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Abstract

Scale free graphs have attracted attention by their non-uniform structure that can be used as a model for
various social and physical networks. In this paper, we propose two natural and simple random models for
generating scale free interval graphs. These models generate a set of intervals randomly, which defines a random
interval graph. The main advantage of those models are its simpleness. The structure/properties of the generated
graphs are analyzable by relatively simple probabilistic and/or combinatorial arguments, which is different from
the most of the other models for which we need to approximate the processes by certain differential equations.
We indeed show that the distribution of degrees follows power law, and it achieves large cluster coefficient.
Keywords:scale free graph, small world network, interval graphs.

1 Introduction

Since early works by Watts & Strogatz [9] and Barabási & Albert [2], small world networks are the focus of recent
interest because of their potential as models for the interaction networks of complex systems in real world [1, 8].
There are three major properties that a small world network and/or a scale free network has (see, e.g., [6]): (SF)
the node connectivities follow a scale free power law distribution, (CC) two neighbors of a node are also connected
by an edge with high probability, and (SW) any two nodes are connected by a short path through a very few nodes
called hubs.

Up to now, many models have been proposed and their properties have been investigated. Aside from few
deterministic models, most of the randomized models are based on some dynamicrecursiveconstruction of ran-
dom graphs. Thus, the analysis of certain properties of the obtained graphs becomes rather complicated, and it is
not so easy to see the combinatorial structure of the obtained graphs. Typically, for example, in order to obtain a
formula for the distribution of degrees (for showing the property (SF) mentioned above), one has to approximate
the process by some differential equations and solve them. Therefore, although many random graph models have
been proposed, we think that it is yet important to introducesome random graph model that can be easier to ana-
lyze by somewhat standard probabilistic/combinatorial methods. This is important in particular fordesigning and
analyzing algorithms for scale free networks.

In this paper, we propose two simple random models for generating scale free interval graphs. Interval graphs
have many applications from scheduling to bioinformatics.A graphG = (V,E) is an interval graph if and only
if G has an interval representationI such that each vertexv corresponds to an intervalIv and two verticesu and
v are adjacent inG if and only if corresponding intervalsIu and Iv share a common interval onI. For defining
a random interval graph model, we introduce a way to randomlygenerate an interval representationI; some
standard random process is used for choosing intervals’ starting points, and a power law distribution is used for
determining intervals’ lengths. This model has the following intuitive reasoning: Each interval is regarded as a
period of existence, i.e., life, of some object (or creature), and relationships are created between these objects who
have an overlap of lives. A power law distribution of a lifespan is derived from the simple rule “longer intervals
tend to survive yet longer” (since experience is the best teacher).

Technically we consider a random model for generating interval representations. For combinatorial analysis,
it is easier to assume that all intervals start at integer points and their lengths are integers. Thus, we adaptthe
immigration and death processfor randomly choosing intervals’ starting points as integers; this model has been
studied well in the queuing theory as the infinite server model. We use a power law distribution on integers for
determining lengths of generated intervals.

Although our interval model is defined as a random process, itis also possible to consider random interval
distributions in a static way. For example (under the condition thatn intervals are generated in a given period)
we may assume that the starting points of these intervals areuniformly distributed in the period. Thus, the prob-
abilistic/combinatorial structure of the model gets more clear, and wemay be able to use various techniques for
analyzing the obtained graphs. In fact, by relatively standard methods, we show that the obtained random interval
graphs satisfy two properties of the scale free networks, namely, (SF) and (CC).

2 Preliminaries and Related works

We first introduce the notions for a (undirected) graphG = (V,E) of which eachedge e= {u, v} in E ⊆ V2 has
no ordering. We only consider simple graphs without multiedges and self loops. Theneighborhoodof a vertex
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v in V is the setN(v) = {u ∈ V | {u, v} ∈ E}, and thedegreeof v is |N(v)| denoted by degG(v). The subscriptG
can be omitted if no confusion can arise. We sometimes denoteby v ∼ u if u ∈ N(v). For a vertexv in V, the
edge{v, v} is calledself loop. An edge{u, v} is calledmultiedgeif E contains two or more{u, v}s. A graphG is
simpleif G contains neither self loops nor multiedges. Hereafter, we assume thatG is simple unless otherwise
stated. For a vertex setU ⊆ V, the vertex induced graphG′ = (U, F) of G = (V,E), which is denoted byG[U],
is defined byF = {{u, v} | u, v ∈ U and{u, v} ∈ E}. Given a graphG = (V,E), its complementis defined by
Ē = {{u, v} | {u, v} < E}, and denoted bȳG = (V, Ē). A vertex setI is anindependent setif G[ I ] contains no edges,
and then the graph̄G[ I ] is said to be aclique. A sequence of distinct verticesv1, v2, . . . , vℓ is apath, denoted by
(v1, v2, . . . , vℓ), if {v j , v j+1} ∈ E for each 1≤ j < ℓ. The lengthof a path is the number of edges on the path. For
two verticesu andv, thedistanceof the vertices, denoted byd(u, v), is the minimum length of the paths joiningu
andv. We defined(u, v) = ∞ if u is not reachable tov. The graphG is connectedif d(u, v) < ∞ for each pair of
vertices.

A graph (V,E) with V = {v1, v2, . . . , vn} is an interval graph if there is a finite set of intervalsI =
{Iv1, Iv2, . . . , Ivn} on the real line such that{vi , v j} ∈ E if and only if Ivi ∩ Iv j , ∅ for eachi and j with 0 < i, j ≤ n.
We call the setI of intervals aninterval representationof the graph. For each intervalI , we denote byR(I ) and
L(I ) the right and left endpoints of the interval, respectively(hence we haveL(I ) ≤ R(I ) andI = [L(I ),R(I )]). For
any interval representationI and a pointp, ξ[p] denotes the set of intervals that contain the pointp. We denote
by Ivi ∼ Iv j if Ivi ∩ Iv j , ∅, which means same asvi ∼ v j for an interval graph, and denote the length of an interval
I by |I |.

In this paper, we focus on discrete and continuous interval representations. In the discrete interval represen-
tation model, each intervalI has two integer endpointsL(I ) andR(I ), and each interval is closed interval with
minimum length 0. The discrete model seems the most natural and simple one. However, sometimes, it is (in-
tuitively) better to assume that the minimum length of an interval is 1. In this case, we may use another (but
equivalent) interval model that consists of open intervalsof length at least one. In the following, we use [i.. j] to
denote the set of integers{i, i + 1, . . . , j}. In the continuous model, each intervalI has two real endpointsL(I )
andR(I ), and each interval is closed interval with minimum lengthxmin. We will describe about the length of an
interval and the minimum lengthxmin in the rest of this section.

2.1 Scale free graph

Many social networks can be modeled as a scale free graph suchthat the degrees of the graph follow a scale free
power law distribution [6]. More precisely, given a random distribution on some family of graphs, we consider the
following condition for a random graph under this distribution: (SF) the probability that a vertexv has deg(v) = k
is proportional tok−γ for some positive constantγ. We call such a random graph (more precisely, a random graph
distribution) satisfying this conditionscale free. Two other properties are required for the notion ofsmall world.
The first one is about “clustering coefficient”, which characterizes the probability that two neighbors of a node are
adjacent. The second one is the average (or longest) distance between any pair of vertices in the graph. In this
paper we consider the first property and leave the second one for our future topic.

We explain a condition for the small world property on the clustering coefficient. For a vertexv ∈ V, clustering
coefficient of v, denoted byCC(v), is defined by:

|{{u,w} ∈ E | u,w ∈ N(v)}|
(

deg(v)
2

)

Theclustering coefficient of G= (V,E), denoted byCC(G), is defined by the arithmetical mean of the clustering
coefficient ofv in V. By definition, we immediately have the following:

CC(G) =
1
|V|

∑

v∈V
CC(v) =

1
|V|

















∑

v∈V

∑

u,w∈V\{v},u,w

Pr[u ∼ w | u ∼ v andw ∼ v]

















.

As a desired property of small world graphs, for a given random distribution on some family of graphs, the
following condition has been proposed: (CC) for some constant c > 0, CC(G) under the distribution is larger than
c.
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2.2 Probability Distributions

Our random interval graph model is defined based on a random interval generation model, a way of generating
intervals randomly. To determine each interval’s startingpoint, we use some random processes studied in the
queuing theory; on the other hand, we use power law distribution for determining the length of each interval.
As mentioned in Introduction, we consider two versions. A time-discrete version where both starting points and
lifespans are integers, and a more general continuous version. Here for each version, we recall basic distributions
and their important properties.

Time-Discrete Version: Bernoulli(p), Poisson(λ) andP(α)
In the time-discrete version, we use the Poisson distribution for specifying the distribution of intervals’ starting
points. First, we begin by explaining the Poisson distribution that is used to define our interval generating process.

ThePoisson distributionwith parameterλ, Poisson(λ) is given by;

Pr[Y = k] = e−λ
λk

k!

whereY is the random variable following the Poisson distribution.The Binomial distributionwith parameter
(m, p), written asB(m, p), is considered as the the number of heads inm trials of coin flips with a biased coin. Let
us consider a coin which lands on heads with probabilityp andm trials of coin flips. Then, the probability of the
number of heads, sayX, equals tok is;

Pr[X = k] =

(

m
k

)

pk(1− p)m−k.

The Poisson distribution can be considered as the limiting case of this probability as the expected number of heads,
pm, remains fixed. So, the Poisson distribution is used as an approximation of the Binomial distribution.

We use the Poisson distribution in our interval generating process. We summarize below some important
properties of the Poisson distribution.

Let us consider random variablesti (i = 1, 2, . . . , k) such thatti follows Poisson(λ) independently. Then,
the sum

∑k
i=1 ti is also follows the Poisson distribution with parameterkλ. For any givent1, . . . , tk, let X =

{x1, x2, . . . , x∑k
i=1 ti
} be a multiset subset of [1..k] such thatx j = 1 for j = 1, . . . , t1, x j = 2 for j = t1 + 1, . . . , t1 + t2,

and so on. Under the condition of
∑k

i=1 ti = n, we can show that those multisetX of sizen occurs uniformly at
random. Thus,we have for any multiset subsetS of [1..k] of size n and for anyn uniformly and independently
chosen elementsU1,U2, . . . ,Un of [1..k],

Pr[{x1, . . . , xn} = S |
k

∑

i=1

ti = n ] = Pr[{U1, . . . ,Un} = S ]. (1)

Second, for specifying the distribution of intervals’ lengths, we explain a power law distribution.
We say that a random variableL on non-negative integers follows adiscrete power law distributionwith

parameterα (which we denoteP(α)) if it satisfies the following.

Pr[L = k] =
1
ζ(α)

(k+ 1)−α, (k ≥ 0)

whereζ(α) =
∑∞

i=1 i−α is the Riemann’s zeta function. Here we note the following property for this random
variableL following P(α).

pk = Pr[L ≥ k+ 1 | L ≥ k] =
ζ(α, k+ 2)
ζ(α, k+ 1)

(2)

whereζ(α, n) =
∑∞

i=n i−α is the generalized zeta function. This probability, saypk, increases ask increasing. This
gives the simple rule as mentioned in Section 1; “longer intervals tend to survive yet longer”.

Continuous Version:E(λ) andP(α, xmin)
In the time-continuous version, we use the Poisson process for specifying the distribution of intervals’ starting
points and use a power law distribution for specifying the length of intervals.

Theexponential distributionwith parameterλ, E(λ), has the following density functionfEXPλ(x).

fEXPλ(x) = λe−λx (x ≥ 0).
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Let X following the exponential distribution. The exponential distribution has the “memoryless property” such
that Pr[X > s+ t | X > s] = Pr[X > t].

Let us consider that random variablesti(i = 1, 2, . . .) such thatt1 andti − ti−1(2 ≤ i) followsE(λ) independently.
Then,{t1, t2, . . . , } is called thePoisson process. For any givenT0 ≥ 0 andT > 0, let us denoteN(T) as the number
of tis betweenT0 andT0 + T, i.e.,N(T) = j − i + 1 such thatti−1 < T0 ≤ ti < . . . < t j ≤ T0 + T < t j+1. It is a well
known fact that ift1 andti − ti−1(2 ≤ i) follows E(λ) independently,N(T) follows the Poisson distribution with
parameterλT for anyT0. There is also a well known fact (See [7],) that if{ti , . . . ti+n} satisfiesN(T) = n for some
T0, {ti , . . . , ti+n} can be treated as the uniform distribution on [T0,T0 + T]. Precisely, for any multiset subsetS of
[T0,T0 + T] of sizen and for any uniformly and independently chosenn elementsU1, . . . ,Un of [T0,T0 + T],

Pr[{t1, . . . , tn} = S | N(T) = n] = Pr[{U1, . . . ,Un} = S]. (3)

Same as the discrete model, we use a power law distribution tospecify the distribution of intervals’ length.
The continuous version of a power law distribution has two parameters. We say that a random variableL on a real
value at leastxmin(> 0) follows acontinuous power law distributionwith parameterα andxmin (which we denote
P(α, xmin)) if its density functionfPOWα,xmin

(x) satisfies the following.

fPOWα,xmin
(x) = Cαx

−α

whereCα = (α−1)xα−1
min is the normalizing constant. Note that for an random variableX following some continuous

distribution, we write Pr[X = x] to denote the density functionf (x) of the continuous distribution.

3 New Model of Scale Free Interval Graphs

To convert an interval representation to an interval graph,there are well known algorithms running in time, e.g.
O(|V| + |E|)[5], we here present two algorithms which output an interval representaion.

3.1 Discrete interval generation model

We also present a discrete version of the random generation of interval graphs. We use the birth and death process
to generate an interval representation. The birth and deathprocess is one of the waiting queue model such as the
customers arrive independently to other customers and there exists infinite number of gates for service.

In our model, we set a clockT = 1, 2, . . . and put intervals on each time using the Poisson distribution.
The algorithm for our model,put-intervals-D(λ, α, n), is shown in Algorithm 1. In this algorithm, the variable
T is the clock for the arriving time,tT holds the number of intervals begin at timeT, and the sub-procedure
RAND Poisson(λ) is a random procedure returning an integer according to Poisson(λ). To decide the length of
an interval, we use the sub-procedureRAND Pow(α) such that returns an integer according toP(α).

Actually, this is an approximated approach to the model below. Consider a coin such that lands on heads with
probabilityp. Flip the coinm times at each time stepT and if the coin lands on head, we put an interval starting at
timeT. The number of heads on timeT follows B(m, p), and we can approximate it with the Poisson distribution,
Poisson(λ), if m tends to infinity as the expected number of heads,pm= λ, remains fixed.

The complexity of this algorithm depends on the parameterλ. Let Tend be the final value ofT. Since
the expected number of intervals born in timeT is λ, the expected value ofTend is n

λ
. The sub-procedure

RAND Poisson(λ) is calledTend times and the sub-procedureRAND Pow(α) is calledn times. The total ex-
pected time complexity is

O

(

1
λ

nTime(Poisson(λ))Time(Power(α))
)

whereTime(Poisson(λ)) andTime(Power(α)) are time complexities of sub-prosedures.
We here consider values ofζ(α) and how it is related intervals’ lifespan for a typical value of the parameterα.

Example 1 It has been usually claimed that typical scale-free networks satisfy (SF) withα = 2.1 ≃ 2.8. Since our
later analysis shows that the smallerα gives the smaller clustering coefficient in our model, we considerα = 2.1
for our example. Then, sinceζ(2.1) ≃ 1.560, we haveon averagen0 ≃ 0.641n, n1 ≃ 0.150n, and n2 ≃ 0.064n,
where ni denotes the number of vertices such that corresponding interval has length i, and n denotes the number
of vertices.
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Algorithm 1: put-intervals-D(λ, α, n)
input : Parametersλ, α, andn.
output: A set of intervalsI.
begin

T = 1, i = 1,I = φ;
while i ≤ n do

tT = RAND Poisson(λ);
put tT intervals onT, i.e.,
for j = i to i + tT − 1 do

setL(I j) = T;
set the length ofI j, l j = RAND Pow(α);
setR(I j) = T + l + j;

end
i = i + tT ;
proceed the clockT to T + 1;

end
outputI.

end

3.2 Continuous interval generation model

In the continuous model, The birth and death process are represented as follows. Let{L(I i) | i = 1, . . . , n} be the
set of the birth time of intervals. Lett1 = L(I1) and ti = L(I i) − L(I i−1) (2 ≤ i ≤ n). ti follows E(λ) and the
length of the intervalI i , sayl i , followsP(α, xmin). Let sub-proceduresRand Pow(α, xmin) andRand Expo(λ) be
returning a random real number according toP(α, xmin) andE(λ), respectively. Note thatRand Pow(α, xmin) and
Rand Pow(α) are different distributions. The random generation of an interval graph is done by this procedure,
put-intervals-C(λ, α, xmin, n), shown in Algorithm 2.

Algorithm 2: put-intervals-C(λ, α, xmin, n)
input : Parametersλ, α, xmin andn.
output: A set of intervalsI.
begin

T = 0, i = 1,I = φ;
while i ≤ n do
/* decide the left endpoint of the interval */
L(I i) = T;
/* decide the lifetime(service time) of this interval */
l i = Rand Pow(α, xmin);
/* decide the right endpoint of this interval */
R(I i) = T + l i ;
addI i toI;
ti = Rand Expo(λ);
T = T + ti ;
i = i + 1;

end
outputI.

end

For a contrast to the discrete model, we note the following fact. For a fixed time period, say [T0,T0 + T], the
number of birth in this period,N(T) follows the Poisson(λT) independent toT0.

The time complexity is:
O (nTime(Expo(λ))Time(Power(α, xmin)))

whereTime(Expo(λ)) andTime(Power(α, xmin)) are time complexities of sub-prosedures.
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Iv

ξ(L[Iv])

N(Iv)

time L[Iv] time R[Iv]

Figure 1: An example of the degree ofv: deg(v) = 9. There are 6 intervals on timeL[ Iv], 6 intervals are put on
time [L[ Iv]..R[ Iv]] and 3 intervals starts at timeL[ Iv].

4 Scale Free Property

In this section, we will show that both versions of a scale free interval graph has the degree sequence following a
power law distribution.

4.1 Scale free property for the discrete model

To consider the degree of a vertex, let us defineξ(T) for time T andA(I ) for an intervalI . ξ(T) is the number of
intervals which exist on timeT in our algorithm 1.A(I ) represents the number of intervals whose left endpoints
are put on [L[ I ]..R[ I ]]. It is easy to see that the degree of a vertexv is the sum ofξ(L[ Iv]) andA(Iv) minustL[Iv] .
(See figure 1).ξ(L[ Iv]) − tL[Iv] means the number of intervals which exist on timeL[ Iv] and started beforeL[ Iv].
We will analyze the stationary distributionπ(k) of ξ(T) (i.e.,π(k) = limT→∞ Pr[ξ(T) = k]) andA(I ). First, we will
show thatξ(T) − tT follows Poisson(λ ζ(α−1)−1

ζ(α) ) in the steady state. Second, we will show that Pr[A(I ) = k] follows
a power law distribution for largek. Third, we conclude with the fact that a power law distribution dominates the
Poisson distribution for large degrees. In the rest of this section, we use thef (x) ∼ g(x) notation to approximate
f (x) by g(x). Precisely, “f (x) ∼ g(x) asx→ ∞” stands for “limx→∞ f (x)/g(x) = 1”.

Consider the timeT of the procedureput-intervals. Some intervals exist and each of them has their current
length≥ 0. Since the length of an interval followsP(α), the probability of survive depends on the current length
of the interval. Let thepi (for i ≥ 0) be the probability such that an interval whose current length is i at timeT will
survive at timeT + 1. Since we consider that the length of an interval followsP(α), pi is derived from equation
(2).

Let ρT
i be the number of intervals which are alive and have current length i at timeT. As the timeT will

proceed,ρT+1
i+1 is depends only onρT

i because some of intervals ofρT
i will be alive at timeT + 1 with probability

pi and others die at timeT. From this observation, we obtain this formula:

Pr[ρT+1
i+1 = k] =

∞
∑

m=k

(

m
k

)

pk
i (1− pi)m−k Pr[ρT

i = m] (4)

for i ≥ 0. SinceρT
0 is the number of intervals born at timeT, Pr[ρT

0 = k] = e−λ λ
k

k! . Let us consider the stationary
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distributionπi such thatπi(k) = limT→∞ Pr[ρT
i = k]. For the stationary distributionπi , the equation (4) becomes

πi+1(k) =
∞
∑

m=k

(

m
k

)

pk
i (1− pi)m−kπi(m) (5)

andπ0(k) = e−λ λ
k

k! .
We will show the following lemma as the solution of the equation (5).

Lemma 2 Let us denote Pi =
∏i−1

j=0 p j for i ≥ 1 and P0 = 1. The stationary distributionπi follows Poisson(λPi);

πi(k) = e−λPi
(λPi)

k

k!
.

Proof. The proof is done by induction. Fori = 0, π0(k) = e−λP0 (λP0)k

k! . Assume it holds fori ≤ k, i.e., πi(k) =

e−λPi (λPi)
k

k! . The stationary distribution is:

πi+1(k) =
∞
∑

m=k

m!
(m− k)!k!

pk
i (1− pi)m−k πi(m) =

∞
∑

m=k

m!
(m− k)!k!

pk
i (1− pi)m−k e−λPi

(λPi)m

m!

= e−λPi
pk

i

k!
(λPi)k

∞
∑

m=k

(1− pi)m−k

(m− k)!
(λPi)m−k = e−λPi

(λpiPi)k

k!

∞
∑

m′=0

{λPi(1− pi)}m
′

m′!

= e−λPi
(λPi+1)k

k!
eλPi(1−pi ) = e−λPi+λPi−λpiPi

(λPi+1)k

k!
= e−λPi+1

(λPi+1)k

k!
.

Note that we usedpiPi = Pi+1 in the above.
We now can obtain the stationary distribution ofξ(T), however, what we want to know is the distribution of

ξ(T) − tT since the degree of a vertex is
(

ξ(L[ I ]) − tL[I ]
)

+ A(I ). we conclude the first part of the degree analysis
with the following lemma.

Lemma 3 Letξ(T) be the number of intervals which are alive at time T and tT be the number of intervals starting
at time T. Thenξ(T) − tT follows Poisson(λ ζ(α−1)−1

ζ(α) ) in the steady state.

Proof. Sinceπis are independent and follow Poisson(λPi), the sumξ(T) − π0 =
∑∞

i=1 πi also follows the Poisson
distribution with parameter

∑∞
i=1 λPi . Recall thatPi =

∏i−1
j=0 p j =

ζ(α,i+1)
ζ(α) ,

∞
∑

i=1

λPi = λ

∞
∑

i=1

ζ(α, i + 1)
ζ(α)

=
λ

ζ(α)

∞
∑

i=2

ζ(α, i) =
λ

ζ(α)

∞
∑

i=2

∞
∑

j=i

1
jα

=
λ

ζ(α)

[{

1
2α
+

1
3α
+

1
4α
+

1
5α
+ . . .

}

+

{

1
3α
+

1
4α
+

1
5α
+ . . .

}

+

{

1
4α
+

1
5α
+ . . .

}

+ . . .

]

=
λ

ζ(α)

∞
∑

i=2

i
iα
=
λ

ζ(α)

∞
∑

i=2

1
iα−1
= λ
ζ(α − 1)− 1
ζ(α)

.

Second, we will show thatA(I ) follows a power law distribution. Recall that for anyT0 andT ≥ 0, the number
of intervals which start on time [T0..T0 + T] follows the Poisson distribution with parameterλ(T + 1). Let us
suppose that the intervalI has lengthl. The number of intervals starting on [L[ I ]..R[ I ]](= [L[ I ]..L[ I ] + l]) is;

Pr[A(I ) = k | |I | = l] = e−λ(l+1) {λ(l + 1)}k

k!
(6)

Since the length of an interval followsP(α),

Pr[A(I ) = k] =
∞
∑

l=0

e−λ(l+1) {λ(l + 1)}k

k!
Pr[|I | = l] =

∞
∑

l=0

e−λ(l+1) {λ(l + 1)}k

k!
1
ζ(α)

(l + 1)−α

=

∞
∑

l=1

e−λl
(λl)k

k!
1
ζ(α)

l−α =
λk

ζ(α)k!

∞
∑

l=1

e−λl lk−α =
λk

ζ(α)k!

∞
∑

l=0

e−λl lk−α

For the last formula , we show the following lemma.
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Lemma 4
λk

k!

∞
∑

l=0

lk−α e−λl ∼ λα−1 k−α as k→ ∞.

Proof. Let f (k) = λ
k

k!

∑∞
l=0 lk−α e−λl and supposek > α. We then have

f (k) ≥ λ
k

k!

∫ ∞

0
xk−α e−λx dx− λ

α

k!
(k− α)k−α e−(k−α),

f (k) ≤ λ
k

k!

∫ ∞

0
xk−α e−λx dx+

λα

k!
(k− α)k−α e−(k−α).

Let the integral partg(k) = λ
k

k!

∫ ∞
0

xk−α e−λx dxand the resth(k) = λ
α

k! (k−α)k−α e−(k−α). We show thatg(k) ∼ λα−1k−α

ask→ ∞ andh(k) = o(k−α) ask→ ∞. Changing the variable tou = λ x, we have

g(k) =
λα−1

k!

∫ ∞

0
uk−α e−u du =

λα−1

k!
Γ(k− α + 1),

whereΓ denotes the Gamma functionΓ(s) =
∫ ∞
0

us−1 e−u du. We use the following properties of Gamma function;

(i) Γ(s+ 1) = sΓ(s),

(ii) Γ(s) = lim
k→∞

k! ks

s(s+ 1) · · · (s+ k)
(s, 0,−1,−2, · · · ).

Then, we have forα , 0, 1, 2, . . .,

g(k) × kα = λα−1 (k− α) · · · (1− α)(−α)
k! k−α

Γ(−α)→ λα−1 ask→ ∞.

Whenα is a nonnegative integer, we have

g(k) = λα−1 (k− α)!
k!

∼ λα−1 k−α ask→ ∞.

Finally, for the termh(k), applying Stirling’s formulak! ∼
√

2π kk+1/2 e−k ask→ ∞, we have

h(k) × kα = λα
kk e−(k−α)

k!

(

1− α
k

)k−α
∼ λα
√

2π
k−1/2→ 0 ask→ ∞.

Applying Lemma 4 , we obtain

Pr[A(I ) = k] ∼ 1
ζ(α)
λα−1k−α.

Third, we will show that we can neglect the effect of ξ(L[ I ]) − tL[I ] if the degree ofv is large enough. We
present the following lemma.

Lemma 5 Let F̄ and Ḡ be the tail probability of a power law distribution with parameterα and the Poisson
distribution with parameterλµ, respectively. In precise, using the constant c,F̄(k) = c

∑∞
i=k i−α and Ḡ(k) =

∑∞
i=k e−λµ (λµ)k

k! . Then we have;
Ḡ(k)

F̄(k)
→ 0 as k→ ∞.

Proof. Let us recall thatk! ≥
(

k
3

)k
and if lim

x→∞
f (x) = 0 and lim

x→∞
g(x) = 0, then lim

x→∞

g(x)
f (x)
= lim

x→∞

d
dxg(x)
d

dx f (x)
.

lim
k→∞

Ḡ(k)

F̄(k)
< lim

k→∞

e−λµ
∑∞

i=k

(

3λµ
i

)i

c
∑∞

i=k i−α
< lim

k→∞

e−λµ
∫ ∞
k

(

3λµ
x

)x
dx

c
∫ ∞

k
x−αdx

=
e−λµ

c
lim
x→∞

(

3λµ
x

)x

x−α
= 0

By Lemma 5 withµ = ζ(α−1)−1
ζ(α) , for sufficiently large degree vertices,A(Iv) dominatesξ[L[ Iv]] − tL[Iv] on the

degree distribution. We now conclude with the following result.

Theorem 6 A scale free interval graph generated according to our discrete model has the degree sequence fol-
lowingP(α) for large degrees.
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4.2 Scale-free property for the continuous model

Same as the discrete model, we will analyze the distributionof the stationary distributionπ(k) and the number of
intervals which are born on an intervalI , A(I ).

For a continuous model, there is a well known fact on the analysis of the infinite server queuing model with
Poisson process input [7]. The stationary distribution of the number of customers in service follows the Poisson
distribution.

Theorem 7 [7] Let us suppose that the number of servers are infinite, and letus denote the number of customers
being served at time T,ξ(T). Let the inter-arrival times ti = L(I i+1) − L(I i) (i = 1, 2, . . . ; L(I1) = 0) are identically
distributed and independent random variables with the exponential distribution. If the average of the service time
µ is finite, then, the stationary distributionπ(k) = limT→∞ Pr[ξ(T) = k] follows the Poisson distribution with
parameterλµ

We can regard the left endpoint of an interval as the arrival of a customer and regard the length of an interval as
the service time of a customer.

Same as the discrete model, let us denoteA(I i) the number of birth on the intervalI i , in other words, the number
of arrivals of customers on [L(I i),R(I i)]. A(I i) depends on the length of the interval such that followsP(α). We
will show that Pr[A(I i) = k] follows a power law distribution for large enoughk, andA(I i) is the main term of the
degree of an interval using Lemma 5.

For A(I i), we will show the following lemma.

Lemma 8 Pr[A(I i) = k] → ck−α as k→ ∞ for some constant c.

Proof.

Pr[A(I i) = k] =
∫ ∞

0
Pr[A(I i) = k | l i = t] Pr[l i = t]dt =

∫ ∞

0
e−λt

(λt)k

k!
α − 1

x1−α
min

t−αdt

=
(α − 1)λα

x1−α
min k!

∫ ∞

0
(λt)k−αe−λtdt =

(α − 1)λα−1

x1−α
min k!

∫ ∞

0
uk−αe−udu =

(α − 1)λα−1

x1−α
min

1
k!
Γ(k− α + 1).

We used that changing the variableu = λt. We will show that

1
k!
Γ(k− α + 1)→ k−α ask→ ∞.

Using the property of the Gamma function shown in the analysis of the discrete model, forα , 0, 1, 2, . . .,

1
k!
Γ(k− α + 1) = k−α

(k− α) · · · (1− α)(−α)
k!k−α

Γ(−α)→ k−α ask→ ∞.

Whenα is a nonnegative integer, we have

1
k!
Γ(k− α + 1) =

(k− α)!
k!

→ k−α ask→ ∞.

By Lemma 5, we conclude with the following result.

Theorem 9 A scale free interval graph generated according to our continuous model has the degree sequence
followingP(α) for large degrees.

5 Clustering coefficient

In this section, we will show the constant lower bound of the expected value of the clustering coefficient.

9



5.1 The clustering coefficient analysis for the continuous model

We analyze the expected value of the clustering coefficient of a scale free interval graph. First, we show that there
are manyshort intervals and, second, the expected value of the clusteringcoefficient of those short intervals are
large. We call that a vertex isr-short if the length of the interval corresponding to the vertex is less thanrxmin.
Since the length of an interval follows a continuous power law distribution, a vertex isr-short with probability;

Pr[L < rxmin] = 1−
∫ ∞

rxmin

(α − 1)xα−1
min t−αdt = 1− xα−1

min (rxmin)1−α = 1− r1−α.

The expected number of short intervals is
(

1− r1−α
)

n. For a fixedr, let us consider about the clustering coefficient
CC(v) for an r-short vertexv. Hereafter, we refer to the length of the intervalIv corresponding to a vertexv as
lv and let us denote the set Pair(N(v)) be all of pairs chosen fromN(v). Let us use the [ ] notation for an eventA
which means that [A] = 1 if A occurs and [A] = 0 otherwise. The clustering coefficient of the vertexv is:

CC(v) =
|Pair(N(v)) ∩ E|
|Pair(N(v))| =

1
|Pair(N(v))|

∑

{u,w}∈Pair(N(v))

[{u,w} ∈ E]

=
1

|Pair(N(v))| Pr
{u,w}∈U Pair(N(v))

[{u,w} ∈ E] =
1

|Pair(N(v))| Pr
{u,w}∈U V

[{u,w} ∈ E | {u,w} ∈ Pair(N(v))].

The last probability is,

Pr[{u,w} ∈ E | {u,w} ∈ Pair(N(v))]

=

∫ ∞

xmin

∫ ∞

xmin

Pr[{u,w} ∈ E | {u, v} ∈ E, {w, v} ∈ E, lu = s, lw = t] fPOWα,xmin
(s) fPOWα,xmin

(t)dsdt.
(7)

The key lemma for three intervals is the following, which is independent of the degree distribution:

Lemma 10 Let three intervals Iv, Iu, Iw have fixed length lv, s, t, respectively. We have;

Pr[Iu ∼ Iw | Iu ∼ Iv, Iw ∼ Iv] =
(s+ t)lv + st

(lv + s)(lv + t)
.

Proof. Let us consider an axis such that the left endpoint ofIv, L(Iv) is set to 0.

Iv Iv Iv

Iu Iu Iu

Iw Iw Iw

0 0 0x xx + t x

Figure 2: Three cases for the conditions< lv.

Under the conditionIu ∼ Iv and Iw ∼ Iv, R(Iu) andR(Iw) should be in [0, lv + s] and [0, lv + t] respectively.
Under this condition, we can regard the distribution ofR(Iu) andR(Iw) as the uniform distribution by equation (3).

First, for the cases< lv, as shown in Figure 2, ifR(Iu) is in [0, lv], R(Iw) should be in [0,R(Iu) + t]. Summing
up the three cases in Figure 2, the above probability is;

Pr[Iu ∼ Iw | Iu ∼ Iv, Iw ∼ Iv, lu = s, lw = t]

=

∫ s

0
Pr[R(Iw) ∈ [0, t + x]|R(Iw) ∈ [0, lv + t]] Pr[R(Iu) = x]dx

+

∫ lv

s
Pr[R(Iw) ∈ [x− s, t + x]|R(Iw) ∈ [0, lv + t]] Pr[R(Iu) = x]dx

+

∫ lv+s

lv

Pr[R(Iw) ∈ [x− s, t + lv]|R(Iw) ∈ [0, lv + t]] Pr[R(Iu) = x]dx

=

∫ s

0

x+ t
lv + t

1
lv + s

dx+
∫ lv

s

s+ t
lv + t

1
lv + s

dx+
∫ lv+s

lv

lv + t − x+ s
lv + t

1
lv + s

dx =
st+ (s+ t)lv

(lv + s)(lv + t)
.
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For the cases> lv, we can show the same equation in a similar way.
We here obtained that the equation (7) is;

∫ ∞

xmin

∫ ∞

xmin

Pr[{u,w} ∈ E | {u, v} ∈ E, {w, v} ∈ E, lu = s, lw = t] f (s) f (t)dsdt

=

∫ ∞

xmin

∫ ∞

xmin

st+ (s+ t)lv
(lv + s)(lv + t)

{

Cαs
−αCαt

−α} dsdt = C2
α

∫ ∞

xmin

∫ ∞

xmin

{

1−
l2v

(lv + s)(lv + t)

}

s−αt−αdsdt

= 1− lv2C
2
α

∫ ∞

xmin

1
(lv + s)sα

[∫ ∞

xmin

1
(lv + t)tα

dt

]

ds.

For the term of integration ont, we usexmin ≤ lv,

∫ ∞

xmin

1
(lv + t)tα

dt ≤
∫ lv

xmin

1
(2t)tα

dt +
∫ ∞

lv

1
(2lv)tα

dt =
x−αmin

2α
+

l−αv

2α(α − 1)
≤

x−αmin

2α

(

1+
1
α − 1

)

=
x−αmin

2(α − 1)
.

Using lv < rxmin, the lower bound of the equation (7) is;

1− lv2C
2
α

∫ ∞

xmin

1
(lv + s)sα

[∫ ∞

xmin

1
(lv + t)tα

dt

]

ds≥ 1− lv2C
2
α

{

x−αmin

2(α − 1)

}2

> 1− r2

4
.

We now obtained that forr-short vertexv,

Pr[{u,w} ∈ E | {u,w} ∈ Pair(N(v))] > 1− r2

4
.

Let Vr be the set ofr-short vertices. The lower bound of the clustering coefficient of the graphG is;

CC(G) =
1
|V|

∑

v∈V
CC(v) =

1
|V|

















∑

v∈Vr

CC(v) +
∑

v∈V\Vr

CC(v)

















≥ 1
|V|

∑

v∈Vr

CC(v) >
1
|V| |Vr |

(

1− r2

4

)

.

Since the expected size ofVr is
(

1− r1−α
)

|V|, the lower bound of the expected value ofCC(G) is;

E[CC(G)] > E

[

1
|V| |Vr |

(

1− r2

4

)]

=
(

1− r1−α
)

(

1− r2

4

)

.

For example,α = 2.1 (same as Example 1), letr = 1.447,E[CC(G)] > 0.159. Note that it is independent to the
size of the graph.

5.2 The clustering coefficient analysis for the discrete model

Same as the continuous model, we will show that there are manyshort vertices and they have a large clustering
coefficient. For givenG = (V,E), we partitionV into V0,V1, . . . such thatVi contains vertices corresponding to
intervals of lengthi. Let ni be the number of vertices inVi , andn the number of vertices inV. Our goal is to show
how to compute a lower bound of the clustering coefficient of a scale free interval graph since it depends on the
distribution ofni . Typically, we have the following lower bound.

Example 11 By Example 1, we assume that the expected values of n0, n1, and n2 are0.641n,0.150n, and0.064n,
respectively. Then the expected value of the clustering coefficient of G,CC(G), is at least0.7713.

We have the key lemma same as Lemma 10. It is independent of thedegree distribution:

Lemma 12 Let Iu, Iv, Iw be any three intervals placed randomly. We assume that the positions of the inter-
vals are independent, and the universal interval is long enough. Then,Pr[Iu ∼ Iw | Iu ∼ Iv and Iw ∼ Iv] =
lulv + lvlw + lwlu + lu + lv + lw + 1

(lu + lv + 1)(lw + lv + 1)
.
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Proof. To simplify, we shift the whole intervals and fixL(Iv) = 0 andR(Iv) = lv. ThenR(Iu) takesi in [0..lv + lu]
with conditional probability 1

lu+lv+1 givenIu ∼ Iv. Similarly,R(Iw) takesj in [0..lv+ lw] with conditional probability
1

lw+lv+1 givenIw ∼ Iv.
We first assume thatlw ≤ lv ≤ lu. Then, for eachi in [0..lv + lu], we have the following cases;|Iu ∩ Iv| = i for

0 ≤ i < lv, |Iu ∩ Iv| = lv for lv ≤ i ≤ lu, and|Iu ∩ Iv| = lu + lv − i for lu < i ≤ lu + lv. That is, we havelv + lu + 1
different cases thatIu intersects withIv, and each of them occurs with the same probability.

Now, we turn to consider the cases thatIw intersects withIu ∩ Iv. The number of cases thatIw intersects with
Iv is lv + lw + 1. Among them, when 0≤ i < lv, Iw intersects withIu ∩ Iv for eachj = R(Iw) with j in [0..i + lw]. If
lv ≤ i ≤ lu, Iw always intersects withIu ∩ Iv = Iv. The caselu < i ≤ lu + lv is symmetric. Hence, taking average,
we have

Pr[Iu ∼ Iw | Iu ∼ Iv andIw ∼ Iv]

=
1

lv + lw + 1

















2×
lv−1
∑

i=0

i + lu + 1
lv + lu + 1

+ 1× (lw − lv + 1)

















=
lulv + lvlw + lwlu + lu + lv + lw + 1

(lu + lv + 1)(lw + lv + 1)
.

In the other two cases (lv < lw, lu, andlw, lu < lv), we can analyze in a similar way, and obtain equations which
imply the same results.

Hereafter, we denote byf (lv; lu, lw) = lulv+lvlw+lwlu+lu+lv+lw+1
(lu+lv+1)(lw+lv+1) . It is easy to check that for any fixed positive integer

lv, f (lv; lu, lw) is a nondecreasing function forlu andlw. We also note thatf (0; lu, lw) = 1 for anylu andlw, which
means that any two intervalsIu andIw intersecting withIv of length 0,Iu andIw share a common intervalIv, which
is a point.

Now, we turn to the computation of the lower bound of the expected value ofCC(G). We denote byCC(Vi)
the expected value of the clustering coefficient of a vertex inVi . Then we haveCC(G) = 1

n

∑

i=0,1,... niCC(Vi). In
this section, our goal is to give a good lower bound ofCC(Vi). In our model, first fewVis are influential. Hence
we can give a good lower bound by analyzing them.

Lemma 13 We haveCC(V0) = 1, andCC(V1) > (63n2− 9n2
0− n2

1− 18n0n− 6n1n− 6n0n1− 183n+ 51n0+ 15n1+

112)/(72(n− 2)(n− 1)).

Proof. Let v be any vertex inVi , V′ = V \ {v}, andV′i = Vi \ {v}. Then, by definition,CC(Vi) is computed by
CC(Vi) = 1

|V′ |(|V′ |−1)

∑

u∈V′
∑

w∈V′\{u} f (i; lu, lw). Wheni = 0, it is easy to haveCC(V0) = 1. We assumei = 1. We
then divide into six cases;
(1) Caseu,w ∈ V0 occursn0(n0 − 1) times with coefficient f (1; 0, 0) = 1/2. We have a partial summation
∑

u∈V0

∑

w∈(V0)\{u} f (1; 0, 0) = 1
2n0(n0 − 1).

(2) Caseu ∈ V0 andw ∈ V′1 (or vice versa) occurs 2n0(n1 − 1) times with coefficient f (1; 0, 1) = 2/3. They give
2
∑

u∈V0

∑

w∈V′1 f (1; 0, 1) = 4
3n0(n1 − 1).

(3) Caseu ∈ V0 andw ∈ V \ (V0 ∪ V1) (or vice versa) occurs 2n0(n− n0 − n1) times. In the case, sincef is nonde-
creasing function, the coefficient is at leastf (1; 0, 2). Thus we have a lower bound 2

∑

u∈V0

∑

w∈V\(V0∪V1) f (1; 0, 2) =
3
2n0(n− n0 − n1).
(4) Caseu,w ∈ V′1 occurs (n1 − 1)(n1 − 2) times with coefficient f (1; 1, 1) = 7/9. Hence we have a partial
summation7

9(n1 − 1)(n1 − 2).
(5) Caseu ∈ V′1 andw ∈ V \ (V0 ∪ V1) (or vice versa) occurs (n1 − 1)(n− n0 − n1) times. Similarly, a lower bound
of the coefficient is given by5

3(n1 − 1)(n− n0 − n1).
(6) Caseu,w ∈ V \ (V0 ∪ V1) occurs (n− n0 − n1)(n− n0 − n1 − 1) times. Coefficient is bounded by78(n− n0 −
n1)(n− n0 − n1 − 1).

Now, we have

CC(V1) =
1

|V′|(|V′| − 1)

∑

u∈V′

∑

w∈V′\{u}
f (1; lu, lw)

>
1

(n− 1)(n− 2)

(

1
2

n0(n0 − 1)+
4
3

n0(n1 − 1)+ · · · + 7
8

(n− n0 − n1)(n− n0 − n1 − 1)

)

which equals to (63n2 − 9n2
0 − n2

1 − 18n0n− 6n1n− 6n0n1 − 183n+ 51n0 + 15n1 + 112)/(72(n− 2)(n− 1)).
By the equation of Lemma 13, we have a lower bound ofCC(G) for fixed α. For example, lettingn0 =

0.641n andn1 = 0.150n (see Example 1), we haveCC(G) = 1
n

∑

i=0,1,... niCC(Vi) > 1
n

∑

i=0,1 niCC(Vi) = 1
n(n0 +
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46.2647n2−148.059n+112
72(n−1)(n−2) n1) = 1

n(0.641n+ 452n2−1395n+1008
648(n−1)(n−2) 0.150n) = 0.737385(n−1.99726)(n−1.02891)

(n−1)(n−2) ∼ 0.7374. In Lemma 13,
we only consider three setsV0, V1, andV \ (V0∪V1). We can repeat the idea once more, and obtain a better lower
bound:

Lemma 14 We haveCC(V1) > (1656n2− 324n2
0− 64n2

1− 9n2
2− 432n0n− 192n1n− 72n2n− 288n1n0− 108n2n0−

48n2n1−4776n+1476n0+576n1+201n2+2800)/(1800(n−1)(n−2))andCC(V2) > (500n2−100n2
0−25n2

1−4n2
2−

200n0n−100n1n−40n2n−100n1n0−40n2n0−20n2n1−1460n+540n0+245n1+92n2+921)/(600(n−1)(n−2)).

Proof. We now consider four setsV0, V1, V2 andV \ (V0 ∪ V1 ∪ V2). The computations are straightforward and
tediously, and hence omitted.

Using the equations of Lemma 14, we have a better lower bound of CC(G) for fixedα. For example, letting
n0 = 0.641n, n1 = 0.150n, andn2 = 0.064n, we haveCC(G) = 1

n

∑

i=0,1,... niCC(Vi) > 1
n

∑

i=0,1,2 niCC(Vi) =
1
n

(

n0 +
1178.5n2−3730.62n+2800

1800(n−1)(n−2) n1 +
301.125n2−1071.22n+921

600(n−1)(n−2) n2

)

=
0.771328(n−1.99648)(n−1.04782)

(n−1)(n−2) ∼ 0.7713.

6 Concluding remarks

In this paper, we have proposed the scale free interval graphmodel, and analyzed that it has power law degree
distribution and large clustering coefficient. Actually, we had considered the time-continuous model which is
almost same as the time-discrete model introduced in Section ??. For the time-continuous model, we also
showed following results.

Theorem 15 A scale free interval graph generated according to our time-continuous model has the degree se-
quence followingP(α) for large degrees.

Theorem 16 For α = 2.1 (same as Example 1), A scale free interval graph generated according to our time-
continuous model has the expected clustering coefficient of G is at least0.159. Note that it is independent of the
size of the graph.

However, our model seems to not satisfy the third property (SW). The property (SW) is that any two nodes
are joined by short path, which is estimated by average or longest distance between any two nodes inG. Our
experimental results showed that the average distance and the diameter of the graph are both linear inn. We leave
for future works that proposing scale free interval graph model that has the property (SW).
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