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Abstract

Impagliazzo and Levin showed a reduction from average-case hardness of any NP-search problem under any polynomial-
time samplable distribution to that of another NP-search problem under the uniform distribution in [12]. Their target was
the hardness of positive instances occurring with probabilipoly(n) under the distributions. In this paper, we focus on
hardness of a larger fraction of instances. We reduce the hardness of positive instances for any NP-search problem occur-
ring with probability 1-1/poly(n) under any polynomial-time samplable distribution over positive instances to that for an-
other NP-search problem with similar hardness under the uniform distribution. In order to illustrate thewsagance
of this technique, we show a simple way to modify the technique of Gutfreund, Shaltiel and Ta-Shma in [8] to construct
an NP-search problem hard on average under the uniform distribution based on the assumption#tiRR IdRd some
worst-case mild derandomization holds.

1 Introduction

Reduction from samplable to uniform distributions. The theory of the average-case complexity has been studied
extensively since 1970’s to reveal the nature of “hard” problems in practical situations. In particular, many researchers
recently discusses the average-case hardness of NP problems and relations to fundamental cryptographic primitives such
as the one-way function from a cryptographic point of view (see, e.g., [1, 3, 16]) because cryptographic protocols need to
withstand attacks from adversaries even if their instances (messages, keys, etc.) are chosen randomly and so we reduce
the security of such cryptographic protocols to some NP problems believed to be hard on average in modern cryptography.

One of the seminal results in the average-case complexity theory is a completeness theorem on distributional NP
problems under polynomial-time samplable distributions by Impagliazzo and Levin [12]. They showed that if we have
some polynomial-time samplable distribution hard on average for some NP-search problem then we have another NP-
search problem hard on average even under the uniform distribution.

Then the Impagliazzo-Levin reduction is stated as follows. For any polynomial-time samplable distribution é¢kema
{Hn}new, NP-search problerir with supportL (a set of positive instances &f), and 0< §(n) < 1, there exists an NP-
search problenfr’ such that if we have some polynomial-time randomized search algoAthior F’ with supportL’
satisfying

Pr[A solvesx | xe L] > 1-6(n),

XUy



then we have another polynomial-time randomized search algoAtfanF satisfying
F;; [Asolvesx | xe L] > 1 - poly(n)s(n),
X:Hn

wherel,, is the uniform distribution over instances of length

This result implies that the NP hardness under any polynomial-time samplable distribution is essentially equivalent
to that under the uniform distribution within randomized polynomial time. An more explicit form of Impagliazzo-Levin
reduction is given in Lemma 1 in [9]. Also, a survey on the average-case complexity theory by Bogdanov and Trevisan [2]
contains the details of the proof.

In applications of the average-case complexity theory, we sometimes require higher hardness, e.g., hardness of all
instances but a small fraction for an NP-search problem. A typical example is security reductions for cryptographic
protocols and primitives. For example, if we want to show that some protocol is secure based on the one-way function,
we prove that the security over all random instances but a negligible fraction is guaranteed from the hardness of inverting
the one-way function over all inputs but a negligible fraction.

Unfortunately, one can see from the parameter of the success probability in the Impagliazzo-Levin reduction that their
original result cannot treat such a large fraction of harder problem. It is therefore significant to develop new techniques
for discussing harder problems in the Impagliazzo-Levin type reduction in some situation.

This issue is deeply related to the hardness amplification techniques since we could overcome the above barrier
if the techniques would work well for the Impagliazzo-Levin reduction. Direct product theorems such as Yao’s XOR
lemma [19], which has many extensions anfilegtent proofs [14, 5, 11, 13, 15, 10, 17, 18], are very powerful techniques
for hardness amplification. However, these techniques have an obvious disadvantage in a setting of the Impagliazzo-
Levin reduction. They basically make an instance of a harder problem by taking direct product of multiple instances of
the original NP-search problem. Thus, a fraction of positive instances exponentially decreases in the harder problem as
we take the direct product over more instances if we want to keep the new problem in NP.

In this paper, we give a new reduction for an NP-search problem to directly treat harder distributions with the
Impagliazzo-Levin type argument. The following informally describes our main result:

Theorem 1.1 (Informal) Let F be any NP-search problem with suppbrtand let beH be any polynomial-time sam-
plable distribution schem@( such that Bg, [ x € L] > n™®®). Then, there exists another NP-search probemwith
supportL’ that satisfies:

1. We have for the new search probléh

Pr [ Zis a positive instance fd’ (i.e.,ze L") ] > (7)Y,

Z Uy
2. If some fi)2-time randomized search algorith# for F” achieves
Plq [ A solvesz | ze L] > (M)™®,
somen®@-time randomized search algorithdrachieves

Pr[Asolvesx | xe L] > n™®,
X:Hn

The basic strategy of our proof is based on the same technique as the original one by Impagliazzo and Levin, the
so-called hashing argument, which is one of strong and important tools broadly used in the computational complexity
theory (e.g., [6]). A major dierence is that we exploit a higher-performance hash functions than ones used in [12] due to
the large fraction of hard instances.



Averagely hard NP-search problem.In order to illustrate the usagimportance of our Impagliazzo-Levin type reduc-

tion, we show a simple way to modify the technique of Gutfreund, Shaltiel and Ta-Shma in [8] to construct an NP-search
problem hard on average under the uniform distribution based on assumptions thaRRRnd worst-case mild deran-
domization hold.

One of challenging problems in the average-case complexity theory is construction for NP problems hard on average
or the one-way function from a worst-case NP-hardness assumption suchzaBRPHowever, there have been actually
several negative results for such worst-case to average-case reductions on the NP-hardness so far [4, 3, 1, 16]. These
results show that if we have such reductions (e.g., a non-adaptive reduction from inverting one-way functions to NP-hard
problems) then something strange happens in the context of the computational complexity theoyN&d. AM).

Here, it should be noticed that they assumeltfaek-boxreductions. It would be thus possible to avoid these negative
evidences if we exploit aon-black-boxechnique for constructing the reductions, as noted in several of these papers.

Gutfreund, Shaltiel, and Ta-Shma [8] actually developed an innovative technique for proving a worst-case to average-
case reduction that is not fully black-box. By this technique, they obtained a superpolynomial-time samplable distribution
such that no #icient randomized algorithm can correctly solve SAT instances occurring some constant probability under
the distribution. Going along the same line, Gutfreund [7] gave results of separating some average-case complexity
classes by constructing an NP-search problem highly hard on average under some samplable distribution from a worst-
case hardness assumption.

Most recently, the power of the technique was explicitly demonstrated by Gutfreund and Ta-Shma [9]. They con-
structed a quasi-NP decision problem (that has polynomial witness length and superpolynomial verification time.) hard
on average under the uniform distribution from the assumption that IRIP and some average-case mild derandomiza-
tion holds. They also gave a negative evidence on the same result in the case of the black-box reduction.

In this paper, we provide a search version of [9] for an NP-search problem hard on a large fraction over positive
instances under the uniform distribution. Informally, we prove the following theorem:

Theorem 1.2 (Informal) Assume that NB: RP hold. For any constaat> 1 andb > 0, we have an NP-search problem
F with supportL that satisfies the following:

1. Lis large enough under the uniform distribution; namely, for affisiently largen, we have
Prxel] >n°*°
XUn

for some constarttindependent o& andb.
2. Any O(n?)-time randomized search algorithm fails to yield a solutiofr teadly; namely, we have

Pr | Pr[Asolvesx] <n®|xe L] > 1 - n O,
XU, L A

The derandomization assumption will be formally defined in Assumption 3.1, which is stronger than the average-case one
in [9].

In Gutfreund and Ta-Shma’s construction for the quasi-NP problem, they applied the original Impagliazzo-Levin re-
duction to some distribution and then amplified the hardness using the NP-hardness amplification technique given by
Trevisan [18]. Those techniques make the problem hard against any decision algorithm with a polylogarithmic advantage
(i.e., /2 + polylogn). On the other hand, our target is a search problem hard against any search algorithm with poly-
nomially small success probability. It is then essential to apply our reduction to this case instead of the original one for
treating the small probability.



2 Reduction from Samplable to Uniform Distributions

First, we introduce some notion and notations used befdws {Hjhaw andU = {Un}new denotes the hard distribution
we consider and the uniform distribution schemata, whéreand(, are the distributions ovdb, 1}". We use notations
“Hn(X)” and “x : H," to represent a probability of occurring an instancand a random instanoeoccurred according
to a distributionH;, respectively. ByH(1"), we denote a random variable representing an output from a sahhpber
on a length parametef 1If we argue random strings in the algorithm, we denote iH{§"; r).
We say thaf is an NP search problem with supparif we can verify the correctness of its solutions in a lsedf
positive instances in polynomial time. Here we say the “solution” as a witness for a positive instance. Note that the answer
“NO” for a negative instance is not a solution. We also desdfipg as a set of correct solutions to a positive instaxce
for a search problerk. For simplification, we assume that all solutions to inputs of lemgdihs the same lengtii.
The following is the formal statement of Theorem 1.1.

Theorem 2.1 We have some constants and ey with which the following statement holds. L&t be any NP-search
problem with support., and let{ andH be any polynomial-time samplable distribution forand its sampler. Suppose
thatF, H, andH satisfy the following for some constardsainds:

1. l:)rx:‘Hn[ Xe L] 2 n_d1
2. H(1") generates an instance of sizaccording to the distributiott,, and
3. H(1") requires a random seed of sizeand runs im°® time.

Then there exists a constatytsuch that we have some NP-search probiemith supportl’ that satisfies the following:

1. Peymlzel’] = n) @9,
2. if some f)2-time randomized search algorithivi for F” achieves

Pr{ Iir[ A’ solvesz] > 1- n-°® |zel’] > (ﬁ)‘b’ O
zZU; A

then by usingl somen®s2-time randomized search algorithsolvesF, i.e.,

Pr [ Pr{Asolvesx] > n®SP|xe L] > n®sP, 2)
xH(m) A

Remark 1.In the theorem, we omit some details for the sake of simplifying statements. Some unimportant constants
and polynomials are not explicitly stated. Though not explicitly stated, size parameted$ are any sfficiently large
numbers and other constants as well as algorithms are independent of these size parameters.

The rest of this section is devoted for proving this theorem. For the proof, we need hash function families satisfy-
ing certain properties. More specifically, we use highly independent hash function families stated in the following two
propositions. (The proofs are standard and they are omitted here.)

Proposition 2.2 For anyn andk such thak < n, there exists a hash function family Ha@h k) mapping{0, 1)" to {0, 1}
satisfying the following: Anyh € Hash, k) is of polynomial length and computable in polynomial time, For any distinct
t elementsx, X, X3 of {0, 1}", and for any elementg, y», y5 of {0, 1}¥, we have

CPro[gx) =i A (%) = Y2 A g(%s) = Y3 ] = (2795,
g:Hashy(n,k)

where ‘g : Hashy(n, k)" means that a hash functignis sampled from Hasl(n, k) uniformly at random.

Proposition 2.3 Let n andk be any positive integers such tHak n. There exists a hash function family Has)
satisfying the following: Anyh € Hashf, k) is of polynomial length and computable in polynomial time, and for any



e> 0 and anyX ¢ {0,1)" of size> n®f . 2K we have

_ n8\oK e
ngdmmnza 92| > 1-n*

where ‘h : Hash@, k)" means that a hash functidnis sampled from Hash(k) uniformly at random.

Now we start our proof by defining our target probl&hbased on a given search problérand a sampleH. Our
approach is almost the same as Impagliazzo and Levin’s [12]; only ffexatice is to use the highly independent hash
function family.

As already explained, we define our search problem by specifying the followirkg(@ebf valid solutions to a given

inputz = (k, h,y, g, pad.

F'@ = {{Xr5rzrsw) |
@h(x) =y,
(b)w e F(X) (i.e.,wis one of the solution foF),
() H(n; r1) = H(Nn; rp) = H(n; r3) = X, and
(d)g(r1) =000---0A g(rp) =010---0 A g(r3) = 100---0 }.

We clarify the domain of input and output components w.r.t. the size paramétdi|). First we fix some more size

parameters. Following our notation rule, we uée¢o denote the length of solution for we may assume that < n.
Let m be the length of random seeds usedHyiL"); by the condition of the theorem, we hawe= ns. Symbolsh andg
in the inputz denote binary descriptions of hash functions in Hagkj(and Hask(m, m — (k + 2 logn)) respectively; we
may assume that their length are polynomially bounded agdn®. Thus, with a paddingad of appropriate length, we

assume thdi = |z = n%' for some constari.

An inputz = <k, h,y, g, pad) consists of five components, where their domains arek i§)from [n’], (ii) his from
Hashg, k), (iii) yis from {0, 1}, (iv) g is from Hash(m, m— (k+ 2 logn)), and (v)padis from {0, 1} for some appropriate
lengthl. On the other hand, the domain of components of outut, r,, r3, wy are: (i) x is from{0, 1}", (ii) rq, ro, rz are
from {0, 1)™, and (iii) w is from {0, 1}"". Below we often writel for (ry,ro, r3).

By the uniform distributioni{s for z, we mean thak, h, y, g, and pad are chosen uniformly at randdrfrom their
domains.

Before proving that thi’ indeed satisfies the theorem, let us recall the intuitive idea of [12] for introducing this
problem.

We would like to convert the distributiofif, to a uniform distribution. For this purpose, we encode eaeh{0, 1}"
by a stringy of length reflecting itsveight#,(x). For example, a string; with H,(x1) = 272 is encoded by somg of
roughly 2 bit length whereas a string with H,(x1) = 271° is encoded by somg of roughly 10 bit length. Note that
there are at most 4 strings with heavy weight;hence, 2 bit string is enough. On the other hand, we may need 10 bits to
encode strings with light weight2°. Codesy, andy, are obtained by random hash functions. That is, by using randomly
choserh; € Hash(n, 2) andh, € Hash(n, 10), we computg; = h;(X;) andy, = hy(x2). Then we may regar¢hy, y;) and
(hy, y») as uniformly generated random strings. Furthermore, with random pagduhgand pad, of appropriate length,
two strings(hy, y1, pady) and¢h,, y», pad,) can be regarded as random strings of the same length.

This encoding has the following problem: by using, elg,,light inputs such as, are also mapped to short codes
such ay;. Then we cannot guarantee that some useful information @obtained by solving the instands, y;, pad; ).
Hash functiorg is used to avoid this problem; it is used to check whether a sikimgpped to/; has weightH,(x) large

*Precisely speaking, these components are obtained from one random binary string of certain length. In particular, we need to specify a way to splita
binary string into five components and a way to generate hash funtteomdg. For generating hash functions, we use some samplers that are implicitly
assumed for hash function families; thathsandg are generated by these samplers by using a part of the random binary string as random seeds. The
details are omitted.



enough. Note that weightf,(X) is essentially the same as the number of random gesitls which the generatdd (1"; r)
yieldsx. The hash functiog and the condition (d) for solutions & are used to check whether there are enough number
of such random seeds far

Now let us prove thaf’ satisfies the theorem. Below size parameters are fixed as above and variable symbols are also

defined as above. We u3ec {0, 1}" to denote the set of all instances of lengtthat are positive foF.

Remark 2.For avoiding unnecessary complications in our arguments, we introduce the following two assumptions. First

we assume thatf,(X) = 1, that is, our sampler generates only positive instanceB fae can easily modify our prob-

ability analysis for the general case. Secondly we assume that the algériissumed in the theorem is deterministic.

Again the modification for the general situation is easy; we introduce one more variable for a random seeddeed by

consider the execution of the algorithm under several fixed “good” random seeds. The details are omitted here.
We first give the statement 1 of Theorem 2.1. That is, the following lemma.

Lemma 2.4 For some constam > 0, the following holds:
PIIF@#0] > (m)~.
Proof. For each, 0 < i < m, defineX; by
Xi = {(x|270D < H,(x) <27}

Noting thatm = n® and|X| < 2", we have (for sfficiently largen) that

NI

2n
D, ) s Moy <
i>n+slogn+1

Thus, there is somig, 0 < ip < n+ slogn, such thatHn(X;,) = 1/2(n + slogn + 1) > 1/4n. Letky = min(ig, n), and
for bounding the probability Rg,m[ F’(2) # 0 ], we consider the probability théko, h, y, g, pad) has a solution. Here we
note thatX;,| > 2'°/4n becauseH,(x) < 27" for all x € X;, andHn(X;,) > 1/4n. On the other hand, sincg, is a subset
of {0, 1}", we havgX;,| < 2". Hence, from

|
% < Xl < 27,

it follows thatip < n+ 2logn. Thus, we havég < ig < kg + 2logn.

Let H™1(1", x) = {r|[H(A";r) = x}; then we haveH (1", x)| > 2™ (o*D for all x € X;,. Now by using this and the
bound|X;,| > 2'°/4n derived above, and also by using the independence propertleard g, we have the following



bound.

P [ F'((ko, h,y, g, padh) # 0]
.y.0.pad

> Pr [3xT,w[(a)~(d) holds forh,y, g, x,T,w]
h,y,g,pad

Z Pr d[ ar[(a),(c),(d) holds' for h,y, g,T on x]
XXy hy.g.pa

- Z Pr [(---onX)A(--- onX)]
X#EX €Xig hy.g.pad

(Notex1: (b) is satisfied by considering onkye X;,)
= Z P (a) forh,y, x] - P 3r[(c),(d) forg,T, X]
hy g

2
XEXiO
X, | 1 F
> 58 ) e Pl@forhyx] ) P (d)forgr]

ye{0,1}ko T2
(Note2: T = (r1, 1, r3) are three dferent elements dfi~1(1", x))
X, 2ko 2m-(io+1) . (2m-(io+1) _ 7). (2m-(o+1) _ 2)

2 ’ 2k . 2ko ’ 2m-(ko+2logn) . 2m-(ko+2logn) . 2m-(ko+2logn)
2o 2ko (2m—(|0+1))3

8n 2k .2k 2. (2m(ko+2logn)3
11, 1t
8n 16 — 12&

Since this is a bound for the cake= ko, by considering the probability th&t= ko, we have Prym[ F'(2) # 0] >
1/(128(n + 1)). We may assume that> 128(n + 1); therefore, the desired bound is shown vdgh= 2. O

v

\

>

>

=

Next consider the second statement of the theorem. Here we assumergdimmd algorithmA’ satisfying the
inequality (1) of Theorem 2.1 for all ficiently largen. Now for our algorithmA (for solving F), we consider the
following simple one.

Algorithm : A (inputx)

1. Choosek € ['], h € Hashf, k), g € Hashky(m, m - (k + 2 logn)), andpad uniformly at random.
2. RunA’'(¢k, h, h(x), g, pad)) and output the last componentof the obtained output.

Clearly, the running time of this algorithm &(R° + i®) for some constant > 0, and this can be bounded b2
with some constart, becaus@ = ns',

In the rest of this section, we prove that tisachieves the desired performance stated as (2). That is, we show the
following lemma.

Lemma 2.5 For some constarmg, > 0, the following holds:
Pr[ PITA(X) yields somaw € F(x)] > n®sb | xelL] > n%sb,
X:Hpn

We prove the lemma by a sequence of claims. First we analyze the performance of the alg¢rithnom the
condition (1), we have the following. (Recall that we assumed for simplicityAhatdeterministic.)

Pr [A@eF@|zel] > (A)™® = nSbb,
z=(k,h,y,g,pad)

Below we drop the above condition.” | z € L” of the probability for notational simplification. We implicitly consider
this conditional sample space when the random variables contain components of an insknce of



Thus, we have the following bound for sorkg € [n’]. (Below we usez; or sometimeg;(h,y) as a shorthand of

(ki,h,y,g, pad).)

Pr [A@)eF'@)] 2 nsP/n4 1) > nslob+2),
h.y.g.pa

Here we note the following variation of the Markov inequality, which will be used in the following argument.

Proposition 2.6 Consider any index set and a set of value§y}xex such that 0 px < 1 for all x e X. Then we have

2ixex Px > = {X| px = ¥/2}] S Y

X =7 X 2
Lety = n~(5b2+2) and apply this proposition twice to the above bound. Then we have the following claims.

Claim1 We say thahis goodif Pry g pad[A'(z1) € F’(z1)] > v/2. The proportion of gooti is at leasty/2. That is,
o ere s L] s Y
If]r[ y’glf;rawl[A(zl) eF(z)] = 2] > >

Claim 2 Consider any goot and fixed. We say thatis good(w.r.t. h) if Prg pad[A'(z1) € F’(z1)] = v/4. The proportion
of goody is at leasty/4. That is,

Pr

e e Y Y
Pr[ A F > L > =,
Y g’pgd[ (2)eF'(@)] = 4} 7

At this point, we set some more parameters as follows:

e = 1+ (shb+2), (sothan™ < y/8)
f := fo+e (wherefyis from Proposition 2.3)
K := 24, and X = nfK. (see below for the definition o)

We say thatx € X is fat if its weight H,(x) satisfiesH,(x) > 1/(n"K). Note that there are at mastK fat instances
in X. Let X¢,; denote a set consisting of all fat instanceimnd some dummy stringso that|Xs| = n'K. Then the

following claim holds.
Claim 3
hljg[ Ix € Xa N(x) =y] A A'(z1) € F'(z)]

>(z_zMz_z»z> y 1
~\2 8

4 8) 47~ 128 16n°

Proof. The claim is proved by counting dfl y, andg satisfying the condition. For o, we say thah is nonshrink
if |h(Xsar)l = K(1 - n€) > K(1 - y/8). By Proposition 2.3, the proportion of nonshrihk is at least 1- y/8. On the
other hand, the proportion of godi is at leasty/2. Hence, the probability that randdmis both nonshrink and godul
is>vy/2-v/8.

Similarly, for each nonshrink and godd we have at lead{(1 — y/8) y's that have some& € X, such thaty = h(x).
On the other hand, there are at leldst/4 goody’s, i.e.,y’s for which A((ki, h,y, g, pad)) € F’(z) holds for at leasy /4
of all g's and pads. Hence, the probability that randoyng, andpad satisfies botly = h(x) andA'(z;) € F’(z) is at least
(y/4 - v/8)-y/4. Putting these bounds together, we have the bound of the claim.

Let us further analyze the bound of the above claim. Here we divide the &YX € F’(z) into disjoint subcases

It may be the case thaf K > 2". ThenX = {0, 1}"; analysis for this case is easier and omitted.



by considering the output &.

1
<
16n¢ ~  hyg,

Z WP L 3XE Xalh() = y] A K@) = (X, F.w) € F'(20)]

Pr [ﬂxe Xt N(X) = y] A A(z1) € F'(z1) ]

Z WP X e Xal 0 =y] A K@) = (X, w) € F'@) ]

X €Xsat
+ ) o PrAxe Xalh( =yl A A(z) = (X'.Tw) € F'(20)]
X"éXf
< Zx WPr LA @) = (X W) e F'@)] 3)
+ 0, D Pr M) =y A A @) = (T w) € F(z)] (4)
X" ¢ Xtat XEXtat hy.

Consider the last two terms, i.e., (3) and (4). Noting th{at) = y is a part of the conditionx,T,w) € F’(z), we can
restate (3) as follows.

@ = ), Prlhe)=yaA@)=(X.Fw)eF@)]

X' € Xsat

= >, Pr[A@)=(X.T.w)eF @) h(x)=y]-Plh(x) = y]
o5 hygpa hy

= Y P A ) = (KT € Fabuy) ) =y] ¢
X/GXfat

= Z %P LA @D h)) = (T, W) € F/(Zi¢h, h(x)) ]
X' € Xsat Y-8p

_ %Zx Pr [ A@(hh(<)) = (¢.T.W) € F'@h.hx) ]

Intuitively, this is the total success probability of our proced@réOn the other hand, the term (4) is the probability
that A’'s answer does not help us for solvirge Xi;. Our new technique of using highly independent hash functions and
our new analysis, which is fierent from the one in [12], are for bounding this probability small. More specifically, we
can bound as the following claim, which is the key of our argument.

Claim 4 For anyx € X, We have

n®

b =y A A @) = (X' Tw) e F@)] <

X" & Xsat

Thus, by if fg > 7, we have

né n® né 1
@) < an.—:—:—ﬁ

nfK nf nfo+e 32ne’
XEXfa1



Proof. The claim is proved by the following analysis.

DoPrTh()=y A A@)=(X,T,w)eF@)]
X'g¥ PP

< D 20, 25, Pr 09 =h0<) =y A (@) forgandr ]
X" ¢Xtat F1:%1 rpil rgisl

(Note«1: r; is chosen so that(1™;r;) = x’)
< Z Z Z h’y";[)ad[ h(x) = h(2) =y A (d) forgandr ]

r1:#2r2:%3r3:%3

(Note#2: ry is chosen so that(1";r1) ¢ Xear)

(Note=3: lettingz = H(1"; r), ri is chosen so that(1";r;) = 2

2m—k1 2m—k1 1 1 3 n6
. . ( ) -

m
<2 nf nf K2 | 2m-(k+2iogn) nf-nf’

Here we use the fact thatz X implies thatz is not fat andH,(2) < 1/(nfK); in other words, the number ofsuch that
H(1";r) = zis lessthan 2k /nf. O

From the above claim and the restatement of (3), we have

K
<
32n¢

2, Pr A @A) = (X.F.w) € F'(zah. h())) 1.
g,pad

X €Xiat

From this we now show that there are enowgh for which A succeeds with our desired probability.

We say thatx is goodif Pryg pad[A'(ze(h, h(X))) = (X,T,w) € F'(z1)] > 1/(64n%7). We choose the constags of
the lemma large enough so that(@4n®"") > n%'s% hence, good are those for whictA(x) has the desired success
probability. Therefore, the lemma is proved by the following claim.

Claim 5
PHr[ xis good] > 1/64n°'
X:Hn

Proof. First we apply Proposition 2.6 to the above bound. NX¥tgl = n'K; hence, we have

{x

Next we show that a goaoxlis in fact fat; that is, for any goor, we have

= Bdnetf 64ne+T’

WU A @ hO)) = (< F,w) € F'@)] > 1 }‘ 5 X

2m— ka1

1
n. _
PLH(N N =x] = — = S—.

This is because if otherwise, we have
Fér[HF[ H(™r1) = HQA" r2) = H(1" r3) = x A (d) holds forf andg]] < n®/n®f,

but then the probability that randomhas some satisfying the condition (d) for the solution is much smaller than
1/(64n°""); hence A(X)’'s success probability becomes so small thaannot be good.

Now we know that there are at ledXt.|/(64n°") (= K/(64n°)) good x's and that each of them is fat, i.6n(X) >
1/(nfK). This proves that the probability of goocinder the distributiorf, is at least 1(64n°*f). O
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3 Averagely Hard NP-search Problem

We next apply our new technique to a worst-case to average-case reduction for NP-search problems. As mentioned in
Theorem 1.2 of Section 1 informally, we construct an NP-search problem hard to yield a solution on average under the
uniform distribution.

Before giving the formal statement, we explicitly describe the mild derandomization assumption appeared in Theo-
rem1.2.

Assumption 3.1 Let B; andB; be two randomized decision algorithms. We say BaandB, ares-indistinguishable
if
Pr[By(X) = “YES"] — Pr[By(X) = “YES"]| < §
1 2
for any x € {0,1}*. For any polynomial-time randomized decision algoritBrand any constard > 0, there exists

a probabilistic polynomial-time decision algorithBf such thatB® requires a random seed of size at masbn input
lengthn, andB?® andB are 1/100-indistinguishable.

This assumption is stronger than the original one used in [9]. The original one is that for any samplable distribution we
have some derandomized algorithm that works well over instances occurring with a constant probability, 168y 99
(i.e., average-case derandomization), but we now assume that a derandomized algorithm works well over any instance
(i.e., worst-case derandomization). Similarly to the case of [9], note that our assumption does not directly lead to a strong
consequence such as BRHP or collapse of the BPTIME hierarchy.

Combining Assumption 3.1 with our reduction given in Section 2, we obtain the following theorem.

Theorem 3.2 Assume that NE: RP and Assumption 3.1 holds. For any constantl andb > 0, we have an NP-search
problemF’ with supportL’ that satisfies the following:

1. L’ islarge enough under the uniform distribution; namely, for difisiently largen, we have

Pr[xel']>n"°
XUn

for some constart independent o& andb.

2. Anynd-time randomized search algorithm fails to yield a solutioftdadly; namely, we have

Pr | Pr[ A solvesx] < n™® | N L’] o1
XU, L A

whered is a constant depending only arandb.

We omit the proof of this theorem since it can be easily obtain by combining our reduction of Theorem 2.1 with hard
instance sampler stated in Theorem 3.3 below.

Theorem 3.3 Leta > 1 andb > 0 be any fixed constants and tét- 0 be some constant depending onlyaoandb. If
Assumption 3.1 holds and NP RP, there exists a samplable distribution schétha {H,} v such that for any?-time
randomized search algorith(assignment finding problem), infinitely many N

nl/d

Pr | Pr[ Asolvesx] < n™® ‘ X € SAT] >1-2" and Pr[xe SAT]> 3/8.
XHn L A X:Hn

Then, the samplet for H runs in polynomial time and requires a random seed of G{zé).

11



As observed in [9], the instance size of Impagliazzo-Levin type reduction, including ours, depends on the size of random
seeds to generate the samplable distribution. Due to Assumption 3.1, the senguilsrrequires a random seed of size

O(n®) independently of the parameteaisand b, which enable us to connect this theorem to Theorem 2.1 for proving
Theorem 3.2. (Similarly to the case of [9], if the size of random seeds deperalarmb, our reduction is in fact not
available.)

Now, we briefly explain the diierences from previous results. (See Appendix for the details of the proof.) The proof
of Theorem 3.3 is done by modifying the arguments used for constructing a hard search problem under some samplable
distribution in [7] and a hard decision problem with a derandomization assumption under the uniform distribution in [9].
The essence of these techniques is to find a hard instance against any polynomial-time algfrothraome formulaa
such as X is satisfiable buA fails on x” by usingA itself.

In our case, we would like to find the hard instance against any search algditbyna derandomized version &f
with a short random seed. This situation is slightlffetient from those of [7, 9]. Note that the derandomization is only
applicable to decision algorithms, as stated in Assumption 3.1. Therefore, we need to convert the search &gorithm
a decision versioB and then we obtain a derandomized decision algoriimAfter that, we construct a derandomized
search algorithm from a downward self-reduction wBth Such a downward self-reduction has been already used in [8]
and [9].

In the downward self-reduction, the decision algorithm might find some contradiction as followg: hestsome
formula obtained by partially assigning#a. The downward self-reduction obtajia andy; by assigning 0 and 1 to one
variable ofys and then invokes the satisfiability ¢ andy, to the decision algorithm. Let us consider the case that the
decision algorithm answers “YES” i but “NO” to ¢ andy;.

In the arguments of [8] and [9], at least oneygf)o, ¥1 is shown to be a hard instance against the decision algorithm.

In this case, we cannot guarantee satisfiability of the hard instance i isiisce the decision algorithm answers “YES”
ony. On the other hand, we require the satisfiability of the hard instance for connecting the hard instance sampler to our
reduction (recall that the conditions of Theorem 2.1.) We thus modify the argument of this case.

In our caseA is originally a search algorithm for NP problem. We can then assumeAthbdtvays answers “NO”
on any negative instance without loss of generality since solutions outputtedAfiama dficiently verifiable, and thus
the “YES” answer ofA is reliable. The decision algorithi®, constructed fron#, inherits a similar property due to the
worst-case derandomization assumption. It follows Bfatorrectly answers with high probability afny which implies
that the hard instance is at least one@/gfandy;. Since the decision algorithm answers “NO” on them, we can conclude
that the hard instance is satisfiable.

Acknowledgements.The authors would like to appreciate Dan Gutfreund for valuable discussions and helpful comments
on worst-case to average-case reductions.
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Appendix: Construction for Hard Instance Sampler

In this section, we suppose that a decision algorithm outputs either “YES” or “NO” and a search algorithm outputs either
a pair of “YES” and a solution or “NO”.

We denote bypa(X) the probability that an algorithi outputs “YES” on an inpuk. More precisely, ifA is a decision
algorithm thenpa(X) := Pra[A(X) = “YES"] , and if Ais a search algorithnpa(X) := Pra[A(X) = (“YES”, )], wherea
is a solution to the instance We sometimes writé(x) = “YES” instead ofA(X) = (“YES”, @) for a search algorithnA
if it succeeds to yield a correct solution.

If A'is a search algorithm for SAT in? time @ > 1), then we can assume thAtalways outputs “NO” on any
unsatisfiable formula without loss generality since it can check whether the outputted solution indeed satisfies a given
formula or not with linear time overhead.

We argue in this section more general derandomization parameterized by

Assumption .4 Let B; andB; be two randomized decision algorithms. We say BwaandB, ares-indistinguishable if
|PrBl [Bi(X) = “YES"] — Prg, [B2(X) = “YES"]| < ¢ foranyx € {0, 1}*. For any probabilistic polynomial-time algorithm
Aand any constarnt > 0, there exists a probabilistic polynomial-time search algori#irauch thatA® requires a random
seed of size at mosf on input lengthn, andA® andA ared(n)-indistinguishable.

Settings(n) = 1/100, this assumption is the same one as Assumption 3.1 in Section 3.
We first present a lemma for the hard instance sampler depending on given randomized search algorithms. Using this
sampler, we will construct a hard instance sampler stated in Theorem 3.3 against any randomized search algorithm.

Lemma.5 Leta > 1 andb > 0 be any fixed constants and kkt> 0 be some constant depending onlyaandb.
If Assumption .4 holds with a parametéiand NP+ RP, for anyn?-time randomized search algorithfnthere exists a
samplable distribution schertda = {Han}new Such that for infinitely many € N and any polynomiap(-)

nl/d

Pr | Pr[Asolvesx] < n™ ' X € SAT] >1-2" and
XHan L A
Pr [xe SAT] > 1/2 - 1/p(n).

X:Han

Then, the sampleBy,, for HA runs inO(t’(n) n°/&’) time and requires a random seed of size at mo8t&?, where
& =6+ exp(n/2),t'(n) is a polynomial determined by the derandomization of Assumption .4.

We now give the statement of Theorem 3.3 in Section 3 again.

Theorem .6 Leta > 1 andb > 0 be any fixed constants and t> 0 be some constant depending onlyasandb. If
Assumption .4 holds with a parameteand NP+ RP, there exists a samplable distribution schétha {H,}ney Such
that for anyn?-time randomized search algorithyfor SAT (assignment finding problem), infinitely many N and any
polynomialp(-)

nt/d’

FZ F/ir[A(x) yields a solution tox] < n® | X € SAT] >1-27 and
X:Hn

F;r [xe SAT] > 1/2-1/p(n).

Then, the sampleH for H runs in O(t’(n) n°/6"%) time and requires a random seed of size at mo8{&?, where
& =6+ exp(n/2),t'(n) is a polynomial determined by the derandomization of Assumption .4.

We now sketch an overview of the proof of Theorem 3.2. Since we easily obtain the s&inpfenodifying a hard
instance generat@, of Lemma .5, we first sketch a rough idea of construction for the sar@pler
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A basic strategy of our proof follows the technique developed in [8]. For simplification, we only consider a determin-
istic algorithm here. Roughly speaking, for any decision algoriByra hard instance genera@g performs as follows:
(i) it first constructs some formulss using thedescriptionof the algorithmB such as X is satisfiable formula anB fails
on xin n?time.” (i) Next, it searches a solution #g by using downward self-reduction with the decision algoritBm
(iii ) If it finds a correct solutiorx to ¢g, It outputsx. If it answers “NO” ongg, it outputsegg. If it finds a contradiction
in the downward self-reduction, namely, it answers “YES"wr= ¢g(aq, ..., @i, Vit1, ..., Viy) With a partial assignment
(a1, ..., @) € {0, 1} but it answers “NO” on both afg = ¢g(a1, ..., @i, 0, Vis2, ..., Vi) andy = de(a, ..., @i, 1, Viez, ..., Vir),
it then outputs one of these three formula@, y1 uniformly at random.

Intuitively, eitherx, ¢g or one ofy, Yo, 1 is hard againsB, so is it againsA. The reason is:i) If x is found then
B should fail onx as stated in the formula.iiY The worst-case assumption NP P implies thatgg is a satisfiable
formula since there is a hard instancéor B by the assumption. So, B answers “NO” ongg, B indeed fails ong.

(iii) Apparently, B fails on at least one of three formul@eyo,y1. Therefore, the algorithnB itself provides a hard
instance againd® with the inputgg.

The results of [7, 9] also make use of the basic idea of [8]. The result of [7] provides a version of a distribution hard
against randomized search algorithms without the derandomization, and the result of [9] provides another version against
decision algorithms with a similar derandomization to ours.

On the other hand, we treat a distribution hard against randorsadhalgorithms with themild derandomization
assumptiorunlike the cases of [8, 7, 9]. So, we require fietient technical argument from theirs.

Recall that the mild derandomization of Assumption 3.1 is applicable only to decision algorithms. To construct the
derandomized search algorith# from the original search algorith#, we regardA as a decision algorithB once and
then derandomize it to a decision algoritiBhthat approximate8 well. After that, we make use of the derandomized
decision algorithnB® as a decision oracle to perform the downward self-reduction for SAT instances.

So, we obtain three cases such as [8] (and [9]): the generatoxfiodg, answers “NO” orpa, or finds a contradiction
in the downward self-reduction. Note that we require satisfiability of hard instances outputted from the generator (with
a nonnegligible probability) to apply Theorem 2.1 to this worst-case to average-case reduction. (See the condition of
Theorem 2.1.)

The first two cases satisfy this requirement even in the case of the basic argument of [8]. However, the third case is
problematic. It is because that the algorithm wrongly outputs “YES” on the self-reduced ingtandef this is the hard
instance then the hard instance is not satisfiable.

Fortunately, we can avoid this problem in our setting by the fact Ahit originally a search algorithm. This fact
implies that if the decision algorithB® answers “YES” then the answer is correct with high probability. Note that a
solution outputted from NP-search algorithis efficiently verifiable, and thus the “YES” answer Afis reliable. This
property is inherited byB and henceB® due to the worst-case derandomization assumption. (This is the reason that
we require the “worst-case” derandomization assumption. Only assuming an average-case derandomizatidsf, even if
inherits the property oB on some instance, we cannot guarantee thgt does on a self-reduced instancexgf

Therefore, wheiB® outputs “YES” ony, the answer is correct with high probability. Then at least ong@ndy is
the hard instance, say, on whichB? answers “NO”. Sinc; is hard and3® answers “NO” on ity; should be satisfiable
with high probability. It follows that the generator can output a hard satisfiable instance at least approxipi2aitetis
case.

Finally, we roughly explain how to convert this hard instance generator for a specific algorithm to one for any algo-
rithm. For this conversion, we just modify the statement of the base formuasatisfiable and fails on x in n? time”
to “x is satisfiable and all oy, ..., Aigglogn fail on x in N time”, whereAq, ..., Angiogn are the first log log randomized
algorithms. The proof of this case goes through similarly to the previous case. Note that any algorithm is included in
the set off Ay, ..., Anglogn} for all sufficiently largen. We can therefore conclude that the modified sampler generates hard
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instances against am¢-time randomized algorithm for such large

A Proof of Lemma .5

In what follows, we first give the base formupgSubsection A.1) and our sampling algorittin generating the distribu-
tion schema (Subsection A.3), and then we prove thitindeed generates hard instances agar(§&ubsection A.4).

A.1 Construction for Base Formula

The following is our base formula:
bnr = X € {0, 1}“[SSAT1(X; r)=“NO" AXxe SAT],

where SSAt is a randomized search algorithm for SAT, which is constructed from the original algokitmd Assump-
tion .4.

We assume that,, directly represents a formula of a SAT instance by the Cook-Levin reduction for eachnfaret
r. The length ofy,, is then bounded by some polynomial if SSATins in polynomial time.

To construct the search algorithm SSATve make use of a derandomized decision aIgoriEBTNl. Here we
consider a general algorithmg with a parametee > 0. (Settinge = 1, we obtain the algorithrﬁss—m'l.) This
algorithmm"E has the following properties.

LemmaA.1 Suppose that Assumption .4 holds. For any randomized search algdrithnming inn? time, there exists
a randomized decision aIgorithBSATg such that

1. Given a formulax of lengthn, the running time and the size of random seedBSAT are O(t(n) n?/6"?) and
n3/25"2 respectively, wheré&(n) denotes a polynomial determined by Assumption .4 to reduce the size of random
seeds froom®?*1 to n and¢’ = § + exp(n/2).

2. We have for any

XeSAT A pa(X) >NP/2 =  pgar(X) > 1-expEn®) and
X¢SAT =  pgor(X) < expEn®).

To show these properties, we require several intermediate algorithms and their analysis. For ease of understanding, we
put the proof to Subsection A.2.
By usingBSATs with & = 1, we obtain the search algorithm SSATs follows:
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Algorithm : SSAT (input X = X(V1, ..., Viy))

1. Search a satisfying assignment by a downward self-reduction Bqul(o) as a decision oracle for SAT. Precisely,
perform the following steps:

(i) RunBSAT (x). If the result is “NO”, output “NO” and halt.

(i) Seti = 0 andx©@ = xinitially. Let X = X(a4, ..., @, Vi41, ..., Vi) be the current formula obtained by partially

assigning am-bit string (@1, ..., @;) to the variables, ..., vi in x.

(iii) Assign 0 and 1 to the variablg,; in X Letx{™ andx{*! be the resulting formulae with,; = 0 and 1

respectively.
(iv) Run BSATl(xf)'*l)) andBSAT (x{"Y). If both of the results are “NO”, output “ERROR” and halt. If at lgast

one of them is “YES”, update the current formula to it, and go back to Sitep (

2. If a satisfying assignment fotis found in Step 1, output “YES” and the assignment.

Straightforwardly, we obtain the following lemma from Lemma A.1 and the above construction.

Lemma A.2 Suppose that Assumption .4 holds. For any randomized search algévithnming inn? time, there exists
a randomized decision aIgorithBSATs such that

1. Given a formulax of lengthn, the running time and the size of random seeds of SSA& at mosO(t(n) n3/6?)
andn®/¢’? respectively, whergn) denotes a polynomial determined by Assumption .4 to reduce the size of random
seeds frorm®P*! to nands’ = ¢ + exp(n/2).

2. We have for any

XeSAT A pa(X)>nP/2 = Pr[SSATl(x) # “NO” ] >1-exp(n?) and
X ¢ SAT = pSSATl(X) = 0

A.2 Modified Decision Algorithm

Let A be a search algorithm that tries to solve SAT. Recall fhautputs a pair of “YES” and a satisfying assignment if
it succeeds, otherwise it just outputs “NO”. As already mentioned, we can agsamays outputs “NO” on an input
X ¢ SAT without loss of generality sinc&is a search algorithm for SAT.
For our base formula, we require a decision algorimﬂ'l that works correctly with very high probability & does
with probability at leash™ with a short random seed.
Let BSAT be a decisional version of a given search algorighaf running timen?. BSAT outputs “YES” (success) or
“NO” (failure) depending on the output &. Thus the performance (time, size of random seed, and success probability)
of BSAT is the same as that &f and BSAT outputs “NO” on an input ¢ SAT with probability 1.
We construct the base formula we desire by modifying this decision algorithm BSAT. We first introduce an amplified
version of BSAT.
Algorithm : BSAT}, (input X)

1. Choosevs, ..., vy € {0, 1)™ independently and uniformly at random.
2. Run BSAT;v;) fori = 1,...,n>*L,
3. Output “YES" if there is at least one “YES” in the results of Step 2. Otherwise, output 0.
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Obviously, the running time i©(n®*+1) and the size of random seeds is at mds+1. Now we estimate the success
probability of BSAT,.

Claim 6 For anyx € SAT, if pgsar(X) > n°/2 thenpgsar, (X) > 1 — exp(n/2). For anyx ¢ SAT, pgsar, (X) = O.

The first statement on the probability estimation can be derived by a standard argument usindfifiadloeunds. The
second one is done by the fact that BSAT does not fail on a negative instance.

We next apply Assumption .4 to BS@Tor saving randomness. We denote the resulting algorithm by BSAfe
algorithm BSAF requires a random seed of size at masto simulate BSAF, and runs irt.(n) time, wheret,(n) is a
polynomial determined by the derandomization of Assumption .4. Then B&8Ad BSAT, ares-indistinguishable.

Claim7 Leté :=6+exp(n/2). Then BSAT satisfies the following:

1. Forxe SAT, if pgsar,(X) > 1 —exp(n/2) thenpgsar=(X) > 1-4".
2. Forx ¢ SAT, pgsar(X) < 6.

Now we amplify the gap between the probabilities by taking majority vote. This is the decision algaﬁmﬁ we
require.

Algorithm : BSATS(input X)

1. Choosevs, ..., Ve 252 € {0, 1)" independently and uniformly at random #@r= ¢ + exp(n/2).
2. Run BSAF(x;v) fori =1,...,n%/25".
3. Output the majority of the results in Step 2.

Claim 8 Then the algorithnBSAT satisfies the following:

1. Forxe SAT, if BSAT?(X) > 1 - ¢’ then BSATS(X) > 1 - exp(n®).
2. Forx ¢ SAT, pgszr(X) < exp(n?).

The running time and the size of random seedBSAT areO(t,(n) n%/5'%) andn /25" respectively.

Putting the above claims together, we can obtain the proof of Lemma A.1.

A.3 Construction for Hard Instance Sampler

We first giveGa that generates hard instances by using the base forgpulaThe algorithmGa is constructed from
another search algorithm SSAfor SAT, which is obtained fronBSAT . The algorithm SSATworks as a component
of the sampler to find a solution to the base formgla for generating a hard instance. In this algorithm, we fix the
parametet to 1/d for the lengthn® of -
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Algorithm : SSAT(input¢n, = dnr(Va, ..., Vir))

1.
2.

3.

(nd)3e/26’2 n3/20'2

Choosau € {0, 1} =1{0, 1} uniformly at random.
Search a satisfying assignment by a downward self-reduction Bcswg“g(-; u) as a decision oracle for SAT. Pre-
cisely, perform the following steps:

(i) RunBSAT (¢n,;U). If the result is “NO”, outputs,, and halt.
(i) Seti = 0 andy© = ¢y, initially. Let O = ¢, (a1, ..., @, Vis1, ..., Viy) be the current formula obtained |py
partially assigning aibit string (@3, ..., @;) to the variables, ..., vi in ¢n;.
(i) Assign 0 and 1 to the variablg, in @ and then pad them to be of lengtf. Lety{™ andy{*? be the
resulting formulae wittv,,; = 0 and 1 respectively.
(iv) RunBSAT (y{*";u) andBSAT (»{*?; u). If both of the results are “NO”, output “ERROR” ang{" ", 4/ {*?)
and halt. If at least one of them is “YES”, update the current formula to it, and go back taii$tep (

If a satisfying assignment fa#,, is found in Step 2, output “YES” and the assignment.

Note that there are three possibilities of outputs from SSKVES”, x), (“ERROR”, (u/g””, wﬁ*”)) and (“NO”, ¢n;r).

The

nIx = n, S = ) = gl = nd. Moreover, this SSAThas the following properties, which are easily proven

by construction for SSATand Lemma A.1.

Lemma A.3 Suppose that Assumption .4 holds. The algorithm SS#fisfies the following:

1.

Given a formulap,, of lengthn?, the running time and the size of random seeds of SS#&O(t’(n) n*!/6"%) and

n*/5"2 respectively, wheré#(n) denotes a polynomial determined by Assumption .4 to reduce the size of random
seeds frormd@++1) to n1/d ands’ = ¢ + exp(n/2).

We have for any of lengthnd

yESAT A pay) > /2 = Pr [SSAT(Y) # “NO" | > 1~ exptiy?)

Combining the above algorithm SSAWith the formulag,,, we now show a hard instance gener&aras follows.

1

2.

Algorithm : Ga (input 17)

. Run SSAF(¢n,; u) for r € {0,1)"/*” andu € {0, 1)"/%” chosen independently and uniformly at random.
If it obtains (“YES”, X), (“"ERROR", ¥, ¥1) and (“NQO”, ¢), outputX, (¥o, 1), @, respectively.

Note that the output size isfirent from each other among “YESERROR” and “NO”. Thus, we modify this
algorithmGa to use it as a sampléi, for the distribution schemBl, by a similar argument to [8, 7, 9]. The following is

the

modified algorithm, i.e., the sampldp for H.

1.
2.

Algorithm : Ha (input 1M)

RunGa(1") ntimes independently. If it outputs an instance of lengtthen output it and halt.

Check whethen satisfiesm® = n for somem, where|¢n,| = nd. If there is such amm, run GA(1™) n times
independently. If it outputs an instance of lengtithen output it. If it outputs a pair of instances of lengftoutput
one of them uniformly at random.
Output 0.
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A.4 Correctness
We first prove that the generat@p provides hard instances against the original search algoAthm
Lemma A.4 The algorithmGa satisfies the following:

1. If Ga(1") outputs “YES" andx of lengthn satisfyingg,,, we have
x € SAT and GFA’I[ pa(X) < n‘b/Z] > 1-2"exp(n?).
2. If GA(1") outputs “NO” andy of lengthn?, we have
Prlye SAT]>1-1/p(n) and P{pa(y) <ly"*/2 |y e SAT| > 1-2" exp(-iyf’)

for any polynomialp(-).
3. If Ga(1") outputs “ERROR” andio, ¥/1) of lengthnd, there exits a formula e {1y, ¥1} such that

Prize SAT] > 1~ p(n) - I2 exp(-|2%) and GPr[ Pa(2) <127°/2 | ze SAT| > 1- 2% exp(-IzP).

Proof. Case 1(SSAT outputs “YES” ongn,): In this case SSATyields a correct solutior to ¢,, at the same time.
Then,x is a satisfiable formula and SSXk; r) = “NO” from the statement of,,. We now give the following claim on
the random string.

Claim 9 We say that € {0, 1}"/9” is good for SSAF if we have for anyx of lengthn pa(x) > n°/2 = SSATY(x; r) #
“NO”. We then have

_Pr [r is good for SSA'F] > 1-2"exp(n?).

rUag 52
Proof. ByLemmaA.2, ifpa(X) > n™°/2, a fraction ofr’s satisfying SSAF(x;r) = “NO” is at most exp{£n?). It follows
that a fraction of bad's for a fixedx is at most exp{n?). By taking the union bound over all valid instances, we obtained
the desired bound for goats. O Taking the contraposition of the definition of a gagave obtain thapa(x) < n°/2

for a satisfiablex.

Case 2(SSAT outputs “NO” ongn,): We first show tha,, is satisfiable for almost all's under the worst-case
assumption NRB: RP.

Claim 10 Assume that NR: RP. Then, for any polynomigl(-), we have
I:r>r[¢n,r € SAT] > 1-1/p(n).

Proof.  Recall that any search algorithm for SAT can be assumed to answer correctly on any negative instance. |If
NP # RP, for any polynomial(:) there exists a satisfiable formukasuch thatpgsap(X) < 1/p(n) since SSAF is a
polynomial-time NP-search algorithm. This implies that for 1/p(n) fraction ofr's SSAT}(x;r) = “NO”. It follows

that the formula “SSAT(x; r) = “NO” A x € SAT” is satisfied by thesg andr, i.e.,¢n; € SAT. |

By Lemma A.3 and the same argument as the proof of Claim 9, we obtain the following claim.

Claim 11 We say that € {0, 1}(™*/2” js good for SSAT if we havepa(X) > ly| /2 = SSAT(x; u) # “NO” for any y
of lengthn?. We then have
Pr [uis good for SSAT] > 1 — 2¥ exp(-|yi?).

riUya o2
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By taking the contraposition, it follows th@i(¢n,) < |¢én|™°/2 since SSAT outputs “NO” in this case.

Case 3(SSAT outputs “ERROR” ory,): Then, SSAT outputs two formulag{ ™ andy!* for somei at the same
time. Lety() be the formula before assigning to the variahlg in Step (i) of SSAT. We first suppose that® is
satisfiable. We then have a formuté™ e (yd™, y "1} such thag(+D is satisfiable buBSAT outputs “NO” ong(+D,
By the definition of a goodi, if uis good forBSAT', it follows thatpa(¢+Y) < |¢(+D|0/2.

Next, we argue thay() is satisfiable with high probability untBSAT outputs “NO” on both ofy{*? andy{*?.
Suppose that the starting formulg; is satisfiable. By Lemma A.1, we ham'g(y) = “YES” with probability at most
exp(-ly/®) for anyy ¢ SAT. Since the number of the variablesdig, is at mostind, the unsatisfiable formula is chosen
in the downward self-reduction, , i.e/!) is unsatisfiable for somiewith probability at mosnh® exp(-n?*) by the union

bound. O

We now turn to the correctness of the samplar

Proof of Lemma .5. We prove that the instances outputted in either Steps 1 ot @fre hard agains for infinitely
manyn.

We consider three cases in the analysisigf The first case is thatis outputs an instance in Step 1. This instance
is outputted only if SSAT in Ga outputs “YES”, that is, it succeeds to yield a solutioto ¢,,. The second one isls
outputs an instance in Step 1 when SSAT G, outputs “NO”. The third one is when SSATh Ga outputs “ERROR”.
Below we call these outputs froidp yes-, no-, and error-instances, respectively. Note that outp@g afe always of
lengthn.

We define setdl andN’ as

N := {n eN: gr[GA outputsx of lengthnin Step 1] > 1/2} and N :={m%:meN}\N. (5)
A

Note that at least one & andN’ is an infinite set. We will show that ifi € N then an yes-instance is hard ana i€ N’
then either no- or error-instance is hard.

We begin with the following property on length parameteBy this property, one can see thdf outputs instances
in Steps 1 and 2 with high probability for infinitely many

Claim 12 We have
Er[ Ha outputs an instance in Step]> 1 - 27"
A
for anyn € N, and we also have
Er[ Ha outputs an instance in Step|2 1 - 2"
A

foranyne N’

Proof. By the definition ofN in Equation (5), the generat@, outputs a solutiorx to ¢, with probability at least 12
for anyn € N and outputsp,, with probability at least A2 for anyn € N’. By repeatings ntimes in Steps 1 and 2 of
Ha, Ha obtains an instance in Step 1 foe N, and an instance in Step 2 fore N’ with probability atleast + 2. O

We suppose that is in the setN for Case 1 andh = n is in the setN’ = {m” : m e N} \ N in Cases 2 and 3. By
Claim 12,Ha outputs an yes-instance fare N and outputs no- or error-instance fore N’ with probability at least
1-2

Case 1:We now discuss Case 1 where the sampler outputs an yes-instance fon evéylefined in Equation (5).
In this case, we obtain a satisfying assignmeat lengthn for ¢, from the property of SSAT, which concludes

x € SAT and GP|[ pa(x) < n‘b/Z] > 1-2"exp(n?)
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by Lemma A.4 1.
Case 2:Next, we consider the case thaf outputs a no-instance. It is obvious that for the instance

Prlye SAT|>1-1/p(n) and Pfpa(y) <Iy™*/2|ye SAT| > 12" exp(-Iy?)

for any polynomialp(-) by Lemma A.4 2.
Case 3:In this case, we obtain two instanaggandy; in SSAT. By Lemma A.4 3, one of two instances is satisfiable
and hard again#. SinceH, chooses one of two uniformly at randomH#f, choosex € {io, ¥1} we have

Pr{ze SAT] > 1/2 - p(n) - |2 exp(-12’)/2  and HPI[ Pad) < 127°/2 | z€ SAT| > 1- 2% exp-IzP).

for any polynomialp(-).
Putting Cases 1, 2 and 3 together, we can demonstratelthiatindeed a hard instance sampler for infinitely many
as stated in Lemma .5. m]
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