
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: Computer Science

ISSN 1342-2812

A New lattice construction for partial key exposure
attack for RSA

Yoshinori Aono

October 2008, C–257

A New lattice construction for partial key exposure attack for RSA

Yoshinori Aono
Dept. of Mathematical and Computing Sciences

Tokyo Institute of Technology, Tokyo, Japan
aono5@is.titech.ac.jp

Abstract
In this paper we present a new lattice construction for a lattice based partial key exposure

attack for the RSA cryptography. We consider the situation that the RSA secret key d is small
and a sufficient amount of the LSBs (least significant bits) of d are known by the attacker. We
show that our lattice construction is theoretically more efficient than known attacks proposed
in [1, 6].

Keywords: RSA, cryptanalysis, partial key exposure attack, lattice basis reduction, Copper-
smith’s method

1 Introduction

In this paper we present a new lattice construction for a lattice based partial key exposure attack for
the RSA cryptography in the situation that the secret key d is small and its LSBs (least significant
bits) are exposed.

Boneh and Durfee [1] proposed the lattice based attack for the RSA cryptography. Its basic
idea is to reduce the RSA key finding problem to problems of finding small roots of modular
equations such as f(x1, . . . , xn) ≡ 0 (mod W), which are solved by the Coppersmith technique
[5], the technique that solves a given modular equation by converting it to an ordinary equation
by using a lattice basis reduction algorithm such as the LLL algorithm [9]. Boneh and Durfee [1]
showed that the secret key d can be obtained from a public key pair e and N in polynomial time
in log N when d < N0.292.

Since Boneh and Durfee’s work, many of its variants have been proposed [3, 6]. Blömer and
May [3] extended the technique for a partial key exposure attack, i.e., a problem of computing d
from e, N and some partial information on d. This approach has been further extended by Ernst et
al. [6] for several partial key exposure situations. In this paper we consider one of those situations
where the secret key d is small and some LSBs of d are given (besides e and N), and we show some
improvement over the algorithm by Ernst et al., thereby solving an open problem raised in [6].

In order to state our improvement we need some notations; see the next section for the precise
definition. Let (e,N) be an RSA public key pair and let d be its corresponding secret key. Here as
usual we use `N = (the bit-length of N) as a security parameter. We consider the situation that
`d = (the bit length of d) is relatively small compared with `N and some `0 least significant bits of
d are known. Let β = `d/`N and δ = (`d − `0)/`N ; that is, they are respectively the ratios of the
bit-length of d and its unknown part. Now the asymptotic performance of the algorithms in [1, 6]
can be summarized in Figure 1. (This figure is a rough image, not accurate.)

The algorithm of [1] works asymptotically when the parameters take values in the left of a
vertical line labelled “β = 0.292”. That is, it obtains the secret key for

β < 1 − 1√
2

= 0.292... and any δ. (1)

1

Figure 1: Our recoverable range

The limit of Boneh and Durfee (1) and that of Ernst et al. (2) are corresponding to the left/above of the
line β = 0.292 and the line Ernst et al. 2© respectively. Our new improvement area (3) is the left side of
the dashed line Ours 1© in the area left of line 1 − 4β + 2δ = 0.

The algorithm of [6] works when

δ <
5
6
− 1

3

√
1 + 6β. (2)

That is it works when β and δ take values in the left/above of a curve labelled Ernst et al. 2©.
As shown in the Figure 1, the algorithm of [6] improves the solvable parameter range when δ is
small; it has been however left open [6] to develop an algorithm that has a better solvable parameter
range than both [1] and [6].

In this paper we propose an algorithm that can work asymptotically when the parameters take
values in the left/above of the dashed line of Figure 1. More precisely, it works when

1 − 4β + 2δ > 0 if 2
√

2(1 − 2β)(β − δ)(δ − β) − 2β2 + 3β + δ − 1 < 0 (3)

and

1 − 4β + 2δ ≤ 0 if δ <
5
6
− 1

3

√
1 + 6β. (4)

Note that the range (3) is our new improvement which is the left/above of the dashed line Ours 1©
in Figure 1, while the range (4) is already given by [6]. Also as shown in Section 5, compared with
the construction of [6], our lattice construction produces a much smaller instance for a lattice basis
reduction algorithm, which improves the total running time significantly.

This paper is organized as follows. In Section 2, we introduce some notations and lemmas about
the lattice based partial key exposure attack. Section 3 provides the overview of the lattice based
partial key exposure attack. In Section 4 we describe the construction and the performance of our
lattice. Section 5 provides the results of our computer experiments. The analysis of Section 4 is
explained in the Appendix section.

2

2 Preliminaries

We introduce some notations and state some known facts used in the following discussions. Then
we review some key technical lemmas used in the lattice based attack.

We use standard RSA notations throughout this paper. A given RSA instance is defined by
p, q, e, and d, where p and q are large primes, e is a public key, and d is a secret key. Let N = p× q,
and let ϕ(N) be the Euler’s function; here we may simplify assume that ϕ(N) = (p − 1)(q − 1).
The key relation is

ed ≡ 1 (mod ϕ(N)). (5)

The partial key exposure attack is to compute the secret key d from partial information on d,
and the public key (e,N). In this paper, we consider the situation that some LSBs of d are exposed,
that is, recovering d from LSBs of d (together with e and N). We use d0 to denote the exposed
part and d̃ to denote the non-exposed part. That is, we assume that

d = d̃ · M + d0, (6)

where M = 2k and k = lg(d0) 1. We will use M for denoting this number throughout this paper.
Define β = logN d and δ = logN d̃. That is, β and δ are the rough ratios of the bit-length of d and
d̃ relative to that of N respectively.

In our algorithm, we need to solve some modular equations such as f(x, y) ≡ 0 (mod W) for
some polynomials f(x, y). Furthermore, we want to obtain solutions in a certain range. In general,
this task is not easy. However there are some cases where we may be able to use the standard
numerical method for solving these modular equations. The Howgrave-Graham lemma provides us
with one of such cases.

In order to state the Howgrave-Graham Lemma, we introduce the following norm defined by
any given non-negative integers X and Y , which we call in this paper “XY -norm.”

Definition 1. XY -norm Let X and Y be natural numbers and f(x, y) =
∑

i,j ai,jx
iyj be a

polynomial with integral coefficient.
We define the XY -norm of f(x, y) by

||f(x, y)||XY
def=

√∑
i,j

a2
i,jX

2iY 2j .

Lemma 1. (Howgrave-Graham [7]) For any positive integers X,Y and W , let f(x, y) be a
bivariate polynomial consisting w terms with integral coefficient such that the following holds

||f(x, y)||XY <
W√
w

.

Then we have
f(x, y) ≡ 0 (mod W) ⇔ f(x, y) = 0

within the range of |x| < X and |y| < Y .

Note that f(x, y) = 0 clearly implies f(x, y) ≡ 0 (mod W). What is important is its converse.
This lemma guarantees that the solution of f(x, y) ≡ 0 (mod W) in the target range can be found
(if exists) from the solutions of f(x, y) = 0, which can be obtained by the standard numerical
method.

1We use lg(x) to denote the length of the binary representation of x.

3

In order to use the above lemma, we need to obtain polynomials with a small XY -norm. The
key idea of the lattice based attack is to formulate this task as the shortest vector problem and use
an approximate solution computed by a polynomial time lattice basis reduction algorithm for the
shortest vector problem.

We introduce some definitions and some lemmas about the lattice. Consider linearly indepen-
dent vectors b1, . . . ,bn ∈ Rñ, then the lattice with basis b1, . . . ,bn is defined by

L(b1, . . . ,bn) =

{
n∑

i=1

aibi

∣∣∣∣∣ ai ∈ Z for i = 1, . . . , n

}
. (7)

That is, the lattice is an integral linear combination of its basis vectors. We denote by n a number
of vectors, which is usually called lattice dimension, and denote by ñ a number of component of
vector in basis, which we call lattice component size. Note that the lattice is a additive subgroup
of Rñ.

The shortest vector problem, for given basis b1, . . . ,bn, is to find a vector v such that

• v ∈ L(b1, . . . ,bn) \ {0} and
• |v| ≤ |v′| for ∀v′ ∈ L(b1, . . . ,bn) \ {0}.

That is, this problem is to find a non-zero vector having the minimum length in L(b1, . . . ,bn).
In order to obtain polynomials with small XY -norms, we need to compute short vectors as an ap-
proximate solution of this problem. We will use a polynomial time algorithm, named LLL, proposed
in [9]. Some improvements have been proposed [11, 12], but as shown later, these improvements
are not essential for our application.

The approximation ratio of the LLL algorithm is exponential, it is however enough for our
propose. The following theorem guarantees an upper bound of the length of a vector computed
by the LLL algorithm. The LLL algorithm computes a special basis v1, . . . ,vn, named reduced
basis, from given basis b1, . . . ,bn. Our interest is short vectors in the reduced basis in the following
theorem.

Theorem 1. [1, Fact 3.3] Let b1, . . . ,bn be a given linearly independent basis. Then we can find
linearly independent lattice vectors v1 and v2 such that

|v1| ≤ 2(n−1)/4|det(L)|1/n, and
|v2| ≤ 2n/2|det(L)|1/(n−1).

(8)

Here, L is the lattice with basis b1, . . . ,bn, and det(L) is the determinant of the lattice defined by

det(L) =
n∏

i=1

|b∗
i |, where (9)

b∗
1, . . . ,b

∗
n is the Gram-Schmidt orthogonal basis of given basis.

We will use (9) to evaluate the determinant of our lattice in the later section.
Note that the shortest vector problem is defined on vectors, while our targets are polynomials.

Thus we consider some way to map polynomials to vectors. We consider some natural and simple
mapping; For example, a polynomial f(x, y) = −3x3 + 4x2y − 2xy2 + 7xy3 is mapped to a vector
(−3X3, 4X2Y,−2XY 2, 7XY 3) by some natural numbers X and Y . To state this correspondence
formally, we first need to fix some linear ordering on pairs (i, j) of nonnegative integers. With
respect to this ordering let (i(t),j(t)) denote the t-th pair. Then our correspondence between
polynomials and vectors is define as follows.

4

Definition 2. Polynomials ↔ vectors Let J be a sequence of pairs of nonnegative integers,
where we assume some linear order on J , let it be fixed, and let ñ denote |J |, the length of the
sequence. We also fix some positive integers X and Y . W.r.t. these X and Y , for any f(x, y) =∑

1≤t≤ñ ai(t),j(t)x
i(t)yj(t), the following vector b is the vectorisation of f(x, y) with parameter X

and Y , and it is denoted by VJ(f ;X,Y).
On the other hand, for any b of size ñ, a polynomial f(x, y) defined from b by interpreting it

as below is called the functionalisation of b and it is denoted by FJ(b; X,Y).

f(x, y) = ai(1),j(1)x
i(1)yj(1) + ai(2),j(2)x

i(2)yj(2) + · · · + ai(|J |),j(|J |)x
i(|J |)yj(|J |)

↓ ↓ ↓
b = (ai(1),j(1)X

i(1)Y j(1) , ai(2),j(2)X
i(2)Y j(2) , . . . , ai(|J |),j(|J |)X

i(|J |)Y j(|J |)).

Remark When J is clear from the context, we often omit J and write as V(f ; X,Y) and
F(b;X,Y). Then from the definition, the following relationships are immediate.

||f(x, y)||XY = |V(f ; X,Y)|, and
||F(b; X,Y)||XY = |b|. (10)

3 Overview of the Partial key Exposure Attack

We give an overview of the lattice based partial key exposure attack in the situation that LSBs
of d are exposed. The goal of the attack is to compute a secret key d from d0, least significant
bits of d, and the public key pair. The lattice based attack achieves this goal by using a lattice
reduction algorithm and Howgrave-Graham’s lemma. It is said [6] (and some papers) that this
attack is effective if

(i) d, and unknown part of d are short,
(ii) e and N are of similar bit length, and
(iii) p and q are of similar bit length.

In order to be precede, we consider in this paper, the following conditions.

(a) δ = logN d̃ is smaller than 0.5
(b) lg(e) = lg(N), and
(c) lg(p) = lg(q)

In the following, we assume all parameters satisfy these conditions. More precisely, we will use
the following inequalities in the later.

e < ϕ(N) and p + q < 3
√

N. (11)

Our objective is to compute d from a public key pair (e,N) and d0. As explained in Introduction,
the key relation is the modular equation (5), from which it is easy to derive

ed = 1 − xϕ(N) = 1 − x(y + N)

for some x, y ∈ Z. Also by using (6), we can deduce from the above that e(d̃ ·M +d0) = 1−x(y+N)
and hence we have

x(N + y) + (ed0 − 1) ≡ 0 (mod eM). (12)

5

We show here that it is relatively easy to enumerate all solutions (x, y) of (12). First note that
a solution (x, y) exists if for integer y,

gcd
(

N + y

g
,
eM

g

)
= 1 where g = gcd(N + y, eM, ed0 − 1).

In fact in this case, we can compute x by

x =
(

1 − ed0

g

)
·

((
N + y

g

)−1

mod
eM

g

)

But clearly what we need is some specific solution of (12). Among solutions (x, y) of (12), we say
that (x0, y0) is useful if it indeed satisfies the following equation, from which we can recover the
secret key.

d =
1 − x0(N + y0)

e
(13)

Thus, our task is not computing some solutions (x, y), but computing this useful solution among
(x, y) satisfying (12). Below we use (x0, y0) to denote this useful solution. Let us consider a size of
the useful solution (x0, y0). We have the following upper bounds. Here, we use (11) and the fact
that ϕ(N) = N + y0 if (x0, y0) is the useful solution.

|x0| =
∣∣∣∣ ed − 1
N + y0

∣∣∣∣ <
ed

ϕ(N)
< d = Nβ , and

|y0| = |N − ϕ(N)| = p + q − 1 < 3N0.5.
(14)

Now let X = dNβe and Y = d3N0.5e. Then, the useful solution (x0, y0) is a solution of (12)
satisfying |x0| < X and |y0| < Y .

Conversely, we consider some heuristic condition on δ for a solution satisfying |x| < X and
|y| < Y is useful. We assume that solutions of (12) are random numbers on {0, . . . , eM −1}2. Since
the number of solution pairs of (12) is smaller than eM , we expect the number of solutions satisfy
|x| < X and |y| < Y is smaller than

eM · 4XY

(eM)2
=

4XY

eM
≈ 4 · Nβ · 3N0.5

N · Nβ−δ
≈ N δ−0.5.

Thus, if this value is smaller than 1, we may expect a solution within the range |X| < Nβ and
|y| < N0.5 is only one, which is the useful solution guaranteed by (14). From this observation we
propose a condition δ < 0.5 and the following heuristic assumption.

Heuristic Assumption Consider the case δ < 0.5. Then, there is only useful solution (x0, y0)
within the range of |x0| < Nβ , |y0| < 3N0.5 of the following equation.

x(N + y) + (ed0 − 1) ≡ 0 (mod eM)

Furthermore we can recover the secret key d by (13)2. ¤
Remark. This assumption shows we can obtain the secret key by the exhaustive search when
δ < 0.5.

2We can compute the factoring of N by ϕ(N) = N + y0.

6

1. Based on fmain(x, y) (and fM(x, y)), define a certain family of polynomials
h1(x, y), . . . , hn(x, y) such that

fmain(x, y) ≡ 0 (mod eM) ⇒ hc(x, y) ≡ 0 (mod (eM)m) for c = 1, . . . , n.

(Here m and n are some algorithm parameter defined later.)
2. Set X = dNβe and Y = d3N0.5e. Consider vectors by bc = VJ(hc; X,Y) for c =

1, . . . , n. Here, a sequence J is a set of appropriately ordered integer pairs (i, j) such
that a monomial xiyj appears in hc(x, y).

3. For b1, . . . ,bn, compute reduced basis by a lattice basis reduction algorithm. We
denote by v1, . . . ,vn this reduced basis.

4. Define g1(x, y) and g2(x, y) by ga(x, y) = FJ(va; X,Y) respectively. Obtain solutions
of g1(x, y) = g2(x, y) = 0 numerically. Then from these solutions, compute d as given
by (13).

Figure 2: Outline of the lattice based attack

For our discussion, let us define the following two functions 3

fmain(x, y) def= x(N + y) + (ed0 − 1)
= (ed0 − 1) + Nx + xy, and

(15)

fM(x, y) def= M(−1 + x(N + y)). (16)

fmain(x, y) is the left-hand side of equation (12). The motivation of fM(x, y) will be explained
later; here we only point out that fM(x0, y0) ≡ 0 (mod eM), where (x0, y0) is a useful solution.

Now we summarise the above explanation. Our technical goal is to obtain the useful (x0, y0)
satisfying (12), in other words, a pair satisfying both fmain(x0, y0) ≡ 0 (mod eM) and |x0| < Nβ

and |y0| < 3N0.5. For achieving this technical goal by solving the mod equation, we make use of
Howgrave-Graham Lemma, and for this purpose, we modify fmain(x, y) to some family of functions
with small XY -norm. The task of defining these polynomials is formulated as the shortest vector
problem, and known polynomial time algorithm such as the LLL algorithm is used. This is the
rough sketch of the lattice based attack. The outline of our algorithm is stated as Figure 2.

Some remarks may be necessary. Note first that m and n are algorithmic parameters; m is chosen
appropriately and n is the number of polynomials ha(x, y) that is also determined appropriately
based on m.

Secondly note that we have the following relation between these polynomials.

fmain(x, y) ≡ 0 (mod eM) ⇒ hc(x, y) ≡ 0 (mod (eM)m) for c = 1, . . . , n
⇒ ga(x, y) ≡ 0 (mod (eM)m) for a = 1, 2 ⇔ ga(x, y) = 0 for a = 1, 2.

(17)

The key point of (17) is the relation ga(x, y) ≡ 0 (mod (eM)m) ⇔ ga(x, y) = 0 for a = 1, 2. This
holds when ||ga(x, y)||XY = |va| is smaller than (eM)m/

√
w from Howgrave-Graham’s lemma.

(Here w is the number of terms of each ga(x, y).) Then we have a relation

fmain(x, y) ≡ 0 (mod eM) ⇒ ga(x, y) = 0 for a = 1, 2.

3Ernst et al. [6] reduced the problem to the problem of finding small solution of an ordinal equation

fLSB(x, y, z) = eMx − Ny + yz + ed̃ − 1 = 0.

7

Hence we can obtain the useful solution from computing all solutions of g1(x, y) = g2(x, y) = 0 by
some numerical method if exists.

By (8) and (10), we have

||g1(x, y)||XY = |v1| ≤ 2(n−1)/4 det(L)1/n, and
||g2(x, y)||XY = |v2| ≤ 2n/2 det(L)1/(n−1).

Since the second bound is larger, we obtain the following sufficient condition for using Howgrave-
Graham’s lemma:

2n/2 det(L)1/(n−1) <
(eM)m

√
w

. (18)

We modify (18) to a more simple approximate bound. First we note that the factor 2n/2 and√
w (=Θ(

√
n)) are negligible. Then we have a condition det(L)1/(n−1) < (eM)m instead of (18).

Next we neglect the difference between det(L)1/(n−1) and det(L)1/n. Thus, instead of using the
condition (18), we will use the following one.

det(L)1/n < (eM)m (19)

For example, when attacking 1024-bit RSA instances by using lattices having dimension n ≈ 100,
we may have (eM)m > 210000 whereas 2n/2 ·

√
w ≈ 250, and the ratio det(L)1/(n−1)/det(L)1/n =

det(L)1/n(n−1) ≈ 2100.
Now our goal is to construct a lattice satisfying (19), and we will show in the next section that

it is possible if β and δ satisfies the condition (3) given in Introduction.

4 Our Construction

In this section, we explain our construction and a main result. A difference between former algo-
rithm and ours is only lattice construction satisfying (19). We will give its analysis in the Appendix.

Let β and δ be assumed bounds defined above, m be an algorithm parameter introduced in the
above outline, τ be a parameter used to optimise the bounds by β and δ. We fix them throughout
this section. We introduce index series Ia(m, τ, β, δ) for constructing our lattice L(m, τ, β, δ).

Definition 3. We define our sequence I1(m, τ, β, δ), I2(m, τ, β, δ) and I3(m, τ, β, δ) (In short, I1, I2

and I3 respectively). Here we set

I1(m, τ, β, δ) = {(i, j) ∈ Z × Z|0 ≤ i ≤ m, 0 ≤ j ≤ i},
I2(m, τ, β, δ) = {(i, j) ∈ Z × Z|0 ≤ i ≤ m, i < j ≤ i + τm} and
I3(m, τ, β, δ) = {(i, j) ∈ Z × Z|0 ≤ i ≤ m, j ≤ 2(1 − β)i} \ (I1 ∪ I2).

We consider the order ≺ in I1, I2 and I3 by the lexicographic order of (i, j) 4. Then we define index
sequence I(m, τ, β, δ) by concatenating I1, I2 and I3. That is, order of elements in I is defined as
follows for (i, j) ∈ Ik and (i′, j′) ∈ Ik′ ,

(i, j) ≺ (i′, j′) ⇔
{

k < k′ or
k = k′ and (i, j) ≺ (i′, j′) in Ik.

We define our polynomials fi,j(x, y) to construct our lattice (this is hc(x, y) in the outline).
4Notice that a symbol ≺ means R.H.S. is exactly larger than L.H.S., not equal. A symbol ¹ means R.H.S. is equal

to or larger than L.H.S.

8

Definition 4.

fi,j(x, y) =

 (eM)m−jxi−j(fmain(x, y))j for (i, j) ∈ I1

(eM)m−iyj−i(fmain(x, y))i for (i, j) ∈ I2

em−iyj−i(fM(x, y))i for (i, j) ∈ I3

(20)

Then we define a sequence J(m, τ, β, δ) = {(i′, j′)|a monomial xi′yj′ is appeared in some fi,j(x, y)}
where we assume the standard lexicographic order in J(m, τ, β, δ). We simplify denote this by J .

It is clear that fmain(x, y) ≡ 0 (mod eM) ⇒ fi,j(x, y) ≡ 0 (mod (eM)m) for (i, j) ∈ I. The
number of polynomials |I| is just n in Figure 2. Note also that |J | = ñ, the number of components
of each vector bi,j is O(|I|) since we can rewrite a set J by {(i, j) ∈ Z × Z|0 ≤ i ≤ m, 0 ≤ j ≤
i + (1 − 2β)m}. Hence |I| and |J | has a same order Θ(m2).

By using these polynomials and indecies, we define our lattice L(m, τ, β, δ) by

L(m, τ, β, δ) = L(bi1,j1 , . . . ,bin,jn).

Here (i1, j1), . . . , (in, jn) are index sequence in I and bi`,j`
= VJ(fi`,j`

; X,Y), a vectorisation of
fi`,j`

(x, y) with parameters X = dNβe and Y = d3N0.5e. The lattice dimension and lattice compo-
nent size of L(m, τ, β, δ) are |I| and |J | respectively.

For evaluating the determinant of L, we will show

|b∗
i,j | = (eM)m−jXiY j for (i, j) ∈ I1,

|b∗
i,j | = (eM)m−iXiY j for (i, j) ∈ I2, and

em−jMmX iY j ≤ |b∗
i,j | < 2em−jMmXiY j for (i, j) ∈ I3.

(21)

Here b∗
i1,j1

, . . . ,b∗
in,jn

is a Gram-Schmidt orthogonal basis of given basis bi1,j1 , . . . ,bin,jn . We give
the proof of these bounds in the Appendix. (Lemma 3, Lemma 4 and Lemma 5). Now we assume
that these bounds hold, and we introduce an “evaluator” for deciding suitable τ . The evaluator
eval(i, j) for b∗

i,j is defined by

eval(i, j) = logN

(
|b∗

i,j |/(eM)m
)
. (22)

We define the evaluator for any index sequence K by

eval(K) =
∑

(i,j)∈K

eval(i, j). (23)

Then we can state the condition (19) in terms of eval.

Lemma 2. For any index sequence I satisfying

eval(I) < 0, (24)

the condition (19) holds.

Proof. By (9) and the definition of the evaluator, we have

N eval(I) = N
P

(i,j)∈I eval(i,j) =
∏

(i,j)∈I

(
|bi,j |

(eM)m

)
= det(L)/(eM)|I|·m.

Thus, (24) is equivalent to det(L) < (eM)|I|·m. Which is indeed the condition (19).

9

Thus, we use eval(I) < 0 as our (approximate) sufficient condition that the lattice based attack
(under our construction of the lattice L) breaks a given RSA instance. Note that this condition
is based on our heuristic assumption and it is only an approximate condition because of the ap-
proximation of (18) by (19); yet further approximation is used below for estimating eval. This
means that the condition for parameters β and δ we will derive below is, strictly speaking, not
accurate nevertheless, we will argue by using our approximation for avoiding unnecessary compli-
cations. Justification of our approximation analysis and together with our heuristic assumption
will be given by computer experiments shown later.

Now by using the bound (21) (see Proposition 1 in Section A.1), we can approximately evaluate
eval(i, j) as follows 5.

eval(i, j) ≈

 iβ − (β − δ + 0.5)j (i, j) ∈ I1

(δ − 1)i + 0.5j (i, j) ∈ I2

(−1 + β)i + 0.5j (i, j) ∈ I3.

From this we can approximately estimate eval(I). From some calculation (see Section A.2) we
have

eval(I) =
(

1
6
(β + δ − 0.5) +

τ

4
(2δ + τ − 1) − 1

12
(1 − 2β − τ)3

1 − 2β

)
m3 + o(m3) (25)

for 1 − 2β − τ > 0, and we have

eval(I) =
(

1
6
(β + δ − 0.5) +

τ

4
(2δ + τ − 1)

)
m3 + o(m3) (26)

for 1 − 2β − τ ≤ 0. Note that a condition 1 − 2β − τ > 0 and 1 − 2β − τ ≤ 0 are corresponding
to the cases I3 6= φ and I3 = φ respectively. Then following the argument of [1, 6], we analyze the
bound for the ideal case by assuming that m is sufficiently large. (We draw a figure to show the
bounds for some concrete values of m, see Figure 4 in Section 5.)

First we consider the case of 1−2β−τ > 0. Assuming that m is sufficiently large, the condition
(24) is approximately equivalent to

1
6
(β + δ − 0.5) +

τ

4
(2δ + τ − 1) − 1

12
(1 − 2β − τ)3

1 − 2β
< 0, (27)

where its left-hand side is minimised when τ takes value τ0 =
√

2(1 − 2β)(β − δ). Hence, substi-
tuting this to (27), we have

1
3

√
2(1 − 2β)(β − δ)(δ − β) − 1

3
β2 +

1
2
β +

1
6
δ − 1

6
< 0. (28)

This is equivalent to (3).
Next we consider the case of 1 − 2β − τ ≤ 0. Again assuming m is sufficiently large, we have

the following approximate condition (24).

1
6
(β + δ − 0.5) +

τ

4
(2δ + τ − 1) < 0. (29)

By similar argument, we substitute τ1 = 1−2δ
2 to τ for minimising (29), and derive the following

condition (29).

δ <
5
6
− 1

3

√
1 + 6β. (30)

5Here a symbol A ≈ B means A
B

→ 1 when N (the RSA bit length) goes to infinity.

10

Step 1: (Make sample RSA instance) Randomly choose `/2-bit primes p and q, and let N =
pq. (In our program, we choose p and q the Euler-Jacobi pseudoprime to bases 2, 3,
5, 7 and 11.) Randomly choose bβ`c-bit random odd integer as the secret key d such
that gcd(d, (p− 1)(q − 1)) = 1, and let M = 2b(β−δ)`c and d0 = d mod M . Compute
the public key e ≡ d−1 (mod (p−1)(q−1)), and let fmain(x, y) = x(N +y)+(ed0−1),
and let y0 = 1 − p − q and x0 = (1 − ed)/((p − 1)(q − 1)).

Step 2: Let τ =
√

2(1 − 2β)(β − δ), X = bNβc and Y = b3N0.5c. Then construct our
lattice L(m, τ, β, δ).

Step 3: Apply the L2 algorithm for L(m, τ, β, δ).
Step 4: Sort the vectors of reduced basis v1, . . . ,vn by these length to v′

1, . . . ,v
′
n. Compute

gi(x, y) = FI(v′
i, X, Y).

Step 5: Check g1(x0, y0) = g2(x0, y0) = 0 holds or not.

Figure 3: Our computer experiment procedure

This is equivalent to the condition proposed by [6]. Therefore, we can recover the secret key of
RSA in polynomial time in log N when β and δ satisfies (3) or (4).

5 Computer Experiments

We carried out our preliminary computer experiments to check that our approach works and esti-
mate its efficiency. We conducted our computer experiments on the TSUBAME supercomputer 6

with C++ implementation using the NTL library [10]. We use the L2 algorithm [11, 12] for lattice
basis reduction.

The procedure of our experiments is shown in Figure 3. The algorithm part is essentially the
same as the one outlined in Figure 2. (At Step 4, the vectors obtained by the L2 algorithm are
sorted by their length; this is because those vectors are approximate ones and we cannot guarantee
that v1 and v2 are the smallest in reduced basis v1, . . . ,vn .) Input parameters of this experiments
are `, m, β and δ, which are respectively the bit-size of N , the parameter for constructing lattice,
the ratio of lg(d) to lg(N), and the ratio of lg(d̃) to lg(N). (See Figure 2 for the parameters m and
n, and see Section 3 for the parameters β and δ.) A word “dim.” means the lattice dimension in
experiments, i.e., n = |I| in our construction. By “total CPU time” and “L2 time” we mean the
time of Step 2 through Step 5 and that of Step 3 respectively. Recall that the lattice component
size is bounded by a constant time of the lattice dimension.

Results are in Table 1 and Table 2. Table 1 shows the qualities of our lattices, that is, whether
the experiment is succeeded or not, for these parameters. On the other hand, Table 2 shows the
computational time of our experiments for various ` and m, and fixed β and δ.

Quality of Lattice
For checking our approach indeed works and estimating the quality of our lattice construction, we
carried out our preliminary computer experiments.

Note first that the bounds (3) and (4) are the ideal ones obtained by the asymptotic analysis
assuming m is sufficiently large. For each given value of m, we can determine the range of β and
δ satisfying eval(I(m, τ0, β, δ)) < 0 by numerically analyzing the original expressions (i.e., (42) ∼
(44) of Appendix A.2). Figure 4 shows the bounds of β and δ obtained in this way for some m

6TSUBAME is a grid type supercomputer at Tokyo Inst. of Tech., whose performance is currently (by Top500,
June 2008) the 24th in the World. Note, however, we have not been able to make a parallel version of our algorithm;
TSUBAME’S massive parallelism has been used only for reducing the total experiment time.

11

Figure 4: Our recoverable range for many m

values, and the theoretical limit of our construction (3) and that of [6]’s construction (2). It can
be seen that these bounds get close to our ideal bound when m gets large. We focus on the range
of 0.28 ≤ β ≤ 0.32 and 0 ≤ ratio ≤ 0.2, mainly our new improvement area.

Our computer experiments are summarized in Figure 5, which are for the cases m = 10 and
14. The instance size ` (= lg(N)) is 1024 for both cases; since these are still preliminary ones, we
conducted only one execution for each instance. Note that a shade area in each figure is the area
that eval(I(m, τ0, β, δ)) < 0 obtained numerically for each m. A black circle (resp., a white circle)
indicates the parameter (β, δ) (or the point (β, (β − δ)/β)) that the experiment succeeds (resp.,
fails). Those results are shown in detail in Table 1. The word “no(1)” in the column “success”
in the tables means g1(x0, y0) = 0 whereas g2(x0, y0) 6= 0 at the Step 5. In this case we may
expect to get the correct solution by generating enough number of polynomials g by changing X
and Y randomly within the same bit length. On the other hand, the word “no(0)” means that
g1(x0, y0) 6= 0 and g2(x0, y0) 6= 0 at Step 5, which we regarded as a failure.

Computational Time
Next we examine the efficiency of our algorithm based on our experiments. As seen by our analysis
and experiments, the algorithm shows better performance by using large m. On the other hand,
by using larger m, the lattice dimension also get larger. More specifically, the lattice dimension
is Θ(m2) by our construction. We examine how this indeed effects to the running time of the
algorithm. (Cf. The lattice dimension of those used in [6] is Θ(m3).)

We carried out computer experiments with parameters (β, δ) = (0.3, 0.225) and (β, δ) =
(0.4, 0.12), whereas parameters m and ` are chosen as m = 4, 6, 8, 10 and 12, and ` = 512,
1024, and 2048. Table 2 is experiments for ` = 512, 1024, and 2048. Total CPU time and L2

time in these tables are the average running time of five executions. Notice that all experiments
in Table 2 are success. These results show the total CPU time and L2 time are close, which shows

12

m = 10 m = 14

Figure 5: Summary of our experiments for ` = 1024

Experiment
parameters

Results

β δ dim. L2 time Success
0.285 0.260 88 3 hrs. 42 min. yes
0.285 0.262 88 3 hrs. 46 min. no(1)
0.285 0.264 88 3 hrs. 53 min. no(0)
0.290 0.246 87 3 hrs. 15 min. yes
0.290 0.248 87 3 hrs. 24 min. no(1)
0.290 0.250 87 3 hrs. 1 min. no(0)
0.295 0.246 92 4 hrs. 2 min. yes
0.295 0.248 87 2 hrs. 53 min. no(0)
0.300 0.250 91 3 hrs. 25 min. yes
0.300 0.252 85 2 hrs. 16 min. no(0)

Experiment
parameters

Results

β δ dim. L2 time Success
0.285 0.264 162 2 days 20 hrs. yes
0.285 0.266 162 2 days 18 hrs. no(1)
0.285 0.268 162 2 days 9 hrs. no(0)
0.290 0.260 165 2 days 22 hrs. yes
0.290 0.262 165 2 days 16 hrs. no(1)
0.290 0.264 165 2 days 16 hrs. no(0)
0.295 0.254 164 2 days 19 hrs. yes
0.295 0.256 164 2 days 17 hrs. no(0)
0.300 0.250 163 3 days 7 hrs. yes
0.300 0.252 163 3 days 14 hrs. no(1)
0.300 0.254 163 3 days 11 hrs. no(0)

m = 10 m = 14

Table 1: Quality of our lattice for m = 10 and m = 14

13

Experiment
parameters

Results

β δ m dim. L2time Total CPU time
0.3 0.225 4 17 1.7 sec. 1.8 sec.

6 36 1 min. 6 sec. 1 min. 8 sec.
8 58 10 min. 31 sec. 10 min. 42 sec.

10 91 1 hour 25 min. 1 hour 26 min
12 124 6 hrs. 13 min. 6 hrs 15 min.
14 171 25 hrs. 28 min. 25 hrs. 35 min.

0.4 0.12 4 15 1.5 sec. 1.7 sec.
6 35 2 min. 4 sec. 2 min. 7 sec.
8 54 16 min. 32 sec. 16 min. 46 sec.

10 77 1 hour 10 min 1 hour 11 min.
12 117 10 hrs. 11 min. 10 hrs. 14 min.
14 150 29 hrs 56 min. 30 hrs. 3 min.

Experiment
parameters

Results

β δ m dim. L2time Total CPU time
0.3 0.225 4 17 5.6 sec. 6.2 sec.

6 36 4 min. 34 sec. 4 min. 42 sec.
8 58 40 min. 5 sec. 40 min. 44 sec.

10 91 5 hrs. 33 min. 5 hrs. 36 min.
12 124 21 hrs. 25 min. 21 hrs. 33 min.
14 171 127 hrs. 0 min. 127 hrs. 10 min.

0.4 0.12 4 15 6.4 sec. 7.1 sec.
6 35 8 min. 41 sec. 8 min. 52 sec.
8 54 64 min. 22 sec. 65 min. 10 sec.

10 77 4 hrs. 56 min. 4 hrs. 59 min.
12 117 43 hrs. 35 min. 43 hrs. 45 min.
14 150 159 hrs. 40 min. 160 hrs. 4 min.

` = 512 ` = 1024

Experiment
parameters

Results

β δ m dim. L2time Total CPU time
0.3 0.225 4 17 27 sec. 29 sec.

6 36 21 min. 34 sec. 22 min. 3 sec.
8 58 2 hrs. 46 min. 2 hrs. 48 min.

10 91 24 hrs. 8 min. 24 hrs. 17 min.
0.4 0.12 4 15 32 sec. 35 sec.

6 35 42 min. 34 sec. 43 min. 13 sec.
8 54 4 hrs. 37 min. 4 hrs. 40 min.

10 77 21 hrs. 19 min. 21 hrs. 29 min.

` = 2048

Table 2: Total CPU time for `=512, 1024 and 2048

a lattice reduction algorithm is the main part of the lattice based attack. From these tables, we
obtain our computational time is approximately

Time ≈ 0.35 ×
(

`

512

)2

·
(m

2

)8
· log2 ` · log2 m sec for β = 0.3 and δ = 0.225, and

Time ≈ 0.6 ×
(

`

512

)2

·
(m

2

)8
· log2 ` · log2 m sec for β = 0.4 and δ = 0.12.

It should be noted that the construction of [6] yields a lattice of dimension Θ(m3) and that it took
about five hours on average (according to our experiments) to solve the instances obtained by this
construction for m = 6.

6 Conclusion

We gave a new lattice construction for the lattice based attack for the RSA cryptography in the
situation that d is small and LSBs of d is exposed. By this construction, the theoretical recoverable
range has been improved as shown in Figure 1, which solves the open problem raised in [6]. Also as
shown by our preliminary experimental results, the total efficiency of the lattice based attack has
been improved significantly compared with [6]. Some more improvement, however, is necessary for
using this technique with large m. One possibility is to make use of parallelization for processing
the lattice basis reduction algorithm. From a theoretical view point, it would be interesting if we
can understand the limitation of this approach.

14

Acknowledgement

I am grateful to Osamu Watanabe for his advice, careful reading, and correct some expressions.
The author was supported by the Global CompView Project. This research was supported in part
by JSPS Global COE program “Computationism as a Foundation for the Sciences”.

References

[1] D. Boneh and G. Durfee, Cryptanalysis of RSA with private key d less than N0.292, IEEE
Transactions on Information Theory, vol. 46, No. 4, pp. 1339-1349, 2000.

[2] D. Boneh, G. Durfee and Y. Frankel, An attack on RSA given a small fraction of the
private key bits, in Proceedings of ASIACRYPT 1998, Lecture Notes in Computer Science,
vol. 1514, pp. 25-34, 1998.

[3] J. Blömer and A. May, New partial exposure attacks on RSA, in Proceedings of CRTPTO
2003, Lecture Notes in Computer Science, vol. 2729, pp. 27-43, 2003.

[4] D. Coppersmith, Finding a small root of a univariate modular equation, in Proceedings of
EUROCRYPT 1996, Lecture Notes in Computer Science, vol. 1070, pp. 155-165, 1996.

[5] D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulner-
abilities, Journal of Cryptology, vol. 10, No. 4, pp. 233-260, 1997.

[6] M. Ernst, E. Jochemsz, A. May, and B. Weger, Partial key exposure attacks on RSA up
to full size exponents, in Proceedings of EUROCRYPT 2005, Lecture Notes in Computer
Science, vol. 3494, pp. 371-386, 2005.

[7] N. Howgrave-Graham, Finding small roots of univariate modular equations revisited, in
Proceedings of Cryptography and Coding, Lecture Notes in Computer Science, vol. 1355,
pp. 131-142, 1997.

[8] E. Jochemz and A. May, A Strategy for Finding Roots of Multivariate Polynomials with
New Applications in Attacking RSA Variants, in Proceedings of ASIACRYPT 2006, LNCS,
vol. 4284, pp. 267-282, 2006.

[9] A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász Factoring polynomials with rational coef-
ficients, Mathematische Annalen, vol. 261, No. 4, pp. 515-534, 1982.

[10] V. Shoup, NTL: A Library for doing Number Theory, available online at
http://www.shoup.net/ntl/index.html

[11] P. Nguyen and D. Stehlé, Floating-Point LLL revisited, in Proceedings of EUROCRYPT
2005, Lecture Notes in Computer Science, vol. 3494, pp. 215-233, 2006.

[12] P. Nguyen and D. Stehlé, Floating-Point LLL (Full version), available online at
ftp://ftp.di.ens.fr/pub/users/pnguyen/FullL2.pdf

[13] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and
public-key cryptsystems, Communications of the ACM, vol. 21, No. 2, pp. 120-128, 1978.

[14] C. P. Schnorr, A more efficient algorithm for lattice basis reduction, Journal of algorithms,
vol. 9, No.1, pp. 47-62, 1988.

15

[15] M. J. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Transactions on Infor-
mation Theory, vol. 36, no. 3, pp. 553-558, 1990.

A Appendix: Analysis

This section provides the precise analysis for some results in Section 4. Our objective is to derive
our theoretical recoverable limit of our construction

1
3

√
2(1 − 2β)(β − δ)(δ − β) − 1

3
β2 +

1
2
β +

1
6
δ − 1

6
< 0 (28)

and
δ <

5
6
− 1

3

√
1 + 6β. (30)

In order to obtain these inequalities, we first prove the approximated estimation

eval(i, j) ≈

 βi − (β − δ + 0.5)j (i, j) ∈ I1

(δ − 1)i + 0.5j (i, j) ∈ I2

(−1 + β)i + 0.5j (i, j) ∈ I3

(31)

in Section A.1. Next in Section A.2 we explain the way to derive our theoretical limit. We
fix algorithm parameters and RSA instances throughout this section, and denote f∗

i,j(x, y) the
functionalisation of b∗

i,j . (We recall that {b∗
i,j}(i,j)∈I is the Gram-Schmidt orthogonal basis of our

basis {bi,j}(i,j)∈I
def= {V(fi,j ; X,Y)}(i,j)∈I .)

A.1 Approximating the Evaluator

We first compute the exact value of |b∗
i,j | for (i, j) ∈ I1 and I2 in Lemma 3 and Lemma 4 respectively.

Next we consider the bound for |b∗
i,j | for (i, j) ∈ I3 in Lemma 5. Then we estimate the approximated

value of eval(i, j) def= logN (|b∗
i,j |/(eM)m) in Proposition 1.

Lemma 3. For any (i, j) ∈ I1, we have

|b∗
i,j | = (eM)m−jX iY j . (32)

Proof. We in fact prove that

b∗
i,j = (0, 0, . . . , (eM)m−jXiY j , 0, . . . , 0) = V((eM)m−jX iY j ; X,Y). (33)

by mathematical induction on (i, j). That is, b∗
i,j is the vectorisation of (eM)m−jXiY j .

We first recall that b∗
i,j is defined by

b∗
i,j = bi,j −

∑
(i′,j′)≺(i,j)

µ(i,j),(i′,j′)b
∗
i′,j′ and µ(i,j),(i′,j′)

def=
〈bi,j ,b∗

i′,j′〉
〈b∗

i′,j′ ,b
∗
i′,j′〉

.

where the order ≺ is defined in Section 4.
Consider the base case, i.e. the case (i, j) = (0, 0), we have

b∗
0,0 = b0,0 = V((eM)m; X,Y).

16

Now we assume that (33) holds for (i′, j′) ≺ (i, j). Then we have for (i, j) ∈ I1 with some constants
α,

fi,j(x, y) = (eM)m−jxi−j((ed0 − 1) + Nx + xy)j = (eM)m−jxiyj +
∑

(i′,j′)≺(i,j)

αi′,j′x
i′yj′ . (34)

We consider the vectorisation of (34), we have

bi,j = V((eM)m−jxiyj ; X,Y) +
∑

(i′,j′)≺(i,j)

αi′,j′b∗
i′,j′ . (35)

Here we use the assumption of induction b∗
i′,j′ = V((eM)m−j′xi′yj′ ; X,Y).

Then we have for (i′′, j′′) ≺ (i, j),

〈
bi,j ,b∗

i′′,j′′
〉

=

〈
V((eM)m−jxiyj ; X,Y) +

∑
(i′,j′)≺(i,j)

αi′,j′b∗
i′,j′ ,b

∗
i′′,j′′

〉
=

〈
αi′′,j′′b∗

i′′,j′′ ,b
∗
i′′,j′′

〉
since

〈
αi′,j′b∗

i′,j′ ,b
∗
i′′,j′′

〉
= 0 for (i′, j′) 6= (i′′, j′′), and

〈
V((eM)m−jxiyj ;X,Y),b∗

i′′,j′′

〉
= 0. This

means

αi′′,j′′ =

〈
bi,j ,b∗

i′′,j′′

〉
〈
b∗

i′′,j′′ ,b
∗
i′′,j′′

〉 = µ(i,j),(i′′,j′′). (36)

Substituting this to (35) we have

V((eM)m−jxiyj ; X,Y) = bi,j −
∑

(i′,j′)≺(i,j)

µ(i,j),(i′,j′)b
∗
i′,j′ = b∗

i,j .

We can prove the next lemma by a similar way to lemma 3.

Lemma 4. For any (i, j) ∈ I2, we have

|b∗
i,j | = (eM)m−iX iY j .

The evaluation of |b∗
i,j | for (i, j) ∈ I3 is a bit involved. Our objective is to show the following

lemma.

Lemma 5. For any (i, j) ∈ I3, we have

em−iMmX iY j ≤ |b∗
i,j | < 2em−iMmXiY j .

Now we start with the following two simple lemmas.

Lemma 6. Let b1, . . . ,bn be linearly independent vectors and b∗
1, . . . ,b

∗
n be orthogonal set gen-

erated by the Gram-Schmidt process. Then for any natural number i and any real numbers
α1, . . . , αi−1, α

∗
1, . . . , α

∗
i−1 we have

|b∗
i | ≤

∣∣∣∣∣∣bi +
i−1∑
j=1

αjbj +
i−1∑
j=1

α∗
jb

∗
j

∣∣∣∣∣∣ .

17

Proof. By definition of the Gram-Schmidt basis, with suitable coefficients βij we have

b∗
i = bi +

i−1∑
j=1

βijb∗
j .

Then with some real numbers γj , we have∣∣∣∣∣∣bi +
i−1∑
j=1

αjbj +
i−1∑
j=1

α∗
jb

∗
j

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣b∗
i −

i−1∑
j=1

βijb∗
j +

i−1∑
j=1

αj

(
b∗

j −
j−1∑
k=1

βjkb∗
k

)
+

i−1∑
j=1

α∗
jb

∗
j

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣b∗
i +

i−1∑
j=1

γjb∗
j

∣∣∣∣∣∣
2

= |b∗
i |

2 +

∣∣∣∣∣∣
i−1∑
j=1

γjb∗
j

∣∣∣∣∣∣
2

≥ |b∗
i |

2.

Lemma 7. For any positive integers i and j such that XY > 2i, we have

||(−1 + xy)iyj−i||XY < 2XiY j .

Proof. This is derived as follows.(
||(−1 + xy)iyj−i||XY

)2

=

(∣∣∣∣∣
∣∣∣∣∣yj−i

i∑
k=0

(
i

k

)
(−1)i−k(xy)k

∣∣∣∣∣
∣∣∣∣∣
XY

)2

= Y 2(j−i)
i∑

k=0

(
i

k

)2

(XY)2k < Y 2(j−i)
i∑

k=0

i∑
k′=0

(
i

k

)(
i

k′

)
Xk+k′

Y k+k′

= Y 2(j−i)(1 + XY)2i < Y 2(j−i)

((
1 +

1
2i

)
XY

)2i

< Y 2(j−i)
(
41/(2i)XY

)2i
= 4X2iY 2j

Now for our analysis we define gi,j(x, y) = em−iyj−i(−1 + Nx + xy)i, that is fi,j(x, y) =
Mmgi,j(x, y) for (i, j) ∈ I3. We first show that gi,j(x, y) is expressed as a linear combination
of (−1 + xy)iys, gi′,j′(x, y) and (−1 + xy)j′xi′−j′ for (i′, j′) ≺ (i, j).

Lemma 8. For any i and s, 1 ≤ s ≤ i, there exist some constants α’s and β’s such that the
following holds:

gi,i+s(x, y) = em−iys(−1 + xy)i +
∑

(i′,j′)∈A(i,i+s)

αi′,j′gi′,j′(x, y)

+
∑

(i′,j′)∈B(i,i+s)

βi′,j′(−1 + xy)j′xi′−j′ (37)

Here, we denote A(i, i + s) = {(i′, j′) ∈ Z2|i− s < i′ ≤ i, i′ < j′ ≤ 2i′ + s− i, (i′, j′) 6= (i, i + s)} and
B(i, i + s) = {(i′, j′) ∈ Z2|i − s ≤ i′ ≤ i, 0 ≤ j′ ≤ i′}.

18

Proof. We prove that for any s ≥ 1, the equation (37) holds for some appropriate α’s and
β’s for all i ≥ 1 by induction on s. For the base case, i.e., s=1, consider any i ≥ 1. We have
A(i, i + 1) = φ,B(i, i + 1) = {(i′, j′) ∈ Z2|i − 1 ≤ i′ ≤ i, 0 ≤ j′ ≤ i′} and

gi,i+1(x, y) = em−i(−1 + xy + Nx)iy

= em−i
i∑

j′=0

(
i

j′

)
(−1 + xy)i−j′(Nx)j′y

= em−i(−1 + xy)iy + em−i
i∑

j′=1

(
i

j′

)
N j′(−1 + xy)i−j′xj′y

= em−i(−1 + xy)iy + em−i
i−1∑
j′=0

(
i

j′ + 1

)
N j′+1(−1 + xy)i−j′−1xj′+1y

= em−i(−1 + xy)iy + em−i
i−1∑
j′=0

(
i

j′ + 1

)
N j′+1(−1 + xy)i−j′−1((−1 + xy) + 1)xj′

= em−i(−1 + xy)iy + em−i
i−1∑
j′=0

1∑
i′=0

(
i

j′ + 1

)
N j′+1(−1 + xy)i−i′−j′xj′ .

Thus, (37) is true for s = 1 and any i ≥ 1 by setting βi−i′,j′ = em−i
(

i
j′+1

)
N j′+1. Note also that the

above implies

(−1 + xy)iy = α′
igi,i+1(x, y) +

i−1∑
j′=0

1∑
i′=0

α′
i,j′,i′(−1 + xy)i−i′−j′xj′ . (38)

for some constants α′. We use this later.
Assume now the lemma holds up to s− 1 and we prove it for s. First note that by the case for

s − 1,

gi,i+s(x, y) = ygi,i+s−1(x, y)

= em−iys(−1 + xy)i +
∑

(i′,j′)∈A(i,i+s−1)

αi′,j′ygi′,j′(x, y)

+
∑

(i′,j′)∈B(i,i+s−1)

βi′,j′(−1 + xy)j′xi′−j′y. (39)

Thus, it suffices to show that the second and the third terms of (39) can be written in the form of
(37). Then we have with some constants α and α′

(The second term of (39)) =
∑

(i′,j′)∈A(i,i+s−1)

αi′,j′gi′,j′+1(x, y)

=
∑

(i′,j′)∈A(i,i+s)

α′
i′,j′gi′,j′(x, y).

This is because (i′, j′ + 1) ∈ A(i, i + s − 1) ⇒ (i′, j′) ∈ A(i, i + s). This means the second term of
(39) can be written in the form of (37). We divide the third term of (39) for terms with i′ = j′ and
with i′ > j′.

19

(The third term of (39))
=

∑
(j′,j′)∈B(i,i+s−1)

βj′,j′(−1 + xy)j′y +
∑

(i′, j′) ∈ B(i, i + s − 1)
i′ > j′

βi′,j′(−1 + xy)j′xi′−j′y (40)

We will show these term also can be written in the form of (37). Substituting (38) to the first term
of (40). We have for some suitable constant γ,

(The first term of (40))=
i∑

j′=i−s+1

βj′,j′(−1 + xy)j′y

=
i∑

j′=i−s+1

βj′,j′

α′
j′gj′,j′+1(x, y) +

j′−1∑
j′′=0

1∑
i′′=0

α′
j′,j′′,i′′(−1 + xy)j′−i′′−j′′xj′′


=

i∑
j′=i−s+1

γj′gj′,j′+1(x, y) +
i∑

j′=i−s+1

j′−1∑
j′′=0

1∑
i′′=0

βj′,j′α
′
j′,j′′,i′′(−1 + xy)j′−i′′−j′′xj′′

=
i∑

j′=i−s+1

γj′gj′,j′+1(x, y) +
i∑

j′=i−s

j′−1∑
j′′=0

γj′,j′′(−1 + xy)j′−j′′xj′′ .

Then, this is in the form of (39) from

(j′, j′ + 1) ∈ A(i, i + s) for i − s + 1 ≤ j′ ≤ i and
(j′, j′ − j′′) ∈ B(i, i + s) for i − s ≤ j′ ≤ i, 0 ≤ j′′ ≤ j′ − 1.

Finally, we show the second term of (40) is also in the form of (39). We have

(The second term of (40)) =
∑

(i′, j′) ∈ B(i, i + s − 1)
i′ > j′

βi′,j′(−1 + xy)j′ · xy · xi′−j′−1

=
∑

(i′, j′) ∈ B(i, i + s − 1)
i′ > j′

(
βi′,j′(−1 + xy)j′+1xi′−j′−1 + βi′,j′(−1 + xy)j′xi′−j′−1

)

Thus, the last term is in the form of (39). This is because (i′, j′) ∈ B(i, i+s−1) and i′ < j′ implies
i−s+1 ≤ i′ ≤ i and 0 ≤ j′ ≤ i′ +1. This means (i′, j′ +1) ∈ B(i, i+s) and (i′−1, j′) ∈ B(i, i+s).

Corollary 1. For (i, i + s) ∈ I3, we have

fi,i+s(x, y) = em−iMm(−1 + xy)iys +
∑

(i′, j′) ≺ (i, i + s)
(i′, j′) ∈ I3

αi′,j′fi′,j′(x, y) +
∑

(i′, j′) ≺ (i, i + s)
(i′, j′) ∈ I1 ∪ I2

βi′,j′f
∗
i′,j′(x, y).

(41)
Here, we recall f∗

i′,j′(x, y) = xi′yj′ , which is equal to the functionalisation of b∗
i′,j′ .

Proof. First, we separate the second term of (37) as follows∑
(i′,j′)∈A(i,i+s)

αi′,j′gi′,j′(x, y) =
∑

(i′,j′)∈A(i,i+s)∩I2

αi′,j′gi′,j′(x, y) +
∑

(i′,j′)∈A(i,i+s)∩I3

αi′,j′gi′,j′(x, y).

20

Recall that all items in A(i, i+ s) are smaller than (i, i+ s) in the order ≺. Thus, we have with
some constants for (i′, j′) ∈ A(i, i + s) ∩ I2

gi′,j′(x, y) = em−i′yj′−i′(−1 + Nx + xy)i′

=
∑

0 ≤ i′′ ≤ i′

j′ − i′ ≤ j′′ ≤ j′

γi′′,j′′x
i′′yj′′ =

∑
(i′′, j′′) ∈ I1 ∪ I2
(i′′, j′′) ¹ (i′, j′)

γi′′,j′′x
i′′yj′′ =

∑
(i′′, j′′) ∈ I1 ∪ I2

(i′′, j′′) ≺ (i, i + s)

γi′′,j′′x
i′′yj′′ .

By a similar argument, the third term of (37) is∑
(i′,j′)∈B(i,i+s)

βi′,j′(−1 + xy)j′xi′−j′ =
∑

0 ≤ i′ ≤ i
0 ≤ j′ ≤ i′

βi′,j′(−1 + xy)j′xi′−j′ =
∑

0 ≤ i′ ≤ i
0 ≤ j′ ≤ i′

β′
i′,j′x

i′yj′

Note that all of suffices in β′ are in I1. Therefore, we have with some constants a and b

gi,i+s(x, y) = em−i(−1 + xy)iys +
∑

(i′, j′) ≺ (i, i + s)
(i′, j′) ∈ I3

ai′,j′gi′,j′(x, y) +
∑

(i′, j′) ≺ (i, i + s)
(i′, j′) ∈ I1 ∪ I2

bi′,j′f
∗
i′,j′(x, y),

and we get our claim by multiplying Mm.

Now we are ready to prove to Lemma 5.
Proof of Lemma 5. Vectorisation of (41) is

bi,i+s = V(em−iMm(−1 + xy)iys;X,Y) +
∑

(i′, j′) ≺ (i, i + s)
(i′, j′) ∈ I3

αi′,j′bi′,j′ +
∑

(i′,j′)∈I1∪I2

βi′,j′b∗
i′,j′(x, y).

Thus from Lemma 6 and Lemma 7, we have

|b∗
i,i+s| ≤ |V(em−iMm(−1 + xy)iys; X,Y)| = ||em−iMm(−1 + xy)iys||XY < 2em−iMmXiY i+s.

Then substituting j = i + s, we showed the upper bound of our claim.
Next, we show the lower bound. As the above argument, we fix (i, j) ∈ I3. Let b(i,j),(i′,j′) the

(i′, j′) − th element of bi,j . Then it is clear that b(i,j),(i′,j′) = 0 for (i, j) ≺ (i′, j′) and b(i,j),(i,j) =
em−iMmXiY j . We look at b∗(i,j),(i,j), the (i, j)-th element of b∗

i,j . By definition of the Gram-Schmidt
basis, we have

b∗(i,j),(i,j) = b(i,j),(i,j) −
∑

(i′,j′)≺(i,j)

µ(i,j),(i′,j′)b
∗
(i′,j′),(i,j) = b(i,j),(i,j) = em−iMmX iY j , and

b∗(i,j),(i′,j′) = 0 for (i, j) ≺ (i′, j′).

Thus we have
b∗

i,j = (∗, ∗, . . . , ∗, em−iMmX iY j , 0, . . . , 0).

Therefore,
|b∗

i,j | ≥ |(0, . . . , 0, em−iMmX iY j , 0, . . . , 0)| = em−iMmXiY j .

Now we obtain the approximated bounds for evaluators for each (i, j).

21

Proposition 1.

eval(i, j) ≈

 βi − (β − δ + 0.5)j (i, j) ∈ I1

(δ − 1)i + 0.5j (i, j) ∈ I2

(−1 + β)i + 0.5j (i, j) ∈ I3

Proof. As we explained at the overview, we assumed that

X ≈ Nβ , Y ≈ N0.5, and e ≈ N,

from which by using (6) we derive

M =
d − d0

d̃
≈ Nβ

N δ
= Nβ−δ.

Substituting these for each bound of b∗
i,j , we have

eval(i, j) def= logN

(|b∗
i,j |

(eM)m

)
= logN (eM)−jXiY j ≈ βi − (β − δ + 0.5)j for (i, j) ∈ I1,

eval(i, j) def= logN

(|b∗
i,j |

(eM)m

)
= logN (eM)−iXiY j ≈ (δ − 1)i + 0.5j for (i, j) ∈ I2, and

eval(i, j) def= logN

(|b∗
i,j |

(eM)m

)
≈ logN e−jXiY j ≈ (−1 + β)i + 0.5j for (i, j) ∈ I3.

A.2 Some Calculations on eval(I)

This section shows how to get our conditions (28) and (30) in detail.
First we state the expressions for eval(I1), eval(I2), and eval(I3) derived from (23) and Propo-

sition 1.

eval(I1) =
m∑

i=0

i∑
j=0

eval(i, j) =
m∑

i=0

i∑
j=0

(iβ − (β − δ + 0.5)j) , (42)

eval(I2) =
m∑

i=0

i+bτmc∑
j=i+1

eval(i, j) =
m∑

i=0

i+bτmc∑
j=i+1

((δ − 1)i + 0.5j) , (43)

eval(I3) =
m∑

i=bBmc

b2(1−β)ic∑
j=i+dτme

eval(i, j) =
m∑

i=bBmc

b2(1−β)ic∑
j=i+dτme

((−1 + β) + 0.5j) . (44)

Here we use B to denote τ
1−2β . Figure 6 shows an area of I1, I2 and I3. By definition, these

are sets of integral points in each Ik. The cross point of the line j = 2(1 − β) and j = i + τm, i.e.,
(τ
1−2β m, 2(1−β)τ

1−2β m), exists below the vertex point (m, 2(1 − β)m) when 1 − 2β − τ > 0. Thus, we
separate our discussion into the case of 1 − 2β − τ > 0 and that of 1 − 2β − τ ≤ 0.

First we consider the case of 1 − 2β − τ > 0. This case corresponds I3 6= φ and the following

22

i

j

O m

C

I1I1

I2

I3

j = i

j = i + τm

j = 2(1 − β)ij = 2(1 − β)i

Figure 6: I1, I2 and I3

holds.

eval(I1) =
m∑

i=0

i∑
j=0

eval(i, j) =
1
6
(β + δ − 0.5)m3 + o(m3),

eval(I2) =
m∑

i=0

i+bτmc∑
j=i+1

eval(i, j) =
τ

4
(2δ + τ − 1)m3 + o(m3),

eval(I3) =
m∑

i=bBmc

b2(1−β)ic∑
j=i+dτme

eval(i, j) = − 1
12

(1 − 2β − τ)3

1 − 2β
m3 + o(m3).

From these we derive the following (25) for eval(I) def= eval(I1) + eval(I2) + eval(I3).

eval(I) =
(

1
6
(β + δ − 0.5) +

τ

4
(2δ + τ − 1) − 1

12
(1 − 2β − τ)3

1 − 2β

)
m3 + o(m3) (25)

Now we focus on its major term assuming that m is sufficiently large (as, e.g., [1, 6]). Then we
may consider that the condition eval(I) < 0 is equivalent to

f(τ) def=
1
6
(β + δ − 0.5) +

τ

4
(2δ + τ − 1) − 1

12
(1 − 2β − τ)3

1 − 2β
< 0.

Here f(τ) is minimised when τ is τ0 =
√

2(1 − 2β)(β − δ) within the range of 0 ≤ τ < 1 − 2β.

23

Substituting this we have

f(τ0) =
1
3

√
2(1 − 2β)(β − δ)(δ − β) − 1

3
β2 +

1
2
β +

1
6
δ − 1

6
.

Then the condition 0 ≤ τ0 < 1 − 2β is equivalent to 1 − 4β + 2δ > 0 and β ≥ δ ≥ 0. Hence we can
construct the lattice from indecies having eval(I) < 0 when f(τ0) < 0 and m is sufficiently large.
Rearranging these conditions we have (3).

We next consider the case of 1 − 2β − τ ≤ 0. This is a case of I3 = φ, thus

eval(I) = eval(I1) + eval(I2) =
(

1
6
(β + δ − 0.5) +

τ

4
(2δ + τ − 1)

)
m3 + o(m3).

By similar argument, the condition eval(I) < 0 is approximately equivalent to the following condi-
tion when m is sufficiently large.

1
6
(β + δ − 0.5) +

τ

4
(2δ + τ − 1) < 0.

Note that this left-hand side is minimized when τ = 1−2δ
2 . Hence by substituting this, we have

δ <
5
6
− 1

3

√
1 + 6β.

This is equivalent to the range given by [6].

24

