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Abstract

Scale free graphs have attracted attention by their ndiemamistructure that can be used as a model for
various social and physical networks. In this paper, we gseptwo natural and simple random models for
generating scale free interval graphs. These models gerseset of intervals randomly, which defines a random
interval graph. The main advantage of those models arenifslehess. The structypeoperties of the generated
graphs are analyzable by relatively simple probabilistidder combinatorial arguments, which isdirent from
the most of the other models for which we need to approxinteeptocesses by certainfidirential equations.
We indeed show that the distribution of degrees follows pdes, and it achieves large cluster ¢oeient.
Keywords:scale free graph, small world network, interval graphs.

1 Introduction

Since early works by Watts & Strogatz [9] and Barabasi & Attj2], small world networks are the focus of recent
interest because of their potential as models for the intiranetworks of complex systems in real world [1, 8].
There are three major properties that a small world netwodkos a scale free network has (see, e.g., [6]): (SF)
the node connectivities follow a scale free power law disitibn, (CC) two neighbors of a node are also connected
by an edge with high probability, and (SW) any two nodes armected by a short path through a very few nodes
called hubs.

Up to now, many models have been proposed and their propdwdiee been investigated. Aside from few
deterministic models, most of the randomized models arechas some dynami@cursiveconstruction of ran-
dom graphs. Thus, the analysis of certain properties of bit@immed graphs becomes rather complicated, and it is
not so easy to see the combinatorial structure of the oldajregphs. Typically, for example, in order to obtain a
formula for the distribution of degrees (for showing thegetty (SF) mentioned above), one has to approximate
the process by someftirential equations and solve them. Therefore, althougtymeardom graph models have
been proposed, we think that it is yet important to introdsm@e random graph model that can be easier to ana-
lyze by somewhat standard probabiligtembinatorial methods. This is important in particulardesigning and
analyzing algorithms for scale free networks.

In this paper, we propose two simple random models for géingracale free interval graphs. Interval graphs
have many applications from scheduling to bicinformatiéggraphG = (V, E) is an interval graph if and only
if G has an interval representatidnsuch that each vertexcorresponds to an intervhl and two vertices and
v are adjacent iits if and only if corresponding intervalg andl, share a common interval oh For defining
a random interval graph model, we introduce a way to randagelyerate an interval representatibnsome
standard random process is used for choosing intervalsirgggoints, and a power law distribution is used for
determining intervals’ lengths. This model has the follegvintuitive reasoning: Each interval is regarded as a
period of existence, i.e., life, of some object (or cregtuaad relationships are created between these objects who
have an overlap of lives. A power law distribution of a lifasgis derived from the simple rule “longer intervals
tend to survive yet longer” (since experience is the besteq.

Technically we consider a random model for generating watlerepresentations. For combinatorial analysis,
it is easier to assume that all intervals start at integents@nd their lengths are integers. Thus, we atlagpt
immigration and death proced$sr randomly choosing intervals’ starting points as intasgé¢his model has been
studied well in the queuing theory as the infinite server rhodée use a power law distribution on integers for
determining lengths of generated intervals.

Although our interval model is defined as a random process,dtso possible to consider random interval
distributions in a static way. For example (under the coodithatn intervals are generated in a given period)
we may assume that the starting points of these intervalgrafermly distributed in the period. Thus, the prob-
abilisticcombinatorial structure of the model gets more clear, andnag be able to use various techniques for
analyzing the obtained graphs. In fact, by relatively staddnethods, we show that the obtained random interval
graphs satisfy two properties of the scale free networksehg (SF) and (CC).

2 Preliminaries and Related works

We first introduce the notions for a (undirected) graple (V, E) of which eachedge e= {u,v} in E € V? has
no ordering. We only consider simple graphs without mugiesland self loops. Theeighborhoodf a vertex



vinVis the setN(v) = {u e V | {u,v} € E}, and thedegreeof v is [N(v)| denoted by deg(v). The subscripG
can be omitted if no confusion can arise. We sometimes ddnote~ u if u € N(v). For a vertex in V, the
edgelv, v} is calledself loop An edge{u, v} is calledmultiedgeif E contains two or moréu, v}s. A graphG is
simpleif G contains neither self loops nor multiedges. Hereafter, sgaime thaG is simple unless otherwise
stated. For a vertex skt C V, the vertex induced grap®’ = (U, F) of G = (V, E), which is denoted b¥[U],
is defined byF = {{u,v} | u,v € U and{u,v} € E}. Given a graptG = (V, E), its complements defined by
E = {{u,v} | {u,v} ¢ E}, and denoted b = (V, E). A vertex set is anindependent sét G[1] contains no edges,
and then the grapB[l] is said to be alique A sequence of distinct vertices, v, ..., Vv, is apath denoted by
(V1,V2,..., V), if {vj,vj,1} € E for each 1< j < £. Thelengthof a path is the number of edges on the path. For
two verticesu andv, thedistanceof the vertices, denoted l(u, v), is the minimum length of the paths joining
andv. We defined(u, V) = o if uis not reachable te. The graphs is connectedf d(u,Vv) < o for each pair of
vertices.

A graph {,E) with V = {vi,v,...,V,} is aninterval graphif there is a finite set of intervald =
{lv> Ivps - - - Iy, } On the real line such thaw;, v} € E if and only if Iy, N 1y, # 0 for eachi andj with 0 <i, j < n.

We call the sefl’ of intervals aninterval representationf the graph. For each intervhl we denote byr(l) and
L(1) the right and left endpoints of the interval, respecti@lgnce we have(l) < R(1) andl = [L(I), R(1)]). For
any interval representatiah and a pointp, £[p] denotes the set of intervals that contain the ppintVe denote

by Iy, ~ Iy, if 1y, N1y, # 0, which means same &s~ v; for an interval graph, and denote the length of an interval
| by |[l].

In this paper, we focus on discrete and continuous intep@lesentations. In the discrete interval represen-
tation model, each intervdl has two integer endpointgl) andR(l), and each interval is closed interval with
minimum length 0. The discrete model seems the most natnchkenple one. However, sometimes, it is (in-
tuitively) better to assume that the minimum length of ariiwal is 1. In this case, we may use another (but
equivalent) interval model that consists of open interadliength at least one. In the following, we usej] to
denote the set of integefsi + 1,..., j}. In the continuous model, each interdahas two real endpoints(l)
andR(l), and each interval is closed interval with minimum lenggf,. We will describe about the length of an
interval and the minimum lengtkmi, in the rest of this section.

2.1 Scalefreegraph

Many social networks can be modeled as a scale free graphisaitctine degrees of the graph follow a scale free
power law distribution [6]. More precisely, given a randoistdbution on some family of graphs, we consider the
following condition for a random graph under this distribut (SF) the probability that a vertexhas deg() = k
is proportional tk™ for some positive constamt We call such a random graph (more precisely, a random graph
distribution) satisfying this conditioscale free Two other properties are required for the notiorsofall world
The first one is about “clustering ciiieient”, which characterizes the probability that two néigts of a node are
adjacent. The second one is the average (or longest) déstatereen any pair of vertices in the graph. In this
paper we consider the first property and leave the seconcoomef future topic.

We explain a condition for the small world property on thestéwing coéicient. For a vertex € V, clustering
cogficient of y denoted byCC(v), is defined by:

l{fu,w} € E | u,w e N(W}I
(degél))
2
Theclustering cogicient of G= (V, E), denoted byCC(G), is defined by the arithmetical mean of the clustering
codficient ofvin V. By definition, we immediately have the following:

1 1

CC(G) = VZCC(V) =N Z Z Prlu~w|u~vandw ~ V] |.

| | veV | | veV u,weV\{v},uxw

As a desired property of small world graphs, for a given randbstribution on some family of graphs, the
following condition has been proposed: (CC) for some conista 0, CC(G) under the distribution is larger than

C.



2.2 Probability Distributions

Our random interval graph model is defined based on a randt@rval generation model, a way of generating
intervals randomly. To determine each interval’s starfioint, we use some random processes studied in the
gueuing theory; on the other hand, we use power law distabubr determining the length of each interval.
As mentioned in Introduction, we consider two versions. rAdidiscrete version where both starting points and
lifespans are integers, and a more general continuouwetdiere for each version, we recall basic distributions
and their important properties.

Time-Discrete Version: Bernoulli), Poissonf) and®(«)

In the time-discrete version, we use the Poisson distobuibr specifying the distribution of intervals’ starting

points. First, we begin by explaining the Poisson distidiuthat is used to define our interval generating process.
ThePoisson distributiorwith parameten, Poissonf) is given by;

/lk
_ _ A
Prly =K = € W

whereY is the random variable following the Poisson distributiofhe Binomial distributionwith parameter
(m, p), written asB(m, p), is considered as the the number of heads tnals of coin flips with a biased coin. Let
us consider a coin which lands on heads with probabiigndm trials of coin flips. Then, the probability of the
number of heads, say, equals t is;

Prix =K = (oo -

The Poisson distribution can be considered as the limitasg of this probability as the expected number of heads,
pm, remains fixed. So, the Poisson distribution is used as arozippation of the Binomial distribution.

We use the Poisson distribution in our interval generatiragc@ss. We summarize below some important
properties of the Poisson distribution.

Let us consider random variablgs(i = 1,2,...,K) such thatt; follows Poisson{) independently. Then,
the sumy¥, t is also follows the Poisson distribution with parametér For any givents,...,t, let X =
{X1, X2, ..., XZ!(::ltl} be a multiset subset of [K] suchthatx; =1forj=1,...,t;, x;=2forj =t +1,...,t1 + {5,
and so on. Under the condition Q]*leti = n, we can show that those multisétof sizen occurs uniformly at
random. Thus,we have for any multiset subSeif [1..K] of size n and for anyn uniformly and independently
chosen elementd;, U,, ..., U, of [1..K],

k
Pr{{Xs,..., %} = S| Zti =n] =Pr[{Uy,...,Un} = S]. (1)
i=1

Second, for specifying the distribution of intervals’ I¢hg, we explain a power law distribution.
We say that a random variable on non-negative integers followsdiscrete power law distributionvith
parametetr (which we denoté(«)) if it satisfies the following.

1
(@)

wherel(a) = ;2,17 is the Riemann’s zeta function. Here we note the followingperty for this random
variableL following P(«).

PriL=K = —(k+ 1), (k>0)

L, k+2)
l(a,k+1) )

wheref(a,n) = X217 is the generalized zeta function. This probability, ryincreases alsincreasing. This
gives the simple rule as mentioned in Section 1; “longerruatis tend to survive yet longer”.

pk=PrlL>k+1|L>K =

Continuous Version&(1) andP(a, Xmin)
In the time-continuous version, we use the Poisson proaesspkcifying the distribution of intervals’ starting
points and use a power law distribution for specifying thregkl of intervals.

Theexponential distributionvith parameten, (1), has the following density functiofixp, (X).

fexp, (X) = e (x=0).



Let X following the exponential distribution. The exponenti@tdbution has the “memoryless property” such
that PriX > s+t| X > g = PrX > t].

Let us consider that random variabtgs = 1, 2, . ..) such that; andt; —t;_;(2 < i) follows &(1) independently.
Then,{ty, to,. .., } is called thePoisson procesg-or any giverTg > 0 andT > 0, let us denot®(T) as the number
of tis betweeMpandTo + T,i.e.,N(T) = j—i+1suchthat_; < To<ti<...<tj <To+ T < tj1. Itisawell
known fact that ift; andt; — t_1(2 < i) follows &(1) independentlyN(T) follows the Poisson distribution with
parametenT for anyTo. There is also a well known fact (See [7],) thattjf . . . ti.,} satisfiesN(T) = n for some
To, {ti,...,tizn} can be treated as the uniform distribution @,[To + T]. Precisely, for any multiset subsstof
[To, To + T] of sizen and for any uniformly and independently choseslementsJ, ..., U, of [T, To + T,

Prlits,. ...t} = S| N(T) = n] = Pr{Uy, ..., Un} = S]. 3)

Same as the discrete model, we use a power law distributigpeoify the distribution of intervals’ length.
The continuous version of a power law distribution has twapeeters. We say that a random variadblen a real
value at leaskmin(> 0) follows acontinuous power law distributiowith parametetr and Xy, (which we denote
P(a, Xmin)) if its density functionfpo\,\,wmln (X) satisfies the following.

frow,,  (X) = Cox™

@Xmin

whereC, = (oz—l)x;qnl is the normalizing constant. Note that for an random vaeilfbllowing some continuous
distribution, we write P = X] to denote the density functiof(x) of the continuous distribution.

3 New Model of Scale FreeInterval Graphs

To convert an interval representation to an interval graipére are well known algorithms running in time, e.g.
O(|V| + |E][5], we here present two algorithms which output an inter@presentaion.

3.1 Discreteinterval generation model

We also present a discrete version of the random generdtinteoval graphs. We use the birth and death process
to generate an interval representation. The birth and geattess is one of the waiting queue model such as the
customers arrive independently to other customers and thasts infinite number of gates for service.

In our model, we set a clock = 1,2,... and put intervals on each time using the Poisson distributio
The algorithm for our modeput-intervals-D(4, a, n), is shown in Algorithm 1. In this algorithm, the variable
T is the clock for the arriving timetr holds the number of intervals begin at tirfie and the sub-procedure
RAND_Poisson() is a random procedure returning an integer according tesBoft). To decide the length of
an interval, we use the sub-proced®&ND_Pow(«) such that returns an integer accordingPi@).

Actually, this is an approximated approach to the modelset@onsider a coin such that lands on heads with
probability p. Flip the coinmtimes at each time stépand if the coin lands on head, we put an interval starting at
time T. The number of heads on tinfefollows B(m, p), and we can approximate it with the Poisson distribution,
Poissony), if mtends to infinity as the expected number of hegas= A, remains fixed.

The complexity of this algorithm depends on the paramgter Let Teng be the final value off. Since
the expected number of intervals born in tifeis A, the expected value OfFgng is g The sub-procedure
RAND_Poisson(2) is called Teng times and the sub-proceduRAND _Pow(e) is calledn times. The total ex-
pected time complexity is

0] ( % nTime(Poisson (1)) Time(Power («))

whereTime(Poisson(1)) andTime(Power («)) are time complexities of sub-prosedures.
We here consider values &6fa) and how it is related intervals’ lifespan for a typical valof the parameter.

Example 1 It has been usually claimed that typical scale-free netwaisfy (SF) witly = 2.1 ~ 2.8. Since our
later analysis shows that the smalleigives the smaller clustering cieient in our model, we consider= 2.1

for our example. Then, sineg2.1) ~ 1.560, we haveon averagey =~ 0.641n, i ~ 0.150, and . ~ 0.064n,
where n denotes the number of vertices such that correspondingvaidtbas length i, and n denotes the number
of vertices.



Algorithm 1: put-intervals-D(2, a, n)
input : Parameters, a, andn.
output: A set of intervals? .
begin
T=1i=1,7 =¢;
whilei < ndo
tr = RAND_Poisson(A);
puttr intervals onT, i.e.,
for j=itoi+tr—1do
setL(lj) =T;
set the length of;, |; = RAND_Pow(e);
setR(I)) =T +1+j;
end
i =i+ty;
proceed the clock to T + 1;
end

outputrs.
end

3.2 Continuousinterval generation model

In the continuous model, The birth and death process aresepted as follows. Lgt(l;) | i = 1,...,n} be the
set of the birth time of intervals. Lat = L(I;) andt; = L(l;) — L(li-1) (2 < i < n). t follows &) and the
length of the interval;, sayl;, follows P(a, Xmin). Let sub-procedurdand_Pow(a, Xmin) andRand_Expo(1) be
returning a random real number according@, xmin) and&(4), respectively. Note thaand_Pow(a, Xmin) and
Rand_Pow(«) are diferent distributions. The random generation of an intervaph is done by this procedure,
put-intervals-QA, @, Xmin, N), Shown in Algorithm 2.

Algorithm 2: put-intervals-C(2, @, Xmin, N)
input : Parameters, a, Xmin andn.
output: A set of intervals? .
begin
T=0,i=1,7 = ¢;
whilei < ndo
/* decide the left endpoint of the interval *
L() =T,
/* decide the lifetime(service time) of this interval *
li = Rand_Pow(a, Xmin);
/* decide the right endpoint of this interval *
R(|i) =T+ |i;
addl; to T;
ti = Rand_Expo(1);
T=T+t;
i=i+1;
end

outputrs.
end

For a contrast to the discrete model, we note the followireg fRor a fixed time period, sayr§, To + T], the
number of birth in this period\(T) follows the Poissom(T) independent td@y.
The time complexity is:
O (nTime(Expo(2)) Time(Power (a, Xmin)))

whereTime(Expo(1)) andTime(Power (a, Xmin)) are time complexities of sub-prosedures.
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Figure 1: An example of the degreewfdeg{/) = 9. There are 6 intervals on timdl,], 6 intervals are put on
time [L[1y]..R[I\]] and 3 intervals starts at timg1,].

4 Scale Free Property

In this section, we will show that both versions of a scale freerval graph has the degree sequence following a
power law distribution.

4.1 Scalefreeproperty for the discrete model

To consider the degree of a vertex, let us defifie for time T andA(l) for an intervall. £(T) is the number of
intervals which exist on tim& in our algorithm 1.A(l) represents the number of intervals whose left endpoints
are put on [[I]..R[I]]. It is easy to see that the degree of a veneas the sum of(L[l,]) and A(l,) minustyy,;.
(See figure 1)&(L[1y]) — tp,) means the number of intervals which exist on tihj&,] and started befori[l,].

We will analyze the stationary distributiark) of £(T) (i.e.,n(K) = limt_. Pr[&(T) = K]) and A(l). First, we will
show thag(T) - tr follows Poisson{<% 1) in the steady state. Second, we will show tha@r] = K] follows

a power law distribution for largk. Third, we conclude with the fact that a power law distribntdominates the
Poisson distribution for large degrees. In the rest of teiien, we use thé(x) ~ g(x) notation to approximate
f(X) by g(x). Precisely, f(X) ~ g(X) asx — oo” stands for “lim_,, f(X)/g(X) = 1".

Consider the tim& of the procedur@ut-intervals Some intervals exist and each of them has their current
length> 0. Since the length of an interval follow¥«), the probability of survive depends on the current length
of the interval. Let they; (fori > 0) be the probability such that an interval whose currerdtlersi at timeT will
survive at timeT + 1. Since we consider that the length of an interval foll#¥(a), p; is derived from equation
).

Let p] be the number of intervals which are alive and have currergttel at timeT. As the timeT will
proceedp ! is depends only op| because some of intervals @f will be alive at timeT + 1 with probability
pi and others die at tim&. From this observation, we obtain this formula:

oo

Prplit =K = > (T)pik(l— p)™ Prlo] = m] (4)

m=k

fori > 0. Sincepg is the number of intervals born at tinfe Prbog =K = e‘”ﬁ—!k. Let us consider the stationary



distributions; such thatr(k) = limt_ PrpT K]. For the stationary distributiom, the equation (4) becomes

00

miaak) = ) (T) pr(1 ~ pi)™ ¥mi(m) (5)

m=k

andmg(k) = e fdk
We will show the following lemma as the solution of the eqoat{5).

Lemma 2 Let us denote P= H] _objfori > 1land R = 1. The stationary distributiorn; follows PoissoMP;);

(/lP)

m(9 = e

Proof. The proof is done by induction. For= 0, mo(K) = et 4P Assume it holds for < k, i.e.,mi(k) =
e P @) The stationary distribution is:

mia(K) = Z( ),k, pk (1 p)™ i (m) = Z( W ok (1= )™ _Ap,(ar:)

. _k L . A
- P pl (/lp)kz (1- p. (/lP)m_k— _AP; (/lp||(! ) Z {/lpl(][:n'!pl)}

nm=0
k k
— e_apl (/lPi+1) elpl(]__pl) — @ APi+AP—ApiP; (/lPi+1) — e_,lp,ﬂ (/lPi+1)
k! k! ki -
Note that we use@;P; = P;.1 in the above. |
We now can obtain the stationary distribution&gT ), however, what we want to know is the distribution of

&(T) — tr since the degree of a vertex(&L[1]) — tuyy) + A(l). we conclude the first part of the degree analysis
with the following lemma.

Lemma 3 Let&(T) be the number of intervals which are alive at time T apbé the number of intervals starting

attime T. Thew(T) - tr follows Poissot{“3-2) in the steady state.

Proof. Sincern;s are independent and follow Poiss@ﬁ-,() the sum¢(T) — o = Y24 7 also follows the Poisson

distribution with paramete¥,;°, AP;. Recall thatP; = H, ohj= ‘((Z(';)l),

]
Second, we will show thai(l) follows a power law distribution. Recall that for aly andT > 0, the number
of intervals which start on timeTp..To + T] follows the Poisson distribution with paramet&fT + 1). Let us
suppose that the intervihas length. The number of intervals starting ob[J]..R[1]](= [L[I]..L[I] + 1]) is;

PrAC) = k1| = 1 = -0 ©

Since the length of an interval follow?(«),

kb (a)

N /l(/u) 1 [~e = /lk N —Alk—-a _ /lk N —Al1k—a
DI s D ILE N AT DI

Pr[A(l) — k] Z e—/l(|+l) /l(l + 1)} Pr[||| i e—/l(|+l){/l(| + 1)} 1 (l 1)—(1/

For the last formula , we show the following lemma.



Lemma 4
Z|k- el ~ 11k ask— co.

Proof. Let f(k) = f(—lk S0l e and supposk > a. We then have

e A
f(k) > E f Xk—af e—/lx dx — _' (k _ a,)k—oz e—(k—af)’
- JO

k 00
f(k) < %f Xk— —AX dX+ (k a)k—(t —(k—(y)
+ JO

Letthe integral pamy(k) = 4 f x@ e~ dxand the resti(k) = & (k—a)* e ®=). We show thag(k) ~ 19~k
ask — oo andh(k) = o(k™*) ask — 0. Changing the variable to= A x, we have

a-1 a-1
a(k) = 2 ' f U e du = A I(k-a+1),
k' Jo
wherel” denotes the Gamma functidiis) = fom us~te U du. We use the following properties of Gamma function;
(i) T(s+ 1) = sI(s),
k! ks
(ii) I(s) =

s(s+ 1)---(s+Kk)
Then, we have fow # 0, 1, 2, .

(s#0,-1,-2,--).

‘(1-a)(-a)
K k-

9(K) x k& = /l"l(k @) I(—a) - 21 ask = co.

Whena is a nonnegative integer, we have
_a)
g(k) = 2*t k=)t k'a). ~ 271Kk ask — .
Finally, for the termh(k), applying Stirling’s formulé! ~ V27 k<*1/2 e ask — oo, we have

N kk e—(k—(l) ak-a pL] 12
h(K) x k* = 2 T(l_i) ~Ek -0 ask— co.
]
Applying Lemma 4 , we obtain
1
PrA(l) = k] ~ — 291k,
{(a)

Third, we will show that we can neglect théect of £(L[I]) — t; if the degree oW is large enough. We
present the following lemma.

Lemma5 Let F and G be the tail probability of a power law distribution with Eemetera and the Poisson
distribution with parameteriyu, respectively. In precise, using the constanF¢k) = C),; ™ and G(k)

¥ e Then we have;

E@ — 0 ask— co.
F(K)
a(x) dd a(x)
Proof. Let us recall thak! > ('5‘) andif lim f(x) = 0 and limg(x) = 0, then lim =5 = lim dx
© f(X)  xow Lf(x)
Sy — o (34 _ 0 (3} 30
O I 0 KB 5 0
k—oo F(k) k— o0 Czrzki_a k— o0 Cj:o x—dx C x>0 X @

]
By Lemma 5 withy = “‘”(‘(3‘1, for suficiently large degree vertices(l,) dominates[L[l]] — t.p,; on the
degree distribution. We now conclude with the followinguies

Theorem 6 A scale free interval graph generated according to our disermodel has the degree sequence fol-
lowing P(«) for large degrees.



4.2 Scale-free property for the continuous model

Same as the discrete model, we will analyze the distribuifdhe stationary distribution(k) and the number of
intervals which are born on an intervalA(l).

For a continuous model, there is a well known fact on the a&iglyf the infinite server queuing model with
Poisson process input [7]. The stationary distributionhef tumber of customers in service follows the Poisson
distribution.

Theorem 7 [7] Let us suppose that the number of servers are infinite, angldenote the number of customers
being served at time &(T). Let the inter-arrival timesjt= L(liy1) — L(I;) (i=1,2,...;L(l1) = 0) are identically
distributed and independent random variables with the egptial distribution. If the average of the service time
w is finite, then, the stationary distribution(k) = limr_ Pr[é(T) = K] follows the Poisson distribution with
parameteriu

We can regard the left endpoint of an interval as the arrif/al customer and regard the length of an interval as
the service time of a customer.

Same as the discrete model, let us degtg the number of birth on the intervhl in other words, the number
of arrivals of customers orL[l;), R(I;)]. A(l;) depends on the length of the interval such that foll@®(¢s). We
will show that PriA(l;) = K] follows a power law distribution for large enoughandA(l;) is the main term of the
degree of an interval using Lemma 5.

For A(l;), we will show the following lemma.

Lemma 8 Pr[A(l;) = K] - ck® as k— o for some constant c.
Proof.
00 00 k _
PriA(l) = K] = f PriA(l) = k| I; = ] Pr[l; = tldt = f e‘“&a—lt‘”dt
0 0 kb o

n

o a—1 a-1
g G 15 f (et = @ 11)i| f U e tdu = % 1r(k a+1)
X Ko i

in
We used that changing the variable- At. We will show that
1 —
EF(k—a/+1)—>k ask — oo,

Using the property of the Gamma function shown in the ansalysthe discrete model, far# 0,1,2,.. .,

o(K=0a)---(1-0a)(=a)
klk-@

k—llr(k— a+1)=k [(-a) » k™ ask — co.

Whene is a nonnegative integer, we have

K - a)!
ki

%F(k—a+1)= — k* ask— co.

By Lemma 5, we conclude with the following result.

Theorem 9 A scale free interval graph generated according to our cmmius model has the degree sequence
following P(«) for large degrees.

5 Clustering coefficient

In this section, we will show the constant lower bound of thpeeted value of the clustering d&eient.



5.1 Theclustering coefficient analysisfor the continuous model

We analyze the expected value of the clusteringf@ent of a scale free interval graph. First, we show thateher
are manyshortintervals and, second, the expected value of the clusteodgjcient of those short intervals are
large. We call that a vertex isshortif the length of the interval corresponding to the vertexeissl thamXmin.
Since the length of an interval follows a continuous power diistribution, a vertex is-short with probability;

PrlL < rXmin] = 1 - (@ — DxEtdt = 1 — X0 (M Xmin) ™ = 1 —ri™.

Xmin

The expected number of short interval$is- r'-*)n. For a fixed, let us consider about the clustering fiagent
CC(v) for anr-short vertexv. Hereafter, we refer to the length of the interf@torresponding to a vertexas
Iy and let us denote the set Palfy)) be all of pairs chosen from(Vv). Let us use the [ ] notation for an eveft
which means thatq] = 1 if A occurs andA] = O otherwise. The clustering cfieient of the vertew is:

_|PairN(V) N E| 1
CCM = TparN)  iPartN(Y) (uyw}eéw) [t i < E]
1

[{u,w} € E] = Pr V[{u, w} € E | {u,w} € Pair(N(v))].

1
= Pr —_—
[Pair(N(v))| {uwjeyPairN()) [Pair(N(v))| tuwey
The last probability is,

Pr{{u,w} € E | {u,w} € Pair(N(v))]

f f Prifu,w} € E | {u,v} € E,{w,v} € E, I, = S |y = t] fpow, . (9 fpo\,\,mxmin (t)dsdt. ()
Xmin ~ Xmin

@ Xmin

The key lemma for three intervals is the following, whichnslépendent of the degree distribution:
Lemma 10 Let three intervalsy I, I, have fixed length/) s t, respectively. We have;
_ (s+t)ly+st
(Iy+9)(y+1)
Proof. Let us consider an axis such that the left endpoiritof(l,) is set to 0.

Prily ~ lw 1y~ Iy, lw~ 1y

Figure 2: Three cases for the conditisr |,,.

Under the condition, ~ I, andly, ~ I, R(l,) andR(ly,) should be in [0Ql, + s and [Q |, + t] respectively.
Under this condition, we can regard the distributiofR@if,) andR(l,,) as the uniform distribution by equation (3).

First, for the case < |, as shown in Figure 2, R(l) is in [0, I,], R(ly) should be in [OR(I,) + t]. Summing
up the three cases in Figure 2, the above probability is;

Prily ~ lw | lu~ Ly, lw ~ I, lu = s 1w =1]
f PriR(Iw) € [0,t + X]IR(lw) € [0, Iy + t]] Pr[R(ly) = X]dx
0

+ flv PrR(ly) € [x— st + X]|R(Iw) € [0, I, + t]] Pr[R(l,) = X]dx

ly+S
+f PrR(lw) € [x= s t+ L]IR(Iw) € [0,y + t]] Pr[R(ly) = X]dx
Iy
S ly ly+S _
_ fx+t 1 dx+f s+t 1 dx+f ly+t—-x+s 1 dx = st+(s+t)|v.
o lv+ttly+s s ly+tly+s I, ly +t ly+s (Iy+ 90, +1)
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For the casa > |, we can show the same equation in a similar way. n
We here obtained that the equation (7) is;

foo fw Prl{u,w} € E | {u,v} € E,{w,V} € E, |, = s |, = t] f(s) f (t)dsdt

in

o 0 St+(S+t)|v s 2 —ay—a
fxm.n SRR ) (CoS TGt At =G f fxm{ ® +s>(| +t)}S tdst
1

sy (v + )Y [ sy (v + t)t“
For the term of integration of) we us&Xmin < ly,

v V1 Y1 Ko, N <Xa.n(1 1)_ Xain

——dt < ——dt et = EYW Y = :
o (ot DT S @ @ 20 20(e-1) Ta-1)T 2@-1)

= 1-13C2 t| ds.

Usingly < rXmin, the lower bound of the equation (7) is;

— 2
1 0 1 X r2
—1¥c? 1-1vc2 in 1-=
e | I e e A P

We now obtained that far-short vertew,

2

Priiu,w} € E | {u,w) € PairN(V))] > 1 - rz.

Let V; be the set of-short vertices. The lower bound of the clusteringfGo@nt of the grapi® is;

ZCC(V)+ Z cCcv)

VeV, veV\V;

r2
CC(G) = Vi Zc (V) = > MvZCC(v) > |vr ( 4).

Since the expected size \df is (1 - rl‘”) [V], the lower bound of the expected valueGQE(G) is;

Vi 'Vr'( ;)} = (=) (1 i %2)

For exampleg = 2.1 (same as Example 1), let= 1.447,E[CC(G)] > 0.159. Note that it is independent to the
size of the graph.

E[CC(G)] > E

5.2 Theclustering coefficient analysisfor the discrete model

Same as the continuous model, we will show that there are rslaorg vertices and they have a large clustering
codficient. For giverG = (V, E), we partitionV into Vo, V4, ... such thad; contains vertices corresponding to
intervals of length. Letn; be the number of vertices M, andn the number of vertices iW. Our goal is to show
how to compute a lower bound of the clustering ffi@@&nt of a scale free interval graph since it depends on the
distribution ofn;. Typically, we have the following lower bound.

Example 11 By Example 1, we assume that the expected values of,rand rp are 0.641n,0.150n, and0.064n,
respectively. Then the expected value of the clusteringicieat of G,CC(G), is at least0.7713

We have the key lemma same as Lemma 10. It is independent dégree distribution:

Lemmal2 Let Iy, Iy, ly be any three intervals placed randomly. We assume that tséiqgus of the inter-
vals are independent, and the universal interval is longugio ThenPr[ly ~ Iy | Iy ~ lvandk, ~ 1] =
luly + Wy + Tly + 1+ 1y + 1w + 1

(ly+ 1+ D+ 1y + 1)

11



Proof. To simplify, we shift the whole intervals and fix1,) = 0 andR(l,) = I,. ThenR(l,) takesi in [O..l, + 1]
W|th conditional probabllltyHT givenl, ~ Iy. Similarly, R(ly) takesj in [O..l, + 1] with conditional probability
|w+|v+1 givenly ~ Iy.

We first assume thay, < |, < l,. Then, for eachin [0..l, + 1], we have the following casef; N I,| = i for
O<i<lIyllunly=Iforly<i<l,and|lgnly =1y+Ily—iforl,<i<l,+I,. Thatis, we havé, +1, +1
different cases tha{ intersects with,,, and each of them occurs with the same probability.

Now, we turn to consider the cases thaintersects with, N I,. The number of cases thhi} intersects with
lyisly + Iy + 1. Among them, when & i < |, |, intersects with, N I, for eachj = R(Iy) with j in [0..i + I,]. If
Iy <i <1y, lwalways intersects with, N I, = I,. The casé, <i < |, + |, is symmetric. Hence, taking average,
we have

|+Iu+1 luly + Wl + lly + 1+ Iy + 1w+ 1
= +1x(l ly+1)|=
|V+| Z| (w=lv+1) (o + 1+ D)(w+ v+ 1)

In the other two cases$,(< |y, Iy, andly, I, < Iy), we can analyze in a similar way, and obtain equations which
imply the same results. n
Hereafter, we denote biy(ly; I, lw) = sttt tis easy to check that for any fixed positive integer

lv, f(ly; 1y, lw) is @ nondecreasing function fgrandl,,. We also note that(0;1,,1y) = 1 for anyl, andl,,, which
means that any two intervalgandl,, intersecting witH, of length 0,I, andl,, share a common intervh|, which
is a point.

Now, we turn to the computation of the lower bound of the expeealue ofCC(G). We denote byCC(V)
the expected value of the clustering fitc@ent of a vertex inv;. Then we have€C(G) = r—11 Yi=01... MCC(Vi). In
this section, our goal is to give a good lower boundCef(V;). In our model, first fewv;s are influential. Hence
we can give a good lower bound by analyzing them.

Lemma 13 We haveCC(Vo) = 1, andCC(V1) > (63n? — 9n3 — n? — 18non — 6nyn — Bnony — 1830+ 51ng + 15n; +
112)/(72( - 2)(n - 1)).

Proof. Letv be any vertex irV;, V' = V \ {v}, andV/ = V; \ {v}. Then, by definitionCC(V;) is computed by
CC(V) = m Suev: Zwevaqy (5 1o lw). Wheni = 0, it is easy to hav€C(Vp) = 1. We assume= 1. We
then divide into six cases;
(1) Caseu,w € Vg occursng(ng — 1) times with coéicient f(1;0,0) = 1/2. We have a partial summation
Zuevo ZWEND)\lu} f(1;0,0) = %no(no -1).
(2) Caseu € Vg andw € V! (or vice versa) occursri3(n; — 1) times with coéficient f(1;0,1) = 2/3. They give
2 Y uev, ZWEVi f(1;0,1) = §n0(nl -1).
(3) Caseu € Vgandw € V \ (Vo U V3) (or vice versa) occursi3(n — ng — np) times. In the case, sindeis nonde-
creasmg function, the céigcientis atleasf(1; 0, 2). Thus we have a lower bound2.cv, Y wev\vuvy) F(1;0,2) =
3no(n - no — ny).
(4) Caseu,w € V; occurs i — 1)(n — 2) times with cofficient f(1;1,1) = 7/9. Hence we have a partial
summation§ (n, — 1)(n1 -2).
(5) Casau € V] andw € V \ (Vo U Vy) (or vice versa) occursy — 1)(n — ng — ny) times. Similarly, a lower bound
of the codficient is given byg(nl —1)(n—ng — ny).
(6) Caseu,w € V \ (Vo U V;) occurs i —ng — n1)(n— ng — np — 1) times. Coéicient is bounded bg(n - o —
ny)(nN—no —m —1).

Now, we have

1

VIVl - 1) ueV” weVr\ (u}
1

(n-1)(n-2)\2

CC(V1) f(L;1u, lw)

(1n0(no 1)+ gno(nl— D+---+ g(n— Np—ny)(n—ng—ny—1)

which equals to (6@ — 9n2 — nZ — 18mgn — 6nyN — 6ngny — 1830+ 51ng + 15m; + 112)/(72(n—2)(n—1)). B
By the equation of Lemma 13, we have a lower boundC@fG) for fixed @. For example, lettingyy =
0.641n andn, = 0.150n (see Example 1), we hal®@C(G) = 2 i1 MCC(V) > £ 301 NiCC(Vi) = 2(no +
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46.264M?-14805N+112, \ _ 1 45212-13951+1008, _ 0.7373850-1.99726)—1.02891)
2o M) = 5(0.641In+ HE s o—-0.150n) = == ~ 0.7374. In Lemma 13,

we only consider three setg, V1, andV \ (Vo U V7). We can repeat the idea once more, and obtain a better lower
bound:

Lemma 14 We haveCC(V1) > (16567 — 324n3 — 64n2 — 9n3 — 432non — 192n;n — 72n;n — 28810 — 108050 —
48n;n; — 4776+ 14760+ 576n; + 201, + 2800) (180001 — 1) (n—2)) and CC(V-) > (500n%— 100n3 — 25n5 — 4n3—
20010n - 10011[1 - 4Or12n - 10011[10 - 4Or12n0 - 20n2n1 —-146+ 54010+ 24511 + 92n2 + 921)/(600(n - 1)(n - 2))

Proof. We now consider four seté, V1, Vo andV \ (Vo U V1 U V). The computations are straightforward and
tediously, and hence omitted. |

Using the equations of Lemma 14, we have a better lower botidC¢G) for fixed a. For example, letting
no = 0.64In, n; = 0.150n, andn, = 0.064n, we haveCC(G) = % %51 NiCC(Vi) > % 3i1,nCC(V) =

1 11785n°-373062n+2800 301125°-107122n+921 ) _ 0.771328(-1.99648)0—1.04782) -
(o + 100p-0n-2) Mt T eoopnin2)  12) T =) 0.7713

6 Concluding remarks

In this paper, we have proposed the scale free interval graqatel, and analyzed that it has power law degree
distribution and large clustering cfiieient. Actually, we had considered the time-continuous eh@¢hich is
almost same as the time-discrete model introduced in Se@ffo For the time-continuous model, we also
showed following results.

Theorem 15 A scale free interval graph generated according to our ticogtinuous model has the degree se-
guence following?(«) for large degrees.

Theorem 16 For @ = 2.1 (same as Example 1), A scale free interval graph generatedrding to our time-
continuous model has the expected clusteringfimient of G is at leasf.159 Note that it is independent of the
size of the graph.

However, our model seems to not satisfy the third property)(SThe property (SW) is that any two nodes
are joined by short path, which is estimated by average aydshdistance between any two node$in Our
experimental results showed that the average distancénartidmeter of the graph are both lineaninNe leave
for future works that proposing scale free interval grapligidhat has the property (SW).
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