mod p and s′ = (y1y

c
2 mod p)(c∗ −

c)−1α−1s mod q where c = h1(m, r1, r2, y1, y2, w) and d = h2(m, r1, r2, y1, y2, w). B then outputs
(c, r, s′).

Analysis of success probability. We first show that if A’s output (m, r1, r2, s) satisfies the
winning conditions then B’s output the winning conditions. We assume the follows.

• gH(c,r,y) = yrαrys where c = h1(m, r1, r2, y1, y2, w), d = h2(m, r1, r2, y1, y2, w), y = y1y
c
2 mod

p, and r = r1r
d
2 mod p.

• m is not queried to the signing oracle S.

Note that c ̸= c∗. To explain this, we assume that c = c∗. Since c is the answer of the
random oracle h1 for the query (m, r1, r2, y1, y2, w), c∗ is the answer for (m∗, r∗1, r

∗
2, y1, y2, w), and

the answers of random oracle h1 for distinct queries are always distinct, we obtain (m, r1, r2) =
(m∗, r∗1, r

∗
2). Therefore, we can also see s = s∗, that is, (m, r1, r2, s) = (m∗, r∗1, r

∗
2, s

∗). This is
contradict to (m, r1, r2, s) ̸= (m∗, r∗1, r

∗
2, s

∗).
Then, we can see the following equations.

yr
2r

s′ = yr
2(r

(y1yc
2 mod p)s)(c

∗−c)−1α−1

= yr
2(g

H(c,r,y1yc
2 mod p)(y1y

c
2)

−rα)(c
∗−c)−1α−1

= yr
2(g

H(c,r,y1yc
2 mod p)((gzy−c∗

2 )yc
2)

−rα)(c
∗−c)−1α−1

= g(H(c,r,y1yc
2 mod p)α−zr)(c∗−c)−1

= gH′(c,r),

where c = h1(m, r1, r2, y1, y2, w).
We next estimate the probability that B failures the simulation of the initialization, KSA2, the

signing oracle, KSA1, and the random oracles.
In the simulation of KSA2, A1 outputs (m∗, r∗1, r

∗
2, s

∗) such that h1(m∗, r∗1, r
∗
2, s

∗, y1, y2, w) has
never been determined or h1(m∗, r∗1, r

∗
2, s

∗, y1, y2, w) has been determined as c∗ with advantage ϵ′

qh1
.

In the simulation of the random oracle h1, only if c ∈ Lc happens, B fails. The probability that
this happens is at most qh1

+qs+qk

q .
In the simulation of the signing oracle, only if h1(mj , r1j , r2j , y1, y2, w), h2(mj , r1j , r2j , y1, y2, w),

H(cj , rj , yj), or cj ∈ Lc have been determined then B fails. The probability that this happens is

at most 2(qh1
+qk+qs)

q2 + 2(qh2
+qk+qs)

q2 + qH+qs

q + qh1
+qs+qk

q = 2(qh1
+qh2

+2qk+2qs)

q2 + qH+2qs+qh1
+qk

q .
In the simulation of KSA1, only if h1(mj , r1j , r2j , y1, y2, w), h2(mj , r1j , r2j , y1, y2, w), or c′j ∈ Lc

has been determined then B fails. The probability that this happens is at most qh1
+qk+qs

2λ +
qh2

+qk+qs)

2λ + qh1
+qs+qk

q = 2qh1
+qh2

+3qk+3qs

2λ .
In the mentioned above, we can see that B failures the simulation of A’s environment with at

most (2(qh1
+qh2

+2qk+2qs)

q2 + qH+2qs+qh1
+qk

q ) · qs + 2qh1
+qh2

+3qk+3qs

2λ · qk + qh1
+qs+qk

q · qh1 . We denote
the probability as δ. And the successful simulation is properly distributed. Therefore, we can see
ϵ ≥ ϵ′

qh1
− δ.

Analysis of running time. B takes the time O(λ3) to the simulation of initialization, O(λ3)
to the random oracle oracle H, O(λ) to each random oracle oracle h1, h2, and h3, O(λ3) to
the key substitution algorithm KSA2, O(λ3) to the signing oracle, O(λ3) to the key substitution
algorithm KSA1, O(λ3) to produce the output, and t′ to the running time of A. The total is
(qh1 + qh2 + qh3)O(λ) + (qH + qs + qk + 2)O(λ3) + t′.
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A.4 proof of Theorem 10

Proof. Given an algorithm A that breaks the (t′, ϵ′, qs, qk, qH , qh1 , qh2 , qh3)-non-substitutability 2
of S, we construct an algorithm B that breaks the (t, ϵ, qH)-EU-KOA of the ElGamal signature
scheme.

B is given a public key (p, g, r0), where g ∈ Z∗
p is an element whose order is q and r0 ∈ 〈g〉, and

can access to the random oracle H ′.

Initialization of A. If r0 = 1 then B finds the corresponding secret key k0(= 0), therefore, B stops.
Otherwise, B proceeds as follows. B chooses β

R←− {1, · · · , qs}, γ
R←− {1, · · · , qh1}, ζ

R←− {1, · · · , qh2},
a, d∗, d′β , dβ , c∗, cβ(c∗ ̸= cβ) R←− Z∗

q , and b, t, x2
R←− Zq, computes y2 = gx2r

a−1(d∗−d′β)−1(cβ−c∗)−1

0 mod

p, y1 = r
a−1(d∗−d′β)−1

0 y
−cβ

2 mod p, r2β = r
(d∗−d′β)−1

0 gb mod p, r1β = r0r
−d∗

2β gt, yβ = y1y
cβ

2 mod p,

rβ = r1r
dβ

2 mod p, and sets sβ = −a−1(d∗ − d′β)−1rβα(1 + (d∗ − d′β)−1(dβ − d∗))−1y−1
β mod q, and

H(cβ , rβ , yβ) = (t + b(dβ − d∗))yβsβ . Finally, B provides A1 the common parameter cp = (p, g).

Simulation of random oracle H. This random oracle takes as input a query (c, r, y) and
proceeds as follows. If H(c, r, y) has been determined, B answers the value. Otherwise, if (c, r, y) =
(c, r0g

t, y) then B answers H ′(c, y)sβ − ty mod q, else answers a random value in Zq.

Simulation of random oracle h1. In the i-th query from A, B receives a query (m, r1, r2, y1, y2, w)
and proceeds as follows.

If h1(m, r1, r2, y1, y2, w) has been determined, B answers the value. Otherwise, if i = γ then B
answers c∗, else B answers a random value c ∈ Z∗

q .

Simulation of random oracle h2. In the l-th query from A, B receives a query (m, r1, r2, y1, y2, w)
and proceeds as follows.

If h2(m, r1, r2, y1, y2, w) has been determined, B answers the value. Otherwise, if l = ζ then B
answers d∗, else B answers a random value d ∈ Z∗

q .

Simulation of random oracle h3. This random oracle takes as input a query (r1, x1, x2) and
proceeds as follows. If h3(r1, x1, x2) has been determined, B answers the value. Otherwise, B
answers a random value in Z∗

q .

The simulation of KSA2 with respect to (m∗, r∗1, r
∗
2, s

∗). In the first step, B sends (y1, y2) to
A2.

In the second step, B receives w and proceeds as follows. If h1(m∗, r∗1, r
∗
2, y1, y2, w) has never

been determined then B sets h1(m∗, r∗1, r
∗
2, y1, y2, w) = c∗ and resets γ as 0. Else if h1(m∗, r∗1, r

∗
2, y1, y2, w) ̸=

c∗ then B outputs ⊥ and stops. B then sends x2(c∗ − cβ). 11

In the third step, B receives α and provides A2 the public key pk = (y1, y2, α, w). Note that
α should satisfy gH(c∗,r∗,y) ≡ yr∗αr∗ys∗ (mod p), where y = y1y

c∗
2 mod p(= gx2(c∗−cβ) mod p),

r∗ = r∗1r
∗d∗
2 mod p, and d∗ = h2(m∗, r∗1, r

∗
2, y1, y2, w).

11The correctness of this simulation:

y1y
c∗
2 ≡ r

a−1(d∗−d′
β)−1

0 y
c∗−cβ

2

≡ (y2g
−x2)cβ−c∗y

c∗−cβ

2

≡ gx2(c∗−cβ)

where c∗ = h1(m
∗, r∗1 , r∗2 , y1, y2, w).
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Simulation of signing oracle. In the j-th signing query from A3, B proceeds as follows. In
particular, we denote the j-th signing query m as mj .

If j ̸= β, B simulates as the same way to the proof of Theorem 7. B chooses cj , vj , dj , d
′
j(dj ̸=

d′j)
R←− Z∗

q and uj , ej
R←− Zq. B sets r2j = gej (y1y

cj

2 )vj mod p, r1j = gujr
−d′j
2j mod p, rj = r1jr

dj

2j mod
p, yj = y1y

cj

2 mod p, and sj = −rjαv−1
j y−1

j (dj−d′j)
−1 mod q. If h1(mj , r1j , r2j , y1, y2, w), h2(mj , r1j , r2j , y1, y2, w),

or H(cj , rj , yj) have been determined then B outputs ⊥ and stops, else B sets H(cj , rj , yj) =
(uj + ej(dj − d′j))yjsj mod q, h1(mj , r1j , r2j , y1, y2, w) = cj , and h2(mj , r1j , r2j , y1, y2, w) = dj .
Finally, B answers (r1j , r2j , sj). 12

If j = β, B answers (r1β , r2β , sβ). If h(mj , r1β , r2β , y1, y2, w) has been determined then B outputs
⊥ and stops, otherwise, B sets h1(mβ, r1β , r2β , y1, y2, w) = cβ and h2(mβ , r1β , r2β, y1, y2, w) = dβ .
13

Simulation of KSA1 with respect to (mj , r1j , r2j , sj) in the list Ls. If j ̸= β, B simulates as the

same way to the proof of Theorem 7. In the first step of KSA1, B receives (y1, y2) and selects c′j
R←− Z∗

q

and w
R←− {0, 1}λ. If h1(mj , r1j , r2j , y1, y2, w) or h2(mj , r1j , r2j , y1, y2, w) has been determined then

B outputs ⊥ and stops, else B sets h1(mj , r1j , r2j , y1, y2, w) = c′j and h2(mj , r1j , r2j , y1, y2, w) = d′j .
B then sends w to B.

In the second step of KSA1, B receives z, computes yj = y1y2
c′j mod p, and checks yj ̸= gz mod p.

B then computes rj = r1jr
d′j
2j mod p and α ← (H(c′j , rj , yj) − ujyjsj)(rjz)−1 mod q and sends α to

A. 14

If j = β, B proceeds as follows. In the first step of KSA1, B receives (y′1, y
′
2) and selects c′β

R←− Z∗
q

and w′ R←− {0, 1}λ. If h1(mβ , r1β , r2β , y′1, y
′
2, w

′) or h2(mβ , r1β , r2β , y′1, y
′
2, w

′) has been determined
then B outputs ⊥ and stops, else B sets h1(mβ , r1β , r2β , y′1, y

′
2, w

′) = c′β and h2(mβ, r1β , r2β , y′1, y
′
2, w

′) =
d′β . B then sends w′ to B.

In the second step of KSA1, B receives z, computes y′β = y′1y
′c′β
2 mod p, and checks y′β ̸= gz mod p.

B then computes r′β = r1βr
d′β
2β mod p and α′ ← (H(c′β , r′β , y′β)− (t + b(d′β − d∗))y′βsβ)(r′βz)−1 mod q

and sends α′ to A. 15

Output. B obtains A3’s output (m, r1, r2, s, y1, y2, α, w). If (m, r1, r2, s) ̸= (mβ , r1β , r2β, sβ), B
outputs ⊥ and stops. If h2(m, r1, r2, y1, y2, w) has never been determined then B sets h2(m, r1, r2, y1, y2, w) =

12The correctness of this i ̸= β-th signing oracle is the same as Theorem 7.
13The correctness of this β-th signing oracle:

y
rβα

β r
yβsβ

β = (r∗a−1(d∗−d′
β)−1

)rβα(gtr∗r
dβ−d∗

2β )yβsβ

= (r∗a−1(d∗−d′
β)−1

)rβα(gtr∗(r∗(d
∗−d′

β)−1
gb)dβ−d∗

)yβsβ

= r∗a−1(d∗−d′
β)−1rβα+(1+(d∗−d′

β)−1(dβ−d∗))yβsβ g(t+b(dβ−d∗))yβsβ

= g(t+b(dβ−d∗))yβsβ

= gH(cβ ,rβ ,yβ),

where cβ = h(mβ , r1β , r2β , y1, y2, w), dβ = h2(mβ , r1β , r2β , y1, y2, w) rβ = r1βr
dβ

2β mod p, and yβ = y1y
cβ

2 mod p.
14The correctness of this simulation is the same as Theorem 7.
15The correctness of this simulation:

y
′r′

βα′

β r
′y′

βsβ

β = (gz)r′
β(H(c′β ,r′

β ,y′
β)−(t+b(d′

β−d∗))y′
βsβ)(r′

βz)−1
(gt+b(d′

β−d∗))y′
βsβ

= gH(c′β ,r′
β ,y′

β),

where c′β = h(mβ , r1β , r2β , y′
1, y

′
2, w

′), d′
β = h2(mβ , r1β , r2β , y′

1, y
′
2, w

′) r′β = r1βr
d′

β

2β (= gt+b(d′
β−d∗)) mod p, and y′

β =

y′
1y

′c′β
2 mod p.
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d∗. Else if h2(m, r1, r2, y1, y2, w) ̸= d∗ then B outputs ⊥ and stops.
If h2(m, r1, r2, y1, y2, w) has been determined as h2(m, r1, r2, y1, y2, w) ̸= d∗, B also outputs ⊥

and stops.
B sets y = y1y2

c mod p, r = r1r
d∗
2 mod p, and α′ = rαs−1

β mod q where c = h1(mβ , r1β , r2β , y1, y2, w).
B then outputs (c, y, α′).

Analysis of success probability. We first show that if A3’s output (m, r1, r2, s, y1, y2, α, w) sat-
isfies (1) the winning conditions, (2) (m, r1, r2, s) = (mβ , r1β , r2β , sβ), and (3) d∗ = h2(mβ , r1β , r2β, y1, y2, w)
then B’s output the winning conditions. We assume the follows.

• gH(c,r,y) = yrαr
ysβ

0 where c = h1(mβ , r1β , r2β , y1, y2, w), d∗ = h2(mβ , r1β , r2β , y1, y2, w), y =
y1y2

c mod p, and r = r1βrd∗
2β mod p.

• (m, r1, r2, s) ∈ Ls.

• (m, r1, r2, s) /∈ Lk.

• (y1, y2, α, w) /∈ {(y′1, y′2, α′, w′)}. 16

• (y1, y2, α, w) ̸= (y1, y2, α, w) In our case, if (y1, y2, w) = (y1, y2, w) then α = α. Therefore,
we obtain (y1, y2, w) ̸= (y1, y2, w).

Then, we can see the following equations.

ry
0yα′

= (rg−t)yyαrs−1
β

= (gH(c,r,y)y−rα)s−1
β yαrs−1

β g−ty

= gH′(c,y)

where c = h1(mβ , r1β , r2β , y1, y2, w), d∗ = h2(mβ , r1β , r2β , y1, y2, w), y = y1y2
c mod p, and r0 =

r1βrd∗
2β mod p.
We next estimate the probability that B failures the simulation of the initialization, KSA2, the

signing oracle, KSA1, and the random oracles.
In the simulation of KSA2, A1 outputs (m∗, r∗1, r

∗
2, s

∗) such that h(m∗, r∗1, r
∗
2, s

∗, y1, y2, w) has
never been determined or h(m∗, r∗1, r

∗
2, s

∗, y1, y2, w) has been determined as c∗ with advantage ϵ′

qh1
.

In the simulation of the signing oracle, only if h1(mj , r1j , r2j , y1, y2, w), h2(mj , r1j , r2j , y1, y2, w),
or H(cj , rj , yj) have been determined then B fails. The probability that this happens is at most
2(qh1

+qk+qs)

q2 + 2(qh2
+qk+qs)

q2 + qH+qs

q = 2(qh1
+qh2

+2qk+2qs)

q2 + qH+qs

q .
In the simulation of KSA1, only if h1(mj , r1j , r2j , y1, y2, w) or h2(mj , r1j , r2j , y1, y2, w) has been

determined then B fails. The probability that this happens is at most qh1
+qk+qs

2λ + qh2
+qk+qs)

2λ =
qh1

+qh2
+2qk+2qs

2λ .
In the mentioned above, we can see that B failures the simulation of A’s environment with

at most (2(qh1
+qh2

+2qk+2qs)

q2 + qH+qs

q ) · qs + qh1
+qh2

+2qk+2qs

2λ · qk. We denote the probability as
δ. And the successful simulation is properly distributed. Therefore, we can see that A outputs
(m, r1, r2, s, y1, y2, α, w) such that (m, r1, r2, s) = (mβ , r1β , r2β , sβ) and d∗ = h2(mβ , r1β , r2β , y1, y2, w)
with the advantage ( ϵ′

qh
− δ) 1

qsqh2
. As the mentioned above, ϵ ≥ ( ϵ′

qh
− δ) 1

qsqh2
.

16This means that h2(mβ , r1β , r2β , y1, y2, w) has never setted as {d1, · · · , dqs , d′
1, · · · , d′

qs
}. That is, it setted as d∗

with probability 1
qh2

.
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Analysis of running time. B takes the time O(λ3) to the simulation of initialization, O(λ3)
to the random oracle oracle H, O(λ) to each random oracle oracle h1, h2, and h3, O(λ3) to
the key substitution algorithm KSA2, O(λ3) to the signing oracle, O(λ3) to the key substitution
algorithm KSA1, O(λ3) to produce the output, and t′ to the running time of A. The total is
(qh1 + qh2 + qh3)O(λ) + (qH + qs + qk + 2)O(λ3) + t′.
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