
Research Reports on
Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: CCC ooommm ppp uuu ttt eee rrr SSS ccc iii eee nnn ccc eee

ISSN 1342-2812

On Proving Circuit Lower Bounds
Against the Polynomial-time Hierachy:

Positive and Negative Results

Jin-Yi Cai and Osamu Watanabe

Aug. 2008, C–256

Technical Reports on Mathematical and Computing Sciences: TR-C-256
(Revised version of TR-C-161)
title: On Proving Circuit Lower Bounds Against the Polynomial-time Hierarchy:

Positive and Negative Results
author: Jin-Yi Cai1 and Osamu Watanabe2

affiliation:
1. Computer Sciences Dept., University of Wisconsin, Madison, WI 53706, USA

(jyc@cs.wisc.edu)
2. Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology

Meguro-ku Ookayama, Tokyo 152-8552, Japan
(watanabe@is.titech.ac.jp)

acknowledgments to financial supports:
1. Supported in part by NSF grants CCR-9634665.
2. Supported in part by the Minstry for Education, Grant-in-Aid for Scientific Research (C), 2001.

Abstract. We consider the problem of proving circuit lower bounds against the polynomial-
time hierarchy. We give both positive and negative results. For the positive side, for any fixed
integer k > 0, we give an explicit Σp

2 language, acceptable by a Σp
2-machine with running time

O(nk2+k), that requires circuit size > nk. This provides a constructive version of an existence
theorem of Kannan [Kan82]. Our main theorem is on the negative side. We give evidence
that it is infeasible to give relativizable proofs that any single language in the polynomial-
time hierarchy requires super polynomial circuit size. Our proof techniques are based on the
decision tree version of the Switching Lemma for constant depth circuits and Nisan-Wigderson
pseudorandom generator.

1. Introduction

It is a most basic open problem in Theoretical Computer Science to give circuit lower bounds for
various complexity classes. The class P has polynomial size circuits. It is also widely believed
that NP does not share this property, i.e., that some specific set such as SAT in NP requires
super polynomial circuit size. While this remains the most concrete approach to the NP vs. P
problem, we can’t even prove this for any fixed k > 1 that any set L ∈ NP requires circuit size
> nk.

If we relax the restriction from NP to the second level of the Polynomial-time Hierarchy
Σp

2 , R. Kannan [Kan82] did prove that for any fixed polynomial nk, there is some set L in Σp
2

which requires circuit size > nk. Kannan in fact proved the existence theorem for some set in
Σp

2 ∩ Πp
2 . This result has been improved by Köbler and Watanabe [KW98] who showed, based

on the technique developed in [BCGKT], that such a set exists in ZPPNP. More recently, the
work in [Cai01] implies that a yet lower class Sp

2 contains such a set. (See [BFT98, MVW99] for
related topics.)

However, Kannan’s proof for Σp
2 , and all the subsequent improvements mentioned above,

are not “constructive” in the sense that it does not identify a single Σp
2 machine whose language

requires circuit size > nk. At the top level, all these proofs are of the following type: Either
SAT does not have nk size circuit, in which case we are done, or SAT has nk size circuit, then

1

we can define some other set, which by the existence of the hypothetical circuit for SAT can be
shown in Σp

2 , and it requires circuit size > nk. Constructively, Kannan gave a set in Σp
4 ∩ Πp

4 .
In [MVW99] a set in ∆p

3 was constructively given. We improve1 this to Σp
2 .

Theorem 1 For any integer k > 0, we can construct a Σp
2-machine with O(nk2

logk+1 n) run-
ning time that accepts a set with no nk size circuits.

A similar constructive proof is still open for the stronger statements, i.e., the existence of a
set with nk circuit size lower bound in Σp

2 ∩Πp
2 (resp., ZPPNP, and Sp

2).
Our main result in this paper deals with the difficulty in proving super polynomial circuit

size lower bound for any set in the Polynomial-time Hierarchy, PH. While it is possible to prove
lower bound above any fixed polynomial, at least for some sets in Σp

2 , the real challenge is to
prove super polynomial circuit size lower bound for a single language. Not only have we not
been able to do this for any set in NP, but also no super polynomial lower bound is known for
any set in PH. In this paper we prove that it is infeasible to give relativizable super polynomial
lower bound for any set in the Polynomial-time Hierarchy.

Our model of relativized circuit computation is standard, having AND, OR, NOT and oracle
query gates with the important proviso of “a reasonable access to an oracle” X. Here an oracle
query gate takes m input bits z = b1b2 . . . bm, and has output χ[z∈X], i.e., it outputs 1 or 0
depending on whether z ∈ X or otherwise. The proviso of “a reasonable access to an oracle” is
as follows: To show that, at length n, a circuit Cn computes the language of machine M with
running time nk, we allow the circuit only access to those strings that can be accessed by the
simulated machine M, namely all strings of length at most nk. This is a natural requirement;
otherwise, it would have been somewhat trivial to show some circuit capturing L(MX) by coding
its computation in the oracle X at a location with length longer than any that are accessible by
M.

In this model of reasonable access to an oracle, we prove that for any alternating oracle TM
M with running time O(nk), there is an oracle X and a polynomial size circuit family accepting
it.

Theorem 2 (Main Theorem) For any integer d > 0 and any real k > 1, let M be an oracle
Σp

d-machine with running time O(nk). Then we have an oracle X and a family of Boolean cir-
cuits {Cn}n≥0 with a reasonable access to the oracle X that accepts L(MX). For all sufficiently
large n, the size of Cn is bounded by ncdk, for some universal constant c > 0.

This result shows that for proving nk circuit size lower bound in Σp
d by a relativizable

technique, we need at least Ω(nk/cd) running time. In particular, it is infeasible to give a
relativizable proof of super polynomial circuit size lower bound for any set in PH.

Our proof technique for the main theorem is based on the decision tree version of the
Switching Lemma for constant depth circuits and Nisan-Wigderson pseudorandom generator.

Ko has given a survey of proof techniques to construct oracles using circuit lower bounds,
particularly the Switching Lemma [Ko89b]. In previous work, such as Ko’s theorem giving an
oracle X such that Σp,X

d = Σp,X
d+1, while separating Σp,X

d and Σp,X
d−1 [Ko89a], one can define the

1We have learned that this was also proved independently by Daniels [Dan].

2

oracle X on specific lengths to separate certain language of Σp,X
d from lower classes, while code,

at a higher length of X, a complete language of Σp,X
d+1 so that a Σp,X

d machine can access it. This
method of killing at one length but coding at a higher length is justifiable if one is considering
the whole class. For our purpose of proving bounds for specific polynomials nk, to code at a
higher length would be “cheating”. Thus we specifically prohibit this. It appears that the use
of Nisan-Wigderson pseudorandom generator in this proof is crucial.

Preliminaries

In this paper, we consider computation on binary strings, and all sets are subsets of {0, 1}∗. We
assume the standard length-wise lexicographic order on {0, 1}∗. By “the ith string in {0, 1}n”
we mean the ith string in {0, 1}n under this ordering.

By a circuit we consider a standard Boolean circuit consisting of AND, OR, and NOT gates
and input gates. We consider a circuit as an acceptor of a fixed length binary string, and for
a set L, we consider a family of circuits {Cn}n≥0, where each Cn is used as an acceptor for
L=n. For relativized computation, we allow circuit to use an oracle query gate that is explained
above. The size of a circuit is the total number of wires in the circuit. Note that an oracle query
gate asking a query of m bits contributes m to circuit size. For any circuit C, we use size(C) to
denote its circuit size.

2. Proof of Theorem 1

R. Kannan proved that for any fixed polynomial nk, there is some set L in Σp
2 ∩Πp

2 with circuit
size > nk. However, in terms of explicit construction, he only gave a set in Σp

4 ∩ Πp
4 . An

improvement to ∆p
3 was stated in [MVW99].

In this section we give a constructive proof of Kannan’s theorem for Σp
2 . (Though not

essential, for simplifying our discussion, we will assume that k ≥ 2 throughout this section.)
For any n ≥ 0, a binary sequence χ of length ` ≤ 2n is called a partial characteristic

sequence, which will specify the membership of lexicographically the first ` strings of {0, 1}n.
We denote this subset of {0, 1}n by L(χ). We say that χ is consistent with a circuit C with n

input gates, iff ∀i, 1 ≤ i ≤ `, C(xi) outputs the ith bit of χ, where xi is the ith string of {0, 1}n.
Let len(s) = ccircbs log sc. We can encode every circuit C of size ≤ s as a string u of length

len(s). (For avoiding the special case, we assume that s > 1.) We may consider every u with
|u| = len(s) encodes a circuit of size ≤ s; if it is improperly coded or the circuit has size > s, we
assume that this u encodes the constant 0 circuit. Then the following lemma is immediate by
counting.

Lemma 1 For any s > 1, there exists a partial characteristic sequence of length ` = len(s) + 1
that is not consistent with any circuit of size ≤ s.

We may also assume that there is a deterministic machine Mcirc that simulates, on any
string v of length len(s) and any string x of length n, the execution of the circuit encoded by v

on x, and the time complexity of Mcirc(v, x) is O(|v|2). (Mcirc simply returns 0 if v does not
encode properly some circuit of size ≤ s with n input gates.)

Denote s = nk and ` = len(s) + 1. By “v Â u” we mean that u is a prefix of v. We define
a set PreCIRC as follows. For any n > 0, and for any strings χ of length ` and u of length
≤ len(s),

3

1n0χu01len(s)−|u| ∈ PreCIRC
⇔ (∃v Â u) [|v| = len(s), and the circuit encoded by v is consistent with χ].

Strings of any other form are not contained in PreCIRC. For simplifying our notation, we will
simply write (χ, u) for 1n0χu01len(s)−|u|. Since n determines s and `, and the length of χ is `,
χ and u are uniquely determined from 0n1χu10len(s)−|u|. We will use ñ to denote the length of
strings of the form (χ, u); note that ñ = n + ` + len(s) + 2 and hence ñ is O(nk log n).

We note here the following fact. (Its proof, which is straightforward, is left to the reader.)

Lemma 2 There exists a ∆p
2 machine such that for any input (χ, u) of length ñ defined w.r.t.

s, it determines whether (χ, u) is in PreCIRC in time O(|len(s)|3) = O(|ñ|).

We now define our machine M. Informally we want M to accept an input x if and only if
either x ∈ 1{0, 1}n−1 and x ∈ PreCIRC, or x ∈ 0{0, 1}n−1 and x ∈ L, where L is a set with no
nk size circuits if PreCIRC=n has nk size circuits for all sufficiently large n. Specifically, M is
designed so that L=n would be L(χnon) where χnon is lexicographically the first χ of length `

with no nk size circuit, provided PreCIRC=en has a ñk size circuit for length ñ.
More formally, for any given input x, if x starts with 1, then M accepts it iff x ∈ PreCIRC.

Suppose otherwise; that is, x starts with 0. Then first M existentially guesses a partial char-
acteristic sequence χnon of length ` and a circuit Cpre of size ñk, more precisely, a string vpre of
length len(ñk) encoding a circuit for PreCIRC=en of size ≤ ñk. (Below we use Cpre to denote the
circuit that is encoded by the guessed vpre.) After that, M enters the universal stage, where it
checks the following items.

(1.) ∀χ, |χ| = `, and ∀u, |u| ≤ len(s), check that Cpre is “locally consistent” on (χ, u) as follows:

Cpre(χ, u) = 1 & |u| = len(s)
=⇒ the circuit that u encodes is consistent with χ, and

Cpre(χ, u) = 1 & |u| < len(s)
=⇒ either Cpre(χ, u0) = 1 or Cpre(χ, u1) = 1.

(2.) ∀v, |v| = len(s), compute the χv of length ` defined by (the circuit encoded by) v, and
verify that Cpre works for χv and all prefix u of v, i.e., Cpre(χv, u) = 1.

(3.) The guessed χnon is lexicographically the first string of length ` such that no circuit of size
s (= nk) is consistent with it, according to Cpre. That is, check Cpre(χnon, ε) = 0, where
ε is the empty string, and ∀χ if |χ| = ` and χ is lexicographically smaller than χnon then
Cpre(χ, ε) = 1 holds.

Finally on each universal branch, if M passes the particular test of this branch, then M accepts
the input x ∈ 0{0, 1}n−1 iff χnon has bit 1 for the string x.

For all (χ, u), such that |χ| = ` and |u| ≤ len(s), if Cpre passes (1.) then Cpre(χ, u) = 1 =⇒
(χ, u) ∈ PreCIRC, and if Cpre passes (2.) then (χ, u) ∈ PreCIRC =⇒ Cpre(χ, u) = 1. Of course
there is no guarantee that there exists a circuit Cpre (more precisely, vpre) that will pass the tests
in items (1.) and (2.) But if there is such a Cpre, then we can assume that Cpre correctly decides
PreCIRC=en on strings of the form (χ, u), and the test in item (3.) is correctly performed. Thus,
such a Cpre exists, then some existential path leads to Cpre together with the right χnon. That

4

is, M accepts x ∈ 0{0, 1}n−1 iff x is in L(χnon), where χnon is lexicographically the first string
of length ` with no consistent circuit of size ≤ nk.

On the other hand, if Cpre (satisfying (1.) and (2.)) does not exist, then M simply rejects
all x ∈ 0{0, 1}n−1. But the nonexistence of Cpre means that there is no circuit of size ñk that
is consistent with PreCIRC=en on inputs of the form (χ, u) of length ñ, in particular, strings in
1{0, 1}en−1. Thus, the desired hardness is guaranteed by the 1{0, 1}∗ part of L(M). Therefore,
we can conclude that L(M) has no nk size circuit. This Σp

2 language proves Theorem 1.
It can be easily checked that the machine M runs in O(nk2

logk+1 n) steps.

3. Proof of Theorem 2

We first give an outline of the proof.
It is well known from [FSS81] that a Σp

d alternating Turing machine M bounded in time nk

with oracle X, when given input x of length n, gives rise to a bounded depth Boolean circuit
Cx of the following type: The inputs are Boolean variables representing membership of a string
z ∈ {0, 1}≤nk

in the oracle X. The Boolean circuit Cx starts with an OR gate at the top, and
alternate with AND’s and OR’s with depth d + 1, where the bottom level gates have bounded
fan-in at most nk, and all other AND and OR gates are unbounded fan-in, except by the overall
circuit size, which is bounded by nk2nk

. Without loss of generality we may assume the Boolean
circuit is tree like, except for the input level, where each Boolean variable corresponding to
χ[z∈X] is represented by a pair of complemented variables, which we will denote by z and z.

Our first idea is to use random restrictions to “kill” the circuit. Here is what we mean. It
is known that after a suitably chosen random restriction ρ, the circuit is sufficiently weakened
so as to have either small min-terms or small max-terms. Results of this type are generally
known as Switching Lemmas, and the strongest form known is due to H̊astad [H̊as86a] (see also
[Ajt83, FSS81, Yao85, Cai86, H̊as86b]). However it turns out that we need a different form,
namely Switching Lemma of a decision tree type. We want to assign a suitably chosen random
restriction ρ, after which the circuit admits a small depth decision tree. The reason we need
this is as follows: We in fact will have to consider an aggregate of 2n such Boolean circuits Cx

simultaneously, one each for an input x of size n. We want to assign ρ, after which all these
circuits have small depth decision trees. We then will proceed to set those variables to ensure
that all these circuits are “killed”, i.e., they all have a definite value now, either 0 or 1. We
want to assign those variables consistently over all 2n small depth decision trees. For decision
trees, it is easy to achieve this by always setting “the next variable” asked by the decision tree
to 0, say; it is not clear how to maintain this consistency in terms of min-terms and max-terms.
If each decision tree has depth bounded by t, then we will have assigned at most 2nt many
variables corresponding to those strings of length nk where ρ initially assigned a ∗ (i.e., they
are left unassigned by ρ). We will argue that there are still plenty of unassigned variables left,
where we may try to encode the now-determined computational values of these 2n circuits. We
will argue that t is sufficiently small, and yet with high probability all 2n circuits admit decision
trees of depth at most t.

The problem with this idea is that after we have coded the values of all the 2n circuits in X,
there does not seem to be any easy way to recover this information. Since X had already been
“ravaged” by the random restriction ρ, it is not clear how to distinguish those “code bits” from

5

those “random bits”. Further complicating the matter are those bits assigned during the decision
tree settlement. All of this must be sorted out, supposedly, by a polynomial size oracle circuit
which is to accept L(MX)=n. Note that, after a random restriction ρ, it is probabilistically
almost impossible to have an easily identifiable segment of the set X all assigned ∗ by ρ, (e.g.,
all strings in {0, 1}=nk

with a certain leading bit pattern), not to mention the subsequent all 0
assignment to fix the decision trees. On the other hand, we have 2n computations to code. It
is infeasible for the final polynomial size oracle circuit to “remember” more than a polynomial
number of bits as the address of the coding region. So it appears that we must have an easily
identifiable region to code, identified with at most a polynomial number of bits for its address,
and, to accommodate 2n computations, this region must be large.

To overcome this difficulty, our idea is to use not true random restrictions, but pseudo-
random restrictions via the Nisan-Wigderson generator [Nis91a, Nis91b, NW88]. Nisan and
Wigderson designed a pseudorandom generator provably indistinguishable from true random
bits by polynomial size constant depth circuits. While our circuits are not of polynomial size,
this can be scaled up easily. Our idea is then to use the output of the pseudorandom NW gener-
ator to perform the “random” restriction, and to argue that all 2n circuits are “killed” with high
probability, just as before with true random restrictions. The basic argument is that no constant
depth circuits of an appropriate size can tell the difference under either a true random assign-
ment or a pseudorandom assignment coming from the NW generator. However, for our purpose
in this paper, we wish to say that a certain behavior of these 2n constant depth circuits—namely
they are likely to possess small depth decision trees after a “random” restriction with 0, 1 and
∗’s—is preserved when “pseudorandom restrictions” are substituted for “random restrictions”.
It is vitally important that whatever property we wish to claim to have been maintained by
the substitution of random bits by pseudorandom bits, the property must be expressible as a
constant depth circuit with an appropriate size upper bound. It is not clear the property of
“having a small depth decision tree” can be expressed in this way.

We overcome this difficulty by using a weaker property which is a consequence of “having
a small depth decision tree”, which nonetheless is sufficient for our purpose. Namely, we take
directly the property that, after a restriction with 0, 1 and ∗’s, all 2n circuits can be determined
after an additional small number of 0’s are assigned for each circuit. This property is expressible
in a constant depth way. Then we will mimic the probability distribution of the 0, 1 and ∗’s
under the random restrictions by uniform random bits 0’s and 1’s, so that we can come up with
a constant depth circuit D with the following property: It takes only boolean inputs y of 0’s and
1’s, and D evaluates to 1 iff when a restriction ρ = ρy with 0, 1 and ∗’s defined by y is applied
to all 2n circuits Cx, every Cx can be set to either 0 or 1 after a small number of additional
variables are set to 0. We will design D in such a way that under a uniform bit sequence y, D

will almost certainly evaluate to 1.
In fact we need more than that. We also need to have the property that a certain segment

of the oracle is untouched by the additional setting of 0’s in all 2n decision tree settlements. We
will argue by the pigeonhole principle, that our bounds guarantee a suitable region unspoiled
by all these decision tree settlement variables. It is not reasonable to expect that any such
region is entirely assigned with ∗’s, but at least there should be many ∗’s. (We can also include
some mechanism in D to guarantee the existence of such region. For example, we first identify,
in the construction of D, a certain specific set of additional variables for each Cx, e.g., the

6

lexicographically the first set, such that they are of an appropriate size and were all set to ∗
initially, and when all set to 0, settles Cx. Then we explicitly require in the construction of D

that they do not touch a certain segment of the oracle. This can be done in D, i.e., expressible
in a constant depth without much bigger size. However, for the bound we will present in this
paper, the simpler approach will circumvent this difficulty.)

Assume now we have designed such a D satisfying all these requirements. For this D we
apply the NW generator, substituting pseudorandom bits for true random bits as its input y.
We conclude that D still evaluates to 1 with high probability. In particular, there must be some
setting of the source bits for the generator, such that D is evaluated to 1. This implies that
we can assign the oracle set X first according to the pseudorandom restriction described by the
pseudorandom bits, then according to the 2n small depth decision trees, which are guaranteed
by the evaluation of D, and set these additional variables all to 0. This settles all the decision
trees and thus the values of all 2n circuits Cx are determined. Furthermore there is a significant
segment Tz0 of X free from any variables used in any decision tree settlement, where we will
code these 2n results of Cx.

Even though this segment Tz0 is free from any variables used in any decision tree settlement,
in order to code the computation results of Cx there must be plenty of ∗ left, and they must
be recoverable by polynomial size circuits. We will show that with high probability over the
pseudorandom bits y, the pseudorandom restriction defined by y will leave plenty of ∗ in each
segment such as Tz0 . We then in fact choose a sequence of bits y that satisfy both the requirement
D = 1 and this additional requirement.

Finally, we will show that with a suitable choice of parameters in the combinatorial design
used in the NW generator, we will be able to recover in polynomial time the location where we
assigned ∗’s in X, in particular from within the coding segment of X given the address of this
segment. The polynomial size circuit will remember (hardwired with) z0, the address of Tz0 ,
and remember the polynomially many source bits for the NW generator. On any input x, it will
perform the polynomial time computation over a finite field to extract the coded result of Cx

from the appropriate location in X.

3.1. Proof of Theorem 2

Fix any Σp
d polynomial time bounded oracle alternating Turing machine M, with time bound

nk. For notational convenience we will assume k > 2 and d ≥ 7. We assume that n is sufficiently
large. On input of length n, M can only query strings of length at most nk. We will denote by
m = nk and use M to denote 2m throughout this proof.

Assume all memberships in the oracle set “z ∈ X?” up to length < m have been decided
already. Our task is to fix the membership for “z ∈ X?” of length exactly m in X, so that
for all input x of length n, membership “x ∈ L(MX)?” can be decided by a polynomial size
circuit CM with oracle gates that can access X=m. Note that since X<m had already been
fixed, membership “x ∈ L(MX)?” is determined by the set X=m. Here we specifically require
that the circuit CM can access only those strings that can be possibly accessed by the simulated
machine M on input of length n.

There are 2n inputs x of length n, each computation of M on x gives rise to a depth d + 1
Boolean circuit Cx with size at most mM , and bottom fan-in at most m. The input to each

7

circuit Cx is the 2M literals zi and zi, for 1 ≤ i ≤ M , where zi corresponds to the truth value
of χ[zi∈X], for the lexicographically the i th string zi in {0, 1}m. (While there is no confusion we
will denote by zi both the i th string in {0, 1}m as well as the Boolean variable corresponding
to χ[zi∈X].) As stated earlier, we may assume in Cx the circuit starts with an OR gate at the
top, and alternate with AND’s and OR’s in a tree like fashion, until inputs zi’s and zi’s. Each
circuit Cx has size at most mM . (Note that in this circuit formulation we simply replace each
oracle query by the corresponding input. This is different from the standard circuit computation
model (for discussing the cirucit complexity in relativized worlds) that assumes a query gate for
oracle queries.)

For such constant depth circuits the following Switching Lemma due to H̊astad [H̊as86a] is
well-known.

Lemma 3 (H̊astad) Let G = G(z1, . . . , zM) be of the form G1 ∧G2 ∧ · · · ∧GM , where each Gi

is an OR of at most t literals. Let ρ be a random restriction which assigns Pr[ρ(xi) = ∗] = p

and Pr[ρ(xi) = 0] = Pr[ρ(xi) = 1] = (1− p)/2, for each i independently, then

Pr[G |ρ has a minterm of size ≥ s] ≤ (5pt)s.

A dual statement also holds for G as an OR of AND’s.

The purpose of this lemma is to effect a successive conversion of all the bottom 2-level
circuits from AND’s of OR’s to OR’s of AND’s (or vice versa). As indicated before, for our
purpose in this paper, we will require something more.

The decision tree complexity of a Boolean function f , denoted by DC(f), is the smallest
depth of a Boolean decision tree computing the function. It can be shown easily that if DC(f) ≤
t, then f can be expressed both as an AND of OR’s as well as an OR of AND’s, with bottom
fan-in at most t. Moreover, clearly, there is a subset of no more than t variables, if one assigns
all of them to 0, the function f will be determined. This is an important advantage as we will
have to assign many non-disjoint subsets of variables for multiple Boolean functions, and all
these assignments need to be consistent.

Adapting H̊astad’s proof to the decision tree model, one can prove the following.

Lemma 4 For any depth d + 1 Boolean circuit C on z1, . . . , zM of size s and bottom fan-in at
most t,

Pr[DC(C |ρ) ≥ t] ≤ s

2t
,

where the random restriction ρ has p = 1
(10t)d .

Then the following lemma can be proved by the Decision Tree Lemma 4.

Lemma 5 For any depth d Boolean circuit C on z1, . . . , zM of size at most 2cM
1
d , the discrep-

ancy

|Pr[C = ⊕]− Pr[C 6= ⊕]| ≤ 1

2cM
1
d

,

where the probability is taken uniformly over all 2M assignments to z1, . . . , zM , where ⊕ =
⊕(z1, . . . , zM) is the parity function, and c is a universal constant.

8

The above bound is optimal up to the constant c. We will also use the slightly weaker form

2M
1

d+1 in place of 2cM
1
d ; this is valid for all sufficiently large M . In fact qualitatively what

we prove in this paper can also be done with weaker forms of the bound (see Remark 4 later);
however, the decision tree version of the Switching Lemma is crucial.

We will carry out a sequence of transformations on the circuits Cx, for each x ∈ {0, 1}n,
with the ultimate goal of constructing the circuit D which, in some sense, is a test for the success
of a “random restriction”.

Step 1 (C1
x): C1

x takes 2M Boolean inputs (ai, bi), for i = 1, . . . , M . The pair (ai, bi) will
represent the status of the Boolean variable zi to Cx as follows: ai = 1 iff zi is set (to either 0
or 1, i.e., not set to ∗), and ai = 0 otherwise. If ai = 1 then zi = bi, i.e., the 0-1 value of zi is
represented by bi. If the pair (ai, bi) represents zi, then the pair (ai, bi) represents zi. Clearly, if
zi is set 0 (resp., 1), then zi must be set 1 (resp., 0).

C1
x is constructed from Cx as follows. Each gate g in Cx will be represented by a pair of

gates (gs, gv). gs = 1 iff g is set to either 0 or 1, i.e., it is determined; gs = 0 otherwise. If
gs = 1 then g = gv. Thus, (gs, gv) = (0, 0) or (0, 1) represent the situation where g has not been
determined, and (gs, gv) = (1, 0), or (1, 1) respectively, represent the case where g is set to 0, or
1 respectively.

Suppose g =
∨s

i=1 g(i), where g(i) is an input literal or an internal gate. Suppose g(i) is
represented by the pair (g(i)

s , g
(i)
v), then we let

gs =
s∨

i=1

(
(g(i)

s ∧ g(i)
v)

)
∨

(
s∧

i=1

(g(i)
s ∧ g

(i)
v)

)
.

That is, g is set iff either some gi is set to 1, or else all gi are set to 0. Note that the formula
given for gs is a depth 2 circuit of size O(s). Also

gv =
s∨

i=1

g(i)
v .

Note that gv is only a “valid” value for g when gs = 1. Also gv is depth 1 and has size s.
The case g =

∧s
i=1 g(i) is dual. In this case, g is set iff either some gi is set to 0, or else all

gi are set to 1. Thus

gs =
s∨

i=1

(
(g(i)

s ∧ g
(i)
v)

)
∨

(
s∧

i=1

(g(i)
s ∧ g(i)

v)

)
, and gv =

s∧

i=1

g(i)
v .

Again they are depth 2, size O(s), and depth 1, size s, respectively.
In order to maintain alternating form of AND’s and OR’s in the circuit C1

x, with all negations
pushed to the input level, we can represent each gate g by both g and its negated value g. This
can introduce at most a factor of 2 in the size. C1

x has two output gates gs and gv for the
output gate g of Cx. It follows that

size(C1
x) = O(size(Cx)), and depth(C1

x) = 2 depth(Cx).

Step 2 (C2
x): Let p = 1

(2m)d . Let L = dlog2
1
pe ≈ dk log2(20n). C2

x takes Boolean inputs
(ai,1, . . . , ai,L, bi), for i = 1, . . . , M . The circuit C2

x is identical to C1
x, except instead of taking

inputs ai, it has ai =
∨L

j=1 ai,j .

9

Note that, the random restriction ρ with p on Cx is simulated by uniformly and indepen-
dently assigning all the bits (ai,1, . . . , ai,L, bi) to 0 or 1, in C2

x, for i = 1, . . . , M . The behavior
of Cx is represented in C2

x exactly.

size(C2
x) = size(C1

x) + O(ML), and depth(C2
x) = depth(C1

x) + 1.

Step 3 (C3
x): In C3

x we will check for the existence of a subset S ⊂ [M] of cardinality |S| = 2m

such that, first they are assigned ∗ by the ρ, and second if we further set them all to 0, it would
determine the circuit Cx. We know from Lemma 4 that this is almost certainly true for a random
restriction ρ with p = 1

(20m)d . The failure probability for this to happen is bounded above by
size(Cx)/22m.

Thus, we let

C3
x =

∨

S

[∧

i∈S

ai ∧ [(C2
x)s]S

]
,

where
∨

S ranges over all subsets S ⊂ [M] of cardinality |S| = 2m, and (C2
x)s is the “set bit

output” for C2
x, and [(C2

x)s]S is obtained from (C2
x)s by setting all bi = 0 for i ∈ S. Recall that

ai =
∨L

j=1 ai,j .

size(C3
x) ≤

(
M

2m

)
(size(C2

x) + O(m)), and depth(C3
x) = depth(C2

x) + 2.

Step 4 (D): Finally, define D by D =
∧

x∈{0,1}n C3
x. Then we have

size(D) = 2n(size(C3
x)), and depth(D) = depth(C3

x) + 1.

This completes the construction of D, with

size(D) < 23m2
, and depth(D) ≤ 2d + 6 < 3d.

Applying Lemma 4 to all Cx simultaneously, with p = 1
(20m)d , we get

Pr[(∃x ∈ {0, 1}n)[DC(Cx |ρ) ≥ 2m]] ≤ 2n · mM

22m
=

m

2m−n
.

When each Cx |ρ has decision tree depth at most 2m, D is true. As the uniform independent
distribution on the input bits of D simulates the random restriction ρ, we conclude that

Pr[D = 1] ≥ 1− m

2m−n
, (1)

where the probability is over uniform input bits of D, namely ai,1, . . . , ai,L, bi, for i = 1, . . . , M ,
and L = dlog2

1
pe.

Now we will apply the NW generator to this circuit D. The fact that the output of this
generator is indistinguishable from true random bits for D follows from the properties of the NW
generator, which ultimately follows from the Inapproximability Lemma 5 and the fact that D is
a constant depth circuit. The proofs by Nisan and Wigderson in [Nis91b, NW88] for polynomial
size circuits can be scaled up and we omit the details.

We set the parameters in the combinatorial design used by Nisan and Wigderson [Nis91b,
NW88]. We will take a specific finite field F = Z2[X]/(X2·3u

+ X3u
+ 1) [vL91], where each

10

element α ∈ F takes K = 2 · 3u bits, and we denote q = |F| = 2K . We will choose u so
that q ≥ (3m2)3d. Clearly q ≤ nckd will do, for some universal constant c, for example c = 7.
Then K = O(dk log n). Thus, this field has polynomial size and each element is represented by
O(log n) bits. All arithmetic in the field F is easy.

We will consider precisely 2m polynomials fz(ξ) ∈ F[ξ], each of degree at most m, where
each fz is indexed by its coefficients, concatenated as a bit sequence of length exactly m. The
precise manner in which this is done is not very important, but for definiteness, we can take the
following. We take polynomials of degree δ = bm/Kc = Ω(nk/(dk log n)) À n2, with exactly
δ + 1 coefficients,

fz(ξ) = cδξ
δ + . . . + c1ξ + c0,

where all cj varies over F, except cδ is restricted to exactly 2m−K·δ many values. Note that
0 ≤ m−K · δ < K. The concatenation z = 〈cδ . . . c0〉 has exactly m bits, and the polynomial fz

will be used to determine the pseudorandom restriction on z ∈ {0, 1}m.
The source bits for the generator is a sequence of independently and uniformly distributed

bits {b(0)
α,β, b

(1)
α,β, . . . , b

(L)
α,β}, for each α, β ∈ F, where L = dlog2

1
pe was the number of fan-in to

form az =
∨L

j=1 az,j , Let bα,β be a column vector of 0-1 uniform bits (b(1)
α,β, b

(2)
α,β, . . . , b

(L)
α,β)T.

Each fz defines a subset of F×F of cardinality q, {(α, fz(α)) | α ∈ F}, which we will denote
by Fz. If deg(fz) < m and deg(fz′) < m, then |Fz ∩ Fz′ | < m, for all z 6= z′.

We let az,j , part of the input bits to D, be the parity sum of b
(j)
α,β, over Fz, i.e., we let

az,j = ⊕α∈Fb
(j)
α,fz(α). Thus, z is assigned a ∗ by this pseudorandom restriction iff az = 0 iff

∑
α∈F bα,fz(α) = 0 in ZL

2 . Also we compute bz, input to D as well, to be the parity sum of b
(0)
α,β,

over Fz, i.e., bz = ⊕α∈Fb
(0)
α,fz(α).

By Eqn (1), the NW generator guarantees that

Pr[D = 1] = 1− o(1), (2)

where now the probability is over independently and uniformly distributed bits {b(0)
α,β, b

(1)
α,β, . . . , b

(L)
α,β},

for α, β ∈ F.
By the pigeonhole principle, there is a prefix y0, consisting of the concatenation 〈cδ . . . cδ−n2〉,

such that the segment Ty0 = {z ∈ {0, 1}m | y0 is a prefix of z} of X is free from any variables
used in any of the 2n decision tree settlements. This is simply because 2n · 2m ¿ 2n2

.
Our plan is to code the results of Cx in a ∗-place of the form 〈y0xx′〉, for some x′. This is

within the segment Ty0 . In the polynomial fz, for z = 〈y0xx′〉, x has n bits, which takes up to n

additional coefficients. We will round it off, by padding v many 0’s, say, and then z = 〈y0x0vx′′〉,
where x′′ consists of an integral number of coefficients, cγ , . . . , c1, c0 of fz. We want

∀cδ, . . . , cγ+1, ∃cγ , . . . , c1, c0

[∑

α∈F

bα,fz(α) = 0

]
, (3)

where z = 〈cδ, . . . , c0〉.
We will show that with high probability a random choice of all the bits {b(1)

α,β, . . . , b
(L)
α,β}

satisfies this requirement.

11

In fact we will be more drastic. We show that we can set cγ = . . . = c1 = 0, and still satisfy
the requirement (3). That is, the following holds.

∀cδ, . . . , cγ+1, ∃c0

[∑

α∈F

bα,fz∗ (α) = 0

]
, (4)

where z∗ denotes 〈cδ, . . . , cγ+1, 0, . . . , 0, c0〉.
For any fixed cδ, . . . , cγ+1, let w denote 〈cδ, . . . , cγ+1〉, and define gw(ξ) = cδξ

δ + · · · +
cγ+1ξ

γ+1. Then for any c, let z∗(c) denote 〈cδ, . . . , cγ+1, 0, . . . , 0, c〉. Clearly fz∗(c)(ξ) = gw(ξ)+c.
Now define b∗α,c = bα,gw(α)+c. Then b∗α,c = bα,fz∗(c)(α). Thus, the above (4) can be stated as

∀cδ, . . . , cγ+1, ∃c0

[∑

α∈F

b∗α,c0(α) = 0

]
. (5)

Notice that for any α and any c 6= c′, the vectors b∗α,c and b∗α,c′ consist of disjoint sets of
bits. Hence, they are independent, from which the following bound follows.

Pr

[
∀c0 [

∑

α∈F

b∗α,c0 6= 0]

]
=

∏

c∈F

Pr

[∑

α∈F

b∗α,c 6= 0

]
=

(
1− 1

2L

)q

< e−Ω(q/(20m)d),

where the probability is taken uniformly over all the bits {b(1)
α,β, . . . , b

(L)
α,β}, for all α, β ∈ F.

It follows that

Pr

[
∀cδ, . . . , cγ+1,∃c0 [

∑

α∈F

b∗α,c0(α) = 0]

]
≥ 1− 2n2K+ne−Ω(q/(20m)d) = 1− o(1).

Armed with this estimate, we will choose a source sequence {b(0)
α,β, b

(1)
α,β, . . . , b

(L)
α,β} that satisfies

both requirements (2) and (4). Since both event happens with probability approaching 1, this
can be done.

Finally, note that for this choice of the source sequence, we can fix one y0 with the following
property: for every x ∈ {0, 1}n, there exists some x′ such that z = 〈y0x0vx′〉 is assigned a ∗ by
the random restriction and unassigned by any of the 2n decision tree settlements. Note further
that such x′ can be found by checking all q (= |F| ≤ nckd) possibilities for c0. That is, given
polynomially many source bits and y0, it is computable in polynomial time to find z ∈ Ty0 that
is unassigned by the random restriction, (and since it is within Ty0 it is unassigned by all the
2n decision trees), and we can set any value to z without changing the output of MX on x. We
use all such z of this form in this segment to encode the result of MX on x. This is our oracle
construction.
Remark 1: For convenience we assumed in the proof that k > 2 and d ≥ 7. Clearly d ≥ 7 is
unnecessary. We only need to forgo the estimate of 2d+6 < 3d, and use 2d+6. Similarly, k > 2
is not necessary. If one traces through the proof, any real number k > 1 is sufficient.

12

Remark 2: The final computation by the polynomial size circuit can be done in NC1. We only
need to evaluate some arithmetic operations in the finite field F. It turns out that since elements
in F are represented by O(log n) bits, the only step that really requires NC1 is the parity sum
of nO(1) terms, when we evaluate the polynomial fz.
Remark 3: It is also possible to construct a single oracle X such that for every d and k, and
every Σp

d-machine M running in time O(nk) can be accepted by a polynomial size circuit family
with reasonable access to oracle X with respect to each M.
Remark 4: The original motivation for Furst-Saxe-Sipser [FSS81] where super polynomial
lower bounds were proved for parity against constant depth circuits, was to provide an oracle
separation of PH and PSPACE. This was achieved in a breakthrough result by Yao [Yao85] who
proved a lower bound of the form 2NΩ(1/d)

for parity on N bits for depth d circuits. Cai [Cai86]
was the first to investigate whether constant depth circuits of size 2NΩ(1/d)

must err on an
asymptotically 50 % of inputs against parity. This was motivated by another long standing open
problem, that of random oracle separation of PH and PSPACE (see also [Bab87]). To attack
this problem, the decision tree point of view was first adopted in [Cai86], although a different
but completely synonymous terminology (Master-Player Game and t-monochromaticity) was
used. It was proved in [Cai86] that after a suitable random restriction ρ, with high probability,
the constant depth circuit C |ρ has decision tree depth smaller than the number of unassigned
Boolean variables. In such cases, of course Pr[C = ⊕] is exactly 1

2 . Thus the discrepancy

|Pr[C = ⊕]− Pr[C 6= ⊕]| (6)

was shown to be o(1) for circuits of depth d and size 2NΩ(1/d)
. Implicitly a bound of the form

2−NΩ(1/d)
for the discrepancy (6) was proved there as well [Cai86]. The o(1) upper bound for

the discrepancy was sufficient for the random oracle separation result which was the purpose of

[Cai86], but one needs H̊astad’s technique to improve the bound from 2−NΩ(1/d)
to 2−cN

1
d as in

Lemma 4. However, the weaker bound 2−NΩ(1/d)
would have sufficed for our Theorem 2.

It was a marvelous application by Nisan and Wigderson [Nis91a, Nis91b, NW88] who turned
this inapproximability type of lower bounds based on decision trees on its head, and produced
an explicit construction—usually considered an upper bound—of a pseudorandom generator
provably indistinguishable from true random bits by polynomial size constant depth circuits. A
central ingredient in [Nis91a, Nis91b, NW88] is a suitable combinatorial design. Seen in this
way, our proof of Theorem 2 can be viewed as using a lower bound (Switching Lemma), to get an
upper bound (the NW pseudorandom generator), to prove a lower bound (to kill all 2n circuits
Cx simultaneously with the pseudorandom assignments), to finally prove an upper bound (to
be able to code all the computations). And all this, is to show that relativizable proof with
reasonable access to an oracle of circuit super polynomial lower bound for any fixed language in
Polynomial-time Hierarchy is impossible.

Acknowledgments

We thank Professor Eric Allender for letting us know the result [Dan].

13

References

[Ajt83] M. Ajtai, Σ1
1-formulae on finite structures, Ann. Pure Applied Logic, 24, 1–48, 1983.

[Bab87] L. Babai, Random oracles separate PSPACE from the polynomial-time hierarchy, In-
formation Processing Letters, 26(1), 51–53, 1987.

[BCGKT] N. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon, Oracles and queries
that are sufficient for exact learning, J. Comput. and System Sci. 52(3), 421–433, 1996.

[BFT98] H. Buhrman, L. Fortnow, and T. Thierauf, Nonrelativizing separations, in Proc. the
13th IEEE Conference on Computational Complexity (CCC’98), IEEE, 8–12, 1998.

[Cai86] J-Y. Cai, With probability one, a random oracle separates PSPACE from the
polynomial-time hierarchy, in Proc. 18th ACM Symposium on Theory of Computing
(STOC’86), ACM, 21–29, 1986. JCSS 38(1): 68-85 (1989).

[Cai01] J-Y. Cai, SP
2 ⊆ ZPPNP, in Proc. 42th IEEE Symposium on Foundations of Computer

Science (FOCS’01), IEEE, 620–628, 2001.

[Dan] S. Daniels, A Constructive proof presenting sets in Σ2 that require circuits of size nk,
unpublished manuscript.

[FSS81] M. Furst, J. Saxe, and M. Sipser, Parity, circuits, and the polynomial time hierarchy, in
Proc. 22nd IEEE Symposium on Foundations of Computer Science (FOCS’81), IEEE,
260–270, 1981.

[H̊as86a] J. H̊astad, Almost optimal lower bounds for small depth circuits, in Proc. 18th ACM
Symposium on Theory of Computing (STOC’86), ACM, 6–20, 1986.

[H̊as86b] J. H̊astad, Computational Limitations for Small-Dept Circuits, MIT Press, 1986.

[Kan82] R. Kannan, Circuit-size lower bounds and non-reducibility to sparse sets, Information
and Control, 55, 40–56, 1982.

[KL80] R.M. Karp and R.J. Lipton, Some connections between nonuniform and uniform com-
plexity classes, in Proc. 12th ACM Symposium on Theory of Computing (STOC’80),
ACM, 302–309, 1980.

[Ko89a] K. Ko, Relativized polynomial time hierarchies having exactly k levels, SIAM J. Com-
put., 18, 392–408, 1989.

[Ko89b] Ker-I Ko, Constructing oracles by lower bound techniques for circuits, in Combina-
torics, Computing and Complexity (D. Du and G. Hu eds.), Kluwer, 30–76, 1989.

[KW98] J. Köbler and O. Watanabe, New collapse consequences of NP having small circuits,
SIAM J. Comput., 28, 311–324, 1998.

14

[MVW99] P.B. Miltersen, N.V. Vinodchandran, and O. Watanabe, Super-Polynomial versus
half-exponential circuit size in the exponential hierarchy, in Proc. 5th Annual Inter-
national Conference on Computing and Combinatorics (COCOON’99), Lecture Notes
in Computer Science 1627, 210–220, 1999.

[Nis91a] N. Nisan, Pseudorandom bits for constant depth circuits, Combinatorica 11(1), 63–70,
1991.

[Nis91b] N. Nisan, Using Hard Problems to Create Pseudorandom Generators, MIT Press, 1991.

[NW88] N. Nisan and A. Wigderson, Hardness vs. randomness, in Proc. 29th IEEE Symposium
on Foundations of Computer Science (FOCS’88), IEEE, 2–12, 1988.

[vL91] J. van Lint. Introduction to Coding Theory. Springer-Verlag, 1991.

[Yao85] Andrew Chi-Chih Yao, Separating the Polynomial-Time Hierarchy by Oracles, FOCS
1985: 1-10.

15

