
Research Reports on
Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: CCC ooommm ppp uuu ttt eee rrr SSS ccc iii eee nnn ccc eee

ISSN 1342-2812

One-Way Functions and the Isomorphism Conjecture

Manindra Agrawal and Osamu Watanabe

March 2009, C–260

One-Way Functions and the Isomorphism Conjecture

Manindra Agrawal1 and Osamu Watanabe2

1. Dept. of Computer Science, IIT Kanpur, Kanpur (manindra@iitk.ac.in)

2. Dept. of Math. & Comp. Sci., Tokyo Inst. of Tech., Tokyo (watanabe@is.titech.ac.jp)

Research Report C-260

Abstract
We study the Isomorphism Conjecture proposed by Berman and Hartmanis. It states that
all sets complete for NP under polynomial-time many-one reductions are P-isomorphic to
each other. From previous research it has been widely believed that all NP-complete sets are
reducible each other by one-to-one and length-increasing polynomial-time reductions, but we
may not hope for the full p-isomorphism due to the existence of one-way functions. Here we
showed two results on the relation between one-way functions and the Isomorphism Conjecture.

Firstly, we imporve the result of Agrawal [Agrawal, CCC’02] to show that if regular one-
way functions exist, then all NP-complete sets are indeed reducible each other by one-to-
one, length-increasing and P/poly-reductions. A consequence of this result is the complete
description of the structure of many-one complete sets of NP relative to a random oracle:
all NP-complete sets are reducible each other by one-one and length-increasing polynomial-
time reductions but (as already shown by [Kurtz etal, JACM 95]) they are not P-isomorphic.
Neverthless, we also conjecture that (different from the random oracle world) all one-way
functions should have some dense easy parts, which we call P/poly-easy cylinders, where they
are P/poly-invertible. Then as our second result we show that if regular one-way functions
exist and furthermore all one-one, length-increasing and P/poly-computable functions have
P/poly-easy cylinders, then all many-one complete sets for NP are P/poly-isomorphic.

1 Introduction

The Isomorphism Conjecture [BH77] states that all sets complete for NP under polynomial-
time many-one reductions are P-isomorphic to each other. This conjecture has attracted a
lot of attention with evidence available for both possible answers to it (see some good survey
papers [KMR90, You90]). On the positive side, Berman and Hartmanis showed [BH77] that NP-
complete sets known at the time were all P-isomorphic to each other. Also, in [AAR98, Agr01] it
was shown that all complete sets for NP under AC0-reductions are isomorphic to each other via
AC0-computable isomorphisms proving the conjecture for a weaker class of reductions. On the
negative side, Joseph and Young [JY85] (also see [Wat91]) argued, in essence, that for a one-one,
length-increasing one-way function f , SAT and f(SAT) are unlikely to be P-isomorphic since it
is not clear how to construct an invertible reduction from SAT to f(SAT). Also, Kurtz et al
showed [KMR95] that relative to a random oracle this is indeed true. On the whole, there is more
belief that the conjecture is false. The reason is the widely believed existance of strong one-way
functions coupled with the argument of Joseph and Young. Another interesting relationship
between one-way functions and the structure of NP-complete degree was observed in [Agr02]

1

that used the existance of special kind of one-way functions (one-way permutations) to show
that all many-one complete sets for NP are also one-one and length-increasing complete under
P/poly-computable reductions.

In this paper, we show two results. Firstly, we improve the result of [Agr02]: instead of one-
way permutations that cannot be inverted by P/poly-functions, we prove it is enough to assume
the existence of regular one-way functions that cannot be inverted by randomized polynomial-
time algorithms to obtain the same result. Regular one-way functions are a generalization of
one-way permutations in which every image of a particular length has the same number of
pre-images. (We can also show the same result from one-way functions whose pre-image size
is polynomial-time computable.) A consequence of this result is the complete description of
the structure of many-one complete sets of NP relative to a random oracle: all these sets are
complete under one-one and length-increasing polynomial-time reductions but (as already shown
in [KMR95]) they are not P-isomorphic.

Our second result is on a certain easy structure of one-way functions. We first observe that
the known one-way functions have easy cylinders: they all have small but dense subsets that are
easily identifiable and on which the functions are easily invertible (a more formal definition will be
given in section 4). Then we show that if all one-one, length-increasing, and P/poly-computable
functions have easy cylinders, then any one-one, length-increasing, and P/poly-reduction from
some canonical NP-complete set can be converted to a one-one and length-increasing reduction
that is both computable and invertible in P/poly.

The above two results show an interesting phenomenon: the Isomorphism Conjecture, in a
slightly weaker form (isomorphisms are required to be P/poly-computable instead of polynomial-
time computable) is true if there exist one-way functions of a certain strength but no stronger.
We conjecture that this is indeed the case, and hence, the weaker form of Isomorphism Conjecture
is true.

The paper is organized as follows. The next section gives the definitions we use. Section 3
proves the first result and section 4 proves the second result.

2 Preliminaries

Throughout this paper, we use n to denote an integer ≥ 1. We fix our alphabet to Σ = {0, 1},
and we assume (unless explicitly stated otherwise) that all functions are total functions over Σ∗

and that each function f is defined1 as f = {fn}n≥1, for some fn : Σn 7→ Σ`(n) and some length
function `.

Definition 1. A function f is s(·)-secure if the following holds for every polynomial-time ran-
domized Turing machine M and for all sufficiently large n: Prx∈UΣn [M(x) = fn(x)] < s(`(n))−1.
In the above and throughout this paper, the probability (when a raondomized machine is in-
volved) is also over random choices of M .

Definition 2. A function f is a s(·)-secure one-way function if (1) f is a polynomial-time
computable function and (2) its any inverse f ′, i.e., any function f ′ satisfying f(f ′(f(x))) = f(x)
for all x, is s(·)-secure.

1For simplifying our argument, we treat the null string separately and consider only strings of positive length.

2

Definition 3. A function g is a s(·)-secure pseudo-random generator if (1) g is polynomial-
time computable, (2) its length function ` satisfies `(n) > n for all n, and (3) the following
holds for every polynomial-time randomized Turing machine M and for all sufficiently large n:
| Pry∈UΣ`(n) [M(y) = 1]− Prx∈UΣn [M(gn(x)) = 1] | < s(n)−1.

We will make use of a universal hash function family, and here we define the following
standard one. Let H = {Hn,m}n,m≥1, where Hn,m : Σn × Σ(n+1)m 7→ Σm, be defined as
Hn,m(x, r) = x+ · r, where r is a (n + 1)×m matrix over F2 (the Galois field of two elements),
x+ is a 1× (n + 1) vector over F2 obtained from x by padding 1 to its end, and · is the matrix
multiplication operator. Let s(n,m) = (n + 1)m, and we will identify each (n + 1)×m matrix
r with its corresponding string r of length s(n,m). (In the following, we will sometimes use r

longer than s(n,m) bits, in which case we assume that its prefix of appropriate length is used.)
Clearly this hash function family is polynomial-time computable and it satisfies the property
required for a pair-wise independent universal hash function family. That is, the following holds.

Lemma 1. For any n,m ≥ 1 and any fixed two x 6= x′, |x| = |x′| = n, two function values
Hn,m(x,R) and Hn,m(x′, R) defined by a random variable R ∈U Σs(n,m) are random variables
that are independently and uniformly distributed over Σm.

From this property, we can also prove another important property of a pair-wise independent
universal hash function family, which is usually referred as “Leftover Hash Lemma” of [HILL98].
Here we state the property in a way suitable to our analysis. (The proof, which is essentially
the same as the standard one, is omitted here.)

For any t and any string w, we will use bwct to denote the first t bits of w.

Lemma 2. For any n ≥ 1, let Γ be any subset of Σn of cardinarity ≥ 2t. For any parameters
t′ ≥ t and ∆ > 0, consider a random variable RbHn,t′(X, R)ct−∆ defined with random variables
X ∈U Γ and R ∈U Σs(n,t′). Then this random variable is quite close to the uniform distribution
over Σs(n,t′)+t−∆. More specifically, we have the following difference from a random variable
Y ∈U Σs(n,t′)+t−∆ for any S ⊆ Γ.

|Pr[RbHn,t′(X,R)ct−∆ ∈ S]− Pr[Y ∈ S]| ≤ 1
2∆/2−1

.

3 Many-one Complete Degrees Collapse

We begin this section by introducing some notations and notions on one-way functions. For any
function f mapping elements in Σn to Σ`(n) and for any y ∈ Σ`(n), by f−1(y) we mean the set
of strings x such that y = f(x) holds. In the following, for any function f and any input x, we
say that f is one-to-one on x if f−1(f(x)) = {x}. A function f is called regular if |f−1(x)| is
the same for all x ∈ Σn.

We will base on the following hypothesis that has been widely believed.

Regular One-Way Hypothesis: There exist 2nε
-secure regular one-way functions

for some ε > 0.

3

Based on this hypothesis, we prove the following collapsing result. (We can also show the
same result from one-way functions whose pre-image size is P/poly-computable; but since the
modification of the proof is easy, we leave it to the interest reader.)

Theorem 1. If Regular One-Way Hypothesis is true, then for every class C closed under non-
uniform polynomial-time reductions, if A is ≤p

m-hard for C, then A is ≤p/poly
li,1-1 -hard for C.

The remainder of this section is devoted to the proof of this theorem. Assume Regular One-
way Hypothesis. Let f0 be a 2nε

-secure regular one-way function. Let `0 and t0 be respectively
the length function of f0 and a function defined from the size of f0’s preimage as follows:
t0(n) =

⌊
log2 |f−1

0 (f0(x))|⌋ for any x ∈ Σn. Then we may assume that 0 ≤ t0(n) ≤ n − 1, and
the following holds for all x ∈ Σn.

2t0(n) ≤ |f−1
0 (f0(x))| ≤ 2t0(n)+1.

In [HILL98], a pseudorandom generator is constructed from a one-way function. The fol-
lowing lemma captures the result of [HILL98].

Lemma 3. Assume (Regular) One-Way Hypothesis. Then there exists a 2nγ
-secure pseudo-

random generator gprg for some γ > 0. Further, gprg maps strings of length n to strings of
length 2n.

3.1 Constructing a Nearly One-to-One One-way Function

We will transform f0 to another one-way function that is nearly one-to-one. This construction
is well-known, see, e.g., [Gol01]. We give details for the sake of completeness and also because
our parameters are slightly different. (Throughout this subsection, we will use input length of
f0 as a size parameter, which is denoted by n.)

Let a(n) = t0(n) + n0.9ε + 1 and b(n) = (n + 1)a(n). For any n and any string x ∈ Σn and
r ∈ Σb(n), define

f1(x, r) = f0(x)rHn,a(n)(x, r).

Note that we may need some advice, namely, t0(n) for computing f1(x) for each x ∈ Σn; but it
is easy to see that f1 ∈ P/poly.

We first show that the function f1 is almost one-to-one.

Lemma 4. For every n, the number of strings in Σn+b(n) on which f1 is not one-to-one is
bounded by 2n+b(n)/2n0.9ε

.

Proof. Fix n. Let T0(n) be the size of preimage of f0(x) for each x ∈ Σn; that is, T0(n) =
|f−1

0 (f0(x))|. We estimate probabilities based on random variables X, X ′, R, and R, where
X, X ′ ∈U Σn and R, R′ ∈U Σb(n).

4

We first note that

Pr[f1(X,R) = f1(X ′, R′)]

= Pr[f0(X) = f0(X ′) ∧ R = R′ ∧ Hn,a(n)(X,R) = Hn,a(n)(X
′, R′)]

= Pr[R = R′] · Pr[f0(X) = f0(X ′) ∧ Hn,a(n)(X, R) = Hn,a(n)(X
′, R)]

=
1

2b(n)
· Pr[f0(X) = f0(X ′)] · Pr[Hn,a(n)(X, R) = Hn,a(n)(X

′, R) | f0(X) = f0(X ′)]

=
1

2b(n)
· T0(n)

2n
· (Pr[X = X ′ | f0(X) = f0(X ′)]

+ Pr[Hn,a(n)(X, R) = Hn,a(n)(X
′, R) | X 6= X ′ ∧ f0(X) = f0(X ′)])

=
T0(n)
2n+b(n)

·
(

1
T0(n)

+
1

2a(n)

)
=

1
2n+b(n)

+
T0(n)

2n+b(n)+a(n)
.

On the other hand, letting K denote the number of strings in Σn+b(n) on which f1 is not
one-to-one, we have

Pr[f1(X,R) = f1(X ′, R′)] ≥ 1
2n+b(n)

+
K

22n+2b(n)
.

Therefore,

1
2n+b(n)

+
K

22n+2b(n)
≤ Pr[f1(X, R) = f1(X ′, R′)] ≤ 1

2n+b(n)
+

T0(n)
2n+b(n)+a(n)

,

and hence,

K ≤ 2n+b(n) · T0(n)
2t0(n)+n0.9ε+1

≤ 2n+b(n)

2n0.9ε .

tu

The following lemma makes sure that f1 remains a one-way function.

Lemma 5. f1 is a 2n0.9ε−2-secure one-way function.

Proof. Suppose not. Let M be a polynomial-time randomized machine such that

Pr
x∈UΣn,r∈UΣb(n)

[f1(M(f1(x, r))) = f1(x, r)] ≥ 1
2n0.9ε−2

for any n. Define another machine M ′ as follows: on input y, |y| = `0(n), randomly pick r,
|r| = b(n), and v, |v| = a(n); compute the output, say xr, of the M on yrv; and output x iff
f0(x) = y.

We show that machine M ′ inverts f0 on impossibly large fraction. Fix suffciently large
n. Let X and R be random variables as previously defined, and let V ∈U Σa(n). We have
f1(X,R) = f0(X)RHn,a(n)(X, R). Here we use Leftover Hash Lemma (i.e., Lemma 2) for the
following parameters of the lemma: Γ = f−1

0 (f0(X)), t = t0(n), and ∆ = 2n0.9ε. Then the
lemma guarantees that the distance between the distributions f0(X)RbHn,a(n)(X, R)ct0(n)−∆ and

5

f0(X)RbV ct0(n)−∆ is at most 2−(∆/2−1) = 2−(n0.9ε−1). Note that t0(n)−∆ = a(n)− 3n0.9ε − 1.
Therefore, we have

Pr[f0(M ′(f0(X))) = f0(X)]

≥ Pr[f1(M(f0(X)RV)) = f1(X, R)] (by definition of M ′)

≥ 1
23n0.9ε+1

· Pr
[∃v′ [|v′| = 3n0.9ε + 1 ∧ f1(M(f0(X)RbV ca(n)−3n0.9ε−1v

′)) = f1(X, R)
]]

≥ 1
23n0.9ε+1

·
(

Pr
[
∃v′

[
|v′| = 3n0.9ε + 1

∧ f1(M(f0(X)RbHn,a(n)(X, R)ca(n)−3n0.9ε−1v
′) = f1(X, R)

]]

− 1
2n0.9ε−1

)

≥ 1
23n0.9ε+1

· 1
2n0.9ε =

1
24n0.9ε+1

>
1

2nε .

This contradicts the security of f0. tu
We now use the hard-core bit of f1 [GL89] to define another one-way function. Let dot(c, d) =

c ·d, and define f2(x, r, z) = f1(x, r)z and fhc(x, r, z) = f2(x, r, z)dot(xr, z), where |z| = |x|+ |r|.
Then the last bit of the output of the function fhc is pseudorandom [GL89].

Lemma 6. For all sufficiently large n, and for every polynomial-time randomized Turing ma-
chine M , the following holds, where the probabilities are defined on random variables X ∈U Σn,
R ∈U Σb(n), Z ∈U Σn+b(n), and B ∈U Σ.

|Pr[M(fhc(X, R,Z)) = 1]− Pr[M(f2(X, R, Z)B) = 1] | ≤ 1
2n0.8ε .

The function fhc is defined only on inputs of size 2n + 2b(n) for some n. We extend it
to inputs u of all even length as follows: fhc(u) = f2(x, r, zz′)dot(xr, zz′), where u = xrzz′

with x the largest prefix of u such that 2|x| + 2b(|x|) ≤ |u|, |r| = b(|x|), |z| = |x| + b(|x|),
|z′| = |u| − 2|x| − 2b(|x|), and dot(xr, zz′) = xr · z. This slightly increases the probability bound
in above lemma; we choose a parameter δ so that the bound of the lemma holds with 2−|xrzz′|δ

istead of 2−n0.8ε
. (We may also assume that the one-to-oneness guaranteed by Lemma 4 holds

for this new fhc with a slightly larger non-one-to-one ratio 2−|xrzz′|δ instead of 2−n0.9ε
.)

3.2 Constructing a Length-Increasing and Almost One-to-One Reduction

Let A be a ≤p
m-hard set for C. Let B ∈ C. We will use functions fhc, gprg, and H to construct

a one-to-one and length-increasing reduction from B to A. This will be done in two steps. In
the first step, we exhibit in this subsection a reduction from B to A that is (i) length-increasing
and (ii) one-to-one on Σn for all n. (Throughout this subsection we will use n to denote input
length of the reduction from B to A. Let γ and δ denote the constants for gprg (Lemma 3) and
fhc (Lemma 6 and the comment after the lemma). We assume that δ = γ/2.)

We define the following two intermediate sets based on B, gprg, and fhc.

B1 = {u | u = xw ∧ |w| = |x| 2δ − |x| ∧ x ∈ B } ∪ {u | ∃s[gprg(s) = u] },
B2 = { y | ∃u [u ∈ B1 ∧ fhc(u) = y] }.

6

Recall that we assume that an input u of fhc is a string of even length; let ñ denote |u|/2, i.e.,
|u| = 2ñ, and we will use this ñ as a size parameter throughout this subsection.

Note that fhc is length-increasing and C is closed under non-deterministic reductions; it
follows that both B1 and B2 are in C. Let B2 ≤p

m A via hB2·A. Notice that fhc may not be a
reduction from B1 to B2 since it may not be one-to-one. We show that for two random strings
U and U ′ in Σ2en, the probability that hB2·A(fhc(U)) = hB2·A(fhc(U ′)) is small. This allows us
to construct a reduction hB·B1 from B to B1 such that hB2·A ◦ fhc ◦ hB·B1 is a reduction from
B to A with required properties. We use pseudorandomness of both fhc and gprg to obtain a
bound on the probability of this collision. Now let

p = Pr
u,u′∈UΣ2en

[hB2·A(fhc(u)) = hB2·A(fhc(u′))].

This probability is very small.

Lemma 7. p ≤ 2−(2en)δ+2 ≤ 2−n2+2.

Proof. Let `hc be the length function for fhc; that is, |fhc(u)| = `hc(2ñ) for any u, |u| = 2ñ.
Define machine M as follows: on input y, |y| = `hc(2ñ), randomly pick u′ ∈ Σ2en and accept iff
hB2·A(y) = hB2·A(fhc(u′)). Note that p = Pru∈UΣ2en [M(u) = 1].

Again fix ñ, and we discuss probabilities on random variables U,U ′ ∈U Σ2en and B ∈ Σ.
First from Lemma 6 it follows

|Pr[M(f2(U)B) = 1]− Pr[M(fhc(U)) = 1] | ≤ 2−(2en)δ
. (1)

Define
p̂ = Pr[hB2·A(f2(U)dot(U)) = hB2·A(fhc(U ′))],

where dot(U) denotes its complement; that is, dot(U) is 0 if dot(U) = 1 and 1 if dot(U) = 0.
Then we have

Pr[M(f2(U)B) = 1]

= Pr[hB2·A(f2(U)B) = hB2·A(fhc(U ′))]

= Pr[hB2·A(f2(U)B) = hB2·A(fhc(U ′)) ∧ B = dot(U)]

+Pr[hB2·A(f2(U)B) = hB2·A(fhc(U ′)) ∧ B 6= dot(U)] =
1
2
p +

1
2
p̂.

Thus, the equation (1) becomes |p + p̂ − 2p| ≤ 2−(2en)δ+1, which gives the following bound
on p in terms of p̂.

p ≤ p̂ + 2−(2en)δ+1. (2)

To bound p̂, we define another machine M ′ that works as follows: on input u, |u| = 2ñ,
randomly pick a u′ ∈ Σ2en and accept iff hB2·A(fhc(u)) = hB2·A(f2(u′)dot(u′)).

Now for the same ñ, we continue our analysis of probabilities; here we consider random
variables U,U ′ ∈U Σ2en and S ∈ Σen. Note first that p̂ = Pr[M ′(U) = 1]. On the other hand, by
pseudorandomness of gprg, the following holds.

∣∣Pr[M ′(U) = 1]− Pr[M ′(gprg(S)) = 1]
∣∣ ≤ 2−(en)γ

. (3)

7

Hence, we have

p̂ ≤ 2−(en)γ
+Pr[M ′(gprg(S)) = 1] ≤ 2−(en)γ

+Pr[hB2·A(fhc(gprg(S))) = hB2·A(f2(U ′)dot(U ′))].

Fix any s ∈ Σen. Since gprg(s) ∈ B1, fhc(gprg(s)) is in B2, and hence hB2·A(fhc(gprg(s))) is
in A. Now comes the key part of the argument: hB2·A(fhc(gprg(s))) = hB2·A(f2(u′)dot(u′)) is
possible for some u′ only if f2(u′)dot(u′) ∈ B2 as hB2·A is a reduction from B2 to A. Since B2

is a subset of the range of fhc, this is possible only if f2(u′)dot(u′) = f2(u′′)dot(u′′) for some
u′′ ∈ Σ2en and u′′ 6= u′. This implies f2(u′′) = f2(u′). By Lemma 4, f2 is not one-to-one on at
most 22en

2(2en)δ
strings. Therefore,

p̂ ≤ 2−(en)γ
+ 2−(2en)δ ≤ 2−(2en)δ+1.

This bound on p̂ gives the required bound on p using equation (2). tu
We now use the universal hash function H to define reduction hB·B1 from B to B1. Let

m(n) = n
2
δ − n. Define a function h0 by h0(x, r) = xH|x|,m(|x|)(x, r). A function hB·B1 will be

h0 with its second component fixed to some specific value. We will choose this value so that
hB2·A ◦ fhc ◦ hB·B1 is a length-increasing reduction from B to A that is one-to-one on Σn for all
large enough n. The following lemma shows this can be done. Let h = hB·B1 ◦ fhc ◦ h0.

Lemma 8. For all large enough n, there exists rn ∈ Σ(n+1)m(n) that satsifies the following.
(1) For every string x ∈ Σn, we have x ∈ B iff h(x, rn) ∈ A and |h(x, rn)| > n (= |x|).
(2) For every x 6= x′ ∈ Σn, we have h(x, rn) 6= h(x′, rn).

Proof. Fix a large enough n, and let m = m(n) and 2ñ = n + m. We estimate probabilities on
random variables X, X ′ ∈U Σn, R ∈U Σ(n+1)m, and U,U ′ ∈U Σ2en.

We show that h(·, R) is length increasing with high probability. For this we observe that

Pr[|h(X, R)| ≤ n] =
∑

y∈Σ≤n

Pr[h(X,R) = y] =
∑

y∈Σ≤n

Pr[hB2·A(fhc(U)) = y]

≤
√ ∑

y∈Σ≤n

(Pr[hB2·A(fhc(U)) = y])2 ·
√ ∑

y∈Σ≤n

1

=
√ ∑

y∈Σ≤n

Pr[hB2·A(fhc(U)) = y] · Pr[hB2·A(fhc(U ′)) = y | hB2·A(fhc(U)) = y] ·
√ ∑

y∈Σ≤n

1

≤ √
p · 2n+1

2 ≤ 2n

2
1
2
(2en)δ

≤ 1

2
1
2
n2−n

<
1

2n+2
(since n is large enough).

From this we bound the probability that h(·, R) is not length increasing as follows.

Pr[∃x ∈ Σn[|h(x,R)| ≤ n]] ≤
∑

x∈Σn

Pr[|h(x,R)| ≤ n] = 2n · Pr[|h(X, R)| ≤ n] <
1
4
.

Next we show that fhc is one-to-one on h0(Σn, r) for most of r ∈ Σ(n+1)m. Again since n is
large enough, we have

Pr[∃x ∈ Σn [fhc is not one-to-one on h0(x, R)]]

≤ 2n · Pr[fhc is not one-to-one on h0(X, R)]

= 2n · Pr[fhc is not one-to-one on U] ≤ 2n

2(2en)δ ≤ 1
2n2−n

<
1
4
.

8

Similarly, most of r’s ensure that h0(Σn, r) does not intersect with the range of gprg. That is,

Pr[∃x ∈ Σn, ∃s ∈ Σen [h0(x,R) = gprg(s)]]

≤ 2n · Pr[∃s ∈ Σen [h0(X,R) = gprg(s)]] = 2n
∑

s∈Σen
Pr[h0(X, R) = gprg(s)]

= 2n
∑

s∈Σen
Pr[U = gprg(s)] = 2n

∑

s∈Σen

1
22en =

2n

2en
≤ 2n

2n
2
δ

≤ 1
2n2−n

<
1
4
.

Finally, we bound the probability that h is not one-to-one on Σn. Again since n is large
enough and h0(X, R) and h0(X ′, R) are pair-wise independent, we have

Pr[∃x 6= x′ ∈ Σn [h(x,R) = h(x′, R)]] ≤ 22n · Pr[h(X,R) = h(X ′, R) | X 6= X ′]

≤ 22n · Pr[hB2·A(fhc(U)) = hB2·A(fhc(U ′))] = 22n · p ≤ 2−n2+2n+2 <
1
4
.

Therefore there exists an rn ∈ Σ(n+1)m satisfying (i) |h(x, rn)| > n for all x ∈ Σn, (ii) fhc

is one-to-one on h0(Σn, rn), (iii) h0(Σn, rn) does not intersect range of gprg, and (iv) h(x, rn) 6=
h(x′, rn) for all x 6= x′ ∈ Σn. For this rn, h(·, rn) is also a reduction from B to A on Σn. To see
this, consider any x ∈ Σn; then it holds that

x ∈ B ⇔ h0(x, rn) ∈ B1 (since h0(x, rn) is not in range of gprg)

⇔ fhc(h0(x, rn)) ∈ B2 (since fhc is one-to-one on h0(Σn, rn))

⇔ hB2·A(fhc(h0(x, rn))) ∈ A (since hB2·A is a reduction from B2 to A)

tu

Finally, define a function hB·B1 by hB·B1(x) = h(x, r|x|) for any x with |x| > n0 for some
sufficiently large n0. (For each x in the finite set Σ<n0 , we define hB·B1(x) appropriately so
that our requirements hold on Σ<n0 .) Then hB·B1 is in P/poly. Furthermore, by above lemma,
hB2·A ◦ fhc ◦ hB·B1 is a reduction from B to A that is (i) length-increasing and (ii) one-to-one
on Σn for all n.

3.3 Constructing a Length-Increasing and One-to-One Reduction

By Lemma 8, we have a length-increasing reduction from B to A that is one-to-one on Σn on
all sufficiently large n. But it may be still the case that the reduction is not one-to-one because
two strings of different lengths could be mapped to the same string by the reduction. Here we
get around this by using a standard padding trick.

Define set B3 as follows.

B3 = {x01m | x ∈ B ∧ m ≥ 0 }.

Again by Lemma 8, we can define some ≤p/poly
m -reduction from B3 to A that is length-increasing

and one-to-one on Σn for all sufficiently large n. Let us denote it as h1.
For any x, let |h1(x)| ≤ q(|x|) for some polynomial q. Define a function k by k(j) =

q(k(j−1)) and k(1) = n0, where n0 is the smallest number such that for all n ≥ n0, h1 is length-
increasing and one-to-one on Σn. Now define a function h2 by h2(x) = x01k(jn)−n−1, where

9

n = |x| and jn is the smallest number such that k(jn) > n. Clearly, h2 is a length-increasing
and one-to-one reduction from B to B3 mapping strings of length n to strings of length k(jn).
Finally, define h3 = h1 ◦ h2. Clearly, h3 is a length-increasing reduction from B to A. We now
show that this is what we want.

Lemma 9. The function h3 is one-to-one.

Proof. Consider y1 = h3(x1) (= h1(h2(x1))) and y2 = h3(x2) (= h1(h2(x2))) for x1 6= x2. If
|h2(x1)| = |h2(x2)| = n′, we immediately have y1 6= y2 since h1 is one-to-one on Σn′ and h2 is one-
to-one. On the other hand, if |h2(x1)| = k(jn1) > |h2(x2)| = k(jn2), then we have |h1(h2(x2))| ≤
q(|h2(x2)|) = q(k(jn2)) = k(jn2 + 1) (by the definition of k) ≤ k(jn1) < |h1(h2(x1))|. Thus,
again we have y1 6= y2. Therefore, h is one-to-one. tu

3.4 Structure of Complete Sets Relative to a Random Oracle

Our main theorem allows us to completely describe the structure of complete degrees relative
to a random oracle.

Theorem 2. Relative to a random oracle, for every class C closed under polynomial-time non-
deterministic reductions, if A is ≤p

m-hard for C, then A is also ≤p
li,1-1-hard for C. (On the other

hand, as shown in [KMR95], relative to a random oracle, there exists an A which is ≤p
m-hard

for C but not ≤p
li,1-1,inv-hard.)

Proof. Impagliazzo [Imp96] showed that there exists a 2
√

n-secure pseudorandom generator
relative to a random oracle R. Further, this generator is a one-to-one and length-increasing
function.

It follows from Theorem 1 that any ≤p
m-hard sets for C are ≤p/poly

li,1-1 -hard relative to R. We
can eliminate the non-uniformity by querying the random oracle to get the “right” value of the
string rn. To ease the analysis, this querying must be done at locations which are not accessed
otherwise. This is easily achievable by querying strings of the form x10t on input x for t larger
than running time of the reduction h. tu

4 Are NP-complete Sets Isomorphic?

Consider the class NP, and let usdiscuss the possibility of the Isomorphism Conjecture [BH77]
holds. we argue that a weaker form of this conjecture may be true: all ≤p

m-complete sets for NP
are P-isomorphic to each other via non-uniform reductions.

As shown above, under some plausible assumption, all ≤p
m-complete sets for NP are ≤p/poly

li,1-1 -
complete. The Isomorphism Conjecture states that these sets are all P-isomorphic to each other.
The evidence against the Isomorphism Conjecture is that given a standard NP-complete set, say
SAT, and a one-to-one, length-increasing one-way function f , the set f(SAT) is NP-complete
but there is no clear way to construct a polynomial-time invertible reduction of SAT to f(SAT).
In fact, as explained in the previous subsection, it was shown in [KMR95] that relative to a
random oracle there exist very strong form of one-way functions for which f(SAT) has only

10

sparse polynomial-time computable subsets. This makes it impossible for a one-to-one, length-
increasing, and P-invertible reduction to exist from SAT to f(SAT).

In the real world, however, no examples of such strong one-way functions are known. In
fact, for the known one-way functions, it is generally easy to identify small, but dense, subsets
on which they are invertible via non-uniform polynomial-time computable functions. If this
property holds for all one-to-one and length-increasing one-way functions, and the correspond-
ing dense subsets are easily identifiable, then we show that all ≤p

m-complete sets for NP are
isomorphic to each other via non-uniform polynomial-time reductions, i.e., P/poly-reductions.

For nonuniform complexity classes, we use the standard ones P/poly. Classes such as P/q

are used to bound (more specifically) advice string size by some polynomial q. Here we fix one
advice interpreter I(·, ·) and assume that for any advice u and input x, I(a, x) is computable in
O((|a| + |x|)2)-time. Language classes are extended to function classes naturally by extending
the role of the interpreter from a recognizer to a transducer. Any function f ∈ P/poly is called
a P/poly-computable function.

Now we formalize the property that we need from one-way functions. A polynomial-time
computable pairing function (or a polynomial-time computable padding function) is a function π :
Σ∗×Σ∗ 7→ Σ∗ that is (i) one-to-one and length increasing, and (ii) polynomial-time computable
and invertible2. A function e : Σ∗ 7→ Σ∗ is called a P/poly-embedding if (i) e is one-to-one and
length-increasing, and (ii) e is P/poly-computable.

Fix any polynomial-time computable pairing function π. We first define the notion of
“P/poly-easy cylinder w.r.t. π.”

Definition 4. Let f be a one-to-one, length-increasing function in P/poly. For any polynomial
q, the function f has a P/q-easy cylinder w.r.t. π if there exist some P/poly-embedding e, and
some length function `(·) such that for any n and for every string u with |u| ≥ `(n), there exists
some gu ∈ P/q such that gu(f(π(u, e(x)))) = x for all x ∈ Σn. In general a P/q-easy cylinder
for some polynomial q is called a P/poly-easy cylinder.

Intuitively, a function f having a P/poly-easy cylinder w.r.t. π has a “parameterized” dense
part in its domain on which it is easy to invert. Note that a P/poly-embedding e can be chosen
depending on f and that one can define a P/q-computable function gu for each parameter u.
We believe that all one-to-one and length-increasing functions in P/poly have a P/poly-easy
cylinder w.r.t. π. Notice here that the choice of the pairing function π is not essential; the
following relation is easy to show.

Proposition 1. All one-to-one and length-increasing functions in P/poly have a P/poly-easy
cylinder w.r.t. some polynomial-time computable pairing function if and only if it holds w.r.t.
any polynomial-time computable pairing function.

Thus, in the following, we fix one polynomial-time computable pairing function, and the
reference to the pairing function is omitted. Now we make the following conjecture.

Easy Cylinder Conjecture: All one-to-one and length-increasing functions in
P/poly have a P/poly-easy cylinder.

2The following argument holds by extending the polynomial-time computability to the P/poly-computability.

But we leave this extension to the interest reader.

11

The known one-way functions all appear to have a P/poly-easy cylinder. Let us see some
examples. First we fix our paring function π. Though a bit tricky, in order to simplify our
explanation, here we define it as follows.

π(u, z) =

{
10 pre(u) z, if z ∈ 0Σ∗, and
11 (pre(u) z)rev, otherwise,

where pre(u) denotes a prefex-free code of u, and (· · ·)rev is a mirror image of · · · .
We here consider the following two functions, the former is from factorization and the latter

is from RSA.

f×(x, y) = x× y, and frsa(m, e, n) = (me (modn), e, n).

Precisely speaking, e.g., f× is a function from Σ2n to Σ2n and two numbers x and y are obtained
from the first and the last half of a given input binary string. Similarly, we assume that m,
e, and n (resp., me (mod n), e, and n) are of the same length and encoded as a single binary
string. We believe that these functions are not polynomial-time invertible. Nevertheless, it is
easy to see that they have P/poly-easy cylinders. To see this, for f×, we use an embedding
function e1(x) = 0x and a length function `(n) = n + 1. Then for any fixed u ∈ Σ≥`(n), the
first half bits of π(u, e1(x)) is fixed for any x; that is, π(u, e1(x)) = u′x′ with some u′ and x′

of length n′, and u′ is fixed whereas x′ varies depending on x. Then clearly, by using u as an
advice, it is easy to invert f×(π(u, e1(x))) to obtain x. On the other hand, for frsa, we use
an embedding function e2(x) = 1x and a length function `(n) = 2n + 2. Then similarly, each
u ∈ Σ≥`(n) determines e and n in (m, e, n) = π(u, e2(x)) whereas m depends on x. Hence it is
again easy to invert frsa(π(u, e2(x))) to obtain x (since e and n are fixed, we can non-uniformly
supply d = e−1 (modφ(n)) to gu).

We provide some more examples of functions believed to be one-way that have an easy
cylinder.

Subset-sum. fss(x1, x2, . . . , xn, S) = (x1, x2, . . . , xn,
∑

i∈S xi), |x1| = |x2| = · · · = |xn| = n.
Use embedding function e2(x) = 1x, and `(n) = (n + 1)2. Then for any fixed u ∈ Σ≥`(n),
the last `(n) bits in π(u, e2(x)) = (x1, x2, . . . , xn, S) are fixed and so only x1 depends on
x. Knowing u, inverting fss on such inputs is trivial.

Linear Error Correcting Codes over F2. fecc(M, x, e) = (M,xM +e) with |M | = nm is an
n ×m matrix over F2, x a 1 × n vector, and e a 1 ×m error vector (with not too many
1’s). Use embedding function e1(x) = 0x and `(n) = (n + 1)2 + n + 1. Then for any fixed
u ∈ Σ≥`(n), the first `(n) bits of π(u, e1(x)) = (M, x, e) are fixed and so only e depends on
x. Inverting fecc on such inputs is trivial with the help of u.

Exponentiation in Finite Fields. fexp(g, e, p) = (g, ge (mod p), p) with |g| = |e| = |p|. As
before, using embedding e2, we can fix e and p in the input, and on this, fexp is trivial to
invert.

In this way, we can easily show known one-way function candidates all have P/poly-easy
cylinders. This may be a good support for our Easy Cylinder Conjecture. On the other hand,

12

based on this conjecture, we can show that ≤p/poly
li,1-1 -reducibility implies ≤p/poly

li,1-1,inv-reducibility.
Our result is stated in terms of the following canonical NP-complete set.

K = {π(p, y) | p is a code of a machine Mp such that Mp accepts y in at most |py| steps }.

Theorem 3. Suppose that Easy Cylinder Conjecture holds. Then for any set A, K ≤p/poly
li,1-1 A

implies K ≤p/poly
li,1-1,inv A.

Proof. Consider any set A such that K ≤p/poly
li,1-1 A, and let f be a one-to-one, length-increasing,

and P/poly-computable reduction from K to A. Then it follows from Easy Cylinder Conjecture
that f has a P/q-easy cylinder w.r.t. some polynomial q, P/poly-embedding function e, and
length function `(·). We may assume that e is P/r-computable for some polynomial r.

We define a P/poly-computable reduction h from K to K such that f is easy to invert on
the range of h. Fix any n, and consider a nondeterministic Turing machine Mn that executes as
follows on input y = e(x) for each x ∈ Σn: Guess x and check whether e(x) is indeed y; if not
reject y, and if so, accept y if and only if x is in K. Here we note that the advice of size r(n) for
computing e on Σn is hardwired in Mn. On the other hand, from our assumption on the advise
interpreter I, Mn(y) halts in O(r(n)2 + |y|) steps. Thus, by letting pn be a code of this machine
Mn that is (with some padding) sufficiently long, we have Mpn halts and accepts e(x) in |pne(x)|
steps iff Mn accepts e(x) iff x ∈ K for all x ∈ Σn. We may assume that `(n) ≤ |pn| ≤ r′(n) for
some polynomial r′.

With these machine codes pn for all n, the reduction h is defined as follows for each n and
each x ∈ Σn.

h(x) = π(pn, e(x)).

Then it follows from the above that this is a reduction from K to K. Furthermore, h is P/(r+r′)-
computable.

Now we define f̂ = f ◦h and claim that K ≤p/poly
li,1-1,inv A via f̂ . Clearly, it is a ≤p/poly

li,1-1 -reduction
from K to A. To complete the proof, observe that {π(pn, e(x))}x∈Σn satisfies the condition of
a P/poly-easy cylinder. Thus, from our assumption, for each n, we have some gn in P/q such
that x = gn(f(π(pn, e(x)))) (= gn(f̂(x))) for all x ∈ Σn. That is, f̂ is P/q-invertible. tu

Finally we summarize our discussion as follows.

Corollary 4. If both Regular One-Way Hypothesis and Easy Cylinder Conjecture hold, then
all ≤p/poly

m -complete sets for NP are isomorphic under P/poly-reductions.

References

[AAR98] M. Agrawal, E. Allender, and S. Rudich, Reductions in circuit complexity: An iso-
morphism theorem and a gap theorem, J. Comput. Sys. Sci., 57:127–143, 1998.

[Agr01] M. Agrawal, The first order isomorphism theorem, in Proceedings of Twenty First
FST&TCS, Lecture Notes in Comp. Sci. 2245, 70–82, 2001.

[Agr02] M. Agrawal, Pseudo-random generators and the structure of complete degrees, in
Proceedings of the Conference on Computational Complexity, IEEE, 139–146, 2002.

13

[BH77] L. Berman and J. Hartmanis, On isomorphism and density of NP and other complete
sets, SIAM Journal on Computing, 1:305–322, 1977.

[GL89] O. Goldreich and L. A. Levin. A hardcore predicate for all one-way functions, in
Proceedings of Annual ACM Symposium on the Theory of Computing, ACM, 25–32,
1989.

[Gol01] O. Goldreich, Foundation of Cryptography I: Basic Tools, Cambridge University Press,
2001.

[HILL98] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby, A pseudo-random generator from
any one-way function, SIAM Journal on Computing, 221–243, 1998.

[Imp96] R. Impagliazzo, Very strong one-way functions and pseudo-random generators exists
relative to a random oracle, Manuscript, January 1996.

[JY85] D. Joseph and P. Young, Some remarks on witness functions for nonpolynomial and
noncomplete sets in NP, Theoret. Comput. Sci., 39:225–237, 1985.

[KMR90] S. Kurtz, S. Mahaney, and J. Royer, The structure of complete degrees, in Complexity
Theory Retrospective (A. Selman, ed.), Springer-Verlag, 108–146, 1990.

[KMR95] S. Kurtz, S. Mahaney, and J. Royer, The isomorphism conjecture fails relative to a
random oracle, Journal of the ACM, 42(2):402–420, 1995.

[Wat91] O. Watanabe, On the p-isomorphism conjecture, Theoret. Comput. Sci., 83:337–343,
1991.

[You90] P. Young, Juris Hartmanis: Fundamental contributions to isomorphism problems, in
Complexity Theory Retrospective (A. Selman, ed.), Springer-Verlag, 28–58, 1990.

14

