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Abstract

Schmidt and Takagi proposed a variant of the Paillier encryption scheme which employs
modulus n = p2q [16]. Their scheme has a good property that the one-wayness is under the
factoring assumption, and has an additively homomorphic property. Their scheme can be
applied to trapdoor commitment and on-line/off-line signature.
In this paper, we propose a new variant of the Schmidt-Takagi encryption scheme described
as Et(r, m) = rns

(1 + mnt) mod ns+1, where n, s, t are the public key, m a message, and r a
random number. Our scheme has the one-wayness under the chosen plaintext attack based on
the factoring problem, and the indistinguishability under the chosen plaintext attack based on
the desicional composite residuosity problem.
Our scheme implies the Schmidt-Takagi encryption scheme when s = t = 1. Compared with
the Damg̊ard-Jurik encryption scheme, although the modulus of our schemes employs n = p2q
(their scheme employs n = pq), the encryption and decryption speed of our scheme is faster
than that of their scheme.
Furthermore, we get that Et is additively homomorphic in m if t ≥ ⌈(s+1)/2⌉. In addition, by
adding a parameter t we have some properties closely related to homomorphic, which can be
applied to cryptographic applications [9].

Keywords: Paillier encryption scheme, additively homomorphic, provable security.

1 Introduction

Fundamental requirements for a secure public-key encryption scheme are the one-wayness and
the indistinguishability against the chosen plaintext attack (IND-CPA). It is important that the
securities it is reduced to well-studied problems such as the factoring problem and the discrete
logarithm problem.

In 1999, Paillier proposed a public-key encryption scheme, which is IND-CPA based on the de-
cisional composite residuosity problem [12]. It is not known whether the one-wayness is equivalent
to the factoring assumption1. The encryption scheme E has an additively homomorphic property:
E(r1, m1)E(r2, m2) = E(r1r2, m1 +m2) where r1, r2 are random numbers and m1, m2 are messages,
and has many cryptographic applications.

Damg̊ard and Jurik proposed its variant which can be applied to threshold cryptosystems and
electronic votings [6]. The security is similar to that of Paillier’s encryption scheme.

Schmidt and Takagi proposed another variant which employs modulus n = p2q [16]. Their
scheme has a good property that the one-wayness is under the factoring assumption, and can be
applied to trapdoor commitment and on-line/off-line signature.

1For its bit security, see [2]
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Other variants of the Paillier encryption scheme have been studied, for example, based on the
factoring assumption [15, 8, 10], IND-CCA [13, 5], threshold [6, 7], RSA-type [3, 4, 14], double
trapdoor decryption [1] and so on.

In this paper, we propose a new variant of the Schmidt-Takagi encryption scheme described
as E(m, r) = rns

(1 + mn) mod ns+1, where n, s are the public key, m a message, and r a random
number. Our scheme has the one-wayness under the chosen plaintext attack based on the factoring
problem, and the indistinguishability under the chosen plaintext attack based on the decisional
composite residuosity problem.

However, unlike several Paillier-based schemes [12, 6, 16], our scheme does not have additively
homomorphic. In order to solve this situation, by adding a parameter t ∈ N we modify our
encryption function as follows: E ′(r, m) = rns

(1 + mnt) mod ns+1, where n, s, t are the public key,
m a message, and r a random number. Then, we obtain that E ′ has additively homomorphic in
m if t ≥ ⌈(s + 1)/2⌉. In addition, by adding a parameter t we have some properties closely related
to homomorphic, which can be applied to cryptographic applications [9].

Our scheme implies the Schmidt-Takagi encryption scheme when s = 1 or s = t = 1. Compared
with the Damg̊ard-Jurik encryption scheme, although the modulus of our schemes employs n = p2q
(their scheme employs n = pq), the encryption and decryption speed of our scheme is faster than
that of their scheme.

This paper organized as follows: In Section 2, we briefly recall the Schmidt-Takagi encryption
scheme. In Section 3, we propose a variant of the Schmidt-Takagi encryption scheme, and show its
securities, that is, the one-wayness and the indistinguishability against chosen plaintext attack. In
Section 4, we propose a variant of our scheme, then show that the encryption scheme is additively
homomorphic. In Section 5, we conclude and provide some open problems.

2 Preliminaries

We denote R+ by the set of positive real numbers. We say that a function negl : N → R+ is
negligible if and only if for every polynomial p(X), there exists a k0 ∈ N such that for all k ≥ k0,
negl(k) < 1

p(k) .
Now, we briefly recall the Schmidt-Takagi’s encryption scheme whose the one-wayness is re-

duced to the factoring assumption [16].
Let n be the product of p square and q, where p and q are large primes such that |p| = |q| (that

is n = p2q)2. The encryption function E is the following function:

E : (Z/n)× × Z/n −→ (Z/n2)×

(r, m) 7−→ rn(1 + mn) mod n2

The function satisfies that E(r, m) = E(r+ ipq, m−r−1ipq) for i ∈ Z, which means that E is p-to-1.
Then we obtain the following properties:

• The restriction Er = E|(Z/pq)××Z/n is 1-to-1. Then it has a group homomorphic with respect
to the group operation ◦r : (r1, m1) ◦r (r2, m2) = (r1r2 modpq, m1 + m2 + lr−1

pq pq mod n),
where rpq is r1r2 mod pq and l is a integer between 0 and p such that r1r2 = rpq + lpq mod n.

• The restriction Em = E|(Z/n)××Z/pq is 1-to-1. Then it has a group homomorphic with respect
to the group operation ◦m : (r1, m1) ◦m (r2, m2) = (r1r2 − lpq mod n,m1 + m2 mod pq),
where mpq is m1 + m2 mod pq and l is a integer between 0 and p such that m1 + m2 =
mpq − lr−1

pq pq mod n.

As mentioned above, we see that Er is multiplicatively homomorphic in r, and Em additively
homomorphic in m.

2The first approach to the form n = p2q in encryption schemes appeared in [11].
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3 Our Encryption Scheme

We propose a variant of the Schmidt-Takagi encryption scheme, replacing computations modulo
n2 with computations modulo ns+1 for s > 1 and plaintext space Z/n with Z/ns, where n = p2q.
Before introducing our public-key encryption scheme, we prove several mathematical foundations
by techniques of Schmidt and Takagi.

Definition 1. We define Residuen[ns] by {x ∈ (Z/n)× | x ≡ yns
(mod n), y ∈ (Z/n)×}.

Then we prove the following theorem:

Theorem 2. For x, y ∈ (Z/n)× and s ≥ 1,

xns ≡ yns
(mod n) ⇐⇒ x ≡ y (mod pq).

Proof. (“⇒”) Since there exists a integer k such that xns
= yns

+ kp2q, it holds that xns ≡ yns

(mod pq). Therefore, we obtain x ≡ y (mod pq) because ϕ(pq) = (p − 1)(q − 1) and gcd(ns, (p −
1)(q − 1)) = 1.

(“⇐”) There exists a integer k such that y = x+kpq. Hence yns
= (x+kpq)ns

=
∑ns

i=0

(
ns

i

)
xns−ikpqi =

xns
+ n(xns−1kpq + · · · ) ≡ xns

(mod n).

Corollary 3. Residuen[ns] is a subgroup of (Z/n)×, whose the order is (p− 1)(q− 1). Especially,
Residuen[ns] = {xns

mod n | x ∈ (Z/pq)×}

We now show the following properties which are closed to the Schmidt-Takagi’s encryption
function [16]:

Theorem 4. Let f be the following function:

f : (Z/n)× × Z/ns −→ (Z/ns+1)×

(r, m) 7−→ rns
(1 + mn) mod ns+1.

Then,

• f(r, m) = f(r + ipq, m − ns−1r−1ipq) for i ∈ Z, that is p-to-1.

• The restrictions fr = f |(Z/pq)××Z/ns and fm = f |(Z/n)××Z/(ns/p) are 1-to-1.

Proof.

f(r + ipq, m) ≡ (r + ipq)ns
(1 + mn) (mod ns+1)

≡ (rns
+ nsrns−1ipq + ns+1(· · · ))(1 + mn)

≡ (rns
+ nsrns−1ipq)(1 + mn)

≡ rns
(1 + nsr−1ipq)(1 + mn)

≡ rns
(1 + mn + nsr−1ipq)

≡ rns
(1 + (m + ns−1r−1ipq)n)

≡ f(r, m + ns−1r−1ipq).

Hence, we see that f(r, m) = f(r + ipq, m − ns−1r−1ipq). Furthermore, as above, it follows that
fr and fm are 1-to-1.

We now introduce a public-key encryption scheme based on the Schmidt-Takagi’s one. This
scheme has the one-wayness under the factoring assumption and IND-CPA under the decisional
composite residuosity assumption which is similar to Schmidt-Takagi’s one. Our scheme, however,
also has a weakness against active attacks, that is, the chosen ciphertext attack. In addition, unlike
several Paillier-based schemes [12, 6, 16], our encryption function is not additively homomorphic
in m. In Section 4, we will propose a variant of our scheme which has additively homomorphism
properties.
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Key Generation: Given a security parameter k, choose at random a modulus n = p2q of length
k bits, where p and q are the same length, and p - q − 1, q - p − 1. Compute d ≡ n−s

(mod (p−1)(q−1)) and l ∈ Z such that 2l < pq < 2l+1. Then the public key is pk = (n, l, s)
and the secret key is sk = (p, q, d).

Encryption: To encrypt a message m ∈ Z/ns, choose a random number r ∈ {0, 1}l, and then
compute

Epk(r, m) = rns
(1 + mn) mod ns+1.

Decryption: Given a ciphertext c, first compute r = cd mod pq. Clearly, if c = Epk(r, m), we get

Dsk(c) = Ln(c(rns
)−1 mod ns+1) mod ns,

where Ln(x) = x−1
n .

3.1 Efficiency

Our scheme implies the Schmidt-Takagi encryption scheme when s = 1. Compared with the
Damg̊ard-Jurik encryption scheme, although the modulus of our schemes employs n = p2q (their
scheme employs n = pq), the encryption and decryption speed of our scheme is faster than that of
their scheme. Since there are twice computations of large modular exponentiation in encryption
phase of their scheme, and once computation of large modular exponentiation and many computa-
tions3 of binomial coefficients in decryption phase. On the other hand, there is once computations
of large modular in encryption phase, and so in the decryption phase. Since we can regard our
encryption scheme as a variant of the RSA-Paillier based scheme, the encryption and decryption
speeds are faster than original Paillier-based schemes.

3.2 Security

Theorem 5. Our Scheme has the one-wayness under the factoring p2q assumption.

Proof. We assume that there exists an adversary A that on input a random ciphertext c = rns
(1+

mn) mod ns+1, output m ∈ Z/ns with non-negligible advantage ϵ. Then we will construct a
probabilistic polynomial time algorithm B by using this adversary A.

B chooses r′ ∈ (Z/n)× and m′ ∈ Z/ns. Then with probability 1 − 1/p, obtains r′ > pq.
B computes c′ = r′n

s

(1 + m′n) mod ns+1, and runs A on c′. Since E(r + ipq, m) = E(r, m +
ns−1r−1ipq), A(c′) outputs m̄ = m′ + ns−1r̄−1ipq mod ns+1 with probability ϵ, where r̄ = r′ mod
pq. From m′ − m̄ = ns−1r̄−1ipq (i.e. m′−m̄

ns−1 = r̄−1ipq), r̄ ∈ (Z/pq)× and 0 ≤ i < p, we obtain
gcd(m′−m̄

ns−1 , ns) = pq. Hence, B can factor n = p2q with probability (1 − 1/p)ϵ.

In order to show that our scheme is IND-CPA, we now introduce an assumption as well as that
of Schmidt-Takagi’s scheme [16].

Definition 6. (The Desicional Composite Residuosity Problem) Let n be a randomly chosen k-bit
p2q modulus. For every probabilistic polynomial time algorithm A, define the following probabilities:

PRandom = Pr[x ← (Z/ns+1)× : A(x) = 1]

and
PResidue = Pr[x ← (Z/n)× : A(xns

mod ns+1) = 1].

Then, we denote the advantage of A by

Adv(A) = |PRandom − PResidue|.
3approximately, O(s2).
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c0 . . . ct′−t−1 ct′−t . . . cs−t+1 cs−t+2 . . .

m1 a0 . . . at′−t−1 at′−t . . . as−t+1 0 . . .

m2 0 . . . 0 b0 . . . bs−t′+1 0 . . .

m1 + m2n
t′−t a0 . . . as−t′−1 at′−t + b0 . . . as−t+1 + bs−t′+1 0 . . .

Table 1: The value m1 + m2n
t′−t = c0 + c1n + · · · + csn

s.

Theorem 7. Our scheme is IND-CPA if and only if the decisional composite residuosity problem
is intractable.

Proof. (“⇒”) We will construct a probabilistic polynomial time algorithm D such that breaks
Assumption 7 by using the adversary A against IND-CPA with the advantage Adv(A) = ϵ.
Let x be an instance of the decisional composite residuosity problem. A first chooses randomly
two messages m0,m1 ∈ (Z/ns+1)×. Next D chooses a random bit b ∈ {0, 1}, computes c =
x(1+mbn) mod ns+1, and runs A on (c, m0, m1). If x is an n-th residue, then c is a valid ciphertext,
otherwise c is a random element of (Z/ns+1)×. Therefore, let D outputs 1 if A(c, m0, m1) = b, or
0 otherwise. Hence, we can obtain Adv(D) = ϵ/2.

(“⇐”) Next, we will construct a probabilistic polynomial time algorithm A such that breaks
IND-CPA by using the adversary D against the decisional composite residuosity problem with
the advantage Adv(D) = ϵ. A first chooses randomly two messages m0, m1 ∈ (Z/ns+1)×, and
sends them to the challenger. Next, the challenger chooses a random number r ∈ (Z/pq)× and
random bit b ∈ {0, 1}, then he computes c = rns

(1 + mbn). Given a challenge c ∈ (Z/ns+1)×, A
computes4 the multiplicative inverse (1 + mbn)−1 in (Z/ns+1)× and c′ = c(1 + mbn)−1 mod ns+1,
and runs D on c′. If c is a ciphertext of mb, then c′ is an n-th residue, or a random element of
(Z/ns+1)× otherwise. Therefore, let A outputs b if D(c′) = 1, or 1 − b otherwise. Then we can
obtain Adv(A) = ϵ/2 by applying the discussion above.

Remark 8. We recall that, in our encryption scheme, the randomness space is (Z/pq)× and the
plaintext space Z/ns. As the same way, we can prove the same security, replacing the randomness
space (Z/pq)× with (Z/n)× and the plaintext space Z/ns with Z/(ns/p) (ns/p = p2s−1qs).

4 Homomorphic Properties

Additively homomorphic is important to many cryptographic applications. Unlike several vari-
ants of the Paillier encryption scheme [12, 6, 16], our encryption function E is multiplicatively

4Note that we can compute the multiplicative inverse of 1 + mbn in (Z/ns+1)× due to gcd(1 + mbn, ns) = 1. In
addition, this inverse forms 1 + (· · · )n, which is a candidate for ciphertexts.
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homomorphic in r ∈ (Z/pq)× but not additively homomorphic in m ∈ Z/ns since

E(r1, m1)E(r2, m2) ≡ rns

1 (1 + m1n)rns

2 (1 + m2n)

(mod ns+1)

≡ (r1r2)ns
(1 + m1n)(1 + m2n)

≡ (rpq + ipq)ns
(1 + m1n)(1 + m2n)

≡ (rns

pq + nsrns−1
pq ipq)

(1 + (m1 + m2)n + m1m2n
2)

≡ rns

pq (1 + nsr−1
pq ipq)

(1 + (m1 + m2 + m1m2n)n)

≡ rns

pq (1 + (m1 + m2+

m1m2n + ns−1r−1
pq ipq)n)

≡ E(rpq, m1 + m2+

m1m2n + ns−1r−1
pq ipq),

where rpq = r1r2 mod pq and 0 ≤ i < p. The restricted function 5 Em = E|(Z/n)××Z/(ns/p) is not
additively homomorphic even though Schmidt-Takagi’s encryption function fm is so (see Section 2).
Clearly,

Em(r1,m1)Em(r2, m2) ≡ Em(r1r2, m1 + m2 + m1m2n).

The reason that our encryption function is not homomorphic in m follows from n2 ̸≡ 0 (in fact,
in every additively homomorphic variants of Paillier’s encryption scheme it holds n2 ≡ 0, because
every moduli are n2).

4.1 A Variant of Our Scheme and Homomorphic Property

Now, we add a parameter t ∈ N to the public-key in order to solve the situation above. Then, we
modify our encryption function as follows:

Et : (Z/n)× × Z/(ns−t+1/p) −→ (Z/ns+1)×

(r, m) 7−→ rns
(1 + mnt),

where n, s, t are the public key, m a message, and r a random number. Then, we have that E1

is equivalent to the previous encryption function Em. We note that the plaintext space decreases
with increasing the parameter t. Nevertheless, we get some interesting properties by using the
parameter t.

Remark 9. Our scheme replaced the encryption function E with Et also has the same security, that
is, the one-wayness is equivalent to the factoring assumption, and IND-CPA. This proof follows
from Theorem 5 and Theorem 8.

First, we show that the encryption scheme Et is additively homomorphic in m when t is at
least (s + 1)/2.

Theorem 10. The encryption function Et is homomorphic in m if t ≥ ⌈(s + 1)/2⌉.

Proof. First, for any t such that 1 ≤ ∀t ≤ s, it follows that for i ∈ Z,

Et(r, m) = Et(r + ipq, m − ns−tr−1ipq)

5From Remark 9, we know that the scheme with Em has the same security of previous one.
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n Plaintext Randomness Ciphertext One-Wayness IND-CPA
[12] pq Z/n (Z/n)× (Z/n2)× - DCRA
[6] pq Z/ns (Z/n)× (Z/ns+1)× - DCRA
[16] p2q Z/pq (Z/n)× (Z/n2)× Factoring p2q DCRA

Ours 1 p2q Z/ns (Z/pq)× (Z/ns+1)× Factoring p2q DCRA
Ours 2 p2q Z/(ns−t+1/p) (Z/n)× (Z/ns+1)× Factoring p2q DCRA

Table 2: Comparison between our schemes and other variants.

(according to Theorem 4). From n2t ≡ 0 (mod ns+1) if 2t ≥ s + 1, we obtain

Et(r1, m1)Et(r2, m2) = Et(r1r2,m1 + m2).

Let m′ be m1 + m2 mod ns−t+1/p. For r1, r2, there exists 0 ≤ i < p such that m1 + m2 ≡
m′ + ins−tr−1

pq pq mod ns−t+1/p, where rpq = r1r2 mod pq. As above, we see

Et(r1r2, m1 + m2) = Et(r1r2 + ipq, m1 + m2−
ins−tr−1

pq pq)

= Et(rn, m′),

where rn = r1r2 + ipq mod n. Hence, the encryption function Et is homomorphic in m.

Next, we consider two parameters t, t′ such that t + t′ ≥ ⌈(s + 1)/2⌉ and t′ ≥ t. We consider
two encryption functions Et and Et′ . Then,

Et(r1,m1)Et′(r2, m2) ≡ rns

1 (1 + m1n
t)rns

2 (1 + m2n
t′)

(mod ns+1)

≡ (r1r2)ns
(1 + m1n

t)(1 + m2n
t′)

≡ (r1r2)ns
(1 + m1n

t+

m2n
t′ + m1m2n

t+t′)

≡ (r1r2)ns
(1 + (m1 + m2n

t′−t)nt)

≡ Et(r1r2, m1 + m2n
t′−t).

We obtain m = m1 + m2n
t′−t ∈ Z/(ns−t−1/p) when decrypt the above equation. This means

that if we represent m1 and m2 as n-adic numbers, denoted by m1 = a0 + a1n + · · · + asn
s and

m2 = b0+b1n+· · ·+bsn
s (where, aibj ∈ Z/n)6, then there appear terms which have a homomorphic

property (see Table 1). That is, the terms from n0 until nt′−t−1 are unchanged, but after nt′−t are
affected by a homomorphic property.

Furthermore, we obtain another homomorphic property as follows: we fix s = 3 for simplicity.
Since (s+1)/2 = 2, E2 is additively homomorphic, but E1 is not. Now, we denote how to transform
E1 into E2 (that is, we give E1 some properties such as additively homomorphic), by decomposing
given messages.

First, for a message m, we decompose m into (m1,m2) as follows: Then, we take m1 = m and
m2 = −m. The reason is due to

1 − x2 = (1 + x)(1 − x).

As above, for random numbers r1, r2, we see that:

(r1r2)n3
(1 − m2n) = rn3

1 (1 + m1n) rn3

2 (1 − m1n).
6the plaintext size depends on Et from s − t′ + 1 ≤ s − t + 1.
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That is, E2(r1r2,m
2) = E1(r1, m1)E1(r2, m2). Hence, for messages m and m′, we can make a

ciphertext of m2 + m′2 from m’s decomposition (m1, m2), m′’s decomposition (m′
1, m

′
2), and E1.

Remark 11. We see that using the homomorphic property above the receiver obtains
∑

i m
2
i .

Actually, by considering the factorization of cyclotomic polynomials xl − 1 (l > 2), we can extend∑
i m

2
i to

∑
i m

l
i. In fact, x2 − 1 is a cyclotomic polynomial with degree 2. Furthermore, we can

also deal with
∑

i mi by applying the ciphertext of m = 1 (see [9]).

5 Discussion

We have seen variants of the Schmidt-Takagi encryption scheme. Now, we discuss comparison
between our schemes and other variants. In particular, we refer to Dam̊ard-Jurik’s and Schmidt-
Takagi’s scheme.

Damg̊ard and Jurik proposed a threshold cryptosystems based on their encryption scheme.
They showed that their threshold scheme can be applied to electronic votings. Now, we modify our
schemes into threshold schemes by their techniques. However, the authorities need the information
on p in share decryption phase. The reason for the situation above follows that the modulus of our
encryption schemes employs n = p2q, but not n = pq. Therefore, we cannot construct threshold
cryptosystems, directly.

Schmidt and Takagi proposed two trapdoor commitment schemes based on the factoring prob-
lem, by using their encryption scheme. In fact, our scheme implies their scheme when s = 1, and
inherits many properties from their scheme. Therefore, our scheme can be applied to trapdoor
commitment schemes. Furthermore, we can reduced them to the factor assumption.

6 Conclusions

We have seen variants of the Schmidt-Takagi encryption scheme: One is E(m, r) = rns
(1+mn) mod

ns+1, where n, s are the public key, m a message, and r a random number, and another is Et(m, r) =
rns

(1 + mnt) mod ns+1, where n, s, t are the public key, m a message, and r a random number.
Our schemes have the one-wayness against the chosen plaintext attack based on the factoring

problem, and the indistinguishability against the chosen plaintext attack based on the decisional
composite residuosity problem.

Table 2 is for comparison between our schemes and other variants of the Paillier encryption
scheme.

Et has some homomorphic properties which can be applied to cryptographic applications. It
remains to analyze the advantage of such homomorphic properties as open problems.
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