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Abstract

In this paper, we examine the computational limitation of low degree polynomials over
finite fields. We prove that no o(log n)-degree polynomial of n variables over Zq can compute
the modulo function MODm over Zn

q , where q is a prime and m is coprime to q. Our main
technical contribution is to estimate a correlation between low degree polynomials and
modulo functions over prime field Zq by computing the Gowers uniformity of exponential
functions, which generalizes Viola and Wigderson’s estimation over Z2.

1 Introduction

1.1 Background

A low degree polynomial is one of the most fundamental objects in the field of the theoretical
computer science. It often plays important roles in a number of the areas such as error-
correcting codes, circuit complexity, probabilistic checkable proofs, etc. In particular, the com-
putational power of the low degree polynomial has attracted much attention in the complexity
theory since the seminal works by Razborov [Raz87] and Smolensky [Smo87], which proved an
exponential lower bound for AC0 and AC0[p] for any prime p. The remarkable point of their
works is to approximate constant-depth circuits in AC0 and AC0[p] with low degree polynomials
over the binary field. We can say that low degree polynomials over the binary field are close
to constant-depth circuits as a computational model in some sense.

Their technique is called the polynomial method. Let C be a class of functions, e.g., AC0.
It gives a lower bound for the class C following two steps: (1) We show that any function in C
has high correlation with some low degree polynomial and then (2) show some specific function,
e.g., the parity function, has low correlation with every low degree polynomial. By these two
steps, we can conclude that no function in C computes the specific function.

The polynomial method is based on two notions we call the correlation and Zq polynomials
in this paper. For the standard polynomial method, the binary field is only considered in the
notions. However, we here define generalized ones over Zq for our purpose. The correlation
intuitively measures the distance between two functions.

Definition 1.1 (correlation). Let f, g : Zn
q → {1,−1}. The correlation between f and g is

defined as:

Corr(f, g) =

∣∣∣∣∣ E
x∈Zn

q

[f(x)g(x)]

∣∣∣∣∣ =
∣∣∣∣ Pr
x∈Zn

q

[f(x) = g(x)] − Pr
x∈Zn

q

[f(x) ̸= g(x)]
∣∣∣∣ .
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Also, the correlation between a function f and a class C of functions is defined as:

Corr(f, C) = max
g∈C

Corr(f, g).

We introduce a sort of polynomials called Zq polynomials to adjust their output to {1,−1}.

Definition 1.2 (Zq polynomials). Let g : Zn
p → Z be an integer-valued polynomial of n

variables. We then define a Zq polynomial f : Zn
p → {1,−1} of input Zn

p as

f(x1, x2, . . . , xn) =

{
1 if q | g(x1, x2, . . . , xn)
−1 if q ̸ | g(x1, x2, . . . , xn).

The degree of f is defined as that of g. We denote by P
(q)
d [p] a set of degree-d Zq polynomials

of input Zn
p . We simply write it as P

(q)
d if p = q.

For example in [Smo87], he proved for a prime q and an integer m coprime to q that (1) we
have Corr(f, P

(q)
polylogn[2]) ≥ 1−1/nω(1) for every f ∈ AC0[q] and (2) Corr(MODm, P

(q)
polylogn[2]) ≤

1/(n1/2−o(1)) for the modulo function MODm over Z2. This implies that no function in AC0 can
compute MODm. A modulo function MODm : Zn

p → {1,−1} is generally defined as follows.
(Again, we give a general definition over Zp for our purpose, although the case where p = 2
was only considered in [Smo87].)

MODm(x1, x2, . . . , xn) =

{
1 if m |

∑n
j=1 xj

−1 if m ̸ |
∑n

j=1 xj .

After the lower bounds were proven for AC0, researchers started to investigate a new tech-
nique to prove lower bounds for higher circuit classes such as ACC. For this new goal, they
utilized the low degree polynomials and their correlation again.

For the investigation, they often discussed depth-3 circuits of the special form MAJ◦MODq◦
ANDd. This circuit consists of three levels. The bottom level has only ANDd, AND gate with
at most d fan-in, the middle level has only MODq, and the top level is the majority gate MAJ.
Interestingly, it is shown by Allender [All89] that every function in AC0 can be computed by
quasipolynomial-size circuits of this form with d = polylogn.

To compare the computational power of AC0 with that of ACC, Alon and Beigel dis-
cussed the hardness of the modulo function MODm, which is in ACC, against the depth-3
circuits [AB01]. They demonstrated that MAJ ◦ MODq ◦ ANDd of polynomial size cannot
compute MODm if d = O(1) and q is coprime to m. In what follows, we assume that q
is always coprime to m. Their proof reduced proving the circuit lower bound to estimat-
ing upper bounds of the correlation between its depth-2 subcircuits MODq ◦ ANDd and the
target function MODm by using the well-known discriminator lemma [HMP+93]. The low
degree polynomials then model the subcircuits, and thus the essential part of their proof
was reduced to proof of Corr(MODm, P

(q)
d [2]) = o(1). More precise bounds on the correla-

tion were given by the results Bourgain [Bou05] and Green, Roy, and Straubing [GRS05],
which proved exponentially small upper bounds. Viola and Wigderson also gave a simple
proof for the bound of Corr(MODm, P

(2)
d ) using properties of the Gowers uniformity [VW08].

The best known bound for general case is due to Chattopadhyay [Cha06]. He proved that
Corr(MODm, P

(q)
d [2]) ≤ exp

(
−Ω(n/(q2q−1)d)

)
.

As mentioned above, a low degree polynomial was implicitly utilized as a computational
model in the circuit complexity theory. Several recent works more explicitly analyzed the
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hardness against the low degree polynomial as a computational model not only over the binary
field but also general ones. For example, Viola and Wigderson gave the so-called XOR lemma,
which generally provides how to amplify the hardness, for polynomials over the binary field
[VW08]. Bogdanov constructed a pseudorandom generator that fools low degree polynomials
over the field whose size is not so small [Bog05]. His result was improved by a number of
intensive studies [BV07, Lov08, Vio08]. Recently, Kaufman and Lovett demonstrated that the
average-case approximability of a polynomial over general finite fields by low degree polynomials
can be reduced to the worst-case computability of a polynomial by low degree polynomials
[KL08].

1.2 Our Results

As shown in the recent works, a low degree polynomial is actively studied as a computational
model beyond the binary field. However, it was not clarified sufficiently how low degree poly-
nomials themselves are powerful over general finite field.

In this paper, we discuss the computational limitation of the low degree polynomials over
prime fields by following the line of studies initiated by Alon and Beigel [AB01]. Our main
result is stated as follows:

Theorem 1.3. Let q be any odd prime and let m be any integer coprime to q. Then, we have

Corr(MODm, P
(q)
d ) ≤ exp(−Ω(n/qd)).

Now we consider a function MOD(q)
m , that is a simple generalization of MODm.

Definition 1.4. MOD(q)
m is a function Zn

q → Zm such that

MOD(q)
m (x1, . . . , xn) :=

n∑
j=1

xj mod m.

By a simple calculation, we directly obtain the following corollary related to MOD(q)
m .

Corollary 1.5. Let q be an odd prime and m < q be coprime to q. Then there is no
o(log n/ log q)-degree polynomial Zn

q → Zq can compute MOD(q)
m

Proof. Assume that there is an o(log n/ log q)-degree polynomial p : Zn
q → Zq that can compute

MOD(q)
m . We construct an o(log n/ log q)-degree Zq polynomial p′ from p such that p′(x) = 1 if

p(x) = 0, and p′(x) = −1 if p(x) ̸= 0. Then, p′ can compute MODm, which contradicts that
no o(log n/ log q)-degree Zq polynomial can compute MODm from Theorem 1.3.

Therefore, polynomials over Zq require at least Ω(log n) degree to compute MOD(q)
m over

Zn
q for a constant q.

Our approach is a generalization of Viola and Wigderson’s work, which exploits properties
of the Gowers uniformity [VW08]. The Gowers uniformity was originally introduced by Gowers
[Gow98, Gow01] and independently by Alon, Kaufman, Krivelevich, Litsyn and Ron [AKK+03].

Many applications of the Gowers uniformity have already found in the theoretical computer
science such as linearity testing in PCP [Sam07, ST06] and pseudorandom generators for low
degree polynomials [Bog05, BV07]. We apply it to estimation of the correlation over a prime
field by generalizing Viola and Wigderson’s estimation over Z2.
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The main technical issue of our result is to estimate the Gowers uniformity of an exponential
function over a prime field. Viola and Wigderson also gave a similar estimation for the Gowers
uniformity over Z2. The estimation for the case of Z2 was simply done by the property of Z2.
Generalizing the underlying field, the estimation becomes complicated, as seen in Section 3. We
then require several new calculation methods for a prime field, which may be of independent
interest.

2 Gowers Uniformity

We present the definition of the Gowers uniformity and its properties. For the definition, we
first introduce several notions. The conjugate of a complex number a + ib, where i is the
imaginary unit, is denoted by a + ib. For a complex number z and an integer j, we denote by
zj the complex number z if j is an even, and its conjugate z̄ if j is an odd. A set {1, 2, . . . , n}
is denoted by [n]. The definition of the Gowers uniformity is given as follows.

Definition 2.1 (Gowers uniformity over Zq [Gow98, Gow01]). Let d ≥ 0, f : Zn
q → C, ⊕ be

the addition over Zq. Then the degree-d Gowers uniformity of f over Zq is defined as

Ud
q (f) := E

x,y1,...,yd∈Zn
q

 ∏
S⊆[d]

f

x ⊕
⊕
j∈S

yj

|S|
 .

There are useful properties of the Gowers uniformity.

Proposition 2.2 ([GT08, VW08]). For every function f : Zn
q → C,

1.

∣∣∣∣∣ E
x∈Zn

q

[f(x)]

∣∣∣∣∣ =
√

U1
q (f),

2. for every k, Uk
q (f) ≤

√
Uk+1

q (f),

3. for every Zq polynomial p of degree at most d, Ud+1
q (f · p) = Ud+1

q (f),

4. for every function f ′ : Zn′
q → C, Uk

q (f · f ′) = Uk
q (f) · Uk

q (f ′), where (f · f ′)(x, y) =
f(x)f ′(y).

3 Overview

Our goal is to estimate of the correlation between the modulo function and Zq polynomials,
that is Corr(MODm, P

(q)
d ).

Theorem 3.1. For any prime q ≥ 3, any integer m coprime to q,

Corr(MODm, P
(q)
d ) ≤ exp

(
−α · n

qd

)
,

where α > 0 is a constant that depends on m only.
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Since our proof of the above theorem is technically complicated and involved, we exhibit
the overview of our proof to obtain intuitions in this section.

We first show the correlation Corr(MODm, P
(q)
d ) is bounded by the Gowers uniformity of

the exponential function ea
m(x) = exp(2πiax/m) above by using the properties of the Gowers

uniformity. This method is a straightforward extension of the proof of Viola and Wigder-
son [VW08], which is proven by Proposition 2.2.

Lemma 3.2 ([VW08]). For any a ∈ [m − 1],

Corr(MODm, P
(q)
d ) ≤ (m − 1)

(
Ud+1

q (ea
m)

)n/2d+1

.

Hence, our task is reduced to the estimation of the Gowers uniformity Ud+1
q (ea

m). Our next
target is to prove the following lemma, which is the main technical lemma of our result.

Lemma 3.3. Let q ≥ 3 be a prime, m be coprime to q, and a ∈ [m − 1]. Then for any even
k ≥ 2,

Uk
q (ea

m) ≤ 1 − α ·
(

2
q

)k

,

where α > 0 is a constant that depends on m only.

This lemma claims that the Gowers uniformity is sufficiently smaller than 1. By this lemma,
the upper bound (Ud+1

q (ea
m))n/2d+1

of the correlation becomes exponentially small. Note that
it is sufficient for our purpose to only estimate the case where k is an even, which makes our
analysis simpler. For an odd k, we can use the degree-(k +1) Gowers uniformity instead of the

degree-k Gowers uniformity since Uk
q (ea

m) ≤
√

Uk+1
q (ea

m) ≤ Uk+1
q (ea

m) by Proposition 2.2.
Now we move to the proof of Lemma 3.3. By some inductive argument, the Gowers unifor-

mity of ea
m can be bounded as follows.

Uk
q (ea

m) ≤ 1 −
(

2
q

)k
{

1 −
1 + 2

∑r
j=1 cos (2πagj(k)/m)

q

}
,

where r = (q − 1)/2 and g1(k), g2(k), . . . , and gr(k) are recursive sequences defined as

g1(k) =

{
2g1(k − 2) + g2(k − 2) if k ≥ 4;
0 if k = 2,

for 1 < j < r,

gj(k) =

{
gj−1(k − 2) + 2gj(k − 2) + gj+1(k − 2) if k ≥ 4;
0 if k = 2,

and

gr(k) =

{
gr−1(k − 2) + 3gr(k − 2) if k ≥ 4;
q if k = 2.

If all the g1(k), . . . , gr(k) are divided by m, we only obtain a trivial upper bound 1 of
Uk

q (ea
m). Hence we have to show that there is a j ∈ [r] such that gj(k) is not divided by m.

Once the assumption can be proven, we achieve our goal, as stated in the following lemma.
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Lemma 3.4. Let q ≥ 3 be a prime, m be an integer coprime to q, r = (q − 1)/2, and
g1(k), . . . , gr(k) be sequences defined above. If there is a j ∈ [r] such that gj(k) is not divided
by m for any even k ≥ 2,

Uk
q (ea

m) ≤ 1 − α

(
2
q

)k

,

where α > 0 is a constant that depends on m only.

Now we have to show the assumption that for every even k some gj(k) is not divided by m.
These sequences look simple but it is not trivial to obtain the closed forms. Instead of directly
calculating closed forms of g1(k), . . . , gr(k), we estimate the greatest common divisor (GCD for
short) of g1(k), . . . , gr(k). We can show the GCD of g1(k), . . . , gr(k) is a power of q if q ≥ 3 is
a prime. More precisely, the following lemma holds:

Lemma 3.5. Let q ≥ 3 be a prime and g1(k), g2(k) . . . , gr(k) be sequences defined above. Then,
for any even k ≥ 2,

gcd(g1(k), g2(k), . . . , gr(k)) = q⌊(k−2)/(q−1)⌋+1.

Since m is coprime to q, if the GCD has only a power of q as its factors, for every even k,
there is a j such that gj(k) is not divided by m.

Now, we show how to estimate the GCD stated in the above lemma. For proving the
relations, we show that gcd(g1(k), . . . , gr(k)) is multiplied by q for every increase of q − 1 in k,
namely

gcd(g1(k), . . . , gr(k)) =

{
q · gcd(g1(k − (q − 1)), . . . , gr(k − (q − 1))) if k ≥ q + 1;
q if 2 ≤ k ≤ q.

(1)

It is easy to show the relation in the case where 2 ≤ k ≤ q. To show the relation in the case
where k ≥ q + 1, we take the following two steps.

Step 1: gcd(g1(k), . . . , gr(k)) is multiplied by at least a multiple of q every increase of q− 1 in
k. That is,

gcd(g1(k), . . . , gr(k)) = C gcd(g1(k − (q − 1)), . . . , gr(k − (q − 1))),

where C is a multiple of q.

Step 2: gcd(g1(k), . . . , gr(k)) is multiplied by only q every increase of q − 1 in k. That is,

gcd(g1(k)/q, . . . , gr(k)/q) = gcd(g1(k − (q − 1)), . . . , gr(k − (q − 1))).

Now we introduce an r×r matrix Ar for analyzing the GCD of these sequences. The matrix
Ar is defined as 

g1(k)
g2(k)

...
gr(k)

 = Ar


g1(k − 2)
g2(k − 2)

...
gr(k − 2)

 .
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Thus, we have

Ar =



2 1 0
1 2 1

. . . . . . . . .
. . . . . . . . .

1 2 1

0 1 3


by the definition of the sequences. By powering the matrix, we obtain

g1(k)
g2(k)

...
gr(k)

 = (Ar)(q−1)/2


g1(k − (q − 1))
g2(k − (q − 1))

...
gr(k − (q − 1))


and (q − 1)/2 = r. In fact, we can obtain Equation (1) by transforming (Ar)r using basic row
operations corresponding to the operations for the GCD. In the specific case of small q like
q = 5, this transformation can be done by an adhoc manner. However, such a manner does
not work for general q and thus we require a systematic manner to obtain Equation (1), which
is the above mentioned two step analysis.

Now let us see the analysis of each step. Step 1 is proven by the following lemma.

Lemma 3.6. If q is a prime, for any k ≥ q + 1

gcd(g1(k), . . . , gr(k)) = C gcd(g1(k − (q − 1)), . . . , gr(k − (q − 1))),

where C is a multiple of q and r = (q − 1)/2.

This lemma can be proven by calculating an explicit form of each entry of (Ar)r and showing
that it is a multiple of 2r + 1 = q. Precisely, we show

(Ar)r(i, j) =


(

2r

r − (i − j)

)
−

(
2r

r − (i + j)

)
if i + j ≤ r,(

2r

r − (i − j)

)
+

(
2r

i + j − (r + 1)

)
if i + j ≥ r + 1,

and any (Ar)r(i, j) is a multiple of 2r + 1.
Step 2 is more involved. It is proven by the following two lemmas.

Lemma 3.7. If q(Ar)−r is an integer matrix, for any k ≥ q + 1

gcd
(

g1(k)
q

,
g2(k)

q
, . . . ,

gr(k)
q

)
= gcd(g1(k − (q − 1)), g2(k − (q − 1)), . . . , gr(k − (q − 1))).

Lemma 3.8. If q ≥ 3 is a prime, each entry of q(Ar)−r is an integer.

Lemma 3.8 is technically hardest in our whole argument, and we will explain our approach
for proving it later. Here we first explain why we consider the inverse matrix q(Ar)−r for our
analysis.
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To demonstrate the idea, we discuss one concrete example where q = 5 (and then r = 2).
For a while let q = 5 and fixed. By the definition,

(A2)2 =
[
5 5
5 10

]
.

This means [
g1(k)
g2(k)

]
= 5

[
1 1
1 2

] [
g1(k − 4)
g2(k − 4)

]
. (2)

Hence, the GCD of g1(k) and g2(k) is the GCD of g1(k − 4) and g2(k − 4) times at least a
multiple of 5. This is the analysis of Step 1, and this is indeed an example that Lemma 3.6
holds.

We next consider the analysis of Step 2. Here we want to prove the relation that gcd(g1(k)/5, g2(k)/5) =
gcd(g1(k − 4), g2(k − 4)). First from (2), we have[

g1(k)/5
g2(k)/5

]
=

[
1 1
1 2

] [
g1(k − 4)
g2(k − 4)

]
=

[
g1(k − 4) + g2(k − 4)
g1(k − 4) + 2g2(k − 4)

]
.

Hence, we have

gcd(g1(k)/5, g2(k)/5) = gcd(g1(k − 4) + g2(k − 4), g1(k − 4) + 2g2(k − 4)). (3)

For our goal, it suffices to show that the righthand side of this equation is equal to gcd(g1(k−
4), g2(k− 4)). For computing the righthand side, we make use of the following basic properties
of GCD. For any integers a, b,m, the following equations hold:

gcd(a, b) = gcd(a, b,ma) and gcd(a, b) = gcd(a, b + ma). (4)

Intuitively, what we need is to express g1(k−4) and g2(k−4) by using g1(k−4)+ g2(k−4)
and g1(k−4)+2g2(k−4). To derive this transformation, we consider the inverse of the matrix[
1 1
1 2

]
in (2), that is,

(
1
5(A2)2

)−1 (= 5(A2)−2). Let aij be the (i, j)-entry of
(

1
5(A2)2

)−1. Then

by the definition we have [
a11 a12

a21 a22

] [
1 1
1 2

]
=

[
1 0
0 1

]
.

Hence, we have

g1(k − 4) = a11(g1(k − 4) + g2(k − 4)) + a12(g1(k − 4) + 2g2(k − 4)),
g2(k − 4) = a21(g1(k − 4) + g2(k − 4)) + a22(g1(k − 4) + 2g2(k − 4)).

Hence, if all entries of
(

1
5(A2)2

)−1 are integers, then by Equation (4), we have

gcd(g1(k − 4) + g2(k − 4), g1(k − 4) + 2g2(k − 4))
= gcd(g1(k − 4) + g2(k − 4), g1(k − 4) + 2g2(k − 4),

a11(g1(k − 4) + g2(k − 4)) + a12(g1(k − 4) + 2g2(k − 4)))
= gcd(g1(k − 4) + g2(k − 4), g1(k − 4) + 2g2(k − 4), g1(k − 4))
= gcd(g1(k − 4) + g2(k − 4), g1(k − 4) + 2g2(k − 4), g1(k − 4),

a21(g1(k − 4) + g2(k − 4)) + a22(g1(k − 4) + 2g2(k − 4)))
= gcd(g1(k − 4) + g2(k − 4), g1(k − 4) + 2g2(k − 4), g1(k − 4), g2(k − 4))
= gcd(g1(k − 4), g2(k − 4)).
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This is the motivation of introducing the inverse matrix. Coming back to the general case,
as Lemma 3.7 states, if all entries of q(Ar)−r (= (q−1(Ar)r)−1) are integers, then we can show
the goal of Step 2 analysis.

Now the rest is to show all entries of q(Ar)−r are indeed integers, that is, Lemma 3.8. This
is the technically hardest part in our argument. Instead of directly proving that q(Ar)−r is an
integer matrix, we prove that each entry of (q(Ar)−1)r is a multiple of qr−1. Note that if each
entry of (q(Ar)−1)r is a multiple of qr−1 then q(Ar)−r is an integer matrix.

Note first that

(q(Ar)−1)(i, j) =

{
(−1)i+j+1 (2ij − qi) if i < j,
(−1)i+j (qj − 2ij) if i ≥ j.

Let aij = q(Ar)−1(i, j). Then,

(q(Ar)−1)r(i, j) =
r∑

tr−1=1

r∑
tr−2=1

· · ·
r∑

t1=1

ait1at1t2 . . . atr−2tr−1atr−1j ,

where

auv =

{
(−1)u+v+1(2uv − qu) if u < v,
(−1)u+v(qv − 2uv) if u ≥ v.

Let

ξuv := (−1)u+v+12uv, ηuv :=

{
(−1)u+vqu if u < v

(−1)u+vqv if u ≥ v.

Expanding ait1 . . . atr−1j , we obtain a sum of products of ξuv and ηuv.
For example, if r = 2, the (i, j)-entry is written as

2∑
t1=1

ait1at1j = ai1a1j + ai2a2j

= (ξi1 + ηi1)(ξ1j + η1j) + (ξi2 + ηi2)(ξ2j + η2j)
= ξi1ξ1j + ξi1η1j + · · · + ηi2η2j .

Let buv ∈ {q min(u, v), 2uv}. The product bit1 · · · btr−1j then represents an absolute value
of the term that consists of ξuv and ηuv obtained by expanding ait1 . . . atr−1j . In the above
example, bi1b1j corresponds to one of |ξi1ξ1j |, |ξi1η1j |, |ηi1ξ1j |, |ηi1η1j |.

Therefore, (q(Ar)−1)(i, j) can be written as a linear combination of

γ :=
r∑

tr−1=1

· · ·
r∑

t1=1

bit1 . . . btr−1j .

Now we show that the above summation is a multiple of qr−1. If the number of buv =
q min(u, v) in {bit1 , . . . , btr−1j} is at least r− 1, the degree on q of bit1 . . . btr−1j is at least r− 1.
In this case, γ is a multiple of qr−1. Hence we have to show that γ is a multiple of qr−1 in the
case where the number of buv = q min(u, v) in {bit1 , . . . , btr−1j} is at most r − 2. Then let k be
the number of buv = 2uv. Note that k ≥ 2 and the number of buv = q min(u, v) is r − k.

Now we use properties of a power sum stated in the following claim.
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Claim 3.9. If k is an even such that k < 2r and 2r + 1 is a prime,
∑r

t=1 tk is a multiple of
2r + 1.∑r

tw=1 t2l
w is a multiple of 2r + 1 = q from Claim 3.9, where l < r. If γ is a multiple of∑r

tw=1 t2l
w , where w ∈ [r − 1] and l < r, the degree on q of γ is at least the degree on q of

bit1 . . . btr−1j plus 1.
Actually, we can show that γ is a multiple of

r∑
tw1=1

t2l1
w1

r∑
tw2=1

t2l2
w2

· · ·
r∑

twk−1=1

t
2lk−1
wk−1 , (5)

where {tw1 , tw2 , . . . , twk−1
} is a subset of {t1, . . . , tr−1} and l1, . . . , lk−1 < r. From Claim 3.9,

Term (5) is a multiple of qk−1. Now the degree on q of bit1 . . . btr−1j is r − k. Hence the degree
on q of γ is at least k − 1 + r − k = r − 1. Therefore, γ is a multiple of qr−1, which concludes
Lemma 3.8.

By Lemmas 3.6, 3.7 and 3.8, we can prove our main technical lemma, Lemma 3.5. The
details of the estimation are exhibited in Section 4.

4 Estimation of Gowers Uniformity

Let ea
m(x) be a function on the m-th root of unity, that is ea

m(x) = exp(2πiax/m). We estimate
the degree-k Gowers uniformity over Zq of ea

m, where q ≥ 3 is a prime and m is coprime to q.
We have shown the overview of the estimation in Section 3. In this section, we estimate the
Gowers uniformity Ud

q (ea
m) in detail.

The following is our main lemma.

Lemma 4.1. Let q ≥ 3 be a prime, m be coprime to q, and a ∈ [m − 1]. Then for any even
k ≥ 2,

Uk
q (ea

m) ≤ 1 − α ·
(

2
q

)k

,

where α > 0 is a constant that depends on m only.

If Lemma 4.1 holds, the following theorem is derived from Lemma 3.2

Theorem 4.2. For any prime q ≥ 3, any integer m coprime to q,

Corr(MODm, P
(q)
d ) ≤ exp

(
−α · n

qd

)
,

where α > 0 is a constant that depends on m only.

4.1 Sequences gj(k) and Their GCD

First, we introduce sequences g1(k), g2(k), . . . , gr(k). They play an important role for proving
the main lemma. These recursive sequences are very simple. However it is not trivial how to
obtain closed forms of g1(k), . . . , gr(k).
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Definition 4.3. For an integer q ≥ 3, we define sequences g1(k), g2(k), . . . , gr(k), gr+1(k),
where k ≥ 2 and r = ⌊q/2⌋, as

g1(k) =



g1(k − 1) + g2(k − 1) if k is an even and k ≥ 4
g1(k − 1) if q is an odd, k is an odd, and k ≥ 3
2g1(k − 1) if q is an even, k is an odd, and k ≥ 3
0 if k = 2 and q > 3
q if k = 2 and q = 3,

for 1 < j < r,

gj(k) =


gj(k − 1) + gj+1(k − 1) if k is an even and k ≥ 4
gj−1(k − 1) + gj(k − 1) if k is an odd and k ≥ 3
0 if k = 2,

gr(k) =


gr(k − 1) + gr+1(k − 1) if k is an even and k ≥ 4
gr−1(k − 1) + gr(k − 1) if k is an odd and k ≥ 3
q if k = 2,

and

gr+1(k) =

{
0 if k is an even
2gr(k − 1) if k is an odd,

where g0(k) = 0 for any integer k in the case where q = 3, namely r = ⌊3/2⌋ = 1.

If we only consider the case where k is an even, we use the next definition, that is equivalent
to Definition 4.3 if k is an even.

Definition 4.4. For an integer q ≥ 3, we define sequences g1(k), g2(k), . . . , gr(k), where k ≥ 2
is an even and r = ⌊q/2⌋, such that if q > 3,

g1(k) =


2g1(k − 2) + g2(k − 2) if k ≥ 4 and q is an odd
3g1(k − 2) + g2(k − 2) if k ≥ 4 and q is an even
0 if k = 2,

for 1 < j < r,

gj(k) =

{
gj−1(k − 2) + 2gj(k − 2) + gj+1(k − 2) if k ≥ 4
0 if k = 2,

and

gr(k) =

{
gr−1(k − 2) + 3gr(k − 2) if k ≥ 4
q if k = 2,

and if q = 3,

g1(k) =

{
3g1(k − 2) if k ≥ 4
q(= 3) if k = 2.

11



We can show that g1(k), . . . , gr(k) appear in the estimation of Uk
q (ea

m). It is important to
show divisibility of g1(k), . . . , gr(k) for the estimation of Uk

q (ea
m). More specifically, if some

gj(k) is not divided by m, the estimation of Uk
q (ea

m) is finished, that is stated in the following
lemma.

Lemma 4.5. Let m ≥ 2 be an integer, q ≥ 3 be an odd, g1(k), . . . , gr(k) be the sequences
defined in Definition 4.4 with q, and r = (q − 1)/2. If there is a j ∈ [r] such that gj(k) is not
divided by m for any even k ≥ 2,

Uk
q (ea

m) ≤ 1 − α

(
2
q

)k

,

where α > 0 is a constant that depends on m only.

Proof. From the definition,

Uk
q (ea

m) =
1

qk+1

∑
x,y1,...,yk∈Zq

em

 ∑
S⊆[k]

(−1)|S|a

x ⊕
⊕
j∈S

yj

 .

Bounding em(·) by 1 on inputs y1, ..., yk over Zk
q \ {1, q − 1}k, we then obtain the following

inequality.

Uk
q (ea

m)

≤ 1
qk+1


∑
x∈Zq

y1,...,yk∈{1,q−1}

em

a
∑

S⊆[k]

(−1)|S|

x ⊕
⊕
j∈S

yj

 + (qk+1 − 2kq)


= 1 −

(
2
q

)k

+
1

qk+1


∑
x∈Zq

y1,...,yk∈{1,q−1}

em

a
∑

S⊆[k]

(−1)|S|

x ⊕
⊕
j∈S

yj




= 1 −
(

2
q

)k

1 − 1
2kq

∑
x∈Zq

y1,...,yk∈{1,q−1}

em

a
∑

S⊆[k]

(−1)|S|

x ⊕
⊕
j∈S

yj


 . (6)

In the case where y1, . . . , yk ∈ {1, q − 1},
∑

S⊆[k](−1)|S|
(
x ⊕

⊕
j∈S yj

)
is equal to one of the

sequences g1(k), . . . , gr(k) up to its sign. Specifically, the following claim holds.

Claim 4.6. Let q ≥ 3 be an integer, k ≥ 2 be an even, and y1, . . . , yk ∈ {1, q − 1}. Now let x
be a random variable uniformly chosen at random from Zq. Then

∑
S⊆[k]

(−1)|S|

x ⊕
⊕
j∈S

yj


= g1(k), g2(k), . . . , gr(k), − g1(k), − g2(k), . . . , − gr(k), or 0,

with each probability 1/q.

12



Now we prove the lemma using this claim.

∑
x∈Zq

em

a
∑

S⊆[k]

(−1)|S|

x ⊕
⊕
j∈S

yj


= 1 +

r∑
j=1

exp
(

2πia

m
gj(k)

)
+

r∑
j=1

exp
(
−2πia

m
gj(k)

)

= 1 + 2
r∑

j=1

cos
(

2πa

m
gj(k)

)
.

Note that em(0) = 1. Combining these equations and Inequality (6), we obtain

Uk
q (ea

m) ≤ 1 −
(

2
q

)k
{

1 −
1 + 2

∑r
j=1 cos (2πagj(k)/m)

q

}
.

Note that the number of y1, . . . , yk ∈ {1, q − 1} is 2k. Now there is a j0 ∈ [r] such that gj0(k)
is not divided by m. Then cos (2πagj0(k)/m) < 1. Let δ := cos (2πagj0(k)/m). We bound
cos

(
2πagj′(k)/m

)
by 1 for all j′ ̸= j0. Note that 2r + 1 = q. Now,

1 −
1 + 2

∑r
j=1 cos(2πagj0(k)/m)

q
≥ 1 − 1 + 2(r − 1) + 2δ

q

= 1 − q + 2δ − 2
q

=
2 − 2δ

q
> 0.

Hence the lemma follows.

From now on, we give the proof of Claim 4.6. For proving Claim 4.6, we show the following
claim.

Claim 4.7. Let k ≥ 2 be an integer, q ≥ 3 be an odd, r = (q − 1)/2, and G(k) and GR(k) be
ordered sequences

G(k) = −g1(k), g2(k), . . . , (−1)jgj(k), . . . , (−1)rgr(k),

GR(k) = (−1)rgr(k), . . . , (−1)jgj(k), . . . , g2(k),−g1(k).

For any y1, . . . , yk ∈ {1, q − 1}, there are an integer l = l(y1, . . . , yk, q) and a permutation
σ = σ(y1, . . . , yk, q) such that ∑

S⊆[k]

(−1)|S|

x ⊕
⊕
j∈S

yj


x∈Zq

=

{
(−1)lσ

(
−GR(k), gr+1(k),G(k)

)
if k is an even

(−1)lσ
(
G(k), (−1)r+1gr+1(k),GR(k)

)
if k is an odd,

where the lefthand side
(∑

S⊆[k](−1)|S|
(
x ⊕

⊕
j∈S yj

))
x∈Zq

denotes a q-tuple

 ∑
S⊆[k]

(−1)|S|

0 ⊕
⊕
j∈S

yj

 ,
∑

S⊆[k]

(−1)|S|

1 ⊕
⊕
j∈S

yj

 , . . . ,
∑

S⊆[k]

(−1)|S|

(q − 1) ⊕
⊕
j∈S

yj

 ,
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and (
−GR(k), gr+1(k),G(k)

)
=

(
(−1)r+1gr(k), . . . , g1(k), gr+1(k),−g1(k), . . . , (−1)rgr(k)

)(
G(k), (−1)r+1gr+1(k),GR(k)

)
=

(
−g1(k), . . . , (−1)rgr(k), (−1)r+1gr+1(k), (−1)rgr(k), . . . ,−g1(k)

)
.

If the above claim holds, Claim 4.6 follows, since there are an integer l and a permutation
σ′ such that ∑

S⊆[k]

(−1)|S|

x ⊕
⊕
j∈S

yj


x∈Zq

= (−1)lσ′ (g1(k), . . . , gj(k), . . . , gr(k),−g1(k), . . . ,−gj(k), . . . ,−gr(k), 0) ,

if k is an even and y1, . . . , yk ∈ {1, q − 1}. Hence it suffices to prove the claim.

Proof of Claim 4.7. Let

Sy1,y2,...,yk
(x) :=

∑
S⊆[k]

(−1)|S|

x ⊕
⊕
j∈S

yj

 .

We prove this claim by the induction on k. In the base case where k = 2,

(Sy1,y2(x))x∈Zq
= (x − (x ⊕ y1) − (x ⊕ y2) + (x ⊕ y1 ⊕ y2))x∈Zq

.

If (y1, y2) = (1, 1)

(S1,1(x))x∈Zq
= (x − 2(x ⊕ 1) + (x ⊕ 2))x∈Zq

= (0, . . . , 0,−q, q) ,

if (y1, y2) = (q − 1, q − 1)

(Sq−1,q−1(x))x∈Zq
= (x − 2{x ⊕ (q − 1)} + {x ⊕ (q − 2)})x∈Zq

= (−q, q, 0, . . . , 0) ,

and if (y1, y2) = (1, q − 1) or (q − 1, 1)

(S1,q−1(x))x∈Zq
= (Sq−1,1(x))x∈Zq

= (2x − (x ⊕ 1) − {x ⊕ (q − 1)})x∈Zq
= (−q, 0, . . . , 0, q) .

Hence there are an integer l and a permutation σ such that

(Sy1,y2(x))x∈Zq
= (x − (x ⊕ y1) − (x ⊕ y2) + (x ⊕ y1 ⊕ y))x∈Zq

= (−1)lσ
(
(−1)r−1q, 0, . . . , 0, (−1)rq

)
.

That is

(−1)lσ
(
−GR(2), gr+1(2),G(2)

)
.

The statement is true in the base case.
Next, we assume that the statement holds in the case of k − 1 and prove that it holds in

the case of k. Note that

Sy1,...,yk
(x) =

∑
S⊆[k]

(−1)|S|

x ⊕
⊕
j∈S

yj


=

∑
S⊆[k−1]

(−1)|S|

x ⊕
⊕
j∈S

yj

 −
∑

S⊆[k−1]

(−1)|S|

x ⊕ yk ⊕
⊕
j∈S

yj


= Sy1,...,yk−1

(x) − Sy1,...,yk−1
(x ⊕ yk). (7)
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Table 1: Sy1,...,yk
(x) in the case where yk = 1 and k is an odd

x Sy1,...,yk−1
(x) −Sy1,...,yk−1

(x ⊕ yk) Sy1,...,yk
(x)

0 (−1)r+1gr(k − 1) (−1)r+1gr−1(k − 1) (−1)r+1gr(k)
...

...
...

...
r − j (−1)j+1gj(k − 1) (−1)j+1gj−1(k − 1) (−1)j+1gj(k)

...
...

...
...

r − 1 g1(k − 1) −gr+1(k − 1) = 0 g1(k)
r gr+1(k − 1) = 0 g1(k − 1) g1(k)
...

...
...

...
r + j − 1 (−1)j−1gj−1(k − 1) (−1)j+1gj(k − 1) (−1)j+1gj(k)

...
...

...
...

2r − 1 (−1)r−1gr−1(k − 1) (−1)r+1gr(k − 1) (−1)r+1gr(k)
2r (−1)rgr(k − 1) (−1)r+2gr(k − 1) (−1)r+2gr+1(k)

Table 2: Sy1,...,yk
(x) in the case where yk = q − 1 and k is an odd

x Sy1,...,yk−1
(x) −Sy1,...,yk−1

(x ⊕ yk) Sy1,...,yk
(x)

0 (−1)r+1gr(k − 1) (−1)r+1gr(k − 1) (−1)r+1gr+1(k)
1 (−1)rgr−1(k − 1) (−1)r+2gr(k − 1) (−1)rgr(k)
...

...
...

...
r − j + 1 (−1)jgj−1(k − 1) (−1)j+2gj(k − 1) (−1)jgj(k)

...
...

...
...

r − 1 g1(k − 1) g2(k − 1) g2(k)
r gr+1(k − 1) = 0 −g1(k − 1) −g1(k)

r + 1 −g1(k − 1) −gr+1(k − 1) = 0 −g1(k)
...

...
...

...
r + j (−1)jgj(k − 1) (−1)jgj−1(k − 1) (−1)jgj(k)

...
...

...
...

2r (−1)rgr(k − 1) (−1)rgr−1(k − 1) (−1)rgr(k)

First, we consider the case where k is an odd. Since k − 1 is an even, by the induction
hypothesis, there are an integer l′ and a permutation σ′ such that(

Sy1,...,yk−1
(x)

)
x∈Zq

= (−1)l′σ′ (−GR(k − 1), gr+1(k − 1),G(k − 1)
)
.

Now we omit (−1)l′ and σ′. From the induction hypothesis, we can build Tables 1 and 2.
Table 1 is for the case where yk = 1, and Table 2 is for the case where yk = q − 1. The
first columns of these tables show the q-tuple

(
Sy1,...,yk−1

(x)
)
x∈Zq

, and the second columns

of these tables show the q-tuple
(
−Sy1,...,yk−1

(x ⊕ yk)
)
x∈Zq

. By using Equation (7), we can

calculate (Sy1,...,yk
(x))x∈Zq

from
(
Sy1,...,yk−1

(x)
)
x∈Zq

and
(
−Sy1,...,yk−1

(x ⊕ yk)
)
x∈Zq

, that is the

third columns of these tables. Multiplying (−1)l′′ for some l′′ to Sy1,...,yk
(x)’s column and shift

it in these tables, we obtain (G(k), (−1)r+1gr+1(k),GR(k)). Therefore the statement follows
in the case where k is an odd.
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Table 3: Sy1,...,yk
(x) in the case where yk = 1 and k is an even

x Sy1,...,yk−1
(x) −Sy1,...,yk−1

(x ⊕ yk) Sy1,...,yk
(x)

0 −g1(k − 1) −g2(k − 1) −g1(k)
...

...
...

...
j − 1 (−1)jgj(k − 1) (−1)j+2gj+1(k − 1) (−1)jgj(k)

...
...

...
...

r − 1 (−1)rgr(k − 1) (−1)r+2gr+1(k − 1) (−1)rgr(k)
r (−1)r+1gr+1(k − 1) (−1)r+1gr(k) (−1)r+1gr(k)
...

...
...

...
2r − j (−1)j+1gj+1(k − 1) (−1)j+1gj(k − 1) (−1)j+1gj(k)

...
...

...
...

2r − 1 g2(k − 1) g1(k − 1) g1(k)
2r −g1(k − 1) g1(k − 1) 0 = gr+1(k)

Table 4: Sy1,...,yk
(x) in the case where yk = q − 1 and k is an even

x Sy1,...,yk−1
(x) −Sy1,...,yk−1

(x ⊕ yk) Sy1,...,yk
(x)

0 −g1(k − 1) g1(k − 1) 0 = gr+1(k)
1 g2(k − 1) g1(k − 1) g1(k)
...

...
...

...
j (−1)j+1gj+1(k − 1) (−1)j+1gj(k − 1) (−1)j+1gj(k)
...

...
...

...
r (−1)r+1gr+1(k − 1) (−1)r+1gr(k − 1) (−1)r+1gr(k)

r + 1 (−1)rgr(k − 1) (−1)r+2gr+1(k − 1) (−1)rgr(k)
...

...
...

...
2r − j + 1 (−1)jgj(k − 1) (−1)j+2gj+1(k − 1) (−1)jgj(k)

...
...

...
2r −g1(k − 1) −g2(k − 1) −g1(k)

Next, we consider the case where k is an even. The argument for this even case is the same as
for the odd case, except we use Tables 3 and 4 instead of Tables 1 and 2. Multiplying (−1)l′′ for
some l′′ to Sy1,...,yk

(x)’s column and shift it in these tables, we obtain (−GR(k), gr+1(k),G(k)).
Therefore the statement follows in the case where k is an even.

The remaining task is to prove the assumption in Lemma 4.5, i.e., that some gj(k) is not
divided by m for any even k. To show this, it is sufficient to prove the following lemma, which
is a technical lemma on GCD of the sequences.

Lemma 4.8. Let q ≥ 3 be a prime and g1(k), g2(k) . . . , gr(k) be sequences defined in Definition
4.4 with q, where r = (q − 1)/2. Then, for any even k ≥ 2,

gcd(g1(k), g2(k), . . . , gr(k)) = q⌊(k−2)/(q−1)⌋+1.
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Proof. If we show

gcd(g1(k), . . . , gr(k)) =

{
q · gcd(g1(k − (q − 1)), . . . , gr(k − (q − 1))) if k ≥ q + 1
q if 2 ≤ k ≤ q − 1,

the lemma follows by the induction on k.
If 2 ≤ k ≤ q − 1, we can prove that g1(k), . . . , gr−k/2(k) are all 0, gr−k/2+1(k) = q, and

gr−k/2+2(k), . . . , gr(k) are all multiples of q by the induction on k. Hence

gcd(g1(k), . . . , gr(k)) = q,

for 2 ≤ k ≤ q.
In the case where k ≥ q + 1, we take the following two steps as stated in Section 3.

Step 1: gcd(g1(k), . . . , gr(k)) = C · gcd(g1(k − (q − 1)), . . . , gr(k − (q − 1))), where C is a
multiple by q.

Step 2: gcd(g1(k)/q, . . . , gr(k)/q) = gcd(g1(k − (q − 1)), . . . , gr(k − (q − 1))).

For proving these steps, we analyze the r × r matrix Ar introduced in Section 3. Recall
that 

g1(k)
g2(k)

...
gr(k)

 = Ar


g1(k − 2)
g2(k − 2)

...
gr(k − 2)

 ,

where

Ar =



2 1 0
1 2 1

. . . . . . . . .
. . . . . . . . .

1 2 1

0 1 3


.

Then, 
g1(k)
g2(k)

...
gr(k)

 = (Ar)(q−1)/2


g1(k − (q − 1))
g2(k − (q − 1))

...
gr(k − (q − 1))

 .

Now, (Ar)(q−1)/2 = (Ar)r since r = (q − 1)/2.
We can achieve these two steps using (Ar)r. Step 1 can be proven by the following lemma.

Lemma 4.9. If q is a prime, for any k ≥ q + 1

gcd(g1(k), . . . , gr(k)) = C · gcd(g1(k − (q − 1)), . . . , gr(k − (q − 1))),

where C is a multiple of q and r = (q − 1)/2.
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Step 2 can be proven by the following two lemmas.

Lemma 4.10. If q(Ar)−r is an integer matrix, for any k ≥ q + 1

gcd
(

g1(k)
q

,
g2(k)

q
, . . . ,

gr(k)
q

)
= gcd(g1(k − (q − 1)), g2(k − (q − 1)), . . . , gr(k − (q − 1))).

Lemma 4.11. If q ≥ 3 is a prime, any entry of q(Ar)−r is an integer.

By these lemmas, we can show

gcd(g1(k), . . . , gr(k)) = q · gcd(g1(k − (q − 1)), . . . , gr(k − (q − 1)))

for any k ≥ q + 1. Therefore

gcd (g1(k), . . . , gr(k)) = q⌊(k−2)/(q−1)⌋+1.

The following corollary can be proven from Lemma 4.8.

Corollary 4.12. Let q be a prime, m be coprime to q, r = (q − 1)/2, and g1(k), . . . , gr(k) be
sequences defined in Definition 4.4 with q. Then there is a j ∈ [r] such that gj(k) is not divided
by m for any even k ≥ 2.

Proof. We assume m | gj(k) for all j ∈ [r]. Then m is the common divisor of g1(k), . . . , gr(k). By
Lemma 4.8, q⌊(k−2)/(q−1)⌋+1 is a multiple of m. However m is coprime to q. It is a contradiction.

By Lemma 4.5 and Corollary 4.12, we obtain Lemma 4.1.

4.2 Step 1

First, we give an explicit formula of (Ar)r. Since eigenvalues and eigenvectors of Ar are compli-
cated, we predict an explicit formula of (Ar)r and then prove its correctness by the induction.

Lemma 4.13.

(Ar)r(i, j) =


(

2r

r − (i − j)

)
−

(
2r

r − (i + j)

)
if i + j ≤ r,(

2r

r − (i − j)

)
+

(
2r

i + j − (r + 1)

)
if i + j ≥ r + 1.

Proof Sketch. We can prove that

(Ar)l(i, j) =
(

2l

l − (i − j)

)
−

(
2l

l − (i + j)

)
+

(
2l

2r + l + 1 − (i + j)

)
for any integer l ∈ [r] by the induction on l. Hence

(Ar)r(i, j)
(

2r

r − (i − j)

)
−

(
2r

r − (i + j)

)
+

(
2r

3r + 1 − (i + j)

)
.

Note that
(

2r
3r+1−(i+j)

)
=

(
2r

2r−{3r+1−(i+j)}
)

=
(

2r
i+j−(r+1)

)
. If i + j ≤ r, the third term becomes

0, since i + j − (r + 1) < 0. If i + j ≥ r + 1, the second term becomes 0, since r − (i + j) < 0.
Therefore the claim follows.
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Using the above claim, we achieve Step 1.

Lemma 4.14 (Restated Lemma 4.9). If q is a prime, for any k ≥ q + 1

gcd(g1(k), . . . , gr(k)) = C · gcd(g1(k − (q − 1)), . . . , gr(k − (q − 1))),

where C is a multiple of q and r = (q − 1)/2.

Proof. Recall that g1(k)
...

gr(k)

 = (Ar)r

g1(k − (q − 1))
...

gr(k − (q − 1))

 .

Hence it is sufficient to show (2r + 1) | (Ar)r(i, j) for any i, j ∈ [r].
In the case where i + j ≤ r,

(Ar)r(i, j) =
(

2r

r − (i − j)

)
−

(
2r

r − (i + j)

)
=

2r(2r − 1) . . . (r + i + j + 1)
(r − i − j)!

{
(r + i + j) . . . (r + i − j + 1)
(r − i + j) . . . (r − i − j + 1)

− 1
}

=
2r(2r − 1) . . . (r + i + j + 1)

(r − i + j)!
· {(r + i + j) . . . (r + i − j + 1) − (r − i + j) . . . (r − i − j + 1)} .

Let s := r + i and t := r − i. Then,

(r + i + j)(r + i + j − 1) . . . (r + i − j + 1) − (r − i + j)(r − i + j − 1) . . . (r − i − j + 1)
= (s + j)(s + j − 1) . . . (s − j + 1) − (t + j)(t + j − 1) . . . (t − j + 1).

By substituting s with −t − 1, the first term becomes

{(−t − 1) + j}{(−t − 1) + j − 1} . . . {(−t − 1) − j + 1}
= (t + 1 − j)(t + 1 − j + 1) . . . (t + 1 + j − 1)
= (t + j) . . . (t − j + 2)(t − j + 1).

That means

{(−t − 1) + j} . . . {(−t − 1) − j + 1} − (t + j) . . . (t − j + 1) = 0.

By the factor theorem, (s+j) . . . (s−j+1)−(t+j) . . . (t−j+1) is divided by s−(−t−1) = 2r+1.
Hence, there is an integer M such that

(Ar)r(i, j) =
2r(2r − 1) . . . (r + i + j + 1)

(r − i + j)!
(2r + 1)M

=
(

2r

r − i − j

)
(2r + 1)M

(r − i + j) . . . (r − i − j + 1)
.

Since all the factors of the denominator in this formula is smaller than 2r + 1 and 2r + 1 is a
prime, 2r + 1 remains as a factor in this formula. Therefore (Ar)r(i, j) is divided by 2r + 1 in
this case.
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In the case where i + j ≥ r + 1,

(Ar)r(i, j) =
(

2r

r − (i − j)

)
+

(
2r

i + j − (r + 1)

)
=

2r(2r − 1) . . . (3r + 2 − i − j)
(i + j − r − 1)!

{
(3r + 1 − i − j) . . . (r + i − j + 1)

(r − i + j) . . . (i + j − r)
+ 1

}
=

2r(2r − 1) . . . (r + i + j + 1)
(r − i + j)!

· {(3r + 1 − i − j) . . . (r + i − j + 1) + (r − i + j) . . . (i + j − r)} .

Let s := 2r − j + 1. Then,

(3r + 1 − i − j) . . . (r + i + j + 1) + (r − i + j) . . . (i + j − r)
= {2r − j + 1 + (r − i)} . . . {2r − j + 1 − (r − i)} + {j + (r − i)} . . . {j − (r − i)}
= {s + (r − i)} . . . {s − (r − i)} + {j + (r − i)} . . . {j − (r − i)}.

By substituting s with −j, the first term becomes

{−j + (r − i)} . . . {−j − (r − i)} = −{j − (r − i)} . . . {j + (r − i)}.

That means

{(−j) + (r − i)} . . . {(−j) − (r − i)} + {j + (r − i)} . . . {j − (r − i)} = 0.

By the factor theorem, {s + (r − i)} . . . {s − (r − i)} + {j + (r − i)} . . . {j − (r − i)} is divided
by s − (−j) = 2r + 1. Hence, there is an integer M such that

(Ar)r(i, j) =
2r(2r − 1) . . . (3r + 2 − i − j)

(r − i + j)!
(2r + 1)M

=
(

2r

i + j − (r + 1)

)
(2r + 1)M

(r − i + j) . . . (i + j − r)
.

Since all the factors of the denominator in this formula is smaller than 2r + 1 and 2r + 1 is a
prime, 2r + 1 remains as a factor in this formula. Therefore (Ar)r is also divided by 2r + 1 in
this case.

4.3 Step 2

Now we define the integral elementary row operation, that is restricted elementary row opera-
tions for computing the GCD.

Definition 4.15 (Integral Elementary Row Operations). For a matrix A, these four operations
are called the integral elementary row operations (IERO):

1. Row-swapping of the i-th row and the j-th row: swapping the i-th row and the j-th row.

2. Row-adding to the i-th row from the j-th row times m: adding the j-th row multiplied
by a non-zero integer m to the i-th row.

3. Row-inserting from the i-th row times m: inserting a new row at bottom that is the i-th
row multiplied by a non-zero integer m.
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4. Row-deleting of the i-th row: deleting the i-th row which all entries are 0.

Observation 4.16. Let x1, . . . , xn, y1, . . . , yn be integers and A be an n×n matrix. we assume
that 

x1

x2
...

xn

 = A


y1

y2
...

yn

 .

Then, the GCD of x1, x2, . . . , and xn is equal to the GCD of y1, y2, . . . , and yn if A is reduced
to the r × r identity matrix Ir by the IERO.

We confirm the observation. Let a1, . . . , an be row vectors of A and aij be the (i, j)-entry
of A. The row-swapping of ai and aj , that is

...
ai
...
aj
...





...
yi
...
yj
...


−→



...
aj
...
ai
...





...
yj
...
yi
...


,

means

gcd(x1, . . . , xi, . . . , xj , . . . , xn) = gcd(x1, . . . , xj , . . . , xi, . . . , xn).

The row-adding to ai from aj times m, that is

...∑n
t=1 aityt

...∑n
t=1 ajtyt

...


=



...
ai
...
aj
...





...
yi
...
yj
...


−→



...
ai + maj

...
aj
...





...
yi
...
yj
...


=



...∑n
t=1 aityt + m

∑n
t=1 ajtyt

...∑n
t=1 ajtyt

...


,

means

gcd(x1, . . . , xi, . . . , xj , . . . , xn) = gcd(x1, . . . , xi + mxj , . . . , xj , . . . , xn).

The row-inserting from ai times m, that is


...
ai
...




...
yi
...

 −→


...
ai
...

mai




...
yi
...
yi

 ,

means

gcd(x1, . . . , xi, . . . , xn) = gcd(x1, . . . , xi, . . . , xn,mxi).
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The row-deleting of ai = 0, that is

...
ai−1

0
ai+1

...





...
yi−1

yi

yi+1
...

 −→


...

ai−1

ai+1
...




...
yi−1

yi+1
...

 ,

means

gcd(x1, . . . , xi−1, 0, xi+1, . . . , xn) = gcd(x1, . . . , xi−1, xi+1, . . . , xn).

Hence these operations correspond to operations of the GCD. If we can convert A to In, that
is 

a1

a2
...

an




y1

y2
...

yn

 → · · · →


1 0

1
. . .

0 1




y1

y2
...

yn

 ,

gcd(x1, . . . , xn) = gcd(y1, . . . , yn).

Therefore we have to show that 1
q (Ar)r can be converted to Ir by the IERO.

Using the IERO, we can achieve Step 2 if q(Ar)−r is an integer matrix.

Lemma 4.17 (Restated Lemma 4.10). If q(Ar)−r is an integer matrix, for any k ≥ q + 1

gcd
(

g1(k)
q

,
g2(k)

q
, . . . ,

gr(k)
q

)
= gcd(g1(k − (q − 1)), g2(k − (q − 1)), . . . , gr(k − (q − 1))).

Proof. Recall that 
g1(k)

q
...

gr(k)
q

 =
1
q
(Ar)r

g1(k − (q − 1))
...

gr(k − (q − 1))

 .

By Observation 4.16, if 1
q (Ar)r is reduced to the r × r identity matrix Ir by the IERO, the

lemma holds. Now we show the existence of the reduction.
Let aij be (i, j)-th entry of q(Ar)−r and αij be (i, j)-th entry of 1

q (Ar)r. Note that (q(Ar)−r)·
(1

q (Ar)r) = Ir. If the matrix including (q(Ar)−r) ·(1
q (Ar)r) is created from 1

q (Ar)r by the IERO,
the lemma follows, because the matrix can be reduced by the IERO as follows:

*

(q(Ar)
−r) ·

(
1
q
(Ar)

r
)


=


*

1 0
. . .

0 1


→ · · · →

1 0
. . .

0 1

 .
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Now we show how to create (q(Ar)−r) · (1
q (Ar)). The i-th row vector of the matrix is(

r∑
t=1

aitαt1,

r∑
t=1

aitαt2, . . . ,

r∑
t=1

aitαtr

)
. (8)

It can be created by the IERO. First, we create

(ai1α11, ai1α12, . . . , ai1α1r)

by the row-inserting from the first row times ai1. Then, we convert the row to

(ai1α11 + ai2α21, ai1α12 + ai2α22, . . . , ai1α1r + ai2α2r)

by the row-adding to the new row from the second row times ai2. For each t ∈ [r], repeating
the row-adding to the new row from the t-th row times ait, we can create the wanted the i-th
row vector (8). By creating the i-th row for each i ∈ [r], we can create the matrix. Therefore
the lemma follows.

Next, we show any entry of q(Ar)−r is an integer. Instead of showing that q(Ar)−r is an
integer matrix directly, we prove that its r-th power (q(Ar)−1)r is a multiple of qr−1. Note
that (q(Ar)−1)r = qr−1 · q(Ar)−r. For it, we show an explicit formula of (Ar)−1 in the following
lemma.

Lemma 4.18. Let B be an r × r matrix defined as

B(i, j) =


(−1)i+j+1 2ij − qi

q
if i < j,

(−1)i+j qj − 2ij

q
if i ≥ j.

Then Ar · B = Ir, i.e., B = (Ar)−1.

Proof Sketch. We just calculate Ar · B.

Now we prove that any entry of q(Ar)−r is an integer.

Lemma 4.19 (Restated Lemma 4.11). If q ≥ 3 is a prime, any entry of q(Ar)−r is an integer.

Proof. If q = 3, the lemma clearly follows, since 3(A1)−1(1, 1) = 3 · 1/3 = 1. We only consider
the case where q ≥ 5. Since (q(Ar)−1)r = qr−1 · q(Ar)−r, it is sufficient to show that every
entry of (q(Ar)−1)r is a multiple of qr−1. Then, the following claims hold.

Claim 4.20. For any integers α and β such that 1 ≤ α ≤ β ≤ r − 1, if
r∑

tβ=1

r∑
tβ−1=1

· · ·
r∑

tα=1

tβ min(tβ , tβ−1)min(tβ−1, tβ−2) . . . min(tα+1, tα)tα

is a multiple of 2r + 1, then any entry of
(
q(Ar)−1

)r is a multiple of qr−1.

Claim 4.21. For any integers α and β ≥ α, there are constants θ2, θ4, . . . , θd such that
r∑

tβ=1

r∑
tβ−1=1

· · ·
r∑

tα=1

tβ min(tβ , tβ−1) min(tβ−1, tβ−2) . . . min(tα+1, tα)tα =
r∑

tβ=1

∑
2≤i≤d
i: even

θit
i
β, (9)

where d ≤ 2(β − α + 1).
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Claim 4.22. Let l < r be an integer. If 2r + 1 is a prime,
∑r

t=1 t2l is a multiple of 2r + 1.

Now we use these claims for proving this lemma. Let α and β be integers such that 1 ≤ α ≤
β ≤ r− 1. From Claim 4.21, Equation (9) holds with d ≤ 2(β −α + 1) ≤ 2(r− 1− 1 + 1) < 2r.
The righthand side of (9) is ∑

2≤i≤d
i: even

θi

r∑
tβ=1

tiβ

 .

Each term θi
∑r

tβ=1 tiβ is a multiple of 2r + 1 from Claim 4.22, since each i is an even and
i ≤ d < 2r. Hence (9) is also a multiple of q = 2r + 1. Therefore any entry of (q(Ar)−1)r is a
multiple of qr−1 from Claim 4.20.

From now on, we prove Claims 4.20 and 4.21. Claim 4.22 is easily obtained from basic
properties of a power sum (see e.g., [GKP89]).

Proof of Claim 4.20. Let aij = q(Ar)−1(i, j). Then,

(q(Ar)−1)r(i, j) =
r∑

tr−1=1

r∑
tr−2=1

· · ·
r∑

t1=1

ait1at1t2 . . . atr−2tr−1atr−1j . (10)

Note that each auv is (−1)u+v+1(2uv − qu) if u < v, and (−1)u+v(qv − 2uv) if u ≥ v. Let
ξuv := (−1)u+v+12uv, and let ηuv := (−1)u+vqu if u < v and ηuv := (−1)u+vqv if u ≥ v. Then
the righthand side of (10) is

r∑
tr−1=1

· · ·
r∑

t1=1

(ξit1 + ηit1)(ξt1t2 + ηt1t2) . . . (ξtr−2tr−1 + ηtr−2tr−1)(ξtr−1j + ηtr−1j)

=
r∑

tr−1=1

· · ·
r∑

t1=1

ξit1ξt1t2 . . . ξtr−1j + ηit1ξt1t2 . . . ξtr−1j + · · · + ηit1ηt1t2 . . . ηtr−1j

=
r∑

tr−1=1

· · ·
r∑

t1=1

τ
(φ1)
it1

τ
(φ2)
t1t2

· · · τ (φr−1)
tr−2tr−1

τ
(φr)
tr−1j ,

where τ
(φ)
uv be ξuv if φ = 0 and ηuv if φ = 1.

It is obvious that (q(Ar)−1)r(i, j) is a multiple of qr−1 if

γ(φ1,...,φr) :=
r∑

tr−1=1

· · ·
r∑

t1=1

|τ (φ1)
it1

||τ (φ2)
t1t2

| · · · |τ (φr−1)
tr−2tr−1

||τ (φr)
tr−1j |

is a multiple of qr−1. Below, we show that so is γ(φ1,...,φr) for every φ1, ..., φr.
If |{i : φi = 1}| ≥ r − 1, that is, γ(φ1,...,φr) contains at least r − 1 terms of the form

|ηu,v| = q min(u, v), then γ(φ1,...,φr) is clearly a multiple of qr−1. Therefore, we arbitrarily fix
φ1, ..., φr so that γ(φ1,...,φr) only contains at most r − 2 terms of the form |ηu,v|.

Let k := |{i : φi = 0}|, that is, the number of |ξu,v| = 2uv in γ(φ1,...,φr). Note that k ≥ 2.
Then the term γ(φ1,...,φr) with fixed φ1, ..., φr is denoted by

γ :=
r∑

tr−1=1

· · ·
r∑

t1=1

bit1 · · · btr−1j ,
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where buv ∈ {2uv, q min(u, v)}.
For ease of notation, we denote i and j by t0 and tr. Suppose that s1, ..., sk ∈ {0, ..., r}

indicate the locations of the terms of the form 2uv, i.e., btsi tsi+1 = 2tsitsi+1 for every i.
Then, we have

γ =
r∑

tr−1=1

· · ·
r∑

t1=1

· · ·2ts1ts1+1{q min(ts1+1, ts1+2) · · · q min(ts2−1, ts2)}2ts2ts2+1 · · ·

· · · 2tsk−1
tsk−1+1{q min(tsk−1+1, tsk−1+2) · · · q min(tsk−1, tsk

)}2tsk
tsk+1 · · · .

Recall that the number of the terms of the form q min(u, v) is r − k in γ. Thus, moving all the
factors q into head, we have

γ = qr−k
r∑

tsk+1=1

· · ·
r∑

ts1=1

· · ·2ts1ts1+1{min(ts1+1, ts1+2) · · ·min(ts2−1, ts2)}2ts2ts2+1 · · ·

· · · 2tsk−1
tsk−1+1{min(tsk−1+1, tsk−1+2) · · ·min(tsk−1, tsk

)}2tsk
tsk+1 · · · .

To apply the assumption of the claim to γ, transforming the above expression to

γ = qr−k
r∑

tr−1=1

· · ·
r∑

t1=1

· · · 2ts1

 r∑
ts1+1=1

· · ·
r∑

ts2=1

ts1+1 min(ts1+1, ts1+2) · · ·min(ts2−1, ts2)ts2

 2ts2+1 · · ·

· · · 2tsk−1

 r∑
tsk−1+1=1

· · ·
r∑

tsk
=1

tsk−1+1 min(tsk−1+1, tsk−1+2) · · ·min(tsk−1, tsk
)tsk

 2tsk+1 · · · .

By the assumption of the claim that
∑

tβ
· · ·

∑
tα

tβ min(tβ , tβ−1) min(tβ−1, tβ−2) . . . min(tα+1, tα)tα
is a multiple of q = 2r + 1, since we can apply this assumption to the k− 1 locations parenthe-
sized in the above expression, γ is a multiple of qr−k · qk−1 = qr−1.

Proof of Claim 4.21. Induction on β. In the base case where β = α, the lefthand side of (9)
is

∑r
tβ=1 t2β . Note that 2(β − α + 1) = 2 in this case. Hence the statement follows in the base

case.
In the inductive case, we assume that there are constants θd, θd−2, . . . , θ2 such that

r∑
tβ−1=1

r∑
tβ−2=1

· · ·
r∑

tα=1

tβ−1 min(tβ−1, tβ−2) . . . min(tα+1, tα)tα =
r∑

tβ−1=1

∑
2≤i≤d
i: even

θit
i
β−1,

where d ≤ 2(β − 1−α + 1) = 2(β −α). We show from this inductive hypothesis the statement
holds.

Then
r∑

tβ−2=1

· · ·
r∑

tα=1

min(tβ−1, tβ−2) . . . min(tα+1, tα)tα =
∑

1≤i≤d−1
i: odd

θi+1t
i
β−1.

Let Xtβ−1
be the above summation

∑
i: odd θi+1t

i
β−1. It therefore suffices to show that there

are constants θ′1, θ
′
3, ..., θ

′
d+1 such that

r∑
tβ−1=1

min(tβ , tβ−1)Xtβ−1
=

∑
1≤i≤d+1

i: odd

θ′it
i
β , (11)
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since
r∑

tβ=1

r∑
tβ−1=1

tβ min(tβ , tβ−1)Xtβ−1 =
r∑

tβ=1

r∑
tβ−1=1

· · ·
∑
tα=1

tβ min(tβ , tβ−1) . . . min(tα+1, tα)tα

=
r∑

tβ=1

∑
2≤i≤d+2
i: even

θ′i−1t
i
β

and then d + 2 ≤ 2(β − α + 1) if Equation (11) holds, which completes the induction.
Now, we show that Equation (11) holds. For simplification, we denote tβ−1 by t and tβ by

z. Then the lefthand side of (11) is
r∑

t=1

min(z, t)Xt =
z∑

t=1

tXt +
r∑

t=z+1

zXt

=
z∑

t=1

tXt −
z∑

t=1

zXt +
r∑

t=1

zXt.

Therefore, it is sufficient to show that the above expression has an odd degree on z and the
maximum degree is at most d + 1.

The last term
∑r

t=1 zXt obviously is of degree 1 on z. For the remaining two terms, we use
the following claim, that presents implicit forms of the power sum. This claim is also obtained
from basic properties of a power sum (see e.g., [GKP89]).

Claim 4.23. Let i be a positive integer. There are constants c0, c1, . . . , ci+1 such that if i is an
even

z∑
t=1

ti =
1
2
zi +

i/2∑
j=0

c2j+1z
2j+1,

and if i is an odd
z∑

t=1

ti =
1
2
zi +

(i+1)/2∑
j=0

c2jz
2j .

From this claim, the two terms can be written as

z∑
t=1

tXt =
∑

1≤i≤d−1
i: odd

z∑
t=1

θi+1t
i+1 =

∑
1≤i≤d−1

i: odd

θi+1

1
2
zi+1 +

(i+1)/2∑
j=0

c2j+1z
2j+1


and

z∑
t=1

zXt =
∑

1≤i≤d−1
i: odd

z∑
t=1

θi+1zti =
∑

1≤i≤d−1
i: odd

θi+1

1
2
zi+1 +

(i+1)/2∑
j=0

c2jz
2j+1

 .

Therefore, we have for the two terms

z∑
t=1

tXt −
z∑

t=1

zXt =
∑

1≤i≤d−1
i: odd

θi+1

(i+1)/2∑
j=0

(c2j+1 − c2j)z2j+1

 .

The righthand side of the above expression only has terms of odd degree and the maximum
degree is at most d+1. Therefore, for some constants θ′1, θ

′
3..., θ

′
d+1 Equation (11) holds, which

completes the inductive case.
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5 Open Problem

We have shown that the correlation Corr(MODm, P
(q)
d ) is exponentially small for a prime q

and an integer m coprime to q. An obvious open problem is to extend the parameter q from
primes to general integers.

In the estimation of Uk
q (ea

m), we have proven

gcd(g1(k), g2(k), . . . , gr(k)) = q⌊(k−2)/(q−1)⌋+1

for an odd prime q, where r = ⌊q/2⌋. We conjecture by using computer programs that the
following holds:

gcd(g1(k), g2(k), . . . , gr(k)) =

{
a power of p if q is a power of a prime p

q otherwise.

If we resolve this conjecture, we can prove the case where q is a power of some prime and the
most general case.
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