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Abstract

Steganography is the science of sending messages hidden in harmless communications over
a public channel so that an adversary eavesdropping on the channel cannot even detect the
presence of the hidden messages. Several models for steganography have been introduced.
Some are private-key settings, and the others are public-key settings. In this paper, we propose
a model of public-key steganography with authentication. We formalize its security condition.
We also construct a concrete scheme of public-key steganography with authentication via a
public-key encryption scheme and a digital signature scheme.

Keywords: public-key encryption, digital signature, steganography.

1 Introduction

Background. Steganography is the science of hiding information by embedding messages within
other ones which are seemingly harmless. As the goal of steganography is to hide the presence of
a message, it can be seen as the complement of cryptography, whose goal is to hide the content of
a message.

We consider two parties linked by a public communication channel which is under watch by
an adversary. The sender sends a message which is seemingly harmless because their conversation
is watched at any time. A genuine communication message is called covertext. However, if he
wants to send a message which he does not want to be known to an adversary, he may embed it as
hidden information in another message, which is also seemingly harmless. Such a message is called
stegotext. The adversary, who knows the distribution of the covertext, tries to detect whether a
given message is covertext or stegotext.

Related Work. Various protocols have been proposed for steganography, which are surveyed
by Anderson and Petitcolas [1]. Formal models for steganography were recently introduced.Foe
example, there are several information-theoretic formalizations [4, 13, 9] and one complexity-
theoretic model [7]. However, these models have addressed private-key steganography. In other
words, only the parties who share a secret or a private-key in advance can use these protocols.
In contrast, public-key steganography allows parties to communicate steganographically with no
prior exchange of secrets.

Public-key steganography was formalized by von Ahn and Hopper [11]. They defined the se-
curity notion for public-key steganography, which was the analogue of the security against the
chosen-plaintext attack of public-key cryptosystem. They constructed the stegosystem which sat-
isfied this notion. This stegosystem consists of two conversion methods, which are a public-key
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cryptosystem and a procedure Basic Encode. In order to construct the secure stegosystem, they
defined a security notion for public-key cryptosystem, which was the indistinguishability from ran-
dom bits under the chosen-plaintext attack. They proposed some public-key encryption schemes
satisfying this notion. They also formalized the notion of the steganographic key exchange, and
constructed the secure steganographic key exchange protocol under the Decisional Diffie-Hellman
assumption.

Backes and Cachin [3] defined a new security notion for public-key steganography which was
stronger than that of von Ahn and Hopper [11]. A stegosystem which satisfies this notion is called
steganographically secure against the adaptive chosen-covertext attack (SS-CCA). Analogously to
the standard cryptographic notion of the chosen-ciphertext attack, this seems to be the most
general type of possible attacks on a stegosystem. They also defined another security notion of
the security. It is the steganographic security against the replayable adaptive chosen-covertext
attack (SS-RCCA), which is relaxed notion of SS-CCA. They showed that an SS-RCCA stegosystem
could be constructed from any RCCA-secure public-key cryptosystem [5] whose ciphertexts were
pseudorandom. Hopper [6] constructed an SS-CCA stegosystem, which relied on the existence of
public-key encryption schemes which satisfied the indistinguishability from random bits under the
chosen-ciphertext attack (IND$-CCA [6]). They showed the existence of such an encryption scheme
under the Decisional Diffie-Hellman assumption.

Contribution. In previous setting, the goal of adversary is detection. Indeed, their schemes
are secure against the detecting attacks. Now, we consider the impersonation. In some previous
schemes, the steganographic-encoding algorithm is so public that an eavesdropper Eve may pretend
to be the sender. In particular, Eve may make stegotexts as which the receiver will accept from the
valid sender. Our idea, to prevent such an attack, is that the steganographic-encoding algorithm
runs with sender’s secret information so that anyone except the valid sender cannot make stegotexts
as which will be accepted from the valid sender. Namely, we consider the authenticity of stegotexts.

In this paper, we propose public-key steganography with authentication by employing the
idea of von Ahn and Hopper [11] for constructing the public-key steganography. We define the
security of public-key steganography with authentication, the steganographic security and the
unforgeability.

We also construct a concrete scheme of public-key steganography with authentication by modi-
fying a public-key steganography scheme proposed by Hopper [6]. We construct it via a public-key
encryption scheme and a digital signature scheme. We show that our proposed scheme of public-key
steganography with authentication is steganographically secure and unforgeable if the underlying
public-key encryption scheme satisfies the indistinguishability from random bits under the chosen-
ciphertext attack (IND$-CCA) and the underlying digital signature scheme satisfies the existential
unforgeability from the chosen-message attack (EUF-CMA).

Organization. We give preliminaries in section 2. We propose definitions and the security
properties for public-key steganography with authentication in section 3. We construct a concrete
scheme of public-key steganography with authentication and give security proofs in section 4. We
give the conclusion in section 5.

2 Preliminaries

We say that a function µ : N→ [0, 1] is negligible in n if for every c > 0, there exists n0 such that
µ(n) < 1

nc for all n > n0.
We denote the uniform distribution on k bit strings by Uk. Let D be a probability distribution.

We denote x ← D as the action of drawing a sample x according to D. We denote the minimum
entropy of a probability distribution D with finite set X by H∞(D) = minx∈X

{
log2

1
Pr[x←D]

}
.
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Let D be a probability distribution on the finite set X. We say that a function f : X → {0, 1}
is ε-biased on D if |Pr[f(x) = 0|x← D]− 1

2 | < ε. We also say that f is perfectly unbiased on D if
Pr[f(x) = 0|x← D] = 1

2 .
Let X and Y be finite sets and F a family of functions f : X → Y . We say that a family F

is strongly universal [12] if for all distinct x1, x2 ∈ X and all y1, y2 ∈ Y which are not necessarily
distinct, the number of functions f ∈ F such that f(x1) = y1 and f(x2) = y2 is exactly |F |

|Y |2 .

2.1 Public-Key Encryption

First, we define a public-key encryption scheme.

Definition 1 (public-key encryption). A public-key encryption scheme PE is a tuple of four
algorithms denoted by (Enc CGen,Enc KGen,Enc,Dec).

• Enc CGen: The common parameter generation algorithm Enc CGen is a probabilistic al-
gorithm. On input a security parameter k, Enc CGen returns a sequence of common
parameters cpenc containing the security parameter k and other system-wide parameters
such as the description of computational groups and hash functions. We write this as
cpenc ← Enc CGen(1k).

• Enc KGen: The key generation algorithm Enc KGen is a probabilistic algorithm. On input
a common parameter cpenc, Enc KGen returns a pair of (pk, sk). pk and sk are public and
secret keys, respectively. We write this as (pk, sk)← Enc KGen(cpenc).

• Enc: The encryption algorithm Enc is a probabilistic algorithm. On input a common param-
eter cpenc, a public key pk, and a message m, Enc returns a ciphertext c. We write this as
c← Enc(cpenc, pk,m).

• Dec: The decryption algorithm Dec is a deterministic algorithm. On input a common param-
eter cpenc, a secret key sk, and a ciphertext c, Dec returns either a message m or a symbol
⊥ which indicates that the ciphertext c is invalid. We write this as m/⊥ ← Dec(cpenc, sk, c).

We denoteMPE as the message space of PE . We require that for all cpenc which can be output
by Enc CGen(1k), for all (pk, sk) which can be output by Enc KGen(cpenc), for all m ∈ MPE , and
for all c which can be output by Enc(cpenc, pk,m), we have that Dec(cpenc, sk, c) = m.

Second, we review the notion of public-key encryption proposed by Hopper [6]. It is
the indistinguishability from random bits under the chosen-ciphertext attack. Let PE =
(Enc CGen,Enc KGen,Enc,Dec) be a public-key encryption scheme and k a security parameter.
Let ` be the function which implies the length of the ciphertext. We define a distinguishing game
under the chosen-ciphertext attack against PE by an adversary Ad and a challenger. We consider
the experiments Expi

CCA for i ∈ {0, 1} as follows:

Expi
CCA(1k)

1. cpenc ← Enc CGen(1k) and (pk, sk)← Enc KGen(cpenc).

2. Ad is given cpenc and pk.

3. Ad can make access to the decoding oracle DECsk. Ad queries the ciphertext c to
DECsk, and receives either the corresponding plaintext m or a symbol ⊥.

4. Ad produces a message m∗ and passes it to the challenger. The challenger passes
s∗i to Ad.

5. Ad continues to query the decoding oracle DECsk with the restriction that Ad may
not query s∗i .

6. Ad outputs a bit γ.
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7. Return γ.

We define s∗i for i ∈ {0, 1} as follows:

• s0: The challenger computes s0 ← Enc(cpenc, pk,m).

• s1: The challenger samples s1 ← Ul∗ .

We define Ad’s advantage against PE by

Advind$−cca
PE,Ad

(k) = |Pr[Exp0
CCA,Ad

(1k) = 1]− Pr[Exp1
CCA,Ad

(1k) = 1]| .
We denote the set of Ad who make qD decoding queries in running time t by Ad(t, qD).

Definition 2 (IND$-CCA). We say that PE is indistinguishable from random bits under the
chosen-ciphertext attack (IND$-CCA) if for every probabilistic polynomial adversary Ad ∈ Ad(t, qD),
Advind$−cca

PE,Ad
(k) is negligible in k.

2.2 Digital Signature

First, we define a digital signature scheme.

Definition 3 (digital signature). A digital signature scheme DS is a tuple of four algorithms
denoted by (Sig CGen,Sig KGen,Sig,Ver).

• Sig CGen: The common parameter generation algorithm Sig CGen is a probabilistic algorithm.
On input a security parameter k, Sig CGen returns a sequence of common parameters cpsig

containing the security parameter k and other system-wide parameters such as the description
of computational groups and hash functions. We write this as cpsig ← Sig CGen(1k).

• Sig KGen: The key generation algorithm Sig KGen is a probabilistic algorithm. On input a
common parameter cpsig, Sig KGen returns a pair of (pk, sk). pk and sk are public and secret
keys, respectively. We write this as (pk, sk)← Sig KGen(cpsig).

• Sig: The signing algorithm Sig is a probabilistic algorithm. On input a common parameter
cpsig, a secret key sk, and a message m, Sig returns a signature σ for m. We write this as
σ ← Sig(cpsig, sk,m).

• Ver: The verification algorithm Ver is a deterministic algorithm. On input a common pa-
rameter cpsig, a pubic key pk, a message m, and a candidate signature σ for m, Ver re-
turns 1 if σ is the valid signature for m. Otherwise, Ver returns 0. We write this as
0/1← Ver(cpsig, pk,m, σ).

We denoteMDS as the message space of DS. We require that for all cpsig which can be output
by Sig CGen(1k), for all (pk, sk) which can be output by Sig KGen(cpsig), for all m ∈ MDS , and
for all σ which can be output by Sig(cpsig, skA,m), we have that Ver(cpsig, pkA,m, σ) = 1.

We next define the security of digital signature. Let DS = (Sig CGen,Sig KGen,Sig,Ver) be
a digital signature scheme and k a security parameter. Let Af be an adversary who forges a
signature. We consider the experiments ExpCMA as follows:

ExpCMA(1k)

1. cpsig ← Sig CGen(1k), (pk, sk)← Sig KGen(cpsig).

2. Af is given cpsig and pk.

3. Af queries messages to the signing oracle SIGsk, and receives the corresponding
signatures, adaptively.
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4. In the end, Af outputs (m∗, σ∗). Let d← Ver(cpsig, pkA,m∗, σ∗). If d = 1 and Af

has not queried m∗, then return 1. Otherwise, return 0.

We define Af ’s advantage against DS by

Adveuf−cma
DS,Af

(k) = Pr[ExpCMA,Af
(1k) = 1].

We denote the set of Af who make qS signing queries in running time t by Af (t, qS).

Definition 4 (EUF-CMA). We say that DS is existentially unforgeable under the chosen-
message attack (EUF-CMA) if for any probabilistic polynomial adversary Af ∈ Af (t, qS),
Adveuf−cma

DS,Af
(k) is negligible in k.

2.3 Pseudorandom Generators

We define a pseudorandom generator. Let G : {0, 1}k → {0, 1}l(k) be a function which is com-
putable in polynomial time and k < l(k). We define a distinguishing game by an adversary Apr

and a challenger. We consider the experiments Expi
PRG(1k) for i ∈ {0, 1} as follows:

Expi
PRG(1k)

1. The challenger passes zi to Apr.

2. Apr outputs a bit γ.

3. Return γ.

We define ri for i ∈ {0, 1} as follows:

• z0: The challenger chooses x← Uk and computes z0 = G(x).

• z1: The challenger chooses z1 ← Ul(k).

We define Apr’s advantage against G by

Advprg
G,Apr

(k) = |Pr[Exp0
PRG,G,Apr

(1k) = 1]− Pr[Exp1
PRG,G,Apr

(1k) = 1]|.

We denote the set of Apr in running time t by Apr(t).

Definition 5 (pseudorandom generator). We say that G is a pseudorandom generator if for
any probabilistic polynomial adversary Apr ∈ Apr(t), Advprg

G,Apr
(k) is negligible in k.

2.4 Channels

Intuitively, the communication between the parties follows the distribution relied on the previous
communications. In order to define this notion, we follow previous works [7, 8, 11, 3, 6] on
steganography.

We model the communication between two parties by a channel. Let D be a finite set of
documents, we define that D∗ = D × D × · · ·. We define a channel C = {Ch|h ∈ D∗}, which
is a family of probability distributions on a set of documents D, indexed by sequences h ∈ D∗.
We call the index h the history. For an integer `, we define the distribution C`

h = Ch × C(h||d1) ×
C(h||d1||d2) × · · · × C(h||d1||...||d`−1), where d1 ← Ch, d2 ← C(h||d1), . . . , d` ← C(h||d1||...||d`−1). A history
h = (d1||d2|| . . . ||d`) is called legal with respect to C if for all i, Pr[di ← C(d1||...||di−1)|d1 ← Cν , d2 ←
Cd1 , · · · , di−1 ← C(d1||d2||...||di−2)] > 0 where ν is an empty string.

In this setting, we allow all parties to access to the channel oracle for any h about C. In other
words, we allow the adversary to learn the covertext distribution on all communications by an
oracle. The adversary queries the history h to the channel oracle, and receives the document d
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where d← Ch. If the query h is not legal, then the channel oracle returns ⊥. While attacking, the
adversary can access to the channel oracle at any time.

We require the following property with respect to the channel proposed by Hopper [6]: the
channel has the sampleability with efficiency. In particular, there is an efficiently computable
algorithm channel such that the output distribution of channel(h, r) where r ← Uk and Ch are
computationally indistinguishable.

For a function f : D → {0, 1}, we define the following property: if |Pr[f(x) = 0 | r ← Uk, x←
channel(h, r)]− 1

2 | < ε for any legal h, we say that f is ε-biased with respect to channel.

3 Steganography with Authentication

In this section, we propose the definition and the security properties for public-key steganography
with authentication.

Formalization. We first define the scheme of public-key steganography with authentication.

Definition 6 (public-key steganography with authentication). A scheme
of public-key steganography with authentication ASS is a tuple of five algorithms
(Stg CGen,Stg KGenA,Stg KGenB,Stg Enc,Stg Dec) as follows:

• Stg CGen: The common parameter generation algorithm Stg CGen is a probabilistic algo-
rithm. On input a security parameter 1k, Stg CGen returns a sequence of common param-
eters cp containing the security parameter k and other system-wide parameters such as the
description of computational groups and hash functions. We write this as cp← Stg CGen(1k).

• Stg KGenA: The key generation algorithm for the sender Stg KGenA is a probabilistic algo-
rithm. On input a common parameter sequence cp, Stg KGenA returns a pair of (pkA, skA).
pkA and skA are sender’s public and secret keys, respectively. We write this as (pkA, skA)←
Stg KGenA(cp).

• Stg KGenB: The key generation algorithm for the receiver Stg KGenB is a probabilistic
algorithm. On input a common parameter sequence cp, Stg KGenB returns a pair of
(pkB, skB). pkB and skB are receiver’s public and secret keys, respectively. We write this as
(pkB, skB)← Stg KGenB(cp).

• Stg Enc: The steganographic encoding algorithm Stg Enc is a probabilistic algorithm. Stg Enc
takes a common parameter cp, sender’s secret key skA, receiver’s public key pkB, a message
m, and a history h as inputs. Stg Enc has access to a channel oracle for some channel C,
which can sample from Ch for any h. Stg Enc returns a sequence of documents (s1, s2, . . . , sl)
from the support of Cl

h. We write this as (s1, s2, . . . , sl) ← Stg Enc(cp, skA, pkB,m, h). We
call (s1, s2, . . . , sl) a stegotext, and often simply write s.

• Stg Dec: Stg Dec is a steganographic decoding algorithm. On input a common parameter
cp, receiver’s secret key skB, sender’s public key pkA, a stegotext s = (s1, s2, . . . , sl), and
a history h, Stg Dec returns either a message m or a symbol ⊥ which indicates that the
stegotext is invalid. We write this as m/⊥ ← Stg Dec(cp, skB, pkA, s, h).

We denoteMASS as the message space of ASS, and H as the set of legal histories with respect
to C. We require that for all cp which can be output by Stg CGen(1k), for all (pkA, skA) which
can be output by Stg KGenA(cp), for all (pkB, skB) which can be output by Stg KGenB(cp), for all
(m,h) ∈ MASS ×H, and for all stegotext s which can be output by Stg Enc(cp, skA, pkB,m, h),
there is a negligible function ν(k) such that Pr[m← Stg Dec(cp, skB, pkA, s, h)] ≥ 1− ν(k).
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Steganographic Security. We define the security property of public-key steganography
with authentication. First, we define the steganographic security, which is the prop-
erty that any adversary eavesdropping the channel between the sender and the receiver
cannot detect whether the target text conceals a hiddentext or not. Let ASS =
(Stg CGen,Stg KGenA,Stg KGenB,Stg Enc,Stg Dec) be a scheme of public-key steganography with
authentication and k a security parameter, and C a channel. Let `∗ be the function which implies
the length of the stegotext. We define a distinguishing game under the chosen message-and-
history attack against ASS by an adversary Wd and a challenger. We consider the experiments
Expi

CMSHA for i ∈ {0, 1} as follows:

Expi
CMSHA(1k)

1. cp ← Stg CGen(1k), (pkA, skA) ← Stg KGenA(cp), and (pkB, skB) ←
Stg KGenB(cp).

2. Wd is given cp, pkA, and pkB.

3. Wd can make access to the steganographic-encoding oracle STG ENCskA,pkB
. Wd

queries a message-history pair (m,h) to STG ENCskA,pkB
, and receives the corre-

sponding stegotext s. Wd can also make access to the steganographic-decoding or-
acle STG DECskB ,pkA

. Wd queries a stegotext-history pair (s, h) to STG DECskB ,pkA
,

and receives either the corresponding message m or a symbol ⊥.

4. Wd produces a message m∗ and a history h∗ and passes it to the challenger. The
challenger passes s∗i to Wd.

5. Wd continues to query the encoding oracle STG ENCskA,pkB
and the decoding oracle

STG DECskB ,pkA
with the restriction that Wd may not query s∗i to STG DECskB ,pkA

.

6. Wd outputs a bit γ.

7. Return γ.

We define si for i ∈ {0, 1} as follows:

• s0: The challenger computes s0 ← Stg Enc(cp, skA, pkB,m∗, h∗).

• s1: The challenger samples s1 ← C`∗
h∗ .

We define Wd’s advantage against ASS with respect to C by

Advss−cmsha
ASS,C,Wd

(k) = |Pr[Exp0
CMSHA,C,Wd

(1k)) = 1]− Pr[Exp1
CMSHA,C,Wd

(1k)) = 1]|.
We denote the set of Wd who make qSE steganographic encoding queries and qSD steganographic
decoding queries in running time t by Wd(t, qSE , qSD).

Definition 7 (SS-CMSHA). We say that ASS is steganographically secure under the chosen
message/stegotext-and-history attack with respect to C (SS-CMSHA) if for any probabilistic poly-
nomial adversary Wd ∈ Wd(t, qSE , qSD), Advss−cmsha

ASS,C,Wd
(k) is negligible in k.

Unforgeability. Second, we define the unforgeability, which is the property that anyone except
the sender cannot forge the stegotext which will be accepted by the receiver so that it contains some
hiddentext from the sender. Let ASS = (Stg CGen,Stg KGenA,Stg KGenB,Stg Enc,Stg Dec) be
a scheme of public-key steganography with authentication and k a security parameter, and C
a channel. Let Wf be an adversary who forges the stegotext. We consider the experiments
ExpCMHA as follows:

ExpCMHA(1k)
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1. cp← Stg CGen(1k) and (pkA, skA)← Stg KGenA(cp).
2. Wf is given cp and pkA.
3. Wf queries (m,h, pkR), where m is a message, h is a history, and pkR is receiver’s

public key which Wf chooses arbitrarily, to the steganographic-encoding oracle
STG ENCskA,pkR

, and receives the stegotext, adaptively.
4. In the end, Wf outputs (s∗, h∗, pk∗R, sk∗R). Let m∗ ← Stg Dec(cp, sk∗R, pkA, s∗, h∗).

If m∗ 6= ⊥ and Wf has not queried (m∗, ·, ·), then return 1. Otherwise, return 0.

We define Wf ’s advantage against ASS with respect to C by

Adveuf−cmha
ASS,C,Wf

(k) = Pr[ExpCMHA,C,Wf
(1k) = 1].

We denote the set of Wf who make qSE steganographic encoding queries in running time t by
Wf (t, qSE).

Definition 8 (EUF-CMHA). We say that ASS is existentially unforgeable under the chosen
message-and-history attack with respect to C (EUF-CMHA) if for any probabilistic polynomial ad-
versary Wf ∈ Wf (t, qSE), Adveuf−cmha

ASS,C,Wf
(k) is negligible in k.

4 The Construction

In this section, We construct a concrete scheme of public-key steganography with authentication
via a public-key encryption scheme and a digital signature scheme. We employ the idea for
constructing the public-key steganography by von Ahn and Hopper [11], Backes and Cachin [3],
and Hopper [6]. We show that our scheme is steganographically secure if the underlying public-
key encryption scheme satisfies IND$-CCA. We also show that our scheme is unforgeable if the
underlying digital signature scheme satisfies EUF-CMA.

4.1 Preparations

In this section, we prepare to construct a scheme with public-key steganography with authen-
tication by using a public-key encryption and a digital signature scheme. We employ the idea
for constructing the public-key steganography by von Ahn and Hopper [11], and Backes and
Cachin [3]. Let f : D → {0, 1} be a hash function. Then, the following procedures Basic Encode
and Basic Decode have been proposed [11, 3].

Procedure Basic Encode:
Input: target c ∈ {0, 1}a, history h, bound k
Parse c as c1||c2|| · · · ||ca, where ci ∈ {0, 1} for 1 ≤ i ≤ a
for i = 1, 2, . . . , a do

Let j = 0
repeat:

sample si ← Ch, increment j
until f(si) = ci or j > k
set h = h||si.

Output: s1, s2, . . . , sa

Procedure Basic Decode:
Input: documents s1, s2, . . . , sa where si ∈ D for 1 ≤ i ≤ a
for i = 1, 2, . . . , a do

compute ci = f(si)
set c = c1||c2|| · · · ||ca.
Output: c

8



In this construction, Basic Decode(Basic Encode(c, h, k)) might not equal c. We call this the
encoding error and denote EEB as the event that the encoding error happens through the procedure.

Proposition 9. If f is ε-biased on Ch for all h, then for all c and h, there exists a negligible
function ε̂ in k such that Pr[EEB] ≤ ε̂.

Proof. We assume that |c| = 1. Since f is ε-biased on Ch for all h, we have that
Pr[Basic Decode(Basic Encode(c, h, k)) 6= c] < (1

2 + ε)k where c ∈ {0, 1}. Considering the case
that |c| is polynomial, Pr[EEB] < |c|(1

2 + ε)k by the union bound. We denote |c|(1
2 + ε)k by ε̂, which

is negligible in k.

We denote A(s, a, h, k) as Pr[Basic Encode(c, h, k) = s1, s2, . . . , sa|c ← Ua], and B(s, a, h, k)
as Pr[s = s1, s2, . . . , sa|s ← Ca

h]. If f is perfectly unbiased on Ch for all h, then A(s, a, h, k) =
B(s, a, h, k). In other words, the distribution of output of Basic Encode(c, h, k) where c is chosen
randomly from {0, 1}a is identical with that of documents according to Ca

h. To keep more general,
we consider the case that f is ε-biased on Ch for all h.

Proposition 10. If f is ε-biased on Ch for all h, then for any k and s = s1, s2, . . . , sa,
|A(s, a, h, k)− B(s, a, h, k)| ≤ aε.

Proof. We assume that a = 1. Since f is ε-biased on Ch for all h, we also assume without loss
of generality that Pr[f(x) = 0|x ← Ch] = 1

2 + δ where 0 ≤ δ < ε. Furthermore, we assume that
f(s1) = 0. We note that 0 ≤ Pr[s1 ← Ch] ≤ 1

2 + δ. Since c is chosen randomly from {0, 1}, we
have that

A(s, 1, h, k) =
1
2

{ k−1∑

i=0

(1
2
− δ

)i
Pr[s1 ← Ch]

}
+

1
2

(1
2

+ δ
)k−1

Pr[s1 ← Ch].

On the other hand, B(s, 1, h, k) = Pr[s1 ← Ch]. Thus,

|A(s, 1, h, k)− B(s, 1, h, k)| = Pr[s1 ← Ch]
∣∣∣1
2

{ k−1∑

i=0

(1
2
− δ

)i}
+

1
2

(1
2

+ δ
)k−1

− 1
∣∣∣

≤
(1

2
+ δ

)∣∣∣1
2

{ k−1∑

i=0

(1
2
− δ

)i}
+

1
2

(1
2

+ δ
)k−1

− 1
∣∣∣

≤
∣∣∣1
2

{(1
2

+ δ
)k
−

(1
2
− δ

)k}
− δ

∣∣∣ ≤ δ < ε.

In the case f(s1) = 1, we can analyze the same as above. Furthermore, we can consider the case
a > 1 by applying the hybrid arguments to the analysis, and get the claimed result.

In order to choose the hash function f , we can apply the notion of the universal family of hash
function.

Proposition 11. Let F be a strongly universal family of hash functions D → {0, 1} and F a
random variable with the uniform distribution on F . Let h1, . . . , hm be any sequence of legal
histories. For 1 ≤ i ≤ m, let Ai be a random variable with the distribution Chi

and Bi a random
variable with the uniform distribution on {0, 1}. Let L(k) = min

i
H∞(Chi

). Then,

∆[F, F (A1), . . . , F (Am);F, B1, . . . , Bm] ≤ m2−L(k)/2.
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The proposition is a direct consequence of the leftover hash lemma [10]. We assume that for
every legal history h, H∞(Ch) ∈ ω(log k). Then from this proposition, for every polynomial p
and any h, Basic Encode can operate on samples from Cp

h and induce only a negligible statistical
distance in its output distribution.

Hopper [6] proposed the deterministic-encoding procedure D Encode for constructing the
scheme of public-key steganography satisfying stronger security. Let f : D → {0, 1} be a hash
function. Then, the procedure D Encode is as follows:

Procedure D Encode:
Input: target c ∈ {0, 1}a, history h, bound k, randomness r1, . . . , rak, where ri ∈
{0, 1}k for 1 ≤ i ≤ a
Parse c as c1||c2|| · · · ||ca, where ci ∈ {0, 1} for 1 ≤ i ≤ a
Let b = 0; for i = 1, 2, . . . , a do

Let j = 0
repeat:

compute si = channel(h, rb), increment j, b
until f(si) = ci or j > k
set h = h||si.

Output: s1, s2, . . . , sa

In this construction, Basic Decode(D Encode(c, h, k, R)) where R← Uak might not equal c. We
call this the encoding error and denote EED as the event that the encoding error happens through
the procedure.

Proposition 12. If f is ε-biased with respect to channel for all h, then for all c and h, there exists
a negligible function ε̂ in k such that Pr[EED] ≤ ε̂.

Proof. The proof is similar to that for Proposition 9.

4.2 The Algorithm

We now propose a scheme of public-key steganography with authentication via a public-key en-
cryption scheme, a digital signature scheme, and a procedure D Encode.

Definition 13. Our proposed scheme of public-key steganography with authentication
ASS = (Stg CGen,Stg KGenA,Stg KGenB,Stg Enc,Stg Dec) is as follows. Let PE =
(Enc CGen,Enc KGen,Enc,Dec) be a public-key encryption scheme whose message space is MPE
and the length of the ciphertext generated by PE is lPE , and DS = (Sig CGen,Sig KGen,Sig,Ver)
a digital signature scheme whose message space and signature space are MDS and SDS , respec-
tively, and the length of the ciphertext generated by DS is lDS . We assume that both the security
parameter of PE and that of DS are k, then the security parameter of ASS is the same k. We
also assume that MPE = MDS × {0, 1}k × SDS . Let f : D → {0, 1} be a hash function and
G : {0, 1}k → {0, 1}k×lPEk a pseudorandom generator.

Algorithm Stg CGen:
Input: 1k

Compute cpenc ← Enc CGen(1k)
Compute cpsig ← Sig CGen(1k)
Output: (cpenc, cpsig)

Algorithm Stg KGenA:

10



Input: cpenc, cpsig

Compute (pkA, skA)← Sig KGen(cpsig)
Output: (pkA, skA)

Algorithm Stg KGenB:
Input: cpenc, cpsig

Compute (pkB, skB)← Enc KGen(cpenc)
Output: (pkB, skB)

Algorithm Stg Enc:
Input: cpenc, cpsig, skA, pkB,m, h
Choose r ← Uk

Compute σ ← Sig(cpsig, skA,m||r)
Compute c← Enc(cpenc, pkB,m||r||σ)
Compute s = D Encode(c, h, k, G(r))
Output: s

Algorithm Stg Dec:
Input: cpenc, cpsig, skB, pkA, s (where s = (s1, s2, . . . , slPE )), h
Compute c← Basic Decode(s)
Compute M ← Dec(cpenc, skB, c1||c2|| · · · ||clPE )
if M = ⊥ then return ⊥
Parse M = m||r||σ where |r| = k and |σ| = lDS
Compute d← Ver(cpsig, pkA,m||r, σ)
if d 6= 1 then return ⊥
if s 6= DEncode(c, h, k, G(r)) then return ⊥
Output: m

4.3 Security Proofs

In this section, we give the security proofs for our scheme. First, We show that our scheme is
steganographically secure if PE satisfies IND$-CCA.

Theorem 14. Let PE be a public-key encryption scheme, DS a digital signature scheme, and
ASS our proposed scheme of public-key steganography with authentication via PE and DS. We
assume that a hash function f : D → {0, 1} is ε-biased on Ch for all h where ε is negligible in k.
We also assume that f is έ-biased with respect to channel for all h where έ is negligible in k. If
PE satisfies IND$-CCA and G is a pseudorandom generator, then ASS satisfies the steganographic
security for any C.
Proof. Let Wd be an adversary in Wd(t, qSE , qSD) who breaks the steganographic security of ASS
with respect to C. We consider the experiments Expi

PS for i ∈ {0, 1, 2, 3, 4} as follows:

Expi
PS(1k)

1. cpenc ← Enc CGen(1k), cpsig ← Sig CGen(1k), (pkA, skA) ← Sig KGen(cpsig), and
(pkB, skB)← Enc KGen(cpenc).

2. Wd is given cpenc, cpsig, pkA, and pkB.

3. Wd can make access to the steganographic-encoding oracle STG ENCskA,pkB
. Wd

queries a message-history pair (m,h) to STG ENCskA,pkB
, and receives the corre-

sponding stegotext s. Wd can also make access to the steganographic-decoding or-
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acle STG DECskB ,pkA
. Wd queries a stegotext-history pair (s, h) to STG DECskB ,pkA

,
and receives either the corresponding message m or a symbol ⊥.

4. Wd produces a message m∗ and a history h∗ and passes it to the challenger. The
challenger passes s∗i to Wd.

5. Wd continues to query the encoding oracle STG ENCskA,pkB
and the decoding oracle

STG DECskB ,pkA
with the restriction that Wd may not query s∗i to STG DECskB ,pkA

.

6. Wd outputs a bit γ.

7. Return γ.

We define si for i ∈ {0, 1, 2, 3, 4} as follows:

• s∗0: The challenger chooses r∗ ← UK . The challenger computes σ∗ ← Sig(cpsig, skA,m∗||r∗),
c∗ ← Enc(cpenc, pkA,m∗||r∗||σ∗), and s∗0 = DEncode(c∗, h∗, k,G(r∗)).

• s∗1: The challenger chooses C∗ ← UlPE . The challenger chooses r∗ ← Uk and computes
s∗1 = DEncode(C∗, h∗, k,G(r∗)).

• s∗2: The challenger chooses C∗ ← UlPE . The challenger chooses R∗ ← Uk×lPEk and computes
s∗2 = DEncode(C∗, h∗, k, R∗).

• s∗3: The challenger chooses C∗ ← UlPE and computes s∗3 = Basic Encode(C∗, h∗, k).

• s∗4: The challenger samples s∗4 ← ClPE
h∗ .

We denote the set of Wd who make qSE steganographic-encoding queries and qSD steganographic-
decoding queries in running time t by Wd(t, qSE , qSD). Let Advi

C,Wd
(k) = |Pr[Expi

PS,C,Wd
(1k)) =

1]− Pr[Expi+1
PS,C,Wd

(1k) = 1]|. Then we have that

Advss−cmsha
ASS,C,Wd

(k) = |Pr[Exp0
PS,C,Wd

(1k)) = 1]− Pr[Exp4
PS,C,Wd

(1k)) = 1]|
≤ |Pr[Exp0

PS,C,Wd
(1k)) = 1]− Pr[Exp1

PS,C,Wd
(1k)) = 1]|

+|Pr[Exp1
PS,C,Wd

(1k)) = 1]− Pr[Exp2
PS,C,Wd

(1k)) = 1]|
+|Pr[Exp2

PS,C,Wd
(1k)) = 1]− Pr[Exp3

PS,C,Wd
(1k)) = 1]|

+|Pr[Exp3
PS,C,Wd

(1k)) = 1]− Pr[Exp4
PS,C,Wd

(1k)) = 1]|
= Adv0

C,Wd
(k) + Adv1

C,Wd
(k) + Adv2

C,Wd
(k) + Adv3

C,Wd
(k).

From Proposition 10, Adv3
C,Wd

(k) ≤ lPEε. From the definition of channel, there exists a negligible
function ε̃ in k such that Adv2

C,Wd
(k) ≤ ε̃. Applying these and the following lemmas, we get the

claimed result.

Lemma 15. For some C, if there exists Wd ∈ Wd(t, qSE , qSD), then there exists Ad ∈ Ad(t +
O(qSE) + O(qSD), qSD) such that

Advind$−cca
PE,Ad

(k) = (1− ε̂)Adv0
C,Wd

(k),

where ε̂ is negligible in k and tf is the time of computing the hash function f .

Proof. We construct an adversary Ad attacking the indistinguishability from random bits of PE
by using Wd.

Ad takes a common parameter cpenc and a public key pkB where cpenc ← Enc CGen(1k) and
(pkB, skB) ← Enc KGen(cpenc). Ad runs cpsig ← Sig CGen(1k) and (pkA, skA) ← Sig KGen(cpsig),
and gets cpsig and (pkA, skA). Then Ad passes Wd (cpenc, cpsig), pkA, and pkB as a common
parameter, sender’s public key, and receiver’s public key, respectively.
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If Wd makes a steganographic-encoding query (m,h), Ad chooses r ← Uk and computes σ ←
Sig(cpsig, skA,m||r), c ← Enc(cpenc, pkB,m||r||σ), and s ← D Encode(c, h, k, G(r)). Then Ad

passes s to Wd.
If Wd makes a steganographic-decoding query (s, h), Ad computes ĉ = Basic Decode(s) and

queries ĉ to Ad’s decoding oracle DECskA
and receives M̂ . If M̂ = ⊥, then Ad returns ⊥

to Wd. Otherwise, Ad parses M̂ = m||r||σ where |r| = k and |σ| = lDS and computes
d ← Ver(cpsig, pkA,m||r, σ). If d 6= 1, then Ad returns ⊥ to Wd. Otherwise, Ad computes
ŝ = DEncode(ĉ, h, k, G(r)). If ŝ 6= s, then Ad returns ⊥ to Wd. Otherwise, Ad passes m to
Wd.

If Wd outputs (m∗, h∗) as Wd’s challenge, Ad chooses r ← Uk and computes σ∗ =
Sig(cpsig, skA,m∗||r∗) Then Ad outputs m∗||r∗||σ∗ to Ad’s challenge oracle and receives c∗. Ad

computes s∗ = D Encode(c∗, h∗, k,G(r∗)) and passes s∗ to Wd.
After the challenge phase, Ad continues to respond steganographic-encoding and

steganographic-decoding queries of Wd as before with the following restriction. In the
steganographic-decoding query phase, if ĉ is identical with c∗, then Ad returns ⊥ to Wd.

However, if the encoding error happens in this simulation, Ad stops this attack.
Finally, if Wd outputs a bit γ, Ad outputs the same bit γ.
We note that when Ad is given a ciphertext of m∗||r∗||σ∗, Ad perfectly simulates Exp0

PS,C,Wd
(1k)

for Wd. Therefore Pr[Exp0
CCA,Ad

(1k) = 1] = Pr[EED] Pr[Exp0
PS,C,Wd

(1k) = 1]. On the other hand,
when Ad is given a random string, Ad perfectly simulates Exp1

PS,C,Wd
(1k) for Wd. Therefore

Pr[Exp1
CCA,Ad

(1k) = 1] = Pr[EED] Pr[Exp1
PS,C,Wd

(1k) = 1]. From Proposition 12, there exists a
negligible ε̂ such that Pr[EED] = 1− ε̂. Hence,

Advind$−cca
PE,Ad

(k) = |Pr[Exp0
CCA,Ad

(1k) = 1]− Pr[Exp1
CCA,Ad

(1k) = 1]|
= |Pr[EED] Pr[Exp0

PS,C,Wd
(1k)) = 1]− Pr[EED] Pr[Exp1

PS,C,Wd
(1k)) = 1]|

= (1− ε̂)Adv0
C,Wd

(k).

Lemma 16. For some C, if there exists Wd ∈ Wd(t, qSE , qSD), then there exists Apr ∈ Apr(t +
O(qSE) + O(qSD)) such that

Advprg
G,Apr

(k) = (1− ε̂)Adv1
C,Wd

(k),

where ε̂ is negligible in k.

Proof. We construct an adversary Apr attacking the randomness of G by using Wd.
Apr takes as input z∗ ∈ {0, 1}k×lPEk from Apr’s challenger. Apr runs cpenc ← Enc CGen(1k),

(pkB, skB) ← Enc KGen(cpenc), cpsig ← Sig CGen(1k), and (pkA, skA) ← Sig KGen(cpsig). Then
Apr passes Wd (cpenc, cpsig), pkA, and pkB as a common parameter, sender’s public key, and
receiver’s public key, respectively.

If Wd makes a steganographic-encoding query (m,h), Apr chooses r ← Uk and computes
σ ← Sig(cpsig, skA,m||r), c← Enc(cpenc, pkB,m||r||σ), and s← D Encode(c, h, k, G(r)). Then Apr

passes s to Wd.
If Wd makes a steganographic-decoding query (s, h), Apr computes ĉ = Basic Decode(s) and

M̂ ← Dec(cpenc, skB, s). If M̂ = ⊥, then Apr returns ⊥ to Wd. Otherwise, Apr parses M̂ = m||r||σ
where |r| = k and |σ| = lDS and computes d← Ver(cpsig, pkA,m||r, σ). If d 6= 1, then Apr returns
⊥ to Wd. Otherwise, Apr computes ŝ = DEncode(ĉ, h, k, G(r)). If ŝ 6= s, then Apr returns ⊥ to
Wd. Otherwise, Apr passes m to Wd.

If Wd outputs (m∗, h∗) as Wd’s challenge, Apr chooses C∗ ← UlPE and computes s∗ =
D Encode(C∗, h∗, k, z∗), and passes s∗ to Wd.
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After the challenge phase, Apr continues to respond steganographic-encoding and
steganographic-decoding queries of Wd as before with the following restriction. In the
steganographic-decoding query phase, if ĉ is identical with c∗, then Apr returns ⊥ to Wd.

However, if the encoding error happens in this simulation, Apr stops this attack.
Finally, if Wd outputs a bit γ, Apr outputs the same bit γ.
We note that if z∗ is the value G(r∗) where r∗ ← Uk, Apr perfectly simulates Exp0

PS,C,Wd
(1k)

for Wd. Therefore Pr[Exp0
PRG,G,Apr

(1k) = 1] = Pr[EED] Pr[Exp1
PS,C,Wd

(1k) = 1]. On the other
hand, if z∗ is chosen randomly from {0, 1}k×lPEk, Ad perfectly simulates Exp2

PS,C,Wd
(1k) for Wd.

Therefore Pr[Exp1
PRG,G,Apr

(1k) = 1] = Pr[EED] Pr[Exp2
PS,C,Wd

(1k) = 1]. From Proposition 12,
there exists a negligible ε̂ such that Pr[EED] = 1− ε̂. Hence,

Advprg
G,Apr

(k) = |Pr[Exp0
PRG,G,Apr

(1k) = 1]− Pr[Exp1
PRG,G,Apr

(1k) = 1]|
= |Pr[EED] Pr[Exp1

PS,C,Wd
(1k)) = 1]− Pr[EED] Pr[Exp2

PS,C,Wd
(1k)) = 1]|

= (1− ε̂)Adv1
C,Wd

(k).

Second, we show that our scheme is unforgeable if DS satisfies EUF-CMA.

Theorem 17. Let PS be a public-key encryption scheme, DS a digital signature scheme, and
ASS our proposed scheme of public-key steganography with authentication via PE and DS. We
assume that a hash function f : D → {0, 1} is ε-biased on C for all h where ε is negligible in k.
We also assume that f is ε̂-biased with respect to channel for all h where ε̂ is negligible in k. If DS
satisfies EUF-CMA, then ASS satisfies the unforgeability for any C. In particular, for some C, if
there exists Wf ∈ Wf (t, qSE), then there exists Af ∈ Af (t + O(qSE), qSE) such that

Adveuf−cma
DS,Af

(k) = (1− ε̂)Adveuf−cmha
ASS,C,Wf

(k),

where ε̂ is negligible in k.

Proof. We construct an adversary Af who forges a signature of DS by using Wf .
Af takes a common parameter cpsig and public key pkA where cpsig ← Sig CGen(1k) and

(pkA, skA) ← Sig KGen(cpsig), Af runs cpenc ← Enc CGen(1k). Then Af passes Wf (cpenc, cpsig)
and pkA as a common parameter and sender’s public key, respectively.

If Wf makes a steganographic-encoding query (m,h, pkR), Af chooses r ← Uk and queries
m||r to Af ’s signing oracle and receives σ which is a signature for m||r. Af computes c ←
Enc(cpenc, pkR,m||r||σ) and s = D Encode(c, h, k, G(r)), and passes s to Wf .

However, if the encoding error happens in this simulation, Af stops this attack.
Wf outputs (s∗, h∗, pk∗R, sk∗R). Af computes c∗ = Basic Decode(s∗), M∗ ← Dec(cpenc, sk

∗
R, s∗),

and phases M∗ = m∗||r∗||σ∗ where |r∗| = k and |σ∗| = lDS . Then Af outputs (m∗||r∗, σ∗). By
construction, if s∗ is a valid stegotext for (m∗, h∗), then σ∗ is a valid signature for m∗||r∗. From
Proposition 12, there exists a negligible ε̂ such that Pr[EED] = 1 − ε̂. Thus, Adveuf−cma

DS,Af
(k) =

Pr[EED]Adveuf−cmha
ASS,C,Wf

(k) = (1− ε̂)Adveuf−cmha
ASS,C,Wf

(k).

As a result, we can show the following theorem.

Theorem 18. Let PS be a public-key encryption scheme, DS a digital signature scheme, and
ASS our proposed scheme of public-key steganography with authentication via PE and DS. We
assume that a hash function f : D → {0, 1} is ε-biased on C for all h where ε is negligible in k.
We also assume that f is ε̂-biased with respect to channel for all h where ε̂ is negligible in k. If
PE satisfies IND$-CCA, DS satisfies EUF-CMA, and G is a pseudorandom generator, then ASS
satisfies the steganographic security and the unforgeability for any C.
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Proof. If ASS does not satisfy SS-CMSHA, then we have that either PE does not satisfy IND$-
CCA or G is not a pseudorandom generator because of Theorem 14. If ASS does not satisfy
EUF-CMHA, then we have that DS does not satisfy EUF-CMA because of Theorem 17. Therefore,
we get the claimed result.

5 Conclusion

In this paper, we have proposed public-key steganography with authentication. We have defined
the security notion of public-key steganography with authentication, which were the stegano-
graphic security and the unforgeability. We have constructed a concrete scheme of public-key
steganography with authentication via a public-key encryption scheme and a digital signature
scheme. We have shown that our proposed scheme of public-key steganography with authentica-
tion is steganographically secure and unforgeable if the underlying public-key encryption scheme
satisfies IND$-CCA and the underlying digital signature scheme satisfies EUF-CMA.
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