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Abstract

In this paper, we introduce a new cryptographic model, the encryption scheme with de-
composition of ciphertexts which is related to the notion of the secret sharing scheme and
additively homomorphism. The model is described as follows: Let R be a receiver, S1, . . . ,Su

be senders, and V1, . . . ,Vy be servers. By using servers V1, . . . ,Vy as mediators between servers
and the receiver, senders S1, . . . ,Su want to send information on R(m1, m2, . . . , mu) with-
out providing each messages mi, where R is a operation (for example, R(m1, m2, . . . , mu) =
m1 + m2 + · · · + mu). In addition, by using receiver’s public key pk, each sender Si wants
to divide a message mi to y shares, and then to distribute a part of y shares to each servers.
Furthermore we develop with a variant of the Paillier encryption function which has several
properties related to homomorphism [3]. In fact, we construct our scheme by using homomor-
phic properties of the encryption function and decomposition of (cyclotomic) polynomials.

Keywords: Paillier encryption function, decomposition, additively homomorphism.

1 Introduction

In cryptographic applications, it is important to manage much information efficiently, to divide
secret information, and to give anonymity to players or information.

The secret sharing scheme which was proposed by Shamir is to divide a secret into shares [6].
These shares are distributed among users in a secure way. A cooperation of some of the users
is able to reconstruct the secret. Classical secret sharing schemes tends to follow the traditions
and sensitivities of information theory or coding theory, but not those of computational complex-
ity. Recently, Bellare and Rogaway formalize the secret sharing scheme on the point of view of
computational complexity, and they re-analyse a previous schemes which has no formal proofs [5].

The shuffle scheme takes as input an array of ciphertexts, and outputs a permuted and re-
encrypted array of inputs. Re-encryption means that to generate c′ from a given ciphertext c such
that D(c′) = D(c), where D is a decryption algorithm. The mix-net scheme applies the shuffle
scheme. The idea was proposed by Charm [1]. The mix-net scheme provides communication
unlinkability and anonymity.

In 1999, Paillier proposed a public-key encryption scheme, which is the indistinguishability
against the chosen plaintext attack (IND-CPA) under the decisional composite residuosity as-
sumption [4]. This scheme has an additively homomorphic property, which can be applied to
many cryptographic applications. There are some variants of this scheme [2, 3].

In this paper, we introduce a new cryptographic model, the encryption scheme with decom-
position of ciphertexts which is related to the notion of the secret sharing scheme and additively
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homomorphism. The model is described as follows: Let R be a receiver, S1, . . . ,Su be senders,
and V1, . . . ,Vy be servers. By using servers V1, . . . ,Vy as mediators between servers and the re-
ceiver, senders S1, . . . ,Su want to send information on R(m1, m2, . . . , mu) without providing each
messages mi, where R is a operation (for example, R(m1, . . . , mu)
= m1 + · · · + mu). In addition, by using receiver’s public key pk, each sender Si wants to divide
a message mi to y shares, and then to distribute a part of y shares to each servers. Intuitively,
a scheme decomposition of ciphertexts efficiently transforms Si’s message mi (1 ≤ i ≤ u) into a
tuple of ciphertexts (ci,1, ci,2, . . . , ci,y), concerned with R’s public key pk, such that:

(1) With R’s secret key sk, (C1, C2, . . . , Cy) reveal R(m1,m2, . . . mu) but not each mi, where Cj

is Vj ’s composition of (c1,j , c2,j , . . . , cu,j).

(2) A lack of at least one of Cj reveals no information of R(m1, m2, . . . , mu).

In practice, Si makes ciphertexts ci,j (1 ≤ j ≤ y) from own message mi and sends ci,j to Vj . Vj

composes Cj from ci,js. R receives Cj from Vj for all j, and composes them. And then, R obtains
R(m1, m2, . . . , mu).

Furthermore, we develop with a variant of the Paillier encryption function which has several
properties related to homomorphism [3], described as follow: The encryption function is Et(r, m) =
rns

(1 + mnt) mod ns+1, where n, s, t are public key, m is a message, r is a random value. The
parameter t is important to our encryption scheme. It is known that Et is additively homomorphic,
if t is at least s+1

2 . In fact, we construct our scheme by using this fact, other homomorphic
properties of the encryption function, and the decomposition of (cyclotomic) polynomials.

This paper is organized as follows: In section 2, we briefly recall a variant of Paillier encryption
scheme. In section 3, we introduce a new model and construct two servers model, practically.
Furthermore we discuss its security. In section 4, we discuss to construct y servers model when
y ≥ 3. In section 5, we conclude and provide some open problems.

2 Preliminaries

2.1 A Variant of the Paillier Encryption Scheme

In this section, we briefly recall a variant of Paillier encryption scheme [3]. Let n = p2q, where p, q
are large primes with the same length, and s, t ∈ N. The encryption function Et is the following
function:

(Z/n)× × Z/(ns−t+1/p) −→ (Z/ns+1)×

(r, m) 7−→ rns
(1 + mnt) mod ns+1,

where r is a random value, and m is a message. The encryption function Et has properties as
follows:

• Et is an injective function.

• Et has homomorphism in m if and only if t ≥ s+1
2 .

We describe this scheme as follows:

Key Generation: Given a security parameter k, choose at random a modulus n = p2q of length
k bits, where p and q are the same length, and p - q − 1, q - p − 1. Compute d ≡ n−s

(mod (p−1)(q−1)) and l ∈ Z such that 2l < pq < 2l+1. Then the public key is pk = (n, l, s)
and the secret key is sk = (p, q, d).

Encryption: To encrypt a message m ∈ Z/(ns/p), choose r ∈ (Z/n)× at random, and compute
Et(r, m).
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Decryption: To decrypt a ciphertext c, compute r = cd mod pq. Then

D(c) = Lnt(c(rns
)−1 mod ns+1) mod ns,

where Lnt(x) = x−1
nt .

This scheme has the indistinguishability against the chosen plaintext attack (IND-CPA) under
the decisional composite residuosity assumption.

2.2 Quadratic Residues

To decide whether an element x is a quadratic residue in (Z/pa)× or not, we apply the following
Lemma:

Lemma 1. Let p be a prime. Then for s ∈ Z

x ∈ QRp ⇔ x ∈ QRps ,

where QRp = {x ∈ (Z/p)×|x = y2 mod p, y ∈ (Z/p)×}, that is, a set of a quadratic residues over
Z/p.

Next, for a, b ∈ N, let n = paqb. To decide whether an element x is a quadratic residue in
(Z/n)× or not, we apply the Lemma 1 and the following Lemma:

Lemma 2. Let p, q be distinct primes. Then

x ∈ QRpa and x ∈ QRqb ⇔ x ∈ QRpaqb .

3 Our Model

3.1 Definitions

We consider the following situation. Let R be a receiver, S1, . . . ,Su be senders, and V1, . . . ,Vy

be servers. By using servers V1, . . . ,Vy as mediators between servers and the receiver, senders
S1, . . . ,Su want to send information on R(m1, m2, . . . , mu) without providing each messages mi,
where R is a operation. In addition, by using receiver’s public key pk, each sender Si wants to
divide a message mi to y shares, and then to distribute a part of y shares to each servers.

In practice, Si computes ciphertexts (ci,1, ci,2, . . . , ci,y) from a message mi, concerned with R’s
public key. Then Si sends ci,j to Vj . Vj composes Cj from ciphertexts c1,j , c2,j , . . . , cu,j received
from respective Sis, and sends them to R. R computes C from C1, C2, . . . , Cy. In this model, we
require the following conditions:

(1) With R’s secret key sk, (C1, C2, . . . , Cy) reveal R(m1, m2, . . . mu), where Cj is Vj ’s composi-
tion of (c1,j , c2,j , . . . , cu,j). Furthermore, reveal no information of each mi from (C1, C2, . . . Cy).

(2) A lack of at least one of Cj reveals no information of R(m1, m2, . . . , mu).

That is, R obtains information on messages R(m1, m2, . . . , mu) if and only if R receives the divided
information Cj from all V1, . . . ,Vy.

Formally, this model consists of the following algorithms:

Key Generation(1k): A probabilistic key generation algorithm that takes as input a security
parameter k, it outputs (pk, sk), where pk is the public key and sk is the secret key.

Encryption(m,pk): A probabilistic encryption algorithm that takes as input a message m and
the public key pk, it outputs ciphertexts (ci,1, ci,2, . . . , ci,y).
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Composition(c1,j , c2,j , . . . , cu,j ,pk): A probabilistic composition algorithm that takes as input
ciphertexts (c1,j , c2,j , . . . , cu,j) and pk, it outputs composition Ci.

Decryption(C1, C2, . . . , Cy, sk): A deterministic decryption algorithm that takes as input com-
positions (C1, C2, . . . , Cy) and the secret key sk, it outputs information of messages m1,
m2, . . . , mu.

All of these algorithms should run in polynomial time in the length of their inputs. Before
going further, we introduce some further conventions.

• We need to run two protocols. One is between Si and Vj , and the other is between Vj and
R.

• We assume that Si sends ci,j to Vj .

3.2 Our idea

To develop this model, we use the following ideas: We recall that since Et(r, m) = rns
(1+mnt) mod

ns+1, Et has homomorphism if and only if t ≥ s+1
2 . Hence, E s+1

2
has homomorphism, but E s+1

4

not. For simplicity, we fix s = 3. In this case, E2 has homomorphism, but E1 not. In other
words, if we encrypt messages mi (1 ≤ i ≤ u) using E2, then the product of the ciphertexts
is

∏
i E2(ri, mi) = E2(

∏
i ri,

∑
i mi). However, if we encrypt using E1, then the product is not

E1(r,
∑

i mi). By the way, we know the factorization of the following equation 1 − x2, that is,
(1 − x)(1 + x). We can easily see

E1(r1, m)E1(r2,−m) = (r1r2)n3
(1 + mn)(1 − mn) mod n4

= (r1r2)n3
(1 − m2n2) mod n4

= E2(r1r2,−m2).

Therefore,

E1(r1,1,m1)E1(r1,2, m1)E1(r2,1,m2)E1(r2,2, m2)

= E2

(
r1,1r1,2r2,1r2,2,−(m2

1 + m2
2)

)
= E2

(∏
ri,j ,−(m2

1 + m2
2)

)
.

If we choose messages m1, . . . , mu and use this technique, then we obtain the ciphertext on sum
of message square, that is,

∑
i m

2
i .

In order for transformation
∑

i m
2
i to

∑
i mi, we use the following idea. If ∀mi = 1, then∑

i m
2
i =

∑
i mi. We regard m as

∑m
i=1 1, and use (1 + n)m instead of (1 + mn). More precisely,

we identify a ciphertext of m as the product of m ciphertexts of 1, that is,

(1 + n)m = (1 + n) · · · (1 + n)︸ ︷︷ ︸
m times

. (1)

In the same way, we identify a ciphertext of −m as the products of m ciphertexts of −1.
Now, we denote E ′

t(r, m, w) by rns
(1 + wnt)m mod ns+1. As described later, w depends on the

number of servers. E ′
t inherits some properties of Et.
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3.3 Two Servers Model

We describe two servers model as follows:

Key Generation: Given a security parameter k, choose at random a modulus n = p2q of length
k bits, where p and q are the same length, and p - q − 1, q - p − 1. Compute d ≡ n−3

(mod (p− 1)(q− 1)) and l ∈ Z such that 2l < pq < 2l+1. Then the public key is pk= (n, l, 3)
and the secret key is sk= (p, q, d).

Encryption: To encrypt a message m ∈ Z/(n3/p), choose random numbers r1, r2 ∈ (Z/n)× and a
bit b ∈ {0, 1} at random, and compute (c, c′) = (E ′

1(r1, m, 1), E ′
1(r2,m,−1)). Then set (c1, c2)

to (c, c′) if b = 0, or to (c′, c) otherwise, and send c1 to V1 and c2 to V2.

Composition: Let (ci,1, ci,2) be Si’s ciphertexts. Vj receives (c1,j , c2,j , . . . , cu,j) and compute
Cj = Πici,j .

Decryption: To decrypt a composed ciphertext C = C1C2, compute r = Cd mod pq. Then

D(C) = Ln2(C(rn3
)−1 mod n4) mod n3,

Since E ′
1 does not have homomorphism, D(C1) ̸=

∑
i mi and also C2. Fortunately, from the

following theorem, we see that D(C1C2) = −
∑u

i=1 mi.

Theorem 3. For random numbers ri,j ∈ (Z/n)× (1 ≤ i ≤ u, j = 1, 2), messages mi ∈ Z/(n3/p),

D
(∏

i

E ′
1(ri,1, mi, 1)E ′

1(ri,2,mi,−1)
)

= −
∑

i

mi.

Proof. We have

E ′
1(ri,1,mi, 1)E ′

1(ri,2, mi,−1)

= rn3

i,1(1 + n)mirn3

i,2(1 − n)mi mod n4

= (ri,1ri,2)n3(
(1 + n)(1 − n)

)mi mod n4

= (ri,1ri,2)n3
(1 − n2)mi mod n4

= E ′
2(ri,1ri,2,mi,−1).

Hence, we have ∏
i

E ′
1(ri,1, mi, 1)E ′

1(ri,2, mi,−1)

=
∏

i

E ′
2(ri,1ri,2, mi,−1)

= E ′
2(

∏
i

ri,1ri,2,
∑

i

mi,−1)

= (
∏

i

ri,1ri,2)n3
(1 − n2)

P

i mi .

We denote R by
∏

i ri,1ri,2 and M by
∑

i mi. We can recover R as (Rn3
(1−n2)M )d mod n because
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(1 − n2)Md ≡ 1 (mod n). Therefore,

D
(∏

i

E ′
1(ri,1, mi, 1)E ′

1(ri,2,mi,−1)
)

= D
(
Rn3

(1 − n2)M mod n4
)

= Ln2

(
Rn3

(1 − n2)M (R−1)n3
mod n4

)
mod n3

= Ln2

(
(1 − n2)M mod n4

)
mod n3

= Ln2(1 − Mn2 mod n4) mod n3

= − M mod n3.

3.4 Security

E ′
t inherits the security of Et, since E ′

t(r, w, m) =
∏m

i=1 Et(ri, w) and E ′
t(r, w, m) = Et(r, wm) when

t ≥ s+1
2 . Hence, we obtain E ′

t is IND-CPA under the same assumption.
R with the secret key sk can decrypt each Cj . Now, we consider whether R obtains information

on a message mi or
∑

i mi from D(Cj). In encryption algorithm, we shuffle ciphertexts before
sending a part of them to V1,V2. This action is necessary, otherwise R can recover

∑
i mi from

rn3
(1+n)

P

i mi mod n4 or rn3
(1−n)

P

i mi mod n4 by techniques for decryption in [2]. In particular,
the probability that Cj = rn3

(1 + n)
P

i mi mod n4 or rn3
(1 − n)

P

i mi mod n4 is 1
2u , where u is the

number of senders, if we shuffle ciphertexts.

4 Variants with More Servers

In order to construct two servers model, we used ω2 = ±1, which are square roots of 1. This two
servers model depends on square roots. In particular, there exists −1 in (Z/n)× anytime, hence
we can easily construct two servers model. Note that it is hard for anyone without knowing the
factor p or q of n to find v ∈ (Z/n)× such that v2 ≡ 1 (mod n) and v ̸≡ ±1 (mod n), that is,
to find v is equivalent to factoring n = p2q. In fact, by using the Chinese Remainder Theorem
(CRT):

ψ : Z/n −→ Z/p2 × Z/q
x 7−→ (x mod p2, x mod q)

We obtain ψ(1) = (1, 1) and ψ(v) = (1,−1) or (−1, 1), hence ψ(1±v) = (2, 0) or (0, 2). We obtain
the factor of n from 1 < gcd(n, 1 ± v) < n. In addition, the reason for s = 3 is optimal from the
point of view of computational costs.

Next, we consider how to increase the number of servers by applying the technique above. If
there exists a non-trivial y-th root of 1 in (Z/n)×, we can construct y servers as follows: Let y = 3
and t = 1. Then, our scheme uses the encryption function E ′

1(r, m, w). Now, we compute a cube
root ω3 of 1. It is non-trivial to compute ω3 in (Z/n)×, although we easily see that one of square
roots is −1. In addition, in three servers model, we also require that the following equations hold:

E ′
3(r1, m1,−1)E ′

3(r2, m2,−1)

= E ′
3(r1r2,m1 + m2,−1) mod ns+1 (2)

E ′
1(r1, m,−ω1

3)E ′
1(r2,m,−ω2

3)E ′
1(r3, m,−1)

= E ′
3(r1r2r3, m,−1) mod ns+1. (3)
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First, we refer to equation (2) in order to fix the parameter s. Next, we discuss the existence of
non-trivial cube roots ω3.

For the first equation (2), this means that (1 − n3)x ≡ 1 − xn3 (mod ns+1). We know that,

(1 − n3)x =
x∑

i=0

(
x

i

)
(−n3)x

= 1 − xn3 +
x(x − 1)

2
n6 − · · · + (−n3)x,

over Z. Hence, for 3 ≤ s ≤ 5, we obtain
∑x

i=0

(
x
i

)
(−n3)x

≡ 1 − xn3 (mod ns+1). Now, fix s = 5. Then,

E ′
1(r, m, w) = rn5

(1 + wn)m mod n6

E ′
3(r, m,−1) = rn5

(1 − n3)m mod n6.

For the second equation (3), we must find x ̸= 1 such that x3 − 1 ≡ 0 (mod n5). Such x also
holds an equation x2 + x + 1 ≡ 0 (mod n5). We know a fact that the solution of this equation
over C is x = (−1±

√
−3)

2 . Then, we consider to apply this fact to Z/n. Since n = p2q is odd, there
always exists 2−1 over (Z/n)×. An important point is whether

√
−3 is an element in (Z/n)× or

not. If
√
−3 ∈ (Z/n)×, then ω3 = (−1 +

√
−3)2−1 ∈ (Z/n)×. In fact, with a knowledge of p or q,

it is easy to check whether an element x ∈ (Z/n)× is a quadratic residue over (Z/p)× and (Z/q)×.
Therefore, it suffices to compute Legendre symbols

(−3
p

)
and

(−3
q

)
.

We now demonstrate to concrete three servers, let n = 637 = 72 × 13. By applying Lemma 1
and 2, we can check easily whether −3 is a quadratic residue over (Z/7)× and (Z/13)× using Leg-
endre symbols. We then see that

(−3
7

)
=

(−3
13

)
= 1. Hence, there exists

√
−3 in (Z/637)×.

Next, we determine
√
−3 concretely. First, it holds −3 ≡ 46 (mod 72),−3 ≡ 10 (mod 13).

Running an algorithm that compute a square root over prime fields, we obtain
√
−3 ≡ ±2

(mod 7),
√
−3 ≡ ±6 (mod 13). Furthermore, we obtain

√
−3 ≡ ±12 (mod 72) with the Hensel

lifting. Hence, ψ(
√
−3) = (12, 6), (12, 7), (37, 6), (37, 7), where ψ is the function above. We find

that
√
−3 ≡ 110, 306, 331, 527 (mod 637), using ψ−1. Then one of cube roots of 1 is 165 as√

−3 ≡ 331 (mod 637). In fact, 1653 = 4492125 = 637 × 7052 + 1 ≡ 1 (mod 637). Hence, we can
construct three servers model as follows:

E ′
1(r1, m,−165) = rn5

1 (1 − 165n)m mod n6

E ′
1(r2, m,−1652) = rn5

2 (1 − 27225n)m mod n6

E ′
1(r3, m,−1) = rn5

3 (1 − n)m mod n6

and the composite is (r1r2r3)n5
(1 − n3)m mod n6. We note that 268 is also a cube root of 1.

Then, we must not reveal 165 and 268 to senders or servers. Anyone who knows them can recover√
−3 ≡ 331, 527 (mod 637) and obtain a factor of n from gcd(331 + 527, 637) = 13.

We have seen a way to construct two or three servers model. Actually, our technique is based
on factorization of cyclotomic polynomials and quadratic residues, since there are many useful
results for quadratic residues. We remark that s increases with y. We describe y = 3, 4, 5, 6, and
8 as follows:

3 servers: Let s = 5. A primitive cube root ω3 holds ω2
3 + ω3 + 1 ≡ 0 (mod n5). We solve this

equation over C, and obtain ω3 = (−1+
√
−3)

2 . Hence we must take p, q such that
(−3

p

)
=(−3

q

)
= 1. In other words, p, q ≡ 1 (mod 3). Then, public key is pk = (n, l, 5, ω3). Si

computes E ′
1(ri,j , mi,−ωj

3), for j = 1, 2, 3.

7



y ∗ ∈ (Z/n)× condition of p, q

2 −1 (anytime)
3

√
−3 p, q ≡ 1 (mod 3)

4
√
−1 p, q ≡ 3 (mod 4)

5
√

5,
√

2
√

5 − 10 (at least) p, q ≡ ±1 (mod 5)
6

√
−3 p, q ≡ 1 (mod 3)

8
√
−1,

√
2 p, q ≡ 1 (mod 8)

Table 1: Construction of y servers model.

4 servers: Let s = 7. A primitive fourth root ω4 holds ω2
4 + 1 ≡ 0 (mod n7) that is ω4 =

√
−1.

Hence we must take p, q such that
(−1

p

)
=

(−1
q

)
= 1. In other words, p, q ≡ 3 (mod 4).

Then, public key is pk = (n, l, 7, ω4). Si computes E ′
1(ri,j ,mi,−ωj

4), for j = 1, . . . , 4.

5 servers: Let s = 9. The ω5 holds ω4
5 + ω3

5 + ω2
5 + ω5 + 1 =

(
ω2

5 − (1 −
√

5)2−1ω5 + 1
)(

ω2
5 +

(1−
√

5)2−1ω5 +1
)
≡ 0 (mod n9). Consequently, we require that there exists

√
5 in (Z/n)×.

ω5 holds
(
1 +

√
5 +

√
2
√

5 − 10
)
4−1, if

√
5 ∈ (Z/n)×. In addition, to construct five servers

model, we require that it holds
√

2
√

5 − 10 ∈ (Z/n)×.

6 servers: Let s = 11. The ω6 holds ω2
6 − ω6 + 1 = 0. We obtain ω6 = (1 +

√
−3)2−1 = ω3 + 1

. Hence we set p, q as a case r = 3. Then, public key is pk = (n, l, 11, ω6). Si computes
E ′

1(ri,j , mi,−ωj
6), for j = 1, . . . , 6 and send to each servers.

8 servers: Let s = 15. The ω8 holds ω4
8 + 1 = 0. We obtain ω8 =

√
2(1 +

√
−1)2−1 over C. We

want p, q to hold
√
−1,

√
2 ∈ (Z/p)×, (Z/q)×. So we set p, q ≡ 1 (mod 8). Then, public key

is pk = (n, l, 15, ω8). Senders compute ciphertexts and send to each servers.

Remark 4. We have shown a method to decompose ciphertexts by applying the factoring of cyclo-
tomic polynomial over C when there exist primitive roots of 1 in (Z/n)×. In fact, we can construct
without computing a y-th primitive root. For example, in four servers model, we use encryption
functions rns

1 (1−n)m, rns

2 (1+n)m, rns

3 (1−n+n2)m, rns

4 (1+n+n2)m as 1−x, 1+x, 1−x+x2, 1+x+x2

respectively 1 − x6 = (1 − x)(1 + x)(1 − x + x2)(1 + x + x2). However, in this example, we need
s ≥ 11.

Remark 5. It is well-known that there are no formulas to solve equations of degree at least 5.
Hence, it is not easy to factor 1 − xy when y is large. In other words, for a function fy(x) =
xy mod ns it is not easy to find x ∈ (Z/ns)× such that fy(x) = 1. On the other hand, we observe
fy is closely related to the RSA function. If gcd(y, φ(ns)) = 1, fy is a permutation polynomial over
(Z/ns)×, where φ is Euler’s totient function. Therefore, there are no y-th primitive roots. So, we
require that gcd(y, φ(ns)) > 1.

5 Conclusions

We have introduced a new model “decomposition of ciphertext” such as a primitive combined the
secret sharing with additively homomorphism. And we have developed y servers model by applying
a variant of Paillier encryption scheme which has some homomorphic properties and decomposition
of cyclotomic polynomials. We have remarked the number of servers. It will be a further work to
construct to this model without decomposition of cyclotomic polynomials.
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