
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: Computer Science

ISSN 1342-2812

Reduction for NP-search Problems from Samplable to
Uniform Distributions: Hard Distribution Case

Akinori Kawachi and Osamu Watanabe

February 2008, C–254

Reduction for NP-search Problems

from Samplable to Uniform Distributions:

Hard Distribution Case

Akinori Kawachi and Osamu Watanabe

Graduate School of Information Science and Engineering,

Tokyo Institute of Technology

Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan

{kawachi,watanabe}@is.titech.ac.jp

Abstract

Impagliazzo and Levin showed a reduction from average-case hardness of any NP-search problem under any polynomial-

time samplable distribution to that of another NP-search problem under the uniform distribution in [12]. Their target was

the hardness of positive instances occurring with probability 1/poly(n) under the distributions. In this paper, we focus on

hardness of a larger fraction of instances. We reduce the hardness of positive instances for any NP-search problem occur-

ring with probability 1−1/poly(n) under any polynomial-time samplable distribution over positive instances to that for an-

other NP-search problem with similar hardness under the uniform distribution. In order to illustrate the usage/importance

of this technique, we show a simple way to modify the technique of Gutfreund, Shaltiel and Ta-Shma in [8] to construct

an NP-search problem hard on average under the uniform distribution based on the assumption that NP, RP and some

worst-case mild derandomization holds.

1 Introduction

Reduction from samplable to uniform distributions. The theory of the average-case complexity has been studied

extensively since 1970’s to reveal the nature of “hard” problems in practical situations. In particular, many researchers

recently discusses the average-case hardness of NP problems and relations to fundamental cryptographic primitives such

as the one-way function from a cryptographic point of view (see, e.g., [1, 3, 16]) because cryptographic protocols need to

withstand attacks from adversaries even if their instances (messages, keys, etc.) are chosen randomly and so we reduce

the security of such cryptographic protocols to some NP problems believed to be hard on average in modern cryptography.

One of the seminal results in the average-case complexity theory is a completeness theorem on distributional NP

problems under polynomial-time samplable distributions by Impagliazzo and Levin [12]. They showed that if we have

some polynomial-time samplable distribution hard on average for some NP-search problem then we have another NP-

search problem hard on average even under the uniform distribution.

Then the Impagliazzo-Levin reduction is stated as follows. For any polynomial-time samplable distribution schemaH =
{Hn}n∈N, NP-search problemF with supportL (a set of positive instances ofF), and 0< δ(n) < 1, there exists an NP-

search problemF′ such that if we have some polynomial-time randomized search algorithmA′ for F′ with supportL′

satisfying

Pr
x:Un

[
A′ solvesx | x ∈ L′

]
> 1− δ(n),

1

then we have another polynomial-time randomized search algorithmA for F satisfying

Pr
x:Hn

[A solvesx | x ∈ L] > 1− poly(n)δ(n),

whereUn is the uniform distribution over instances of lengthn.

This result implies that the NP hardness under any polynomial-time samplable distribution is essentially equivalent

to that under the uniform distribution within randomized polynomial time. An more explicit form of Impagliazzo-Levin

reduction is given in Lemma 1 in [9]. Also, a survey on the average-case complexity theory by Bogdanov and Trevisan [2]

contains the details of the proof.

In applications of the average-case complexity theory, we sometimes require higher hardness, e.g., hardness of all

instances but a small fraction for an NP-search problem. A typical example is security reductions for cryptographic

protocols and primitives. For example, if we want to show that some protocol is secure based on the one-way function,

we prove that the security over all random instances but a negligible fraction is guaranteed from the hardness of inverting

the one-way function over all inputs but a negligible fraction.

Unfortunately, one can see from the parameter of the success probability in the Impagliazzo-Levin reduction that their

original result cannot treat such a large fraction of harder problem. It is therefore significant to develop new techniques

for discussing harder problems in the Impagliazzo-Levin type reduction in some situation.

This issue is deeply related to the hardness amplification techniques since we could overcome the above barrier

if the techniques would work well for the Impagliazzo-Levin reduction. Direct product theorems such as Yao’s XOR

lemma [19], which has many extensions and different proofs [14, 5, 11, 13, 15, 10, 17, 18], are very powerful techniques

for hardness amplification. However, these techniques have an obvious disadvantage in a setting of the Impagliazzo-

Levin reduction. They basically make an instance of a harder problem by taking direct product of multiple instances of

the original NP-search problem. Thus, a fraction of positive instances exponentially decreases in the harder problem as

we take the direct product over more instances if we want to keep the new problem in NP.

In this paper, we give a new reduction for an NP-search problem to directly treat harder distributions with the

Impagliazzo-Levin type argument. The following informally describes our main result:

Theorem 1.1 (Informal) Let F be any NP-search problem with supportL, and let beH be any polynomial-time sam-

plable distribution schemaH such that Prx:Hn [x ∈ L] > n−Ω(1). Then, there exists another NP-search problemF′ with

supportL′ that satisfies:

1. We have for the new search problemF′

Pr
z:Un

[
z is a positive instance forF′ (i.e.,z ∈ L′)

]
> (n)−Ω(1).

2. If some (n)a-time randomized search algorithmA′ for F′ achieves

Prz:Un

[
A′ solvesz | z ∈ L′

]
> (n)−b,

somenO(a)-time randomized search algorithmA achieves

Pr
x:Hn

[A solvesx | x ∈ L] > n−Ω(b).

The basic strategy of our proof is based on the same technique as the original one by Impagliazzo and Levin, the

so-called hashing argument, which is one of strong and important tools broadly used in the computational complexity

theory (e.g., [6]). A major difference is that we exploit a higher-performance hash functions than ones used in [12] due to

the large fraction of hard instances.

2

Averagely hard NP-search problem.In order to illustrate the usage/importance of our Impagliazzo-Levin type reduc-

tion, we show a simple way to modify the technique of Gutfreund, Shaltiel and Ta-Shma in [8] to construct an NP-search

problem hard on average under the uniform distribution based on assumptions that NP, RP and worst-case mild deran-

domization hold.

One of challenging problems in the average-case complexity theory is construction for NP problems hard on average

or the one-way function from a worst-case NP-hardness assumption such as NP, RP. However, there have been actually

several negative results for such worst-case to average-case reductions on the NP-hardness so far [4, 3, 1, 16]. These

results show that if we have such reductions (e.g., a non-adaptive reduction from inverting one-way functions to NP-hard

problems) then something strange happens in the context of the computational complexity theory (e.g., coNP⊆ AM).

Here, it should be noticed that they assume theblack-boxreductions. It would be thus possible to avoid these negative

evidences if we exploit anon-black-boxtechnique for constructing the reductions, as noted in several of these papers.

Gutfreund, Shaltiel, and Ta-Shma [8] actually developed an innovative technique for proving a worst-case to average-

case reduction that is not fully black-box. By this technique, they obtained a superpolynomial-time samplable distribution

such that no efficient randomized algorithm can correctly solve SAT instances occurring some constant probability under

the distribution. Going along the same line, Gutfreund [7] gave results of separating some average-case complexity

classes by constructing an NP-search problem highly hard on average under some samplable distribution from a worst-

case hardness assumption.

Most recently, the power of the technique was explicitly demonstrated by Gutfreund and Ta-Shma [9]. They con-

structed a quasi-NP decision problem (that has polynomial witness length and superpolynomial verification time.) hard

on average under the uniform distribution from the assumption that NP, RP and some average-case mild derandomiza-

tion holds. They also gave a negative evidence on the same result in the case of the black-box reduction.

In this paper, we provide a search version of [9] for an NP-search problem hard on a large fraction over positive

instances under the uniform distribution. Informally, we prove the following theorem:

Theorem 1.2 (Informal) Assume that NP, RP hold. For any constanta ≥ 1 andb > 0, we have an NP-search problem

F with supportL that satisfies the following:

1. L is large enough under the uniform distribution; namely, for all sufficiently largen, we have

Pr
x:Un

[x ∈ L] > n−c

for some constantc independent ofa andb.

2. Any O(na)-time randomized search algorithm fails to yield a solution toF badly; namely, we have

Pr
x:Un

[
Pr
A

[A solvesx] ≤ n−b
∣∣∣ x ∈ L

]
> 1− n−Ω(1).

The derandomization assumption will be formally defined in Assumption 3.1, which is stronger than the average-case one

in [9].

In Gutfreund and Ta-Shma’s construction for the quasi-NP problem, they applied the original Impagliazzo-Levin re-

duction to some distribution and then amplified the hardness using the NP-hardness amplification technique given by

Trevisan [18]. Those techniques make the problem hard against any decision algorithm with a polylogarithmic advantage

(i.e., 1/2 + poly logn). On the other hand, our target is a search problem hard against any search algorithm with poly-

nomially small success probability. It is then essential to apply our reduction to this case instead of the original one for

treating the small probability.

3

2 Reduction from Samplable to Uniform Distributions

First, we introduce some notion and notations used below.H = {Hn}n∈N andU = {Un}n∈N denotes the hard distribution

we consider and the uniform distribution schemata, whereHn andUn are the distributions over{0,1}n. We use notations

“Hn(x)” and “x : Hn” to represent a probability of occurring an instancex and a random instancex occurred according

to a distributionHn respectively. ByH(1n), we denote a random variable representing an output from a samplerH forH
on a length parameter 1n. If we argue random strings in the algorithm, we denote it byH(1n; r).

We say thatF is an NP search problem with supportL if we can verify the correctness of its solutions in a setL of

positive instances in polynomial time. Here we say the “solution” as a witness for a positive instance. Note that the answer

“NO” for a negative instance is not a solution. We also describeF(x) as a set of correct solutions to a positive instancex

for a search problemF. For simplification, we assume that all solutions to inputs of lengthn has the same lengthn′.

The following is the formal statement of Theorem 1.1.

Theorem 2.1 We have some constantsc0 ande0 with which the following statement holds. LetF be any NP-search

problem with supportL, and letH andH be any polynomial-time samplable distribution forF and its sampler. Suppose

thatF,H , andH satisfy the following for some constantsd ands:

1. Prx:Hn[x ∈ L] ≥ n−d,

2. H(1n) generates an instance of sizen according to the distributionHn, and

3. H(1n) requires a random seed of sizens and runs innO(1) time.

Then there exists a constantd0 such that we have some NP-search problemF′ with supportL′ that satisfies the following:

1. Prz:U(n)[z ∈ L′] ≥ (n)−(d0+d),

2. if some (n)a-time randomized search algorithmA′ for F′ achieves

Pr
z:Un

[Pr
A′

[A′ solvesz] ≥ 1− n−O(1) | z ∈ L′] ≥ (n)−b, (1)

then by usingA′ somenc0·s·a-time randomized search algorithmA solvesF, i.e.,

Pr
x:H(n)

[Pr
A

[A solvesx] ≥ n−e0·s·b | x ∈ L] ≥ n−e0·s·b. (2)

Remark 1.In the theorem, we omit some details for the sake of simplifying statements. Some unimportant constants

and polynomials are not explicitly stated. Though not explicitly stated, size parametersn andn are any sufficiently large

numbers and other constants as well as algorithms are independent of these size parameters.

The rest of this section is devoted for proving this theorem. For the proof, we need hash function families satisfy-

ing certain properties. More specifically, we use highly independent hash function families stated in the following two

propositions. (The proofs are standard and they are omitted here.)

Proposition 2.2 For anyn andk such thatk ≤ n, there exists a hash function family Hash3(n, k) mapping{0,1}n to {0,1}k

satisfying the following: Anyh ∈ Hash(n, k) is of polynomial length and computable in polynomial time, For any distinct

t elementsx1, x2, x3 of {0,1}n, and for any elementsy1, y2, y3 of {0,1}k, we have

Pr
g:Hash3(n,k)

[
g(x1) = y1 ∧ g(x2) = y2 ∧ g(x3) = y3

]
= (2−k)3,

where “g : Hash3(n, k)” means that a hash functiong is sampled from Hash3(n, k) uniformly at random.

Proposition 2.3 Let n andk be any positive integers such thatk ≤ n. There exists a hash function family Hash(n, k)

satisfying the following: Anyh ∈ Hash(n, k) is of polynomial length and computable in polynomial time, and for any

4

e> 0 and anyX ⊆ {0,1}n of size≥ ne+ f0 · 2k, we have

Pr
h:Hash(n,k)

[
|h(X)| ≥ (1− n−e)2k

]
≥ 1− n−e,

where “h : Hash(n, k)” means that a hash functionh is sampled from Hash(n, k) uniformly at random.

Now we start our proof by defining our target problemF′ based on a given search problemF and a samplerH. Our

approach is almost the same as Impagliazzo and Levin’s [12]; only the difference is to use the highly independent hash

function family.

As already explained, we define our search problem by specifying the following setF′(z) of valid solutions to a given

inputz= ⟨k,h, y,g, pad⟩.

F′(z) := { ⟨x, r1, r2, r3,w⟩ |
(a)h(x) = y,

(b) w ∈ F(x) (i.e.,w is one of the solution forF),

(c) H(n; r1) = H(n; r2) = H(n; r3) = x, and

(d) g(r1) = 000· · · 0∧ g(r2) = 010· · ·0∧ g(r3) = 100· · ·0 }.

We clarify the domain of input and output components w.r.t. the size parametern (= |x|). First we fix some more size

parameters. Following our notation rule, we usen′ to denote the length of solution forx; we may assume thatn′ ≤ n.

Let m be the length of random seeds used byH(1n); by the condition of the theorem, we havem = ns. Symbolsh andg

in the inputz denote binary descriptions of hash functions in Hash(n, k) and Hash3(m,m− (k + 2 logn)) respectively; we

may assume that their length are polynomially bounded byn andns. Thus, with a paddingpadof appropriate length, we

assume thatn = |z| = ns·l0 for some constantl0.

An input z = ⟨k,h, y, g, pad⟩ consists of five components, where their domains are: (i)k is from [n′], (ii) h is from

Hash(n, k), (iii) y is from {0,1}k, (iv) g is from Hash3(m,m− (k+2 logn)), and (v)pad is from {0,1}l for some appropriate

lengthl. On the other hand, the domain of components of output⟨x, r1, r2, r3,w⟩ are: (i)x is from {0,1}n, (ii) r1, r2, r3 are

from {0,1}m, and (iii) w is from {0, 1}n′ . Below we often writer for (r1, r2, r3).

By the uniform distributionUn for z, we mean thatk, h, y, g, andpad are chosen uniformly at random∗ from their

domains.

Before proving that thisF′ indeed satisfies the theorem, let us recall the intuitive idea of [12] for introducing this

problem.

We would like to convert the distributionHn to a uniform distribution. For this purpose, we encode eachx ∈ {0,1}n

by a stringy of length reflecting itsweightHn(x). For example, a stringx1 with Hn(x1) = 2−2 is encoded by somey1 of

roughly 2 bit length whereas a stringx2 with Hn(x1) = 2−10 is encoded by somey2 of roughly 10 bit length. Note that

there are at most 4 strings with heavy weight 2−2; hence, 2 bit string is enough. On the other hand, we may need 10 bits to

encode strings with light weight 2−10. Codesy1 andy2 are obtained by random hash functions. That is, by using randomly

chosenh1 ∈ Hash2(n,2) andh2 ∈ Hash2(n,10), we computey1 = h1(x1) andy2 = h2(x2). Then we may regard⟨h1, y1⟩ and

⟨h2, y2⟩ as uniformly generated random strings. Furthermore, with random paddingpad1 andpad2 of appropriate length,

two strings⟨h1, y1, pad1⟩ and⟨h2, y2, pad2⟩ can be regarded as random strings of the same length.

This encoding has the following problem: by using, e.g.,h1, light inputs such asx2 are also mapped to short codes

such asy1. Then we cannot guarantee that some useful information onx1 is obtained by solving the instance⟨h1, y1, pad1⟩.
Hash functiong is used to avoid this problem; it is used to check whether a stringx mapped toy1 has weightHn(x) large
∗Precisely speaking, these components are obtained from one random binary string of certain length. In particular, we need to specify a way to split a

binary string into five components and a way to generate hash functionsh andg. For generating hash functions, we use some samplers that are implicitly

assumed for hash function families; that is,h andg are generated by these samplers by using a part of the random binary string as random seeds. The

details are omitted.

5

enough. Note that weightHn(x) is essentially the same as the number of random seedsr with which the generatorH(1n; r)

yieldsx. The hash functiong and the condition (d) for solutions ofF′ are used to check whether there are enough number

of such random seeds forx.

Now let us prove thatF′ satisfies the theorem. Below size parameters are fixed as above and variable symbols are also

defined as above. We useX ⊆ {0,1}n to denote the set of all instances of lengthn that are positive forF.

Remark 2.For avoiding unnecessary complications in our arguments, we introduce the following two assumptions. First

we assume thatHn(X) = 1; that is, our sampler generates only positive instances forF. We can easily modify our prob-

ability analysis for the general case. Secondly we assume that the algorithmA assumed in the theorem is deterministic.

Again the modification for the general situation is easy; we introduce one more variable for a random seed used byA and

consider the execution of the algorithm under several fixed “good” random seeds. The details are omitted here.

We first give the statement 1 of Theorem 2.1. That is, the following lemma.

Lemma 2.4 For some constantd0 > 0, the following holds:

Pr
z:Un

[F′(z) , ∅] ≥ (n)−d0.

Proof. For eachi, 0 ≤ i ≤ m, defineXi by

Xi = { x |2−(i+1) < Hn(x) ≤ 2−i }.

Noting thatm= ns and|X| ≤ 2n, we have (for sufficiently largen) that

∑
i≥n+slogn+1

Hn(Xi) ≤ m · 2n

2n+slogn+1
≤ 1

2
.

Thus, there is somei0, 0 ≤ i0 ≤ n+ slogn, such thatHn(Xi0) ≥ 1/2(n+ slogn+ 1) > 1/4n. Let k0 = min(i0,n), and

for bounding the probability Prz:U(n)[F′(z) , ∅], we consider the probability that⟨k0,h, y, g, pad⟩ has a solution. Here we

note that|Xi0 | ≥ 2i0/4n becauseHn(x) ≤ 2−i0 for all x ∈ Xi0 andHn(Xi0) ≥ 1/4n. On the other hand, sinceXi0 is a subset

of {0,1}n, we have|Xi0 | ≤ 2n. Hence, from

2i0

4n
≤ |Xi0 | ≤ 2n,

it follows that i0 ≤ n+ 2 logn. Thus, we havek0 ≤ i0 ≤ k0 + 2 logn.

Let H−1(1n, x) = {r |H(1n; r) = x}; then we have|H−1(1n, x)| ≥ 2m−(i0+1) for all x ∈ Xi0. Now by using this and the

bound|Xi0 | ≥ 2i0/4n derived above, and also by using the independence properties ofh andg, we have the following

6

bound.
Pr

h,y,g,pad
[F′(⟨k0,h, y, g, pad⟩) , ∅]

≥ Pr
h,y,g,pad

[∃x, r ,w [(a)∼(d) holds forh, y,g, x, r ,w]

≥
∑
x∈Xi0

Pr
h,y,g,pad

[∃r [(a),(c),(d) holds∗1 for h, y,g, r on x]

−
∑

x,x′∈Xi0

Pr
h,y,g,pad

[(· · · on x) ∧ (· · · on x′)]

(Note∗1: (b) is satisfied by considering onlyx ∈ Xi0)

≥ 1
2
·
∑
x∈Xi0

Pr
h,y

[(a) for h, y, x] · Pr
g

[∃r [(c),(d) for g, r , x]

≥ |Xi0 |
2
·

∑
y∈{0,1}k0

1
2k0
· Pr

h
[(a) for h, y, x] ·

∑
r:∗2

Pr
g

[(d) for g, r]

(Note∗2: r = (r1, r2, r3) are three different elements ofH−1(1n, x))

≥ |Xi0 |
2
· 2k0

2k0 · 2k0
· 2m−(i0+1) · (2m−(i0+1) − 1) · (2m−(i0+1) − 2)

2m−(k0+2 logn) · 2m−(k0+2 logn) · 2m−(k0+2 logn)

≥ 2i0

8n
· 2k0

2k0 · 2k0
· (2m−(i0+1))3

2 · (2m−(k0+2 logn))3

≥ 1
8n
· 1

16
≥ 1

128n

Since this is a bound for the casek = k0, by considering the probability thatk = k0, we have Prz:U(n)[F′(z) , ∅] ≥
1/(128n(n+ 1)). We may assume thatn > 128(n+ 1); therefore, the desired bound is shown withd0 = 2. ⊔⊓

Next consider the second statement of the theorem. Here we assume some (n)a-time algorithmA′ satisfying the

inequality (1) of Theorem 2.1 for all sufficiently largen. Now for our algorithmA (for solving F), we consider the

following simple one.

Algorithm : A (input x)

1. Choosek ∈ [n′], h ∈ Hash(n, k), g ∈ Hash3(m,m− (k+ 2 logn)), andpaduniformly at random.

2. RunA′(⟨k,h, h(x),g, pad⟩) and output the last componentw of the obtained output.

Clearly, the running time of this algorithm isO(nc
+ na) for some constantc > 0, and this can be bounded bync0·s·a

with some constantc0 becausen = ns·l0.

In the rest of this section, we prove that thisA achieves the desired performance stated as (2). That is, we show the

following lemma.

Lemma 2.5 For some constante0 > 0, the following holds:

Pr
x:Hn

[Pr
A

[A(x) yields somew ∈ F(x)] ≥ n−e0·s·b | x ∈ L] ≥ n−e0·s·b.

We prove the lemma by a sequence of claims. First we analyze the performance of the algorithmA′. From the

condition (1), we have the following. (Recall that we assumed for simplicity thatA is deterministic.)

Pr
z=⟨k,h,y,g,pad⟩

[A′(z) ∈ F′(z) | z ∈ L] ≥ (n)−b = n−sl0b.

Below we drop the above condition “... | z ∈ L” of the probability for notational simplification. We implicitly consider

this conditional sample space when the random variables contain components of an instance ofF′.

7

Thus, we have the following bound for somek1 ∈ [n′]. (Below we usez1 or sometimesz1⟨h, y⟩ as a shorthand of

⟨k1,h, y, g, pad⟩.)
Pr

h,y,g,pad
[A(z1) ∈ F′(z1)] ≥ n−s·l0·b/(n+ 1) ≥ n−(s·l0·b+2).

Here we note the following variation of the Markov inequality, which will be used in the following argument.

Proposition 2.6 Consider any index setX and a set of values{px}x∈X such that 0≤ px ≤ 1 for all x ∈ X. Then we have∑
x∈X px

|X| ≥ γ ⇒ |{x | px ≥ γ/2}|
|X| ≥ γ

2
.

Let γ = n−(sl0b+2) and apply this proposition twice to the above bound. Then we have the following claims.

Claim 1 We say thath is goodif Pry,g,pad[A′(z1) ∈ F′(z1)] ≥ γ/2. The proportion of goodh is at leastγ/2. That is,

Pr
h

[
Pr

y,g,pad
[A′(z1) ∈ F′(z1)] ≥ γ

2

]
≥ γ

2
.

Claim 2 Consider any goodh and fixed. We say thaty is good(w.r.t. h) if Prg,pad[A′(z1) ∈ F′(z1)] ≥ γ/4. The proportion

of goody is at leastγ/4. That is,

Pr
y

[
Pr

g,pad
[A′(z1) ∈ F′(z1)] ≥ γ

4

]
≥ γ

4
.

At this point, we set some more parameters as follows:

e := 1+ (sl0b+ 2), (so thatn−e < γ/8)

f := f0 + e, (where f0 is from Proposition 2.3)

K := 2k1, and |Xfat| = nf K. (see below for the definition ofXfat)

We say thatx ∈ X is fat if its weightHn(x) satisfiesHn(x) ≥ 1/(nf K). Note that there are at mostnf K fat instances

in X. Let Xfat denote a set consisting of all fat instances inX and some dummy strings† so that|Xfat| = nf K. Then the

following claim holds.

Claim 3
Pr

h,y,g
[∃x ∈ Xfat[h(x) = y] ∧ A′(z1) ∈ F′(z1)]

≥
(
γ

2
− γ

8

) (
γ

4
− γ

8

)
· γ

4
≥ γ

128
≥ 1

16ne

Proof. The claim is proved by counting allh, y, andg satisfying the condition. For ourXfat, we say thath is nonshrink

if |h(Xfat)| ≥ K(1 − n−e) ≥ K(1 − γ/8). By Proposition 2.3, the proportion of nonshrinkh’s is at least 1− γ/8. On the

other hand, the proportion of goodh’s is at leastγ/2. Hence, the probability that randomh is both nonshrink and goodh

is ≥ γ/2− γ/8.

Similarly, for each nonshrink and goodh, we have at leastK(1− γ/8) y’s that have somex ∈ Xfat such thaty = h(x).

On the other hand, there are at leastKγ/4 goody’s, i.e.,y’s for which A(⟨k1,h, y,g, pad⟩) ∈ F′(z1) holds for at leastγ/4

of all g’s andpad’s. Hence, the probability that randomy, g, andpadsatisfies bothy = h(x) andA′(z1) ∈ F′(z1) is at least

(γ/4− γ/8) · γ/4. Putting these bounds together, we have the bound of the claim.⊔⊓

Let us further analyze the bound of the above claim. Here we divide the eventA′(z1) ∈ F′(z1) into disjoint subcases

†It may be the case thatnf K ≥ 2n. ThenXfat = {0,1}n; analysis for this case is easier and omitted.

8

by considering the output ofA.

1
16ne

≤ Pr
h,y,g,pad

[∃x ∈ Xfat[h(x) = y] ∧ A′(z1) ∈ F′(z1)]

=
∑

x′
Pr

h,y,g,pad
[∃x ∈ Xfat[h(x) = y] ∧ A′(z1) = (x′, r ,w) ∈ F′(z1)]

=
∑

x′∈Xfat

Pr
h,y,g,pad

[∃x ∈ Xfat[h(x) = y] ∧ A′(z1) = (x′, r ,w) ∈ F′(z1)]

+
∑

x′′<Xfat

Pr
h,y,g,pad

[∃x ∈ Xfat[h(x) = y] ∧ A′(z1) = (x′′, r ,w) ∈ F′(z1)]

≤
∑

x′∈Xfat

Pr
h,y,g,pad

[A′(z1) = (x′, r ,w) ∈ F′(z1)] (3)

+
∑

x′′<Xfat

∑
x∈Xfat

Pr
h,y,g,pad

[h(x) = y ∧ A′(z1) = (x′′, r ,w) ∈ F′(z1)] (4)

Consider the last two terms, i.e., (3) and (4). Noting thath(x′) = y is a part of the condition (x′, r ,w) ∈ F′(z1), we can

restate (3) as follows.

(3) =
∑

x′∈Xfat

Pr
h,y,g,pad

[h(x′) = y ∧ A′(z1) = (x′, r ,w) ∈ F′(z1)]

=
∑

x′∈Xfat

Pr
h,y,g,pad

[A′(z1) = (x′, r ,w) ∈ F′(z1) | h(x′) = y] · Pr
h,y

[h(x′) = y]

=
∑

x′∈Xfat

Pr
h,y,g,pad

[A′(z1⟨h, y⟩) = (x′, r ,w) ∈ F′(z1⟨h, y⟩) | h(x′) = y] · 1
K

=
∑

x′∈Xfat

1
K
· Pr

h,y,g,pad
[A′(z1⟨h, h(x′)⟩) = (x′, r ,w) ∈ F′(z1⟨h, h(x′)⟩)]

=
1
K
·

∑
x′∈Xfat

Pr
h,g,pad

[A′(z1⟨h, h(x′)⟩) = (x′, r ,w) ∈ F′(z1⟨h,h(x′)⟩)]

Intuitively, this is the total success probability of our procedureA. On the other hand, the term (4) is the probability

thatA’s answer does not help us for solvingx′ ∈ Xfat. Our new technique of using highly independent hash functions and

our new analysis, which is different from the one in [12], are for bounding this probability small. More specifically, we

can bound as the following claim, which is the key of our argument.

Claim 4 For anyx ∈ Xfat, we have∑
x′′<Xfat

Pr
h,y,g,pad

[h(x) = y ∧ A′(z1) = (x′′, r ,w) ∈ F′(z1)] ≤ n6

nf · nf K
.

Thus, by if f0 ≥ 7, we have

(4) ≤
∑
x∈Xfat

n6

nf · nf K
=

n6

nf
=

n6

nf0+e
≤ 1

32ne
.

9

Proof. The claim is proved by the following analysis.∑
x′′<Xfat

Pr
h,y,g,pad

[h(x) = y ∧ A′(z1) = (x′′, r ,w) ∈ F′(z1)]

≤
∑

x′′<Xfat

∑
r1:∗1

∑
r2:∗1

∑
r3:∗1

Pr
h,y,g,pad

[h(x) = h(x′′) = y ∧ (d) for g andr]

(Note∗1: r i is chosen so thatH(1n; r i) = x′′)

≤
∑
r1:∗2

∑
r2:∗3

∑
r3:∗3

Pr
h,y,g,pad

[h(x) = h(z) = y ∧ (d) for g andr]

(Note∗2: r1 is chosen so thatH(1n; r1) < Xfat)

(Note∗3: lettingz= H(1n; r1), r i is chosen so thatH(1n; r i) = z)

≤ 2m · 2
m−k1

nf
· 2

m−k1

nf
· 1

K2
·
(

1
2m−(k1+2 logn)

)3

=
n6

Knf · nf
.

Here we use the fact thatz < Xfat implies thatz is not fat andHn(z) < 1/(nf K); in other words, the number ofr such that

H(1n; r) = z is less than 2m−k1/nf . ⊔⊓

From the above claim and the restatement of (3), we have

K
32ne

≤
∑

x′∈Xfat

Pr
h,g,pad

[A′(z1⟨h,h(x′)⟩) = (x′, r ,w) ∈ F′(z1⟨h,h(x′)⟩)].

From this we now show that there are enoughx′’s for which A succeeds with our desired probability.

We say thatx is good if Prh,g,pad[A′(z1⟨h,h(x)⟩) = (x, r ,w) ∈ F′(z1)] ≥ 1/(64ne+ f). We choose the constante0 of

the lemma large enough so that 1/(64ne+ f) ≥ n−e0·sb; hence, goodx are those for whichA(x) has the desired success

probability. Therefore, the lemma is proved by the following claim.

Claim 5
Pr

x:Hn

[x is good] ≥ 1/64ne+ f .

Proof. First we apply Proposition 2.6 to the above bound. Note|Xfat| = nf K; hence, we have∣∣∣∣∣∣
{

x

 Pr
h,g,pad

[A′(z1⟨h,h(x)⟩) = (x, r ,w) ∈ F′(z1)] ≥ 1
64ne+ f

}∣∣∣∣∣∣ ≥ |Xfat|
64ne+ f

.

Next we show that a goodx is in fact fat; that is, for any goodx, we have

Pr
r

[H(1n; r) = x] ≥ 1
nf K

=
2m−k1

nf · 2m
.

This is because if otherwise, we have

Pr
g

[∃ r [H(1n; r1) = H(1n; r2) = H(1n; r3) = x ∧ (d) holds forr andg]] < n6/n3 f ,

but then the probability that randomg has somer satisfying the condition (d) for the solution is much smaller than

1/(64ne+ f); hence,A(x)’s success probability becomes so small thatx cannot be good.

Now we know that there are at least|Xfat|/(64ne+ f) (= K/(64ne)) goodx’s and that each of them is fat, i.e.,Hn(x) ≥
1/(nf K). This proves that the probability of goodx under the distributionHn is at least 1/(64ne+ f). ⊔⊓

10

3 Averagely Hard NP-search Problem

We next apply our new technique to a worst-case to average-case reduction for NP-search problems. As mentioned in

Theorem 1.2 of Section 1 informally, we construct an NP-search problem hard to yield a solution on average under the

uniform distribution.

Before giving the formal statement, we explicitly describe the mild derandomization assumption appeared in Theo-

rem 1.2.

Assumption 3.1 Let B1 andB2 be two randomized decision algorithms. We say thatB1 andB2 areδ-indistinguishable

if ∣∣∣∣∣Pr
B1

[B1(x) = “YES”] − Pr
B2

[B2(x) = “YES”]
∣∣∣∣∣ ≤ δ

for any x ∈ {0,1}∗. For any polynomial-time randomized decision algorithmB and any constantε > 0, there exists

a probabilistic polynomial-time decision algorithmBε such thatBε requires a random seed of size at mostnε on input

lengthn, andBε andB are 1/100-indistinguishable.

This assumption is stronger than the original one used in [9]. The original one is that for any samplable distribution we

have some derandomized algorithm that works well over instances occurring with a constant probability, say 99/100,

(i.e., average-case derandomization), but we now assume that a derandomized algorithm works well over any instance

(i.e., worst-case derandomization). Similarly to the case of [9], note that our assumption does not directly lead to a strong

consequence such as BPP= P or collapse of the BPTIME hierarchy.

Combining Assumption 3.1 with our reduction given in Section 2, we obtain the following theorem.

Theorem 3.2 Assume that NP, RP and Assumption 3.1 holds. For any constanta ≥ 1 andb > 0, we have an NP-search

problemF′ with supportL′ that satisfies the following:

1. L′ is large enough under the uniform distribution; namely, for all sufficiently largen, we have

Pr
x:Un

[
x ∈ L′

]
> n−c

for some constantc independent ofa andb.

2. Any na-time randomized search algorithm fails to yield a solution toF′ badly; namely, we have

Pr
x:Un

[
Pr
A

[
A′ solvesx

] ≤ n−b
∣∣∣∣ x ∈ L′

]
> 1− 2−n1/d

,

whered is a constant depending only ona andb.

We omit the proof of this theorem since it can be easily obtain by combining our reduction of Theorem 2.1 with hard

instance sampler stated in Theorem 3.3 below.

Theorem 3.3 Let a > 1 andb > 0 be any fixed constants and letd > 0 be some constant depending only ona andb. If

Assumption 3.1 holds and NP, RP, there exists a samplable distribution schemaH = {Hn}n∈N such that for anyna-time

randomized search algorithmA (assignment finding problem), infinitely manyn ∈ N

Pr
x:Hn

[
Pr
A

[A solvesx] ≤ n−b
∣∣∣∣ x ∈ SAT

]
> 1− 2−n1/d

and Pr
x:Hn

[x ∈ SAT] > 3/8.

Then, the samplerH forH runs in polynomial time and requires a random seed of sizeO(n5).

11

As observed in [9], the instance size of Impagliazzo-Levin type reduction, including ours, depends on the size of random

seeds to generate the samplable distribution. Due to Assumption 3.1, the samplerH only requires a random seed of size

O(n5) independently of the parametersa andb, which enable us to connect this theorem to Theorem 2.1 for proving

Theorem 3.2. (Similarly to the case of [9], if the size of random seeds depends ona andb, our reduction is in fact not

available.)

Now, we briefly explain the differences from previous results. (See Appendix for the details of the proof.) The proof

of Theorem 3.3 is done by modifying the arguments used for constructing a hard search problem under some samplable

distribution in [7] and a hard decision problem with a derandomization assumption under the uniform distribution in [9].

The essence of these techniques is to find a hard instance against any polynomial-time algorithmA from some formulaϕA

such as “x is satisfiable butA fails onx” by usingA itself.

In our case, we would like to find the hard instance against any search algorithmA by a derandomized version ofA

with a short random seed. This situation is slightly different from those of [7, 9]. Note that the derandomization is only

applicable to decision algorithms, as stated in Assumption 3.1. Therefore, we need to convert the search algorithmA to

a decision versionB and then we obtain a derandomized decision algorithmBε. After that, we construct a derandomized

search algorithm from a downward self-reduction withBε. Such a downward self-reduction has been already used in [8]

and [9].

In the downward self-reduction, the decision algorithm might find some contradiction as follows. Letψ be some

formula obtained by partially assigning toϕA. The downward self-reduction obtainψ0 andψ1 by assigning 0 and 1 to one

variable ofψ and then invokes the satisfiability ofψ0 andψ1 to the decision algorithm. Let us consider the case that the

decision algorithm answers “YES” toψ but “NO” to ψ0 andψ1.

In the arguments of [8] and [9], at least one ofψ, ψ0, ψ1 is shown to be a hard instance against the decision algorithm.

In this case, we cannot guarantee satisfiability of the hard instance if it isψ since the decision algorithm answers “YES”

onψ. On the other hand, we require the satisfiability of the hard instance for connecting the hard instance sampler to our

reduction (recall that the conditions of Theorem 2.1.) We thus modify the argument of this case.

In our case,A is originally a search algorithm for NP problem. We can then assume thatA always answers “NO”

on any negative instance without loss of generality since solutions outputted fromA are efficiently verifiable, and thus

the “YES” answer ofA is reliable. The decision algorithmBε, constructed fromA, inherits a similar property due to the

worst-case derandomization assumption. It follows thatBε correctly answers with high probability onψ, which implies

that the hard instance is at least one ofψ0 andψ1. Since the decision algorithm answers “NO” on them, we can conclude

that the hard instance is satisfiable.

Acknowledgements.The authors would like to appreciate Dan Gutfreund for valuable discussions and helpful comments

on worst-case to average-case reductions.

References

[1] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing one-way functions on NP-

hardness. InProceedings of the 38th Annual ACM Symposium on Theory of Computing, pages 701–710, 2006.

[2] Andrej Bogdanov and Luca Trevisan. Average-case complexity.Foundation and Trends in Theoretical Computer

Science, 2(1):1–106, 2006.

[3] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for NP problems.SIAM Journal

on Computing, 36(4):1119–1159, 2006.

12

[4] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of completes sets.SIAM Journal on Computing,

22(5):994–1005, 1993.

[5] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-lemma. Technical Report TR95-050, ECCC

Report, 1995.

[6] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof system. In Silvio Micali,

editor,Advances in Computing Research, Vol. 5: Randomness and Computation, pages 73–90. JAI Press, 1989.

[7] Dan Gutfreund. Worst-case vs. average-case complexity in the polynomial-time hierarchy. InProceedings of the 9th

International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2006)

and the 10th International Workshop on Randomization and Computation (RANDOM 2006), LNCS 4110, pages

386–397, 2006.

[8] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If NP languages are hard on the worst-case then it is easy to

find their hard instances. InProceedings of the 20th Annual IEEE Conference on Computational Complexity, pages

243–257, 2005.

[9] Dan Gutfreund and Amnon Ta-Shma. Worst-case to average-case reductions revisited. InProceedings of the 10th

International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2007)

and the 11th International Workshop on Randomization and Computation (RANDOM 2007), LNCS 4627, pages

569–583, 2007.

[10] Alexander Healy, Salil Vadhan, and Emanuele Viola. Using nondeterminism to amplify hardness.SIAM Journal

on Computing, 35(4):903–931, 2006.

[11] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. InProceedings of the 36th Annual IEEE

Symposium on Foundations of Computer Science, pages 538–545, 1995.

[12] Russell Impagliazzo and Leonid Levin. No better ways to generate hard NP instances than picking uniformly at

random. InProceedings of the 31st Annual Symposium on Foundations of Computer Science, pages 812–821, 1990.

[13] Russell Impagliazzo and Avi Wigderson. P=BPP if E requires exponential circuits: Derandomizing the XOR

lemma. InProceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 220–229, 1997.

[14] Leonid A. Levin. One-way functions and pseudorandom generators.Combinatorica, 7(4):285–286, 1987.

[15] Ryan O’Donnell. Hardness amplification within NP.Journal of Computer and System Sciences, 69(1):68–94, 2004.

[16] Rafael Pass. Parallel repetition of zero-knowledge proofs and the possibility of basing cryptography on NP-

hardness. InProceedings of the 21st IEEE Conference on Computational Complexity, pages 96–110, 2006.

[17] Luca Trevisan. List decoding using the XOR lemma. InProceedings of the 44th Annual IEEE Symposium on

Foundations of Computer Science, pages 126–135, 2003.

[18] Luca Trevisan. On uniform amplification of hardness in NP. InProceedings of the 37th Annual ACM Symposium

on Theory of Computing, pages 31–38, 2005.

[19] Andrew C.-C. Yao. Theory and applications of trapdoor functions (extended abstract). InProceedings of the 23rd

Annual IEEE Symposium on Foundations of Computer Science, pages 80–91, 1982.

13

Appendix: Construction for Hard Instance Sampler

In this section, we suppose that a decision algorithm outputs either “YES” or “NO” and a search algorithm outputs either

a pair of “YES” and a solution or “NO”.

We denote bypA(x) the probability that an algorithmA outputs “YES” on an inputx. More precisely, ifA is a decision

algorithm thenpA(x) := PrA [A(x) = “YES”] , and if A is a search algorithm,pA(x) := PrA [A(x) = (“YES” , α)] , whereα

is a solution to the instancex. We sometimes writeA(x) = “YES” instead ofA(x) = (“YES” , α) for a search algorithmA

if it succeeds to yield a correct solution.

If A is a search algorithm for SAT inna time (a > 1), then we can assume thatA always outputs “NO” on any

unsatisfiable formulax without loss generality since it can check whether the outputted solution indeed satisfies a given

formula or not with linear time overhead.

We argue in this section more general derandomization parameterized byδ.

Assumption .4 Let B1 andB2 be two randomized decision algorithms. We say thatB1 andB2 areδ-indistinguishable if∣∣∣PrB1 [B1(x) = “YES”] − PrB2 [B2(x) = “YES”]
∣∣∣ ≤ δ for any x ∈ {0,1}∗. For any probabilistic polynomial-time algorithm

A and any constantε > 0, there exists a probabilistic polynomial-time search algorithmAε such thatAε requires a random

seed of size at mostnε on input lengthn, andAε andA areδ(n)-indistinguishable.

Settingδ(n) = 1/100, this assumption is the same one as Assumption 3.1 in Section 3.

We first present a lemma for the hard instance sampler depending on given randomized search algorithms. Using this

sampler, we will construct a hard instance sampler stated in Theorem 3.3 against any randomized search algorithm.

Lemma .5 Let a > 1 andb > 0 be any fixed constants and letd > 0 be some constant depending only ona andb.

If Assumption .4 holds with a parameterδ and NP, RP, for anyna-time randomized search algorithmA there exists a

samplable distribution schemaHA = {HA,n}n∈N such that for infinitely manyn ∈ N and any polynomialp(·)

Pr
x:HA,n

[
Pr
A

[A solvesx] ≤ n−b
∣∣∣∣ x ∈ SAT

]
> 1− 2−n1/d

and

Pr
x:HA,n

[x ∈ SAT] ≥ 1/2− 1/p(n).

Then, the samplerSHA for HA runs inO(t′(n) n5/δ′) time and requires a random seed of size at most 2n5/δ′2, where

δ′ = δ + exp(−n/2), t′(n) is a polynomial determined by the derandomization of Assumption .4.

We now give the statement of Theorem 3.3 in Section 3 again.

Theorem .6 Let a > 1 andb > 0 be any fixed constants and letd′ > 0 be some constant depending only ona andb. If

Assumption .4 holds with a parameterδ and NP, RP, there exists a samplable distribution schemaH = {Hn}n∈N such

that for anyna-time randomized search algorithmA for SAT (assignment finding problem), infinitely manyn ∈ N and any

polynomialp(·)

Pr
x:Hn

[
Pr
A

[
A(x) yields a solution tox

] ≤ n−b
∣∣∣∣ x ∈ SAT

]
> 1− 2−n1/d′

and

Pr
x:Hn

[x ∈ SAT] ≥ 1/2− 1/p(n).

Then, the samplerH for H runs in O(t′(n) n5/δ′2) time and requires a random seed of size at most 2n5/δ′2, where

δ′ = δ + exp(−n/2), t′(n) is a polynomial determined by the derandomization of Assumption .4.

We now sketch an overview of the proof of Theorem 3.2. Since we easily obtain the samplerH by modifying a hard

instance generatorGA of Lemma .5, we first sketch a rough idea of construction for the samplerGA.

14

A basic strategy of our proof follows the technique developed in [8]. For simplification, we only consider a determin-

istic algorithm here. Roughly speaking, for any decision algorithmB, a hard instance generatorGB performs as follows:

(i) it first constructs some formulaϕB using thedescriptionof the algorithmB such as “x is satisfiable formula andB fails

on x in na time.” (ii) Next, it searches a solution toϕB by using downward self-reduction with the decision algorithmB.

(iii) If it finds a correct solutionx to ϕB, It outputsx. If it answers “NO” onϕB, it outputsϕB. If it finds a contradiction

in the downward self-reduction, namely, it answers “YES” onψ = ϕB(α1, ..., αi , vi+1, ..., vn′) with a partial assignment

(α1, ..., αi) ∈ {0,1}i but it answers “NO” on both ofψ0 = ϕB(α1, ..., αi ,0, vi+2, ..., vn′) andψ1 = ϕB(α1, ..., αi ,1, vi+2, ..., vn′),

it then outputs one of these three formulaeψ, ψ0, ψ1 uniformly at random.

Intuitively, eitherx, ϕB or one ofψ, ψ0, ψ1 is hard againstB, so is it againstA. The reason is: (i) If x is found then

B should fail onx as stated in the formula. (ii) The worst-case assumption NP, P implies thatϕB is a satisfiable

formula since there is a hard instancex for B by the assumption. So, ifB answers “NO” onϕB, B indeed fails onϕB.

(iii) Apparently,B fails on at least one of three formulaeψ, ψ0, ψ1. Therefore, the algorithmB itself provides a hard

instance againstB with the inputϕB.

The results of [7, 9] also make use of the basic idea of [8]. The result of [7] provides a version of a distribution hard

against randomized search algorithms without the derandomization, and the result of [9] provides another version against

decision algorithms with a similar derandomization to ours.

On the other hand, we treat a distribution hard against randomizedsearchalgorithms with themild derandomization

assumptionunlike the cases of [8, 7, 9]. So, we require a different technical argument from theirs.

Recall that the mild derandomization of Assumption 3.1 is applicable only to decision algorithms. To construct the

derandomized search algorithmAε from the original search algorithmA, we regardA as a decision algorithmB once and

then derandomize it to a decision algorithmBε that approximatesB well. After that, we make use of the derandomized

decision algorithmBε as a decision oracle to perform the downward self-reduction for SAT instances.

So, we obtain three cases such as [8] (and [9]): the generator findsx toϕA, answers “NO” onϕA, or finds a contradiction

in the downward self-reduction. Note that we require satisfiability of hard instances outputted from the generator (with

a nonnegligible probability) to apply Theorem 2.1 to this worst-case to average-case reduction. (See the condition of

Theorem 2.1.)

The first two cases satisfy this requirement even in the case of the basic argument of [8]. However, the third case is

problematic. It is because that the algorithm wrongly outputs “YES” on the self-reduced instanceψ and if this is the hard

instance then the hard instance is not satisfiable.

Fortunately, we can avoid this problem in our setting by the fact thatA is originally a search algorithm. This fact

implies that if the decision algorithmBε answers “YES” then the answer is correct with high probability. Note that a

solution outputted from NP-search algorithmA is efficiently verifiable, and thus the “YES” answer ofA is reliable. This

property is inherited byB and henceBε due to the worst-case derandomization assumption. (This is the reason that

we require the “worst-case” derandomization assumption. Only assuming an average-case derandomization, even ifBε

inherits the property ofB on some instancex, we cannot guarantee thatBε does on a self-reduced instance ofx.)

Therefore, whenBε outputs “YES” onψ, the answer is correct with high probability. Then at least one ofψ0 andψ1 is

the hard instance, sayψi , on whichBε answers “NO”. Sinceψi is hard andBε answers “NO” on it,ψi should be satisfiable

with high probability. It follows that the generator can output a hard satisfiable instance at least approximately 1/2 in this

case.

Finally, we roughly explain how to convert this hard instance generator for a specific algorithm to one for any algo-

rithm. For this conversion, we just modify the statement of the base formula “x is satisfiable andA fails on x in na time”

to “x is satisfiable and all ofA1, ...,Alog logn fail on x in na time”, whereA1, ...,Alog logn are the first log logn randomized

algorithms. The proof of this case goes through similarly to the previous case. Note that any algorithm is included in

the set of{A1, ...,Alog logn} for all sufficiently largen. We can therefore conclude that the modified sampler generates hard

15

instances against anyna-time randomized algorithm for such largen.

A Proof of Lemma .5

In what follows, we first give the base formulaϕ (Subsection A.1) and our sampling algorithmHA generating the distribu-

tion schemaHA (Subsection A.3), and then we prove thatHA indeed generates hard instances againstA (Subsection A.4).

A.1 Construction for Base Formula

The following is our base formula:

ϕn,r ≡ ∃x ∈ {0,1}n
[
SSAT1(x; r) = “NO” ∧ x ∈ SAT

]
,

where SSAT1 is a randomized search algorithm for SAT, which is constructed from the original algorithmA and Assump-

tion .4.

We assume thatϕn,r directly represents a formula of a SAT instance by the Cook-Levin reduction for each fixedn and

r. The length ofϕn,r is then bounded by some polynomial if SSAT1 runs in polynomial time.

To construct the search algorithm SSAT1, we make use of a derandomized decision algorithmBSAT
1
. Here we

consider a general algorithmBSAT
ε

with a parameterε > 0. (Settingε = 1, we obtain the algorithmBSAT
1
.) This

algorithmBSAT
ε

has the following properties.

Lemma A.1 Suppose that Assumption .4 holds. For any randomized search algorithmA running inna time, there exists

a randomized decision algorithmBSAT
ε

such that

1. Given a formulax of lengthn, the running time and the size of random seeds ofBSAT
ε

areO(t(n) n2/δ′2) and

n3/2δ′2 respectively, wheret(n) denotes a polynomial determined by Assumption .4 to reduce the size of random

seeds fromna+b+1 to n andδ′ = δ + exp(−n/2).

2. We have for anyx

x ∈ SAT ∧ pA(x) > n−b/2 ⇒ pBSAT
ε(x) > 1− exp(−n2ε) and

x < SAT ⇒ pBSAT
ε(x) ≤ exp(−n2ε).

To show these properties, we require several intermediate algorithms and their analysis. For ease of understanding, we

put the proof to Subsection A.2.

By usingBSAT
ε

with ε = 1, we obtain the search algorithm SSAT1 as follows:

16

Algorithm : SSAT1(input x = x(v1, ..., vn′))

1. Search a satisfying assignment by a downward self-reduction usingBSAT
1
(·) as a decision oracle for SAT. Precisely,

perform the following steps:

(i) RunBSAT
1
(x). If the result is “NO”, output “NO” and halt.

(ii) Seti = 0 andx(0) = x initially. Let x(i) = x(α1, ..., αi , vi+1, ..., vn′) be the current formula obtained by partially

assigning ani-bit string (α1, ..., αi) to the variablesv1, ..., vi in x.

(iii) Assign 0 and 1 to the variablevi+1 in x(i). Let x(i+1)
0 andx(i+1)

1 be the resulting formulae withvi+1 = 0 and 1

respectively.

(iv) RunBSAT
1
(x(i+1)

0) andBSAT
1
(x(i+1)

1). If both of the results are “NO”, output “ERROR” and halt. If at least

one of them is “YES”, update the current formula to it, and go back to Step (ii).

2. If a satisfying assignment forx is found in Step 1, output “YES” and the assignment.

Straightforwardly, we obtain the following lemma from Lemma A.1 and the above construction.

Lemma A.2 Suppose that Assumption .4 holds. For any randomized search algorithmA running inna time, there exists

a randomized decision algorithmBSAT
ε

such that

1. Given a formulax of lengthn, the running time and the size of random seeds of SSAT1 are at mostO(t(n) n3/δ′2)

andn4/δ′2 respectively, wheret(n) denotes a polynomial determined by Assumption .4 to reduce the size of random

seeds fromna+b+1 to n andδ′ = δ + exp(−n/2).

2. We have for anyx

x ∈ SAT ∧ pA(x) > n−b/2 ⇒ Pr
[
SSAT1(x) , “NO”

]
> 1− exp(−n2) and

x < SAT ⇒ pSSAT1(x) = 0.

A.2 Modified Decision Algorithm

Let A be a search algorithm that tries to solve SAT. Recall thatA outputs a pair of “YES” and a satisfying assignment if

it succeeds, otherwise it just outputs “NO”. As already mentioned, we can assumeA always outputs “NO” on an input

x < SAT without loss of generality sinceA is a search algorithm for SAT.

For our base formula, we require a decision algorithmBSAT
1

that works correctly with very high probability ifA does

with probability at leastn−b with a short random seed.

Let BSAT be a decisional version of a given search algorithmA of running timena. BSAT outputs “YES” (success) or

“NO” (failure) depending on the output ofA. Thus the performance (time, size of random seed, and success probability)

of BSAT is the same as that ofA, and BSAT outputs “NO” on an inputx < SAT with probability 1.

We construct the base formula we desire by modifying this decision algorithm BSAT. We first introduce an amplified

version of BSAT.

Algorithm : BSATb (input x)

1. Choosev1, ..., vnb+1 ∈ {0,1}na
independently and uniformly at random.

2. Run BSAT(x; vi) for i = 1, ..., nb+1.

3. Output “YES” if there is at least one “YES” in the results of Step 2. Otherwise, output 0.

17

Obviously, the running time isO(na+b+1) and the size of random seeds is at mostna+b+1. Now we estimate the success

probability of BSATb.

Claim 6 For anyx ∈ SAT, if pBSAT(x) > n−b/2 thenpBSATb(x) > 1− exp(−n/2). For anyx < SAT, pBSATb(x) = 0.

The first statement on the probability estimation can be derived by a standard argument using the Hoeffding bounds. The

second one is done by the fact that BSAT does not fail on a negative instance.

We next apply Assumption .4 to BSATb for saving randomness. We denote the resulting algorithm by BSATε. The

algorithm BSATε requires a random seed of size at mostnε to simulate BSATb, and runs intε(n) time, wheretε(n) is a

polynomial determined by the derandomization of Assumption .4. Then BSATε and BSATb areδ-indistinguishable.

Claim 7 Let δ′ := δ + exp(−n/2). Then BSATε satisfies the following:

1. Forx ∈ SAT, if pBSATb(x) > 1− exp(−n/2) thenpBSATε(x) > 1− δ′.
2. Forx < SAT, pBSATε(x) ≤ δ.

Now we amplify the gap between the probabilities by taking majority vote. This is the decision algorithmBSAT
ε

we

require.

Algorithm : BSAT
ε
(input x)

1. Choosev1, ..., vn2ε/2δ′2 ∈ {0,1}n independently and uniformly at random forδ′ = δ + exp(−n/2).

2. Run BSATε(x; vi) for i = 1, ..., n2ε/2δ′2.

3. Output the majority of the results in Step 2.

Claim 8 Then the algorithmBSAT
ε

satisfies the following:

1. Forx ∈ SAT, if BSATε(x) > 1− δ′ thenBSAT
ε
(x) > 1− exp(−n2ε).

2. Forx < SAT, pBSAT
ε(x) ≤ exp(−n2ε).

The running time and the size of random seeds ofBSAT
ε

areO(tε(n) n2ε/δ′2) andn3ε/2δ′2 respectively.

Putting the above claims together, we can obtain the proof of Lemma A.1.

A.3 Construction for Hard Instance Sampler

We first giveGA that generates hard instances by using the base formulaϕn,r . The algorithmGA is constructed from

another search algorithm SSATε for SAT, which is obtained fromBSAT
ε
. The algorithm SSATε works as a component

of the sampler to find a solution to the base formulaϕn,r for generating a hard instance. In this algorithm, we fix the

parameterε to 1/d for the lengthnd of ϕn,r .

18

Algorithm : SSATε(inputϕn,r = ϕn,r (v1, ..., vn′))

1. Chooseu ∈ {0,1}(nd)3ε/2δ′2
= {0,1}n3/2δ′2

uniformly at random.

2. Search a satisfying assignment by a downward self-reduction usingBSAT
ε
(·; u) as a decision oracle for SAT. Pre-

cisely, perform the following steps:

(i) RunBSAT
ε
(ϕn,r ; u). If the result is “NO”, outputϕn,r and halt.

(ii) Set i = 0 andψ(0) = ϕn,r initially. Let ψ(i) = ϕn,r (α1, ..., αi , vi+1, ..., vn′) be the current formula obtained by

partially assigning ani-bit string (α1, ..., αi) to the variablesv1, ..., vi in ϕn,r .

(iii) Assign 0 and 1 to the variablevi+1 in ψ(i) and then pad them to be of lengthnd. Let ψ(i+1)
0 andψ(i+1)

1 be the

resulting formulae withvi+1 = 0 and 1 respectively.

(iv) RunBSAT
ε
(ψ(i+1)

0 ; u) andBSAT
ε
(ψ(i+1)

1 ; u). If both of the results are “NO”, output “ERROR” and (ψ(i+1)
0 , ψ(i+1)

1)

and halt. If at least one of them is “YES”, update the current formula to it, and go back to Step (ii).

3. If a satisfying assignment forϕn,r is found in Step 2, output “YES” and the assignment.

Note that there are three possibilities of outputs from SSATε: (“YES” , x), (“ERROR”, (ψ(i+1)
0 , ψ(i+1)

1)) and (“NO”, ϕn,r).

Then,|x| = n, |ψ(i+1)
0 | = |ψ(i+1)

1 | = |ϕn,r | = nd. Moreover, this SSATε has the following properties, which are easily proven

by construction for SSATε and Lemma A.1.

Lemma A.3 Suppose that Assumption .4 holds. The algorithm SSATε satisfies the following:

1. Given a formulaϕn,r of lengthnd, the running time and the size of random seeds of SSATε areO(t′(n) n3d/δ′2) and

n4/δ′2 respectively, wheret′(n) denotes a polynomial determined by Assumption .4 to reduce the size of random

seeds fromnd(a+b+1) to n1/d andδ′ = δ + exp(−n/2).

2. We have for anyy of lengthnd

y ∈ SAT ∧ pA(y) > |y|−b/2 ⇒ Pr
SSATε

[
SSATε(y) , “NO”

]
> 1− |y| exp(−|y|2)

Combining the above algorithm SSATε with the formulaϕn,r , we now show a hard instance generatorGA as follows.

Algorithm : GA (input 1n)

1. Run SSATε(ϕn,r ; u) for r ∈ {0,1}n4/δ′2 andu ∈ {0,1}n3/2δ′2 chosen independently and uniformly at random.

2. If it obtains (“YES”, x), (“ERROR”, ψ0, ψ1) and (“NO”, ϕ), outputx, (ψ0, ψ1), ϕ, respectively.

Note that the output size is different from each other among “YES”, “ERROR” and “NO”. Thus, we modify this

algorithmGA to use it as a samplerHA for the distribution schemaHA by a similar argument to [8, 7, 9]. The following is

the modified algorithm, i.e., the samplerHA forH .

Algorithm : HA (input 1n)

1. RunGA(1n) n times independently. If it outputs an instance of lengthn, then output it and halt.

2. Check whethern satisfiesmd = n for somem, where |ϕn,r | = nd. If there is such anm, run GA(1m) n times

independently. If it outputs an instance of lengthn, then output it. If it outputs a pair of instances of lengthn, output

one of them uniformly at random.

3. Output 0n.

19

A.4 Correctness

We first prove that the generatorGA provides hard instances against the original search algorithmA.

Lemma A.4 The algorithmGA satisfies the following:

1. If GA(1n) outputs “YES” andx of lengthn satisfyingϕn,r , we have

x ∈ SAT and Pr
GA

[
pA(x) ≤ n−b/2

]
> 1− 2n exp(−n2).

2. If GA(1n) outputs “NO” andy of lengthnd, we have

Pr
GA

[
y ∈ SAT

]
> 1− 1/p(n) and Pr

GA

[
pA(y) ≤ |y|−b/2

∣∣∣ y ∈ SAT
]
> 1− 2|y| exp(−|y|2)

for any polynomialp(·).
3. If GA(1n) outputs “ERROR” and (ψ0, ψ1) of lengthnd, there exits a formulaz ∈ {ψ0, ψ1} such that

Pr
GA

[z ∈ SAT] > 1− p(n) − |z|exp(−|z|2) and Pr
GA

[
pA(z) ≤ |z|−b/2

∣∣∣ z ∈ SAT
]
> 1− 2|z| exp(−|z|2).

Proof. Case 1(SSATε outputs “YES” onϕn,r): In this case SSATε yields a correct solutionx to ϕn,r at the same time.

Then,x is a satisfiable formula and SSAT1(x; r) = “NO” from the statement ofϕn,r . We now give the following claim on

the random stringr.

Claim 9 We say thatr ∈ {0,1}n4/δ′2 is good for SSAT1 if we have for anyx of lengthn pA(x) > n−b/2⇒ SSAT1(x; r) ,
“NO”. We then have

Pr
r:Un4/δ′2

[
r is good for SSAT1

]
> 1− 2n exp(−n2).

Proof. By Lemma A.2, ifpA(x) > n−b/2, a fraction ofr ’s satisfying SSAT1(x; r) = “NO” is at most exp(−n2). It follows

that a fraction of badr ’s for a fixedx is at most exp(−n2). By taking the union bound over all valid instances, we obtained

the desired bound for goodr ’s. � Taking the contraposition of the definition of a goodr, we obtain thatpA(x) ≤ n−b/2

for a satisfiablex.

Case 2(SSATε outputs “NO” onϕn,r): We first show thatϕn,r is satisfiable for almost allr ’s under the worst-case

assumption NP, RP.

Claim 10 Assume that NP, RP. Then, for any polynomialp(·), we have

Pr
r

[
ϕn,r ∈ SAT

]
> 1− 1/p(n).

Proof. Recall that any search algorithm for SAT can be assumed to answer correctly on any negative instance. If

NP , RP, for any polynomialp(·) there exists a satisfiable formulax such thatpSSAT1(x) ≤ 1/p(n) since SSAT1 is a

polynomial-time NP-search algorithm. This implies that for 1− 1/p(n) fraction of r ’s SSAT1(x; r) = “NO”. It follows

that the formula “SSAT1(x; r) = “NO” ∧ x ∈ SAT” is satisfied by thesex andr, i.e.,ϕn,r ∈ SAT. �

By Lemma A.3 and the same argument as the proof of Claim 9, we obtain the following claim.

Claim 11 We say thatu ∈ {0, 1}(nd)3/2δ′2 is good for SSATε if we havepA(x) > |y|−b/2⇒ SSATε(x; u) , “NO” for any y

of lengthnd. We then have

Pr
r:U|y|3/2δ′2

[
u is good for SSATε

]
> 1− 2|y| exp(−|y|2).

20

By taking the contraposition, it follows thatpA(ϕn,r) ≤ |ϕn,r |−b/2 since SSATε outputs “NO” in this case.

Case 3(SSATε outputs “ERROR” onϕn,r): Then, SSATε outputs two formulaeψ(i+1)
0 andψ(i+1)

1 for somei at the same

time. Letψ(i) be the formula before assigning to the variablevi+1 in Step (iii) of SSATε. We first suppose thatψ(i) is

satisfiable. We then have a formulaϕ(i+1) ∈ {ψ(i+1)
0 , ψ(i+1)

1 } such thatϕ(i+1) is satisfiable butBSAT
ε

outputs “NO” onϕ(i+1).

By the definition of a goodu, if u is good forBSAT
ε
, it follows thatpA(ϕ(i+1)) ≤ |ϕ(i+1)|−b/2.

Next, we argue thatψ(i) is satisfiable with high probability untilBSAT
ε

outputs “NO” on both ofψ(i+1)
0 andψ(i+1)

1 .

Suppose that the starting formulaϕn,r is satisfiable. By Lemma A.1, we haveBSAT
ε
(y) = “YES” with probability at most

exp(−|y|2ε) for anyy < SAT. Since the number of the variables inϕn,r is at mostnd, the unsatisfiable formula is chosen

in the downward self-reduction, , i.e.,ψ(i) is unsatisfiable for somei with probability at mostnd exp(−n2dε) by the union

bound. �

We now turn to the correctness of the samplerHA.

Proof of Lemma .5. We prove that the instances outputted in either Steps 1 or 2 ofHA are hard againstA for infinitely

manyn.

We consider three cases in the analysis ofHA. The first case is thatHA outputs an instance in Step 1. This instance

is outputted only if SSATε in GA outputs “YES”, that is, it succeeds to yield a solutionx to ϕn,r . The second one isHA

outputs an instance in Step 1 when SSATε in GA outputs “NO”. The third one is when SSATε in GA outputs “ERROR”.

Below we call these outputs fromHA yes-, no-, and error-instances, respectively. Note that outputs ofGA are always of

lengthn.

We define setsN andN′ as

N :=

{
n ∈ N : Pr

GA

[
GA outputsx of lengthn in Step 1

]
> 1/2

}
and N′ := {md : m ∈ N} \ N. (5)

Note that at least one ofN andN′ is an infinite set. We will show that ifn ∈ N then an yes-instance is hard and ifn ∈ N′

then either no- or error-instance is hard.

We begin with the following property on length parametern. By this property, one can see thatHA outputs instances

in Steps 1 and 2 with high probability for infinitely manyn.

Claim 12 We have

Pr
HA

[
HA outputs an instance in Step 1

]
> 1− 2−n

for anyn ∈ N, and we also have

Pr
HA

[
HA outputs an instance in Step 2

]
> 1− 2−n

for anyn ∈ N′.

Proof. By the definition ofN in Equation (5), the generatorGA outputs a solutionx to ϕn,r with probability at least 1/2

for anyn ∈ N and outputsϕn,r with probability at least 1/2 for anyn ∈ N′. By repeatingGA n times in Steps 1 and 2 of

HA, HA obtains an instance in Step 1 forn ∈ N, and an instance in Step 2 forn ∈ N′ with probability at least 1− 2−n. �

We suppose thatn is in the setN for Case 1 andn = md is in the setN′ = {md : m ∈ N} \ N in Cases 2 and 3. By

Claim 12,HA outputs an yes-instance forn ∈ N and outputs no- or error-instance forn ∈ N′ with probability at least

1− 2−n.

Case 1:We now discuss Case 1 where the sampler outputs an yes-instance for everyn ∈ N defined in Equation (5).

In this case, we obtain a satisfying assignmentx of lengthn for ϕn,r from the property of SSATε, which concludes

x ∈ SAT and Pr
GA

[
pA(x) ≤ n−b/2

]
> 1− 2n exp(−n2)

21

by Lemma A.4 1.

Case 2:Next, we consider the case thatHA outputs a no-instance. It is obvious that for the instancey

Pr
GA

[
y ∈ SAT

]
> 1− 1/p(n) and Pr

GA

[
pA(y) ≤ |y|−b/2

∣∣∣ y ∈ SAT
]
> 1− 2|y| exp(−|y|2)

for any polynomialp(·) by Lemma A.4 2.

Case 3:In this case, we obtain two instancesψ0 andψ1 in SSATε. By Lemma A.4 3, one of two instances is satisfiable

and hard againstA. SinceHA chooses one of two uniformly at random, ifHA choosesz ∈ {ψ0, ψ1} we have

Pr
HA

[z ∈ SAT] > 1/2− p(n) − |z|exp(−|z|2)/2 and Pr
HA

[
pA(z) ≤ |z|−b/2

∣∣∣ z ∈ SAT
]
> 1− 2|z| exp(−|z|2).

for any polynomialp(·).
Putting Cases 1, 2 and 3 together, we can demonstrate thatHA is indeed a hard instance sampler for infinitely manyn,

as stated in Lemma .5. �

22

