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Abstract

We analyze the largest eigenvalue and eigenvector for the adjacency matrices of
sparse random graph. Let A; be the largest eigenvalue of an n-vertex graph, and
v1 be its corresponding normalized eigenvector. For graphs of average degree dlogn,
where d is a large enough constant, we show A\; = dlogn + 1+ o(1) and (1,v1) =

vn (1 -0 < L )) It shows a limitation of the existing method of analyzing spectral

logn

algorithms for NP-hard problems.

1 Introduction

G, is the random graph model in which there is an n-vertex graph, and every edge is in-
cluded independently with probability p. For such a graph GG, we study the largest eigenvalue
of its adjacency matrix and a corresponding eigenvector.

Let \y > --- > A, be eigenvalues of the adjacency matrix of G, and A = max[Ay, |A,|].
Note that np is the average degree of G. Then it is well known that A\; > np and A\ = Q(,/np).
For p = ©(1), it is known that \; = np+ 1 —2p + € with || = O (\/Lﬁ) This was shown by
Furedi and Komlos [2]. Let A be the maximum degree of G. Krivelevich and Sudakov show
that A\; = (1+o0(1)) max{v/A, np} [5]. This result does not depend on size of np. Moreover,
for np = Q(logn) and np = O (né/(log n)g>, it is shown that A = O(\/np) and A\; = np+ ¢
with |e|] = O(,/np) by Feige and Ofek [1]. We extend the A\; = np+ 1 —2p+ € result to lower
values of p in the G, , model. Let v; be the corresponding normalized eigenvector of A, and
define vy = \/LET

dlogn
n

Theorem 1 Let d be a sufficiently large constant, and p = . There exists ¢ > 0 such

that

1
A — (d] D <O ——
| 1 ( ogn + )|— (\/m)
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with probability at least 1 — ni

dlogn
n

[(vg, v1)| — (1 - 2d11)gn)‘ =0 (W)

with probability at least 1 — ni

Theorem 2 Let d be a sufficiently large constant, and p = . There exists ¢ > 0 such

that

By the method of analyzing spectral algorithms in [3, 4], it is shown that those spectral

algorithms output the wrong assignment for at most O (%) variables. The method is based

on the similarity between vy and v;. Our result (vy,v1) =1 — O <loén> shows that the
method in [3, 4] never prove that spectral algorithms output the wrong assignment for at

most o (%) variables for p = © (k’%)

1.1 Notation

The number of vertices in a graph is denoted by n, and p denotes the probability of an edge in
the G,,, model. Let d be sufficiently large constant. We assume that p = dlogn/n. Let G be

a random graph taken from G, , and A be its adjacency matrix of G. Let A\; > ... > A, be
the eigen_v)alues of A, and vy, ... ,v, be its corresponding orthonormal eigenvectors. Define

Vp = Ln 1. For regular graphs v; = vg4. Though G is nearly regular and v, is close to vg, v;
differs from vy slightly.

2 The analysis

To bound A; and |(vg, v1)|, we use the following three properties of a random graph.

Lemma 3

Pr |:}UZ;AU¢ — dlog n| > 2dlolgn} < exp (—Zﬁdlog n) .
ni

Lemma 4 For every ¢ > 0 there exists k£ > 0 such that

Pr Fz‘ e{2, ... ,n}|N| > k\/dlogn} < %



Lemma 5 f(G) denotes ) . (deg, — (n — 1)p)®. Then we have

Pr [’f(G) — n2p| > 2n%} < 3exp (—2{2) )

It is not hard to prove Lemma 3. Since %vfﬁA% is equal to the number of edge of G,

we can prove by Chernoff bound. Lemma 4 was shown in [1] by Feige and Ofek. They also
showed essentially the same Lemma 5.

Since vy, ... ,v, are orthonormal, there exist aq, ... ,a, with > @ = 1 such that
vy = > i a;v;. Furthermore, there exist a, § and w with a?+3? =1, w L v, and ||w|| = 1
such that v; = av, + fw. Note that o = ay = (vy,v1) ; hence, we have > 1", a? = (%
Our goal is to show that ( is reasonably close to 0 with high probability, but it is in fact
nonnegligible with high probability. We prove this by Lemma 6 and Lemma 9.

Lemma 6 There exists ¢ > 0 such that

1 1
< +0|——=
dlogn (dlogn)2

with probability at least 1 — #

62

Proof Note that

2

f(G)=mn

n

(A— - 1dlognE) Vg

Thus from Lemma 5, we have the following with high probability

H(A— n- 1dlognE) Vg

n

2
<dlogn +2n"3.

On the other hand, substituting v, = Y . ; @;v; and using Lemma 4, the left hand
side of the above is bounded as following by

n—1 2 " n—1 2
A— dlog nE — 2 dlogn — \;
H( " ogn >U¢ ZO{,L( n ogn >
n _1 2
> 2 (2 Jlogn — k/d1 .
= ZCYZ( n ogn ogn




Hence, we have the following for some constant ¢; > 0.

zn:az < dlogn+2n’%
2% = (Edlogn = hydlogn)?
dlogn + on"s
(dlogn — 2k+/dlogn)?
(dlogn — 4k~/dlogn + 4k) + 4k\/dlogn — 4k + 2n~ s

dlogn(y/dlogn — 2k)?
1 Cll{?

+ .
dlogn  (dlog n)%

O

Corollary 7 There exists ¢ > 0 such that

2 1 C1k’

o > 1-— — 3
dlogn (dlogmn)2

1 201]{5

la] > 1-— - - and
2dlogn  (dlogn)2
1 a1k

8] < -

Vdlogn - 2dlogn

with probability at least 1 — #

Proof Thus o? + 32 = 1, a? is bounded. If we suppose that the second inequality or the
third is not true, the first inequality conflict. O

Lemma 8 There exists ¢ > 0 such that

1
A < dl 140 | ——
1 <dlogn+1+ ( —dlogn)

with probability at least 1 — #

Proof We assume that « is positive. The negative case can be argued similarly. Let
w' = Av, — dlognv,. By calculating the inner product of Avy = dlognvs +w' and vy,
we have

al; = adlogn + (v, w’)
= adlogn + (avg, w') + (Bw,w")
< adlogn + afvg, w') + |B]Jw|lw'].
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By lemma 3, the upper bound of (v, w’) is

dl
(vg, w') = vy Avg — dlogn < O%n.
n4

Thus by using the bound of || stated in Corollary 7, we have

dlogn 1 1k ,
A < adl . 1
ah S odlgn+ =7 +(\/m+2dlogn> Il D

Note here that w' = Av, — dlog nv,. Thus by using Lemma 5, we have

n—1

| = HA%——

1
dlognvy, — —dlognu,
n

-1
< HA% - n—dlogn%
n

1
+ H—dlognv¢
n

dlogn

< dlogn—i—n’%Jr

Substituting this to (1), we obtain

dl 1 k dl
air < aleg”+ﬂ+(leogn+2dcll()gn) (\/W+n‘§+ Ogn)

n4 n

1 1 1
= adl O| —=— —+ 0| ——— Vdl o1
oelogn + (\/(Jllogn)—i_(\/dlognjL (dlogn))( ogn+ ()>
1
= adl 1+0 | —|.
atog+1+0 ()

By Corollary 7, the lower bound of |«| is 1 —
for some constant ¢y > 0.

1
dlogn’

Therefore we have the following

CQk

A <dl 1+ —————.
1 <dlogn+1+ oz n

O

Lemma 9 There exists ¢ > 0 such that

1 1
25 o ——
sz dlogn ((dlogn)g>

with probability at least 1 — #




Proof The argument is similar to the proof of Lemma 6. First by Lemma 5, we have

H <A— - 1dlognE) Vg

n

2
> dlogn — on"s.

Then using Lemma 4, the left hand side of the above is bounded as follows.

1 2 1 2 n 2
H(A—n dlognE) vyl < af (n dlogn—/\l) +Zo¢? (dlogn—i—lﬂ\/dlogn) .
n
i=2

n

Now using the bound \; < dlogn+1+ \/%7 we have the following for some constant

c3 > 0.
- 2 1 n—1 2
S a? (dlogn + kddlogn) > dlogn —2n"3 — a2 (—dlogn _ Al)
n
i=2
. 2
ioﬂ N dlogn —2n~3 — a? <1+\/§f—07'“gn+dlj’1ﬂ>
par b= (dlogn + k+/dlogn)?
dlogn — O(1)
dlogn(v/dlogn + k)?
_ (dlogn + 2k+/dlogn + k2) —2ky/dlogn — k? — O(1)
B dlogn(y/dlogn + k)2
1 _ 03]{?
dlogn (dlogn)%'
(|

Corollary 10 There exists ¢ > 0 such that

1 k
052 = 1 - + % 3
dlogn  (dlogn):
la] < 1- = + ok - and
2dlogn 2(dlogn)z
|5| Z 1 03]{3

Vdlogn dlogn

with probability at least 1 — #

Proof The proof of this lemma is similar to Corollary 7. Thus we can use 1 — o? =
(14 |a])(1 = |a]) <2(1 —|«a|), the second inequality can be proved more easy. O



Lemma 11 There exists ¢ > 0 such that

1
A >dl 1-0| ——=—
2 o210 ()

with probability at least 1 — %

Proof Let w” denote Avy — (ng%)%. w"” and v, are orthogonal. Thus, by computing
|w”||?, we derive
[ Ave||* = (vgAvg)* + [|w”|”. (2)
We estimate the right hand side of the above. w' = Av, — dlog nv,, hence,
w"” + (vjAvg — dlogn)vy, = w'.
By triangle inequality,
[w”[| + | (vgAve — dlogn)vg|| = [[w']].

1

Lemma 5 states ||| > /dlogn —n~3 — dlc’%. On the other hand, since Lemma 3,
[ (v Avy — dlogn)vg|| < M%. By Lemma3, we have

Ll 2d1
|| > /dlogn—ns — 2280 _ ZCOBT

n n4
3d1
v/ dlogn — olgn.

n4

v

Then,
6(dlogn)?
——5

na

lw"* > dlogn —

2dlogn
1

On the other hand, again using Lemma 3, we have vfz,Avqs > dlogn — . Hence we

have from (2) that

n4

6(dlogn)?
i S L

n4

4
|Avg|® > (1 — —1) (dlogn)* + dlogn —
n4
10(d1 2
> (dlogn)z—l—dlogn—w. (3)
na
Since vy, = Y i, a;v;, we have [|Avy||? = D7 a?A\?. By Lemma 4, we have \? <
k2dlogn for all i > 2. By lemma 6, we have > ,a? < i 4+ —4E . Go we have

i — dlogn (dlogn)%
[Ave > = > aix?
i=1
1 Clk’
< a2\ + Kidlogn + . 4
i & dlogn (dlogn)% 4)
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Hence we have from (3) and (4) that

10(d1 2 1 k
10(d1ogm)™ 1 110g Lok
ni dlogn  (dlogn):z

> (dlogn)® + dlogn — 2k*.

a?X? > (dlogn)® + dlogn —

By Corollary 10, we have

(dlogn)? + dlogn — 2k?
— 1 c3k
1 dlogn + (dlogn)%

((dlogn)* — dlogn + csky/dlogn) + 2dlogn — cskv/dlogn — 2k*
_ 1 csk
dlogn + (dlogn)%

<2d10gn— 2+ \/%) +2— \/% — csky/dlogn — 2k?

A

— (dlogn)? + = T
dlogn (dlogn)%
O(y/dlogn)

= (dlogn)?+ 2dlogn — o)

For some constant ¢4 > 0,

A > (dlogn)? 4 2dlogn — ciky/dlogn.

Therefore,
C4l€
A > dl 11— ——.
b= ogn+ Vdlogn
O

2.1 Proof of Lemma 5
Let deg; = 3.7, a;j, and f(G) = 1, (deg; — (n — 1)p)®. In this section, we prove f(G) is

j=1
close to its expectation. The lemma is proved in Section 5 of [1]. We give a strict proof of
the lemma. Let dj =) 7, aj;1;. Let aj,,; be

;o {aj,z‘+j (di < knp)

I — ,
e 0 (df > knp)

and deg;, = >"_, al .. Let k be a fixed value . We assume k = Q(1). Let D; be

]:1 i:j.

) (degi = (n— 1)p)* (deg; < k(n —1)p)
"l (k(n—=1)p—(n—1)p)° (deg, > k(n—1)p)

Y
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and D = Y  D,. Note that if deg; < k(n — 1)p and df < knp for any i, D is equal to
f(GQ). Therefore, it suffices to show D is close to its expectation and D = f(G) with high

probability. Let X; = E[D|d}, ... ,df]fori =0, ..., ’—”T_l-‘ Xo, ... ,X(n;q are the Doob
martingale. To use Azuma-Hoeffding inequality, we calculate upper bound of | X; — X, 1].
Let 541 = [E[Dyld;, ... ,di] =B [Dj|d;, ... ,di,]|- Note that [X;—X; 11| < Y0 41

If dj,, is decided, D; is changed by only a;jtit1,a—i—1,;. We divide the analysis of ;1
into the three cases, and calculate upper bound of ;.

e Case 1: ajjiy1 +a;—i—1; =2 by dj,
Note that

E[Djldy, ... dj]

= ZPY [dj+1|dy1‘a ,dﬂE[Dﬂd’{, 7df7df+1}

s
dz‘+1

k *
= E E : Pr [aj,j-i-i—&-l =T, 0j—i-1,j = y|d1’ ce 7dz‘]
z€{0,1} ye{0,1}
% *
E [Dj|d1, Ce 7d2- s aj7j+,-+1 =, aj—i—l,j = y]

= Z Z ZPr (@) jiv1 = T 051 = y,deg; = v +y + 2|}, ... ,d]

z€{0,1} ye{0,1} z=1

E [Djld>{7 oA G iy = T a1 = y,deg;- =xr+y+ Z] .

In this case, a;;yiy1 + aj—i—1; = 2 by d;i_;. Moreover, d; and d; are independent for
any k # [. Thus, we have for any integer z

Z Z Pr [aj,j+i+1 =T,05—i-1, = y,deg} =z +y+z|d, ... »dﬂ

z€{0,1} ye{0,1}

= Pr [amﬂ-ﬂ = l,aj_i_l,j = 1,d€g§ =z + 2|d>{, ey ;:_1} .
Note that for any integer x, vy, 2
E [Dj‘diy s dF i = T, a5 1 = Y, deg} =T+Yy+ z}

_ J@ryrz—(m-1p)° (@+y+z<kn-1)p)
(k(n—1Dp—(n—1)p)° (z+y+z>kn—1)p)

Hence we have
’E [Djlds, ... d} aj 4 = 2,051 =y, deg; =+ y + 2]
—E [Dj|d’{, c. ,d,?, Qjititl = 1, Aj—i—1,j = 1, d@g} =z + 2] ‘

< (ktn—=1p—(n—1)p)° = (k(n —1)p — 2 — (n — 1)p)* < 4knp.
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Therefore,

B[D|di, ... .d]—B[Dld;, ... d,]
= Z Z ZPr (4 jvit1 = T, 0515 =y, deg; = x +y+ z|dj, ... ,d;]
z€{0,1} ye{0,1} 2=1
(E [Djldy, . di 0y 000 = 20505 =y, deg) = x4y + 2]
—-E [D]|d>(1(, ce ,df,aj7j+i+1 = 1,a,j_,~_17j = l,deg; =z + 2} )
< 4knp.

e Case 2: Qg i+it+1 + Aj—i—1,57 = 1 by dz—l—l
Zji+1 < 4knp is proved in a similar way to Case 1.

e Case 3: A j4i+1 + Qj—i—1,5 = 0 by dl+1

Note that
E[D;|d;, ... ,d]]—E [Dj|df, ,d;ﬂrl}
= Z ZPr (a5 jpi1 = 2,015 =y, deg; =z +y + 2|dy, ..., d]]
(z,9)#(0,0) =1
<E [D;|dy, ... . dfajhi01 =T, 051 =Y, degy = r +y + 2]
—E [D]’di, c. 7dz y Aj j4itl = O, Qj—i—15 = 0, deg; = Z} )
Since Z £(0,0) Prlaj i1 = x,aj_;—1; =y is at most 2p, we have x, ;1 < 8knp?.

Case 1 and Case 2 cause at most 2knp times for each i. Hence, we have
1Xi — Xin| < > |E[Dld;, ... di) = E[Dsld;, ... ,d]]

< 2knp - 4knp + n - 8knp* < 16k*n*p?

By Azuma-Hoeffding inequality, we have

)\2
Pr[|Xtna7 — X A <2 — .
1““ I_T-I O| > ] S 2€exp ( 9. (%1“ -256(kdlogn)4)
Setting \ = n§ k= d’fin, the value of Xj is
Xo=E[D] < Ef(G)] < ndlogn
X, =E[D] > E[f(G)] —n*Pr[D # f(G)] < ndlogn — 2(dlogn)>.

10



o1 1
Pr[D # f(G)] is at most 2 - 27"+ "™ Thus,

Pr(|D — ndlogn| > 2n3] < Pr|X, — Xo| > n?]

< 2 nis
~ eXp —512 .
L1

Since Pr[D # f(G)] <2275 we have Pr [|f(G) - n%p| > 2n%] < 3exp (~103 ).

o 5"“
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