
Research Reports on
Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: CCC ooommm ppp uuu ttt eee rrr SSS ccc iii eee nnn ccc eee

ISSN 1342-2812

Strong Hardness Preserving Reduction
from a P-Samplable Distribution

to the Uniform Distribution
for NP-Search Problems

Akinori Kawachi and Osamu Watanabe

March 2008, C–261

Strong Hardness Preserving Reduction

from a P-Samplable Distribution to the Uniform Distribution

for NP-Search Problems

Akinori Kawachi and Osamu Watanabe

Dept. of Math. & Comp. Sci., Tokyo Inst. of Tech, Tokyo

{kawachi,watanabe}(at)is.titech.ac.jp
Research Report C-261

Abstract. Impagliazzo and Levin demonstrated [IL90] that the average-case hardness of
any NP-search problem under any P-samplable distribution implies that of another NP-search
problem under the uniform distribution. For this they developed a way to define a reduction
from an NP-search problem F with “mild hardness” under any P-samplable distribution H;
more specifically, F is a problem with positive hard instances with probability 1/poly(n) under
H. In this paper we show a similar reduction for an NP-search problem F with “strong
hardness”, that is, F with positive hard instances with probability 1 − 1/poly(n) under H in
its positive domain (i.e., the set of positive instances). Our reduction defines from this pair of
F and H, some NP-search problem G with a similar hardness under the uniform distribution
U ; more precisely, (i) G has positive hard instances with probability 1− 1/poly(n) under U in
its positive domain, and (ii) the positive domain itself occupies 1/poly(n) of {0, 1}n.

1 Introduction

The theory of the average-case complexity has been studied extensively since 1970’s, and during
late 80’s to early 90’s, several fundamental results have been shown (see an excellent survey
[BT06b] for the background). Among such results, an average-case NP-completeness theorem
shown by Impagliazzo and Levin [IL90] is one of the seminal results in the average-case com-
putational complexity theory. They demonstrated some NP problem Y whose hardness under
the uniform distribution U is complete in the sense that it is essentially harder than any NP
problem X under any polynomial-time samplable distribution H. In high level, they showed
a reduction from (X,H) to (Y,U) that keeps certain hardness. Here we propose a reduction
showing a closer complexity relation for investigating stronger hardness properties.

From some technical reason (see discussion in the last section), we consider throughout this
paper only NP-search problems, i.e., problems for finding a polynomial-time verifiable witness
for a given positive instance (i.e., “yes” instance) of the corresponding NP decision problem.
In this context the Impagliazzo-Levin reduction is stated as follows. Let F be any NP-search
problem, and let L be its positive domain, i.e., the set of its positive instances. Let H be a
polynomial-time samplable distribution for inputs under which we would like to investigate the
complexity of the search problem F . Then for this pair of F and H, their reduction defines some
NP-search problem G with a positive domain M that satisfies the following property: Suppose

1

that some polynomial-time (randomized) algorithm B succeeds to solve G with high probability
under the uniform distribution over its positive domain M . More specifically, suppose that
Prx:Un [B(x) ∈ G(x) | x ∈ M] > 1 − δ(n) holds for some δ(n) > 0 (where n and n are
polynomially related). Then we have some algorithm A satisfying Prx:Hn [A(x) ∈ F (x) | x ∈
L] > 1 − poly(n) · δ(n). With reductions of this type, we can show that the average-case NP-
hardness under any polynomial-time samplable distribution is essentially equivalent to the one
under the uniform distribution (see, e.g., [BT06b] for an exact statement and its proof).

Roughly speaking, the above reduction shows that F ’s hard part is not reduced to more
than 1/poly(n) in G; that is, if F ’s hard part occupies (measured under H) poly(n) · δ(n) of its
positive domain, then the proportion of G’s hard part in its positive domain is at least δ(n). In
applications of the average-case complexity theory, we sometimes require higher hardness, e.g.,
hardness on all but a small fraction of instances. Such examples can be found in cryptographic
applications. The above reduction from (F,H) to (G,U) is not appropriate for investigating such
strong hardness properties. For example, even if we know that the proportion of F ’s hard part is
close to 1 underH, it only guarantees some 1/poly(n) lower bound for the proportion of G’s hard
part. We need a reduction that guarantees that easy part proportion does not get enlarged from
the original problem to the reduced problem. Unfortunately, however, the technique used in
the Impagliazzo-Levin reduction does not seem appropriate for this purpose (see more technical
explanation in the later section). In this paper, we propose some techniques added on the one
used in the Impagliazzo-Levin reduction to design a new reduction for providing such closer
hardness relationship.

Let us state our main result precisely. For this and for our later discussion, we first introduce
some notions and notations. For any NP-search problem F and any instance x, we use F (x) to
denote the set of solutions of F on x. We assume that each solution for x is expressed in {0, 1}∗
of length polynomially bounded by |x| and that some deterministic algorithm checks whether a
given w is a correct solution (i.e., w ∈ F (x) or not) within polynomial-time in |x|. An instance
x is called positive if F (x) 6= ∅.

In order for discussing the hardness of a given problem, we consider input instance distri-
butions. A distribution is specified as an ensemble H = {Hn}n≥0, where Hn is a distribution
restricted on {0, 1}n. We use U = {Un}n≥0 to denote the uniform distribution. By “x : Hn”
and “Hn(x)”, we mean respectively a random instance x occurred according to Hn and the
probability that x occurs according to Hn. A distribution H is called polynomial-time samplable
if there exists some polynomial-time randomized algorithm or a sampler H such that H(1n)
produces each x ∈ {0, 1}n with probability Hn(x). We assume that H(1n) always consumes a
random seed of the same length, say, ns. We use H(1n; r) to denote the execution of H on an
input 1n and a random seed r ∈ {0, 1}ns

.
Now we are ready to state our main theorem. We will prove the following theorem.

Theorem 1. We have some constants c0, d0, and e0 with which the following statement holds.
Let F be any NP-search problem with a positive domain L, and let H and H be any polynomial-
time samplable distribution for F and its polynomial-time sampler respectively. Suppose that
F , H, and H satisfy the following with some constants d ≥ 1 and s ≥ 1.

1. Prx:Hn [x ∈ L] ≥ n−d,
2. H(1n) generates an instance of size n according to the distribution Hn, and

2

3. H(1n) requires a random seed of size ns and runs in nO(1) time.

Then there exist some NP-search problem G and positive domain M that satisfy the following.

4. Prx:Un [x ∈ M] ≥ (n)−(d0+d),
5. if some (n)t-time randomized search algorithm B for G achieves

Pr
x:Un

[Pr
B

[B(x) yields some solution ∈ G(x)] ≥ 1/2 | x ∈ M] ≥ (n)−e, (1)

then by using B one can define some nc0·s·t-time randomized search algorithm A that solves
F in the following sense:

Pr
x:Hn

[Pr
A

[A(x) yields some solution ∈ F (x)] ≥ n−e0·s·e | x ∈ L] ≥ n−e0·s·e. (2)

Remark. Throughout this paper, we will use n and n to denote respectively the length of
instances for F and G. As we will see in the proof, n is polynomially bounded by n. Constants
c0, d0, and e0 are determined by choice of hash function families and a tupling function (used in
the proof) and do not depend on size parameters, distributions, nor NP-search problems. Such
constants will be called universal constants in the following.

There may be some other ways to show a similar relationship. For example, one might
consider using direct product techniques, i.e., Yao’s XOR lemma [Yao82] and its powerful vari-
ants. These techniques are quite useful for hardness amplification. Thus, we may be able to use
the Impagliazzo-Levin reduction and then amplify its hardness by one of those direct product
techniques. This approach, however, seems to have some disadvantage in our setting. They
basically make an instance of a harder problem by taking direct product of multiple instances of
the original problem, which is some NP-search problem in our case. But then fraction of positive
instances would decrease exponentially, and this may not be appropriate for investigating strong
hardness properties. One may be able to apply some hash function to increase the fraction of
positive instances in its domain; but it is not so obvious to find an appropriate way. Here we
rather take a more direct approach for designing a reduction that does not enlarge easy part
proportion and does not reduce positive domain proportion.

2 Reduction from Samplable to the Uniform Distributions

We prove our main theorem explained in Introduction. Below the symbols are the same as those
used in the theorem.

2.1 Our contribution: Why can’t we simply use the technique of [IL90]?

Before stating the proof, we recall the approach of Impagliazzo and Levin and explain our
technical contribution.

We would like to convert the distribution Hn to the uniform distribution Un, where n is the
size of reduced instances obtained from instances for F of length n. For this purpose, we encode
each x ∈ L of length n by a string y of length reflecting its “weight” Hn(x). For example, a
string x1 with Hn(x1) = 1/4 (= 2−2) is encoded by some y1 of roughly 2 bit length whereas a
string x2 with Hn(x2) = 2−10 is encoded by some y2 of roughly 10 bit length. Note that there

3

are at most 4 strings with heavy weight 2−2; hence, 2 bit string is enough. On the other hand,
we may need 10 bits to encode strings with light weight 2−10. Codes y1 and y2 are obtained by
random hash functions. Let Hash(n, k) denote a family of pair-wise independent hash functions
mapping from {0, 1}n to {0, 1}k. We use randomly chosen hash functions h1 ∈ Hash(n, 2) and
h2 ∈ Hash(n, 10) and compute y1 = h1(x1) and y2 = h2(x2). Then we may regard 〈h1, y1〉 and
〈h2, y2〉 as uniformly generated random strings. Furthermore, with random padding strings pad1

and pad2 of appropriate length, two strings 〈h1, y1, pad1〉 and 〈h2, y2, pad2〉 can be regarded as
random strings of the same length.

This encoding has the following problem: For using hash functions appropriately, we need to
estimate the weight of a given x; more specifically, kx = − logHn(x). But since this estimation
is usually hard, we would select k randomly (even so, the chance of k = kx is not so small).
Then there is some possibility that by some h′ ∈ Hash(n, 2), both heavy input x1 and light
one x2 are mapped to a short code y′ = h′(x1) = h′(x2) ∈ {0, 1}2. In this case even though
〈h′, y′, pad′〉 is solved it may be the case that the solution is for the light input x2 and it does
not help to give a reasonable success probability of solving F . The clever idea of [IL90] is to
use another hash function g for avoiding this problem. This hash function g is used to check
whether a string x mapped to y indeed has weight Hn(x) that is large enough for the current
choice of hash function h (or equivalently the current choice of k). Note that weight Hn(x) is
essentially the same as the number of random seeds with which the generator yields x. We use
the hash function g to check whether there are enough number of such random seeds for x. This
technique is called in [GT07] uniquely decodable random coding.

This last “unique decodability” of the technique of Impagliazzo and Levin is somewhat
limited, and it is weak to guarantee enough uniqueness property for our probability situation.
More specifically, the technique of [IL90] can bound the “bad case” probability by 1/c for some
constant c > 0. That is, the probability that an algorithm on input 〈h′, y′, pad′〉 gives an
undesired solution, e.g., a solution for the light x2 with h′(x2) = y′, is bounded by 1/c. This is
enough when the algorithm gives a correct answer with probability 1 − 1/poly(n), but this is
not sufficient for our situation where we can only assume an algorithm with 1/poly(n) success
probability. The main technical contribution of this paper is to solve this problem by using
triple-wise independent hash function families for g and by introducing a new analysis for the
unique decodability. Also some slightly more careful analysis is needed for taking care of the
small success probability, and for this, we introduce some pair-wise independent hash function
family with some strong nonshrink property (see below).

2.2 Hash function families

We use hash function families with some reasonable independence and related properties. In
general, for any t ≥ 2, let Hasht(n, k) denote a family of t-wise independent hash functions
mapping from {0, 1}n to {0, 1}k. That is, the following holds for any x1, ..., xt ∈ {0, 1}n such
that x1 6= · · · 6= xt and for any y1, ..., yt ∈ {0, 1}k:

Pr
h:Hasht(n,k)

[h(x1) = y1 ∧ h(x2) = y2 ∧ · · · ∧ h(xt) = yt] = (2−k)t.

Here by “h : Hasht(n, k)” we mean to choose a hash function h uniformly at random from
Hasht(n, k) (see below for more precise meaning).

4

Although we will use only pair-wise and triple-wise hash function families, it has been
known (see, e.g., [KJS01]) that for any constant t ≥ 2, one can define a hash function family
Hasht(n, k) so that each one of the family is representable in (kt/2)(n + log k) + O(1) bits. We
may further assume some polynomial `hash(·) such that for any n and any k ≤ n, hash functions
in Hash2(n, k) (and resp., Hash3(n, k)) are uniformly generated from a random seed chosen
uniformly at random from {0, 1}`hash(n), and that given its seed and an input string in {0, 1}n,
the specified hash function value is computable in polynomial-time in n. In the following, we
will identify these random seeds with the corresponding hash functions. Thus “h : Hasht(n, k)”
precisely means to select this seed uniformly at random from {0, 1}`hash(n).

In the following, for a pair-wise independent hash function family, we will also require an
additional property, which we call “nonshrink property”. In the proof of the following lemma,
we show a way to define a new pair-wise independent hash function family Hash(·, ·) with the
nonshrink property as stated in the lemma. As we can easily see from its definition, Hash(·, ·)
satisfies the other properties mentioned above; precisely speaking, by using a bigger polynomial
for `hash(·). (The following lemma might have been known in the literature, but we state the
proof in Appendix for the sake of completeness.)

Lemma 2. We can define a pair-wise independent hash function family Hash(·, ·) that has the
following property for any sufficiently large n and k, 4 ≤ k ≤ n: For any X ⊆ {0, 1}n of size
≥ n2k, we have

Pr
h:Hash(n,k)

[
|h(X)| ≥ (1− 2−n/24)2k

]
≥ 1− 2−n/7.

We first explain the idea of a new hash function family. For simplifying our discussion, we
assume here that n is sufficiently large and n = 2l for some l so that log n is an integer.

Since |X| ≥ n2k, consider any partition {X1, ..., Xn} of X into sets of almost the same size.
Also consider n hash functions h1, ..., hn chosen independently from Hash2(n, k). Then since
|Xi| ≈ 2k, we may expect that |hi(Xi)| ≥ 2k/4 holds with reasonable probability. In order
words, for each y ∈ {0, 1}k, the probability that hi(x) = y for some x ∈ Xi is not so small. Then
since h1, ..., hn are all independent, we can show that hi(x) = y for some i and some x ∈ Xi

with probability exponentially close to 1. Now define h(x) = hi(x)(x), where i(x) is the index
i such that x ∈ Xi, and we may expect that h(X) occupies the most of its range {0, 1}k with
probability very close to 1. This is the idea of our hash function family.

For implementing this idea, we need to define the index function i(·) concretely. Here we
make use of h(1) ∈ Hash2(n, l) and use its value in {0, 1}l as an index. Also we use 2l pair-wise
independent randomly generated hash functions, that is, h

(2)
u ∈ Hash2(n, k) for each u ∈ {0, 1}l.

Then define h by
h(x) = h(2)

u (x), where u = h(1)(x).

Let Hash(n, k) denote the set of hash functions obtained in this way. This also defines the way
to generate each one in Hash(n, k) randomly. Clearly, this hash function family is pair-wise
independent, and it satisfies all the other properties mentioned before the lemma. Also we can
prove that this hash function family satisfies the property of the lemma.

5

2.3 Detail Argument

Now we state the proof of our main theorem in detail. We begin with recalling notations and
introducing some more for our discussion. Throughout this section, we consider sufficiently
large n, fix it, and consider only strings of length n for inputs to F . This n is our principle size
parameter and the other size parameters are defined based on it.

F : original NP-search problem, G : NP-search problem reduced from F,

L : set of F ’s (length n) positive inputs, M : set of G’s (length n) positive inputs,
x : instance for F (length n), x : instance for G (length n),
F (x) = F ’s solution set on x, G(x) = G’s solution set on x,

Hn : distribution for F , Un : uniform distribution (for G).

Here are some more notations concerning F and H. Note that n′ is a new symbol.

H : polynomial-time sampler for H, n′ def= ns = length of random seeds used by H(1n),
H(1n; r) = length n instance generated by H by using seed r ∈ {0, 1}n′ .

Finally we introduce some polynomial-time computable and invertible one-to-one tupling
function, and for any a1, ..., ak, let 〈a1, ..., ak〉 denote the output string of this function on
a1, ..., ak. For some constant ctuple, we assume that |〈a1, ..., ak〉| = (|a1|+ · · ·+ |ak|)ctuple (when
|a1| + · · · + |ak| is sufficiently large) so that the length |〈a1, ..., ak〉| is determined by the total
length of the input strings a1, ..., ak. Note that ctuple is one of the universal constants.

Now we define our target problem G based on a given search problem F and a sampler H.
An input x for G is defined as x = 〈k, h, y, g, pad〉; that is, it consists of five components with
the following domains:

G’s input is x = 〈k, h, y, g, pad〉,
where · k is from [n], · h is from Hash(n, k),

· y is from {0, 1}k, · g is from Hash3(n′, n′ − (k + 2 log n)), and
· pad is from {0, 1}` for some appropriate length `.

We may assume that all inputs x have the same length. Precisely speaking, k is expressed as a
binary string of some fixed length, say, dlog(n+1)e, and h and g are seed strings in {0, 1}`hash(n)

and {0, 1}`hash(n′). Since g is the longest in the five components of x and |g| ≤ `hash(ns), there
is some universal constant l0, with which we may assume that n (= |x|) = nl0·s.

We consider the average-case situation where these inputs x is given following the uniform
distribution Un. Here the uniform distribution Un means to choose an instance x uniformly at
random from {0, 1}n. This is in fact equivalent to generate x = 〈k, h, y, g, pad〉 by choosing
components k, h, y, g, and pad uniformly at random from each of their domains because the
length of each component of x is fixed for a given size parameter n and those components
are separable from one random string of length n. Thus, in the following analysis, instead
of considering Un, we simply argue by assuming that each component is chosen uniformly at
random from its domain.

6

For a given instance x = 〈k, h, y, g, pad〉 of G, the set of solutions G(x) is defined as follows:

G(x) = { 〈x, r1, r2, r3, w〉 | x ∈ {0, 1}n, r1, r2, r3 ∈ {0, 1}n′ , w ∈ {0, 1}m

(a) h(x) = y,
(b) w ∈ F (x) (i.e., w is one of the solution for F),
(c) H(n; r1) = H(n; r2) = H(n; r3) = x, and
(d) g(r1) ∈ 000∗ ∧ g(r2) ∈ 010∗ ∧ g(r3) ∈ 100∗ }.

In the following, we will often write r for (r1, r2, r3). Clearly the problem of finding some solution
in G(x) for a given instance x is an NP-search problem. We will show that this search problem
has the desired hardness

Now let us prove that G satisfies the theorem. We show that the first requirement (i.e., the
statement 4) holds based on the condition 1 of the theorem. That is, the following lemma.

Lemma 3. Suppose that Prx:Hn [x ∈ L] ≥ n−d for some d ≥ 0. Then for some universal
constant d0 > 0, we have

Pr
x:Un

[G(x) 6= ∅] ≥ (n)−(d+d0).

Proof. In order to simplify our presentation, we consider the case that d = 0; that is, the case
that Hn(L) = 1. The general case can be proven similarly with the same d0.

For each i, 0 ≤ i ≤ n′, define Li by Li = {x|2−(i+1) < Hn(x) ≤ 2−i}. Noting that n′ = ns

and |L| ≤ 2n, we have (for sufficiently large n) that

∑

i≥n+s log n+1

Hn(Li) ≤ n′ · 2n

2n+s log n+1
≤ 1

2
.

Hence, there is some i0, 0 ≤ i0 ≤ n + s log n, such that Hn(Li0) ≥ 1/2(n + s log n + 1) > 1/4n.
Note on the other hand that k for the first component of x is chosen from [n]; thus, letting
k0 = min(i0, n), we analyze the probability Prx:Un [G(x) 6= ∅ | k = k0], i.e., the probability that
〈k0, h, y, g, pad〉 has a solution.

First we check that k0 is not so far from i0. Note that |Li0 | ≥ 2i0/4n because Hn(x) ≤ 2−i0

for all x ∈ Li0 and Hn(Li0) ≥ 1/4n. On the other hand, since |Li0 | ≤ 2n (because Li0 ⊂ {0, 1}n),
we have 2i0/4n ≤ |Li0 | ≤ 2n; then it follows that i0 ≤ n + log n + 2 ≤ n + 2 log n. Thus, we have
k0 ≤ i0 ≤ k0 + 2 log n.

Let H−1(1n, x) = {r|H(1n; r) = x}. Then we have |H−1(1n, x)| ≥ 2n′−(i0+1) for all x ∈ Li0 .
Now by using this and the bounds |Li0 | ≥ 2i0/4n and k0 ≤ i0 ≤ k0 + 2 log n derived above, and

7

also by using the independence properties of h and g, we have the following bound.

Pr
h,y,g,pad

[G(〈k0, h, y, g, pad〉) 6= ∅]

≥ Pr
h,y,g,pad

[∃x, r, w [(a)∼(d) holds for h, y, g, x, r, w]

≥
∑

x∈Li0

Pr
h,y,g,pad

[∃r [(a),(c),(d) holds∗1 for h, y, g, r on x]

−
∑

x6=x′∈Li0

Pr
h,y,g,pad

[(· · · on x) ∧ (· · · on x′)]

(Note ∗1: (b) is satisfied by considering only x ∈ Li0)

≥ 1
2
·

∑

x∈Li0

Pr
h,y,g,pad

[∃r [(a),(c),(d) holds∗1 for h, y, g, r on x]

(Since we may assume that
∑

x∈Li0
Pr[· · ·] ≤ 1/2)

≥ 1
2
·

∑

x∈Li0

Pr
h,y

[(a) for h, y, x] · Pr
g

[∃r [(c),(d) for g, r, x]

≥ |Li0 |
2

·
∑

y∈{0,1}k0

1
2k0

· Pr
h

[(a) for h, y, x] ·
∑

r:∗2
Pr
g

[(d) for g, r]

(Note ∗2: r = (r1, r2, r3) consists of three different elements of H−1(1n, x))

≥ |Li0 |
2

· 2k0

2k0 · 2k0
· 2n′−(i0+1) · (2n′−(i0+1) − 1) · (2n′−(i0+1) − 2)
2n′−(k0+2 log n) · 2n′−(k0+2 log n) · 2n′−(k0+2 log n)

≥ 2i0

8n
· 2k0

2k0 · 2k0
· (2n′−(i0+1))3

2 · (2n′−(k0+2 log n))3

≥ 1
8n

· 1
16

≥ 1
128n

Since this is a bound for the case k = k0, by considering the probability that k = k0, we
have Prx:Un [G(x) 6= ∅] ≥ 1/(128n(n + 1)). We may assume that n > 128n(n + 1); therefore,
the desired bound is shown with d0 = 1. tu

Next consider the second requirement (i.e., the statement 5) of the theorem. For this we
assume an algorithm B solving G with (maybe small but) nonnegligible probability. Although
(1) of the theorem states somewhat weak success bound (namely, 1/2) of B(x), by the standard
technique, we may improve this bound to, say, 1 − 2−n, i.e., the one exponentially close to 1.
Thus, for simplifying our discussion, we will argue below from a stronger assumption that some
deterministic and (n)t-time bounded algorithm B satisfies

Pr
x:Un

[B(x) yields some solution ∈ G(x) | x ∈ M] ≥ (n)−e. (3)

An algorithm A for the original NP-search problem F is then defined by using this algorithm
B. It is in fact defined in the following simple way.

Algorithm: A (input x)
1) Choose k ∈ [n], h ∈ Hash(n, k), g ∈ Hash(n′, n′ − (k + 2 log n)), and pad ∈ {0, 1}l

uniformly at random;
2) Execute B(〈k, h, h(x), g, pad〉) and output the last component w of the output of B.

8

Clearly this algorithm’s running time is determined by the time for computing h(x) and
the running time of B(〈k, h, h(x), g, pad〉); hence, this can be bounded by (nl0·s)t+c′0 ≤ nc0·s·t

with some constant c0
def= l0 · (c′0 + 1). Note that this constant c0 (= l0 · (c′0 + 1)) is a universal

constant.
In the rest of this section, we prove that this A achieves the desired performance stated as

(2). That is, we show the following lemma.

Lemma 4. With some universal constant e0 > 0, the following holds.

Pr
x:Hn

[Pr
A

[A(x) yields some w ∈ F (x)] ≥ n−e0·s·e | x ∈ L] ≥ n−e0·s·e.

We prove the lemma by a sequence of claims. First we analyze the performance of the
algorithm B, based on the assumption (3), which is restated as follows in terms of n.

Remark on Notations. In the following technical discussion, we assume the condition “x ∈
M” omit stating this condition explicitly every time. Also when a random variable follows
the uniform distribution on its domain, we simply write, e.g., Prx[· · ·] as an abbreviation of
Prx:Un [· · ·].

Pr
x

[B(x) ∈ G(x)] ≥ (n)−e = n−l0·s·e.

Recall that Prx[B(x) ∈ G(x)] is Pr〈k,y,h,g,pad〉[B(〈k, y, h, g, pad〉) ∈ G(〈k, y, h, g, pad〉)] and
that k is chosen from [n]. Hence, we can fix some k0 so that

Pr
h,y,g,pad

[B(〈k0, y, h, g, pad〉) ∈ G(x)] ≥ n−l0·s·e/(n + 1) > n−(l0·s·e+2).

holds. Here we treat the case where k0 is small, say, k0 < 4 as a special case; in this case it is
easy to show the existence of positive and relatively heavy instances for F that can be solved
by A defined above, which is enough to guarantee (1). Thus, in the following we consider the
situation where k0 ≥ 4. From now on we focus instances of the form 〈k0, h, y, g, pad〉, and we
will use x0, or sometimes x0〈h, y〉, x0〈h, y, g〉, or x0〈h, y, g, pad〉 to denote it.

We use the following variation of the Markov inequality.

Proposition 5. Consider any index set X and a set of values {px}x∈X such that 0 ≤ px ≤ 1
for all x ∈ X. Then we have

∑
x∈X px

|X| ≥ γ ⇒ |{x | px ≥ γ/2}|
|X| ≥ γ

2
.

Let γ = n−(l0·s·e+2) and apply this proposition twice to the above bound. Then we have the
following two claims.

Claim 1. We say that h is good if Pry,g,pad[B(x0) ∈ G(x0)] ≥ γ/2. The proportion of good h is
at least γ/2. That is,

Pr
h

[
Pr

y,g,pad
[B(x0) ∈ G(x0)] ≥ γ

2

]
≥ γ

2
.

9

Claim 2. Consider any good h and fix it. We say that y is good (w.r.t. h) if
Prg,pad[B(x0) ∈ G(x0)] ≥ γ/4. The proportion of good y is at least γ/4. That is, we have

Pr
y

[
Pr

g,pad
[B(x0) ∈ G(x0)] ≥ γ

4

]
≥ γ

4
.

We let b = 3(l0 ·s ·e+2)+1 so that n−b ≤ (γ/8)3 (for sufficiently large n), and let a = b+6.
Then we say that a positive instance x ∈ L is fat if its weight Hn(x) satisfies Hn(x) ≥ 1/(naK0).
Note that there are at most naK0 fat instances in L (⊆ {0, 1}n). Let Lfat denote a set consisting
of all fat instances in L and some dummy strings1 so that |Lfat| = naK0. Then the following
claim holds.

Claim 3.

Pr
h,y,g

[∃x ∈ Lfat[h(x) = y] ∧B(x0〈h, y, g〉) ∈ G(x0〈h, y, g〉)] ≥ γ3

128
≥ 4n−b.

Proof. The claim is proven by counting all h, y, and g satisfying the condition. We say that a
hash function h ∈ Hash(n, k0) nonshrink (w.r.t. the set Lfat) if |h(Lfat)| ≥ K0(1 − γ/8) holds.
Since |Lfat| = naK0 with a ≥ 1, by the nonshirink property of Hash(n, k0) (Lemma 2), we have
(for sufficiently large n) |h(Lfat)| ≥ K0(1−2−n/24) ≥ K0(1−γ/8) by at least 1−2−n/7 > 1−γ/8
of all h’s in Hash(n, k0). On the other hand, the proportion of good h’s is at least γ/2. Hence,
the probability that random h is both nonshrink and good is ≥ γ/2− γ/8 > γ/4.

For each nonshrink and good h, we have at least K0(1 − γ/8) y’s that have some x ∈ Lfat

such that y = h(x). On the other hand, there are at least K0γ/4 good y’s, i.e., y’s for which
B(x0〈h, y, g, pad〉) ∈ G(x0〈h, y, g, pad〉) holds for at least γ/4 of all g’s and pad’s. Hence, the
probability that random y, g, and pad satisfy both y = h(x) and B(x0) ∈ G(x0) is at least
(γ/4− γ/8) · γ/4 = γ2/32. Putting these bounds together, we have the bound of the claim. tu

Let us further analyze the bound of the above claim. Here we divide the event B(x0) ∈ G(x0)
into disjoint subcases by considering the output of B.

4n−b ≤ Pr
h,y,g,pad

[∃x ∈ Lfat[h(x) = y] ∧ B(x0) ∈ G(x0)]

=
∑

x′
Pr

h,y,g,pad
[∃x ∈ Lfat[h(x) = y] ∧ B(x0) = (x′, r, w) ∈ G(x0)]

=
∑

x′∈Lfat

Pr
h,y,g,pad

[∃x ∈ Lfat[h(x) = y] ∧ B(x0) = (x′, r, w) ∈ G(x0)]

+
∑

x′′ 6∈Lfat

Pr
h,y,g,pad

[∃x ∈ Lfat[h(x) = y] ∧ B(x0) = (x′′, r, w) ∈ G(x0)]

≤
∑

x′∈Lfat

Pr
h,y,g,pad

[B(x0) = (x′, r, w) ∈ G(x0)] (4)

+
∑

x′′ 6∈Lfat

∑

x∈Lfat

Pr
h,y,g,pad

[h(x) = y ∧ B(x0) = (x′′, r, w) ∈ G(x0)]. (5)

1It may be the case that naK0 ≥ 2n. Then Lfat = {0, 1}n; analysis for this case is easier and omitted.

10

Consider the last two terms, i.e., (4) and (5). Noting that h(x′) = y is a part of the condition
(x′, r, w) ∈ G(x0), we can restate (4) as follows.

(4) =
∑

x′∈Lfat

Pr
h,y,g,pad

[h(x′) = y ∧ B(x0) = (x′, r, w) ∈ G(x0)]

=
∑

x′∈Lfat

Pr
h,y,g,pad

[B(x0) = (x′, r, w) ∈ G(x0) | h(x′) = y] · Pr
h,y

[h(x′) = y]

=
∑

x′∈Lfat

Pr
h,y,g,pad

[B(x0〈h, y〉) = (x′, r, w) ∈ G(x0〈h, y〉) | h(x′) = y] · 1
K0

=
1

K0
·

∑

x′∈Lfat

Pr
h,y,g,pad

[B(x0〈h, h(x′)〉) = (x′, r, w) ∈ G(x0〈h, h(x′)〉)]

=
1

K0
·

∑

x′∈Lfat

Pr
h,g,pad

[B(x0〈h, h(x′)〉) = (x′, r, w) ∈ G(x0〈h, h(x′)〉)]

Intuitively, this is the total success probability of our procedure A. On the other hand, the
term (5) bounds the probability that B’s answer does not help us for solving x′ ∈ Lfat. Our
new technique of using triple-wise independent hash functions and its analysis, which is different
from the one in [IL90], are for bounding this probability small. More specifically, we can bound
it as the following claim.

Claim 4. For any x ∈ Lfat, we have

∑

x′′ 6∈Lfat

Pr
h,y,g,pad

[h(x) = y ∧ B(x0〈h, y, g〉) = (x′′, r, w) ∈ G(x0〈h, y, g〉)] ≤ n6

n2aK0
.

Thus, since a = b + 6 and |Lfat| = naK0, we have

(5) ≤
∑

x∈Lfat

n6

n2aK0
= n−b.

Proof. Fix any x ∈ Lfat. The claim is shown by the following analysis.
∑

x′′ 6∈Lfat

Pr
h,y,g,pad

[h(x) = y ∧ B(x0〈h, y, g〉) = (x′′, r, w) ∈ G(x0〈h, y, g〉)]

≤
∑

x′′ 6∈Lfat

∑

r1:∗1

∑

r2:∗1

∑

r3:∗1
Pr

h,y,g,pad
[h(x) = h(x′′) = y ∧ (d) holds for g and r]

(Note ∗1: each ri is chosen so that H(1n; ri) = x′′)

≤
∑

r1:∗2

∑

r2:∗3

∑

r3:∗3
Pr

h,y,g,pad
[h(x) = h(x′′) = y ∧ (d) holds for g and r]

(
Note ∗2: r1 is chosen so that x′′ def= H(1n; r1) 6∈ Lfat

∗3: ri is chosen so that H(1n; ri) = x′′

)

≤ 2n′ · 2n′−k0

na
· 2n′−k0

na
· 1
K2

0

·
(

1
2n′−(k0+2 log n)

)3

=
n6

n2aK0
.

Here we use the fact that x′′ 6∈ Lfat implies that Hn(x′′) < 1/(naK0); in other words, the number
of r such that H(1n; r) = x′′ is less than 2n′−k0/na. tu

11

From the above claim and the restatement of (4), we have

1
naK0

·
∑

x′∈Lfat

Pr
h,g,pad

[B(x0〈h, h(x′)〉) ∈ G(x0〈h, h(x′)〉)] ≥ 3n−(a+b) ≥ 2n−(a+b). (6)

From this we now show that there are enough x′’s for which A succeeds with our desired prob-
ability. We say that x is A-good if

Pr
h,g,pad

[B(〈k0, h, h(x), g, pad〉) ∈ G(〈k0, h, h(x), g, pad〉)] ≥ n−(a+b)

Recall that a + b = 2b + 6 = 6(l0 · s · e + 2) + 8. Hence, we may choose the universal constant
e0 of the lemma large enough so that n−(a+b) > n−e0·s·e holds. Thus, A-good x’s are those for
which A(x) has the desired success probability. Therefore, the lemma is proven by the following
claim.

Claim 5.
Pr

x:Hn

[x is A-good] ≥ n−(a+b) > n−e0·s·e.

Proof. By applying Proposition 5 to the bound (6), we have
∣∣∣∣
{

x

 Pr
h,g,pad

[B(x0〈h, h(x)〉 = (x, r, w) ∈ G(x0)] ≥ n−(a+b)

}∣∣∣∣ ≥ naK0

na+b
.

Recall that x0〈h, h(x)〉 is the abbreviation of 〈k0, h, h(x), g, pad〉; hence, the above means that
the number of A-good x’s is at least naK0 · n−(a+b).

Next we show that a good x is in fact fat; that is, for any good x, we have

Pr
r

[H(1n; r) = x] ≥ 1
naK0

=
2n′−k0

na · 2n′ .

This is because if otherwise, we have |{r : H(1n; r) = x}| < 2n′−k0/na, and hence

Pr
g

[(∗)∃ r [H(1n; r1) = H(1n; r2) = H(1n; r3) = x ∧ (d) holds for r and g]]

<

(
2n′−k0

na

)3

·
(

1
2n′−(k0+2 log n)

)3

=
n6

n3a
< n−(a+b),

but then since (∗) is a part of the conditions for solutions of x, the probability that A(x) gives
any solution must be less than this bound, contradicting the assumption that x is A-good.

Now we know that there are at least naK0 · n−(a+b) good x’s and that each of them is fat,
i.e., Hn(x) ≥ 1/(naK0). This proves that the probability of good x under the distribution Hn

is at least n−(a+b). tu

3 Concluding Remarks

We show a strong hardness preserving reduction for distributional NP-search problems from
any polynomial-time samplable distribution to the uniform distribution. We needed to consider
NP-search problems because our current reduction may create nonnegligible fraction of “no”

12

instances and this makes the problem easy as a decision problem; small but still nonnegligible
correct probability can be achieved even by the trivial algorithm that always yields “no” answer.

Although not yet certain, there may be some approach for overcoming this obstacle. First we
remark that the proportion of a positive domain M of our constructed uniformly hard problem
G can be made very close to 1. The hard problem G shown in Theorem 1 has a positive domain
M that occupies at least 1/poly(n) of {0, 1}n for each sufficiently large n; but we can in fact
modify it to some G′ with a positive domain M ′ that is close to {0, 1}n′ . More precisely, we can
prove the following a bit stronger version of Theorem 1.

Theorem 6. Let G and M be an NP-search problem and its positive domain defined in The-
orem 1 from the original NP-search problem F and a distribution H. In particular, recall that
G and M satisfying the conditions 4 and 5 of the theorem with constants d and e. Then we can
define some NP-search problem G′ and its positive domain M ′ satisfying the following conditions
with some universal constant c1 > 0 and some constant c ≥ 1 that depends on d and e.

1. Prx′:Un′ [x′ ∈ M ′] ≥ 1− 2−c1n′ , and
2. if some polynomial-time randomized search algorithm B′ for G′ achieves

Pr
x′:Un′

[Pr
B′

[B′(x′) yields some solution ∈ G′(x′)] ≥ 1/2] ≥ (n′)−e/c2 , (7)

then by using B′ one can define some polynomial-time randomized search algorithm B that
solves G as shown in the following sense of (1), which is restated as follows:

Pr
x:Un

[Pr
B

[B(x) yields some solution ∈ G(x)] ≥ 1/2 | x ∈ M] ≥ (n)−e.

Thus, by Theorem 1, we may construct some polynomial-time randomized algorithm A that
solves F with nonnegligible probability under H.

Proof. The idea is to apply a (random) hash function with the nonshrink property to positive
instances x of G to define instances x′ of G′; that is, the set M ′ of positive instances of G′ is
defined by M ′ = {(h(x), h) | x ∈ M andh ∈ Hash(|x|, k(|x|)}. A solution of a positive instance
x′ = (h(x), h) is simply x itself and a solution of x w.r.t. G.

Fix n, the length of G’s instances, and show the above idea works with some appropriate
choice of parameters. First fix k = k(n) = n − (d0 + d) log n − 1, and use Hash(n, k) as
the hash function family with the nonshrink property. Then G′ is defined as above and let
M ′ = {(h(x), h) | x ∈ M andh ∈ Hash(n, k)} (which is a slice of the actual M ′ corresponding to
G’s instances of size n). Let ` = `hash(n) be the length of each hash function of Hash(n, k). Let
n′ be the length of strings of the form (h(x), h); we may assume that n ≤ n′ ≤ nO(1).

Note first that

|M | ≥ 2n

nd0+d
= n2n−(d0+d) log n−1 = n2k.

Thus, by the nonshrink property of Lemma 2, we have

|M ′| ≥ (1− 2−n/24)(1− 2−n/7)2k2`,

from which the condition 1 of the theorem follows with some universal parameter c1 > 0.

13

For the condition 2 of the theorem, assume some polynomial-time randomized algorithm B′

that satisfies (7). An instance x′ is called G′-easy if B′(x′) yields a solution with prob. > 1/2. We
may assume that for such easy instances, B′ yields a solution with prob. very close to 1; this can
be achieved by running the original B′, say, n′ times. Now our search algorithm B executes the
following steps on a given input x of length n: generate a random hash function h ∈ Hash(n, k),
execute B′ on x′ = (h(x), h), and output its (the part of its answer) as a solution of x (if it is
correct).

We analyze this B’s success probability; that is, the proportion of instances x for which
B yields a solution (with a certain probability). Specifically, we call x ∈ {0, 1}n G-easy if
x′ = (h(x), h) is G′-easy for (n′)−e/c/2 of h in Hash(n, k). Clearly, for such G-easy instances,
our defined B yields a solution with prob. > (n′)−e/c/2. Hence, for the proof2, it suffices to show
that there are enough number of G-easy instances. Let us begin with counting the number of
G′-easy instances x′. From our assumption (7) and the fact that n′ ≥ k + `, we have

of G′-easy instances ≥ (n′)−e/c · 2n′ ≥ (n′)−e/c · 2k · 2` = α ·K · L,

where α = (n′)−e/c, K = 2k, and L = 2`. Then by an argument for proving Proposition 5,
we can show estimate # of x such that (h(x), h) is G′-easy for at least (α/2) · L many h’s of
Hash(n, k); this is the number of G-easy instances. Hence, we have

of G-easy instances ≥ α

2
·K.

This is in proportion estimated as follows for some sufficiently large c.

Pr
x:Un

[x is G-easy] ≥ αK/2
2n

=
(n′)−e/c · 2n−(d0+d) log n−2

2n
≥ (n)−e/c′−d0−d−2 ≥ (n)−e.

tu
From this theorem, we have a search problem that is solvable and hard on almost all instances

(provided the original F has enough hardness under the P-samplable distribution H). Then by
applying the combination of the isolation technique and some list decoding as Gutfreund did in
[Gu06], we may be able to define some hard decision problem from this NP-search problem. We
would like to leave this investigation as our future work.

References

[BT06a] A. Bogdanov and L. Trevisan, On worst-case to average-case reductions for NP
problems, SIAM J. Comput., 36(4):1119–1159, 2006.

[BT06b] A. Bogdanov and L. Trevisan, Average-case complexity, Foundation and Trends in
Theoretical Computer Science, 2(1):1–106, 2006.

[GS89] S. Goldwasser and M. Sipser, Private coins versus public coins in interactive proof
system, Advances in Computing Research, Vol. 5: Randomness and Computation,
JAI Press, 73–90, 1989.

2Precisely speaking, the condition 2 requires the success prob. > 1/2, which can be achieved by running the

current B for enough number of times.

14

[Gu06] D. Gutfreund, Worst-case vs. average-case complexity in the polynomial-time hier-
archy, in Proc. RANDOM 2006, LNCS 4110, 386–397, 2006.

[GT07] D. Gutfreund and A. Ta-Shma, Worst-case to average-case reductions revisited, in
Proc. RANDOM 2007, LNCS 4627, 569–583, 2007.

[Im95] R. Impagliazzo, Hard-core distributions for somewhat hard problems, in Proc. FOCS
’95, 538–545, 1995.

[IL90] R. Impagliazzo and L. Levin, No better ways to generate hard NP instances than
picking uniformly at random, in Proc. FOCS ’90, 812–821, 1990.

[KJS01] K. Kurosawa, T. Johansson, and D.R. Stinson, Almost k-wise independent sample
spaces and their cryptologic applications, Journal of Cryptology, 14(4): 231–253,
2001.

[Yao82] A. Yao, Theory and applications of trapdoor functions (extended abstract), in
Proc. FOCS ’82, 80–91, 1982.

4 Appendix: Proof of Lemma 2

Here we prove Lemma 2, that is, the following nonshrink property of our hash function family
Hash(n, k): For any X ⊂ {0, 1}n of size ≥ nK (where K = 2k), we have

Pr
h:Hash(n,k)

[
|h(X)| ≥ (1− 2−n/24)K

]
≥ 1− 2−n/7.

We prove this bound by a sequence of claims. Here we consider that, whenever necessary,
h(1) and h

(2)
u are chosen uniformly at random from Hash2(n, l) and Hash2(n, k) respectively.

Also we fix the domain of u and y to {0, 1}l and {0, 1}k respectively.
First, for each u ∈ {0, 1}l, we define Xu = {x ∈ X | h(1)(x) = u}. Then we have the

following claim.

Claim 6. . For every u ∈ {0, 1}l,

Pr
h(1)

[|Xu| ≥ K/2] ≥ 1/2.

Proof. Fix any u ∈ {0, 1}l. For any x, define a random variable Iu,x = 1 if h(1)(x) = u and 0
otherwise, and let Iu =

∑
x∈X Iu,x. Then we have |Xu| = Iu, and it is easy to see that E[Iu] = K.

On the other hand, by the pair-wise independence property of Hash2(n, l), we can show that
Var[Iu] ≤ K. Thus, the bound of the claim holds by the Chebyshev bound. tu

For each u and y, we define a random variable Jy,u as follows:

Jy,u =

{
1, ∃x ∈ Xu[h(2)

u (x) = y],
0, otherwise.

15

Claim 7. . For every u and y,

Pr
h(1),h

(2)
u

[Jy,u = 1 | |Xu| ≥ K/2] ≥ 1/4.

Proof. Fix any u and y. In this proof, we assume that |Xu| ≥ K/2. Consider any subset X ′
u

of Xu such that |X ′
u| = K/2, and fix it. Define J ′y,u as Jy,u by using X ′

u instead of Xu. Then
clearly, J ′y,u = 1 implies Jy,u = 1. Here we discuss the probability that J ′y,u = 1. (Note that

since X ′
u is fixed, the event J ′y,u = 1 is determined only by h

(2)
u , independent from the choice of

h(1); thus, probabilities we analyze here are on the choice of h
(2)
u .)

Consider the following sets Uy,u and Uy,u.

Uy,u = { (h(2)
u , x) | x ∈ X ′

u ∧ h
(2)
u (x) = y ∧ ¬∃x′ ∈ X ′

u[h(2)
u (x) = y] },

Uy,u = { (h(2)
u , x) | x ∈ X ′

u ∧ h
(2)
u (x) = y ∧ ∃x′ ∈ X ′

u[h(2)
u (x) = y] }.

Note that if h
(2)
u belongs to Uy,u with some x ∈ X ′

u, then we have J ′y,u = 1 with this h
(2)
u , which

is witnessed uniquely by this x. Hence, we have

Pr[J ′y,u = 1] ≥ |Uy,u|
|Hash2(n, k)| . (8)

Thus, we analyze the above ratio.
First note that Uy,u ∪ Uy,u = {(h(2)

u , x) | h(2)
u (x) = y}, and the size of this set is exactly

{(h(2)
u , x) | h(2)

u (x) = y} =
∑

x∈X′
u

|{h(2)
u | h(2)

u (x) = y}| =
K

2
· |Hash2(n, k)|

K
=

|Hash2(n, k)|
2

.

Hence, |Uy,u∪Uy,u|/|Hash2(n, k)| = 1/2. Thus, for giving a lower bound for |Uy,u|/|Hash2(n, k)|,
we analyze an upper bound of |Uy,u|/|Hash2(n, k)|. Below we fix the domain of x variables such
as x, x′, x1, and x2 to X ′

u, and when, e.g., x is used as a random variable, we always assume
that it is chosen from X ′

u uniformly at random. First we derive the following bound by using
the pair-wise independence of Hash2(n, k).

Pr
x1,x2,h

(2)
u

[y = h(2)
u (x1) = h(2)

u (x2)]

= Pr
x1,x2,h

(2)
u

[y = h(2)
u (x1) ∧ x1 = x2] + Pr

h
(2)
u

[y = h(2)
u (x1) = h(2)

u (x2) | x1 6= x2] · Pr
x1,x2

[x1 6= x2]

≤ Pr
x1,x2,h

(2)
u

[y = h(2)
u (x1) ∧ x1 = x2] + Pr

x1,x2,h
(2)
u

[y = h(2)
u (x1) ∧ y = h(2)

u (x2) | x1 6= x2]

≤ Pr
x1,x2,h

(2)
u

[y = h(2)
u (x1) ∧ x1 = x2] +

1
K2

.

On the other hand, the following bound also holds.

Pr
x1,x2,h

(2)
u

[y = h(2)
u (x1) = h(2)

u (x2)]

≥ Pr
x1,x2,h

(2)
u

[y = h(2)
u (x1) ∧ x1 = x2] + Pr

x1,x2,h
(2)
u

[(h(2)
u , x1) ∈ Uy,u ∧ (x2 ∈ X ′

u − {x1} ∧ h(2)
u (x2) = y)]

≥ Pr
x1,x2,h

(2)
u

[y = h(2)
u (x1) ∧ x1 = x2] +

|Uy,u|
|X ′

u| · |Hash2(n, k)| ·
1
|X ′

u|
= Pr

x1,x2,h
(2)
u

[y = h(2)
u (x1) ∧ x1 = x2] +

|Uy,u|
|Hash2(n, k)| ·

4
K2

.

16

Then from these bounds we have |Uy,u|/|Hash2(n, k)| ≤ 1/4, from which (and the above discus-
sion) it follows

Pr[J ′y,u = 1] ≥ |Uy,u|
|Hash2(n, k)| ≥

1
2
− 1

4
=

1
4
,

and the bound of the lemma follows. tu

Finally for each y ∈ {0, 1}k, we define the following random variable Jy.

Jy =

1,
∨

u∈{0,1}l

(Jy,u = 1) ∧ (|Xu| ≥ K/2),

0, otherwise,

Then clearly the event Jy = 1 implies that (w.r.t. h(1) and h
(2)
u) there exists some x ∈ X such

that h(x) = y; hence, J
def=

∑
y∈{0,1}k Jy is a lower bound for |h(X)|. Thus, the bound of

Lemma 2 follows from the following claim.

Claim 8. .
Pr

h:Hash(n,k)
[J ≥ (1− 2−n/24)K] ≥ 1− 2−n/7,

Proof. Consider any y. From the previous two claims, for any u ∈ {0, 1}l, we have Pr
h(1),h

(2)
u

[(Jy,u =

1) ∧ (|Xu| ≥ K/2)] ≥ 1/8. Then since functions h
(2)
u , u ∈ {0, 1}l, are totally independent, we

have

Pr
h(1),{h(2)

u }
u∈{0,1}l

 ∧

u∈{0,1}l

(Jy,u 6= 1) ∨ (|Xu| < K/2)

 ≤

(
1− 1

8

)2l

=
(

7
8

)n

≤ 2−n/4.

That is, Prh[Jy = 1] ≥ 1− 2−n/4.
Now consider the distribution of J =

∑
y∈{0,1}k Jy. For its expectation, from the above, we

have Eh[J] = (1− 2−n/4)K. On the other hand, its variance is bounded as follows.

Varh[J] = Eh

[(∑
y∈{0,1}k Jy

)2
]
− Eh[J]2

= Eh

[∑
y J2

y

]
+

∑
y,y′ Eh[Jy · Jy′]− Eh[J]2

≤ Eh[J] + K(K − 1)− Eh[J]2 ≤ K + K2 −K − (1− 2−n/4)2K2 ≤ 2 · 2−n/4K2.

Then by the Chebyshev bound, we have

Pr
h

[
J < Eh[J]− 0.9 · 2n/12

√
2

·
√

2
2n/8

·K
]
≤ 2

0.81 · 2n/6
≤ 2−n/7,

which is equivalent to

Pr
h

[
J <

(
1− 2−n/4 − 0.9 · 2−n/24

)
K

]
≤ 2−n/7,

which proves the claim when n is sufficiently. tu

17

