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Abstract

We analyze the largest eigenvalue and eigenvector for the adjacency matrices of
sparse random graph. Let λ1 be the largest eigenvalue of an n-vertex graph, and
v1 be its corresponding normalized eigenvector. For graphs of average degree d log n,
where d is a large enough constant, we show λ1 = d log n + 1 ± o(1) and 〈1, v1〉 =
√

n
(
1 − Θ

(
1

log n

))
. It shows a limitation of the existing method of analyzing spectral

algorithms for NP-hard problems.

1 Introduction

Gn,p is the random graph model in which there is an n-vertex graph, and every edge is in-
cluded independently with probability p. For such a graph G, we study the largest eigenvalue
of its adjacency matrix and a corresponding eigenvector.

Let λ1 ≥ · · · ≥ λn be eigenvalues of the adjacency matrix of G, and λ = max[λ2, |λn|].
Note that np is the average degree of G. Then it is well known that λ1 ≥ np and λ = Ω(

√
np).

For p = Θ(1), it is known that λ1 = np + 1 − 2p + ϵ with |ϵ| = O
(

1√
n

)
. This was shown by

Furedi and Komlos [2]. Let ∆ be the maximum degree of G. Krivelevich and Sudakov show
that λ1 = (1 + o(1)) max{

√
∆, np} [5]. This result does not depend on size of np. Moreover,

for np = Ω(log n) and np = O
(
n

1
3 /(log n)

5
3

)
, it is shown that λ = O(

√
np) and λ1 = np + ϵ

with |ϵ| = O(
√

np) by Feige and Ofek [1]. We extend the λ1 = np+1− 2p+ ϵ result to lower
values of p in the Gn,p model. Let v1 be the corresponding normalized eigenvector of λ1, and

define vφ = 1√
n

−→
1 .

Theorem 1 Let d be a sufficiently large constant, and p = d log n
n

. There exists c > 0 such
that

|λ1 − (d log n + 1)| ≤ O

(
1√

d log n

)
1



with probability at least 1 − 1
nc .

Theorem 2 Let d be a sufficiently large constant, and p = d log n
n

. There exists c > 0 such
that ∣∣∣∣|〈vφ, v1〉| −

(
1 − 1

2d log n

)∣∣∣∣ ≤ O

(
1

(d log n)
3
2

)

with probability at least 1 − 1
nc .

By the method of analyzing spectral algorithms in [3, 4], it is shown that those spectral

algorithms output the wrong assignment for at most O
(

1
p

)
variables. The method is based

on the similarity between vφ and v1. Our result 〈vφ, v1〉 = 1 − Θ
(

1
log n

)
shows that the

method in [3, 4] never prove that spectral algorithms output the wrong assignment for at

most o
(

1
p

)
variables for p = Θ

(
log n

n

)
.

1.1 Notation

The number of vertices in a graph is denoted by n, and p denotes the probability of an edge in
the Gn,p model. Let d be sufficiently large constant. We assume that p = d log n/n. Let G be
a random graph taken from Gn,p and A be its adjacency matrix of G. Let λ1 ≥ . . . ≥ λn be
the eigenvalues of A, and v1, . . . , vn be its corresponding orthonormal eigenvectors. Define
vφ = 1√

n

−→
1 . For regular graphs v1 = vφ. Though G is nearly regular and v1 is close to vφ, v1

differs from vφ slightly.

2 The analysis

To bound λ1 and |〈vφ, v1〉|, we use the following three properties of a random graph.

Lemma 3

Pr

[∣∣vt
φAvφ − d log n

∣∣ ≥ 2d log n

n
1
4

]
≤ exp

(
−2

√
nd log n

)
.

Lemma 4 For every c > 0 there exists k > 0 such that

Pr
[
∃i ∈ {2, . . . , n}, |λi| > k

√
d log n

]
≤ 1

nc
.
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Lemma 5 f(G) denotes
∑

v∈V (degv − (n − 1)p)2. Then we have

Pr
[∣∣f(G) − n2p

∣∣ > 2n
2
3

]
≤ 3 exp

(
−n

1
15

512

)
.

It is not hard to prove Lemma 3. Since n
2
vt

φAvφ is equal to the number of edge of G,
we can prove by Chernoff bound. Lemma 4 was shown in [1] by Feige and Ofek. They also
showed essentially the same Lemma 5.

Since v1, . . . , vn are orthonormal, there exist α1, . . . , αn with
∑n

i=1 α2
i = 1 such that

vφ =
∑n

i=1 αivi. Furthermore, there exist α, β and w with α2 +β2 = 1, w ⊥ vφ and ∥w∥ = 1
such that v1 = αvφ + βw. Note that α = α1 = 〈vφ, v1〉 ; hence, we have

∑n
i=2 α2

i = β2.
Our goal is to show that β is reasonably close to 0 with high probability, but it is in fact
nonnegligible with high probability. We prove this by Lemma 6 and Lemma 9.

Lemma 6 There exists c > 0 such that

β2 ≤ 1

d log n
+ O

(
1

(d log n)
3
2

)

with probability at least 1 − 1
nc .

Proof Note that

f(G) = n

∥∥∥∥(
A − n − 1

n
d log nE

)
vφ

∥∥∥∥2

.

Thus from Lemma 5, we have the following with high probability∥∥∥∥(
A − n − 1

n
d log nE

)
vφ

∥∥∥∥2

≤ d log n + 2n− 1
3 .

On the other hand, substituting vφ =
∑n

i=1 αivi and using Lemma 4, the left hand
side of the above is bounded as following by∥∥∥∥(

A − n − 1

n
d log nE

)
vφ

∥∥∥∥2

=
n∑

i=1

α2
i

(
n − 1

n
d log n − λi

)2

≥
n∑

i=2

α2
i

(
n − 1

n
d log n − k

√
d log n

)2

.
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Hence, we have the following for some constant c1 > 0.

n∑
i=2

α2
i ≤ d log n + 2n− 1

3

(n−1
n

d log n − k
√

d log n)2

≤ d log n + 2n− 1
3

(d log n − 2k
√

d log n)2

=

(
d log n − 4k

√
d log n + 4k2

)
+ 4k

√
d log n − 4k2 + 2n− 1

3

d log n(
√

d log n − 2k)2

≤ 1

d log n
+

c1k

(d log n)
3
2

.

⊔⊓

Corollary 7 There exists c > 0 such that

α2 ≥ 1 − 1

d log n
− c1k

(d log n)
3
2

,

|α| ≥ 1 − 1

2d log n
− 2c1k

(d log n)
3
2

and

|β| ≤ 1√
d log n

+
c1k

2d log n

with probability at least 1 − 1
nc .

Proof Thus α2 + β2 = 1, α2 is bounded. If we suppose that the second inequality or the
third is not true, the first inequality conflict. ⊔⊓

Lemma 8 There exists c > 0 such that

λ1 ≤ d log n + 1 + O

(
1√

d log n

)
with probability at least 1 − 1

nc .

Proof We assume that α is positive. The negative case can be argued similarly. Let
w′ = Avφ − d log nvφ. By calculating the inner product of Avφ = d log nvφ + w′ and v1,
we have

αλ1 = αd log n + 〈v1, w
′〉

= αd log n + 〈αvφ, w
′〉 + 〈βw,w′〉

≤ αd log n + α〈vφ, w
′〉 + |β|∥w∥∥w′∥.
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By lemma 3, the upper bound of 〈vφ, w
′〉 is

〈vφ, w
′〉 = vt

φAvφ − d log n ≤ d log n

n
1
4

.

Thus by using the bound of |β| stated in Corollary 7, we have

αλ1 ≤ αd log n +
d log n

n
1
4

+

(
1√

d log n
+

c1k

2d log n

)
∥w′∥. (1)

Note here that w′ = Avφ − d log nvφ. Thus by using Lemma 5, we have

∥w′∥ =

∥∥∥∥Avφ − n − 1

n
d log nvφ − 1

n
d log nvφ

∥∥∥∥
≤

∥∥∥∥Avφ − n − 1

n
d log nvφ

∥∥∥∥ +

∥∥∥∥1

n
d log nvφ

∥∥∥∥
≤

√
d log n + n− 1

3 +
d log n

n

Substituting this to (1), we obtain

αλ1 ≤ αd log n +
d log n

n
1
4

+

(
1√

d log n
+

c1k

2d log n

)(√
d log n + n− 1

3 +
d log n

n

)
= αd log n + O

(
1√

d log n

)
+

(
1√

d log n
+ O

(
1

d log n

)) (√
d log n + O(1)

)
= αd log n + 1 + O

(
1√

d log n

)
.

By Corollary 7, the lower bound of |α| is 1 − 1
d log n

. Therefore we have the following
for some constant c2 > 0.

λ1 ≤ d log n + 1 +
c2k√
d log n

.

⊔⊓

Lemma 9 There exists c > 0 such that

β2 ≥ 1

d log n
− O

(
1

(d log n)
3
2

)

with probability at least 1 − 1
nc .
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Proof The argument is similar to the proof of Lemma 6. First by Lemma 5, we have∥∥∥∥(
A − n − 1

n
d log nE

)
vφ

∥∥∥∥2

≥ d log n − 2n− 1
3 .

Then using Lemma 4, the left hand side of the above is bounded as follows.∥∥∥∥(
A − n − 1

n
d log nE

)
vφ

∥∥∥∥2

≤ α2
1

(
n − 1

n
d log n − λ1

)2

+
n∑

i=2

α2
i

(
d log n + k

√
d log n

)2

.

Now using the bound λ1 ≤ d log n+1+ c2k√
d log n

, we have the following for some constant
c3 > 0.

n∑
i=2

α2
i

(
d log n + k

√
d log n

)2

≥ d log n − 2n− 1
3 − α2

1

(
n − 1

n
d log n − λ1

)2

n∑
i=2

α2
i ≥

d log n − 2n− 1
3 − α2

1

(
1 + c2k√

d log n
+ d log n

n

)2

(d log n + k
√

d log n)2

=
d log n − O(1)

d log n(
√

d log n + k)2

=

(
d log n + 2k

√
d log n + k2

)
− 2k

√
d log n − k2 − O(1)

d log n(
√

d log n + k)2

≥ 1

d log n
− c3k

(d log n)
3
2

.

⊔⊓

Corollary 10 There exists c > 0 such that

α2 ≤ 1 − 1

d log n
+

c3k

(d log n)
3
2

,

|α| ≤ 1 − 1

2d log n
+

c3k

2(d log n)
3
2

and

|β| ≥ 1√
d log n

− c3k

d log n

with probability at least 1 − 1
nc .

Proof The proof of this lemma is similar to Corollary 7. Thus we can use 1 − α2 =
(1 + |α|)(1 − |α|) ≤ 2(1 − |α|), the second inequality can be proved more easy. ⊔⊓
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Lemma 11 There exists c > 0 such that

λ1 ≥ d log n + 1 − O

(
1√

d log n

)
with probability at least 1 − 1

nc .

Proof Let w′′ denote Avφ − (vt
φAvφ)vφ. w′′ and vφ are orthogonal. Thus, by computing

∥w′′∥2, we derive
∥Avφ∥2 = (vt

φAvφ)2 + ∥w′′∥2. (2)

We estimate the right hand side of the above. w′ = Avφ − d log nvφ, hence,

w′′ + (vt
φAvφ − d log n)vφ = w′.

By triangle inequality,

∥w′′∥ + ∥(vt
φAvφ − d log n)vφ∥ ≥ ∥w′∥.

Lemma 5 states ∥w′∥ ≥
√

d log n − n− 1
3 − d log n

n
. On the other hand, since Lemma 3,

∥(vt
φAvφ − d log n)vφ∥ ≤ 2d log n

n
1
4

. By Lemma3, we have

∥w′′∥ ≥
√

d log n − n− 1
3 − d log n

n
− 2d log n

n
1
4

≥
√

d log n − 3d log n

n
1
4

.

Then,

∥w′′∥2 ≥ d log n − 6(d log n)2

n
1
4

.

On the other hand, again using Lemma 3, we have vt
φAvφ ≥ d log n− 2d log n

n
1
4

. Hence we

have from (2) that

∥Avφ∥2 ≥
(

1 − 4

n
1
4

)
(d log n)2 + d log n − 6(d log n)2

n
1
4

≥ (d log n)2 + d log n − 10(d log n)2

n
1
4

. (3)

Since vφ =
∑n

i=1 αivi, we have ∥Avφ∥2 =
∑n

i=1 α2
i λ

2
i . By Lemma 4, we have λ2

i ≤
k2d log n for all i ≥ 2. By lemma 6, we have

∑n
i=2 α2

i ≤ 1
d log n

+ c1k

(d log n)
3
2
. So, we have

∥Avφ∥2 =
n∑

i=1

α2
i λ

2
i

≤ α2
1λ

2
1 + k2d log n

(
1

d log n
+

c1k

(d log n)
3
2

)
. (4)
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Hence we have from (3) and (4) that

α2λ2
1 ≥ (d log n)2 + d log n − 10(d log n)2

n
1
4

− k2d log n

(
1

d log n
+

c1k

(d log n)
3
2

)
≥ (d log n)2 + d log n − 2k2.

By Corollary 10, we have

λ2
1 ≥ (d log n)2 + d log n − 2k2

1 − 1
d log n

+ c3k

(d log n)
3
2

=

(
(d log n)2 − d log n + c3k

√
d log n

)
+ 2d log n − c3k

√
d log n − 2k2

1 − 1
d log n

+ c3k

(d log n)
3
2

= (d log n)2 +

(
2d log n − 2 + 2c3k√

d log n

)
+ 2 − 2c3k√

d log n
− c3k

√
d log n − 2k2

1 − 1
d log n

+ c3k

(d log n)
3
2

= (d log n)2 + 2d log n − Θ(
√

d log n)

Θ(1)
.

For some constant c4 > 0,

λ2
1 ≥ (d log n)2 + 2d log n − c4k

√
d log n.

Therefore,

λ1 ≥ d log n + 1 − c4k√
d log n

.

⊔⊓

2.1 Proof of Lemma 5

Let degi =
∑n

j=1 ai,j, and f(G) =
∑n

i=1 (degi − (n − 1)p)2. In this section, we prove f(G) is
close to its expectation. The lemma is proved in Section 5 of [1]. We give a strict proof of
the lemma. Let d∗

i =
∑n

j=1 aj,i+j. Let a′
j,i+j be

a′
j,i+j =

{
aj,i+j (d∗

i ≤ knp)

0 (d∗
i > knp)

,

and deg′
i =

∑n
j=1 a′

i,j. Let k be a fixed value . We assume k = Ω(1). Let Di be

Di =

{
(deg′

i − (n − 1)p)2 (deg′
i ≤ k(n − 1)p)

(k(n − 1)p − (n − 1)p)2 (deg′
i > k(n − 1)p)

,
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and D =
∑n

i=1 Di. Note that if degi ≤ k(n − 1)p and d∗
i ≤ knp for any i, D is equal to

f(G). Therefore, it suffices to show D is close to its expectation and D = f(G) with high
probability. Let Xi = E [D|d∗

1, . . . , d∗
i ] for i = 0, . . . ,

⌈
n−1

2

⌉
. X0, . . . , X⌈n−1

2 ⌉ are the Doob

martingale. To use Azuma-Hoeffding inequality, we calculate upper bound of |Xi − Xi+1|.
Let xj,i+1 =

∣∣E [Dj|d∗
1, . . . , d∗

i ] − E
[
Dj|d∗

1, . . . , d∗
i+1

]∣∣. Note that |Xi−Xi+1| ≤
∑n

j=1 xj,i+1.
If d∗

i+1 is decided, Dj is changed by only aj,j+i+1, aj−i−1,j. We divide the analysis of xj,i+1

into the three cases, and calculate upper bound of xj,i+1.

• Case 1: aj,j+i+1 + aj−i−1,j = 2 by d∗
i+1

Note that

E [Dj|d∗
1, . . . , d∗

i ]

=
∑
d∗i+1

Pr
[
d∗

i+1|d∗
1, . . . , d∗

i

]
E

[
Dj|d∗

1, . . . , d∗
i , d

∗
i+1

]
=

∑
x∈{0,1}

∑
y∈{0,1}

Pr [aj,j+i+1 = x, aj−i−1,j = y|d∗
1, . . . , d∗

i ]

E [Dj|d∗
1, . . . , d∗

i , aj,j+i+1 = x, aj−i−1,j = y]

=
∑

x∈{0,1}

∑
y∈{0,1}

n∑
z=1

Pr
[
aj,j+i+1 = x, aj−i−1,j = y, deg′

j = x + y + z|d∗
1, . . . , d∗

i

]
E

[
Dj|d∗

1, . . . , d∗
i , aj,j+i+1 = x, aj−i−1,j = y, deg′

j = x + y + z
]
.

In this case, aj,j+i+1 + aj−i−1,j = 2 by d∗
i+1. Moreover, d∗

k and d∗
l are independent for

any k ̸= l. Thus, we have for any integer z∑
x∈{0,1}

∑
y∈{0,1}

Pr
[
aj,j+i+1 = x, aj−i−1,j = y, deg′

j = x + y + z|d∗
1, . . . , d∗

i

]
= Pr

[
aj,j+i+1 = 1, aj−i−1,j = 1, deg′

j = z + 2|d∗
1, . . . , d∗

i+1

]
.

Note that for any integer x, y, z

E
[
Dj|d∗

1, . . . , d∗
i , aj,j+i+1 = x, aj−i−1,j = y, deg′

j = x + y + z
]

=

{
(x + y + z − (n − 1)p)2 (x + y + z ≤ k(n − 1)p)

(k(n − 1)p − (n − 1)p)2 (x + y + z > k(n − 1)p)
.

Hence we have∣∣∣E [
Dj|d∗

1, . . . , d∗
i , aj,j+i+1 = x, aj−i−1,j = y, deg′

j = x + y + z
]

−E
[
Dj|d∗

1, . . . , d∗
i , aj,j+i+1 = 1, aj−i−1,j = 1, deg′

j = z + 2
] ∣∣∣

≤ (k(n − 1)p − (n − 1)p)2 − (k(n − 1)p − 2 − (n − 1)p)2 ≤ 4knp.
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Therefore,

E [Dj|d∗
1, . . . , d∗

i ] − E
[
Dj|d∗

1, . . . , d∗
i+1

]
=

∑
x∈{0,1}

∑
y∈{0,1}

n∑
z=1

Pr
[
aj,j+i+1 = x, aj−i−1,j = y, deg′

j = x + y + z|d∗
1, . . . , d∗

i

]
(
E

[
Dj|d∗

1, . . . , d∗
i , aj,j+i+1 = x, aj−i−1,j = y, deg′

j = x + y + z
]

−E
[
Dj|d∗

1, . . . , d∗
i , aj,j+i+1 = 1, aj−i−1,j = 1, deg′

j = z + 2
] )

≤ 4knp.

• Case 2: aj,j+i+1 + aj−i−1,j = 1 by d∗
i+1

xj,i+1 ≤ 4knp is proved in a similar way to Case 1.

• Case 3: aj,j+i+1 + aj−i−1,j = 0 by d∗
i+1

Note that

E [Dj|d∗
1, . . . , d∗

i ] − E
[
Dj|d∗

1, . . . , d∗
i+1

]
=

∑
(x,y)̸=(0,0)

n∑
z=1

Pr
[
aj,j+i+1 = x, aj−i−1,j = y, deg′

j = x + y + z|d∗
1, . . . , d∗

i

]
(
E

[
Dj|d∗

1, . . . , d∗
i , aj,j+i+1 = x, aj−i−1,j = y, deg′

j = x + y + z
]

−E
[
Dj|d∗

1, . . . , d∗
i , aj,j+i+1 = 0, aj−i−1,j = 0, deg′

j = z
] )

.

Since
∑

(x,y) ̸=(0,0) Pr [aj,j+i+1 = x, aj−i−1,j = y] is at most 2p, we have xv,i+1 ≤ 8knp2.

Case 1 and Case 2 cause at most 2knp times for each i. Hence, we have

|Xi − Xi+1| ≤
n∑

j=1

∣∣E [Dj|d∗
1, . . . , d∗

i ] − E
[
Dj|d∗

1, . . . , d∗
i+1

]∣∣
≤ 2knp · 4knp + n · 8knp2 ≤ 16k2n2p2.

By Azuma-Hoeffding inequality, we have

Pr[|X⌈n−1
2 ⌉ − X0| > λ] ≤ 2 exp

(
− λ2

2 ·
⌈

n−1
2

⌉
· 256(kd log n)4

)
.

Setting λ = n
2
3 , k = n

1
15

d log n
, the value of X0 is

X0 = E[D] ≤ E[f(G)] ≤ nd log n

X0 = E[D] ≥ E[f(G)] − n3 Pr[D ̸= f(G)] ≤ nd log n − 2(d log n)2.
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Pr[D ̸= f(G)] is at most 2 · 2−n−1
n

n
1
15 . Thus,

Pr[|D − nd log n| > 2n
2
3 ] ≤ Pr[|Xn − X0| > n

2
3 ]

≤ 2 exp

(
−n

1
15

512

)
.

Since Pr [D ̸= f(G)] ≤ 2 · 2−n−1
n

n
1
15 , we have Pr

[
|f(G) − n2p| > 2n

2
3

]
≤ 3 exp

(
−n

1
15

512

)
.
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