
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: Computer Science

ISSN 1342-2812

Simplification of the lattice based attack of Boneh and
Durfee for RSA cryptoanalysis

Yoshinori Aono

September 2009, C–263

Simplification of the lattice based attack of Boneh and Durfee for

RSA cryptoanalysis

Yoshinori Aono ∗

September 30, 2009

Abstract

In this paper we present a new formulation and its simpler analysis of the lattice based attack
of Boneh and Durfee for the RSA cryptography [2]. We follow the same approach of Boneh and
Durfee, however we propose a new way of defining a lattice with which we can achieve the same
solvable key bound d < N0.292. Our lattice is represented as a lower triangle matrix, which
makes its analysis much simpler that of [2]. We think that this simpler analysis would be useful
for considering applications/generalisations of this approach. In fact, as an example of such
applications, we give a way of attacking RSA secret key with a certain repetitive structure.

1 Introduction

In [2], Boneh and Durfee proposed a polynomial time attack by which we can recover the RSA
secret key d from the public information (e,N) when d < N0.292; in the following, we call the
bound d < N0.292 the solvable key bound of Boneh and Durfee or simply the Boneh-Durfee bound.
The basic idea of the attack is based on the Coppersmith technique by which we can obtain small
solutions of a modular equation such as f(x1, x2, . . . , xn) ≡ 0 (mod W). The technique converts the
problem of finding a small solution of the equation to the problem of solving a system of polynomial
equations by a lattice reduction algorithm such as the LLL algorithm [9].

Here is more detail explanation of their approach. The goal is to obtain a small solution (x0, y0)
of the following target equation to recover the secret key.

fBD(x, y) = −1 + x(y + A) ≡ 1 (mod e) (1)

Here A = N + 1. From this first the following bivariate polynomials are defined

gi,j(x, y) =
{

xi−j(fBD(x, y))iem−i for i ≥ j
yj−i(fBD(x, y))jem−j for i < j

(2)

for a certain range of (i, j) and an integer m. These polynomials are converted to a lattice repre-
sented by a row echelon matrix LBD defined by using the coefficients of gi,j(x, y) with some param-
eters. Then by using a lattice reduction algorithm, we obtain a system of polynomial equations
from which we can compute polynomial number of candidates of the solution (x0, y0) numerically.

In this approach a technically crucial point is to design a matrix for a lattice with a small
determinant. They showed that their matrix has a sufficiently small determinant; however, its

∗Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, Japan,
aono5@is.titech.ac.jp

1

analysis is complicated since the technique of geometrically progressive matrices, and it seems hard
to apply for the other situations. The purpose of this paper is to give a new way to construct a
lattice with asymptotically the same determinant that is much simpler to analyse.

Since Boneh and Durfee’s work, variants of their technique have been proposed. Blömer and
May [3] proposed a new lattice based algorithm for attacking RSA with a short secret key. They
constructed a lower triangle lattice by eliminating some columns from the original lattice; this
makes simplify the determinant analysis. In [8], Jochemsz and May gave an algorithm for finding
small roots of a multivariate modular/integer equation based on a generalised lattice construction
strategy. Note that both algorithms, achieve a slightly weaker solvable key bound than the Boneh-
Durfee bound.

In this paper we follow the strategy of Boneh and Durfee to give a new variation of the lat-
tice based attack with a simpler analysis. We propose a conversion from the polynomials (2) to
three-variable polynomials Gi,j(x, y, z) when we construct lattice; on the other hand, Boneh and
Durfee directly constructed the lattice from gi,j(x, y). Since we obtain a lower triangle matrix rep-
resentation of our lattice, we can easily compute its determinant. Therefore, we give a new simple
algorithm to achieve the Boneh-Durfee bound.

We carry out our computer experiments to compare the qualities of our lattice and that of Boneh
and Durfee. We check the solvable key ranges, the determinants, and the length of obtained vectors
by L2 algorithm [10, 11] on lattice generated by these two algorithms. As shown in Section 5, we
confirm that the qualities of the two lattice series are equivalent for various parameters in practice.
We find the computational time of the L2 algorithm is reduced by about 30% from the original
attack of Boneh and Durfee.

As the application of our analysis technique we consider the situation where an RSA secret
key has a repetitive structure; more precisely, the situation that the secret key d (in its binary
representation) is the repeat of r short bit string d0. In this situation we can reduce the problem
of recovering secret key to that of finding small solution pairs of

frep(x, y) = −1 + x(y + A) ≡ 1 (mod eR)

where R = 1 + 2` + · · ·+ 2(r−1)`; see Section 6 for precise information. For this case we can recover
the secret key when

β <
r + 3−√r2 + 6r + 1

4
where β = logN d0. For r = 1, we can see this is equivalent to the attack of Boneh and Durfee.

This paper is organised as follows: In section 2, we give basic symbols, notations, lemmas. We
give our formulation of the lattice based attack in section 3 and its detailed analysis is explained
in 4. The computer experiments to compare our lattice construction and that in [2] is described
in section 5. In section 6, we demonstrate that our approach can be used to analyse the situation
when a secret key has a repetitive structure.

2 Preliminaries

In this section, for the following discussions, we introduce some notations, state some known facts,
and key technical lemmas.

We use standard RSA notations throughout this paper. A given RSA instance is defined by
p, q, e, and d, where p and q are large primes, e is a public key, and d is the corresponding secret

2

key. Let N = p × q, and let ϕ(N) be the Euler’s function; here we may simply assume that
ϕ(N) = (p− 1)(q − 1). We assume that gcd(e, ϕ(N)) = 1. The key relation between e and d is

ed ≡ 1 (mod ϕ(N)) (3)

from which we derive our target equation (1) by following the argument in [2].
The basic strategy of the lattice based attack is to convert the problem of recovering RSA to

the problem of finding small solution of a modular equation; more precisely, this problem is to
find a solution within a certain range of a modular equation such as f(x, y) ≡ 0 (mod W) for a
polynomial f(x, y) and a nonnegative integer W . In general, solving modular equation is not easy,
whereas there are some cases where we may be able to use the standard numerical method for
solving this problem. The Howgrave-Graham lemma [7] provides us with one of such cases.

To state the Howgrave-Graham lemma, we introduce the following norm for bivariate polyno-
mials and integers.

Definition 1. XY -norm Let f(x, y) =
∑

i,j ai,jx
iyj be a polynomial with integral coefficients, X

and Y be natural numbers. We define the XY -norm of f(x, y) by

||f(x, y)||XY
def=

√∑

i,j

a2
i,jX

2iY 2j .

Lemma 1. (Howgrave-Graham [7]) For any positive integers X, Y and W , let f(x, y) be a
bivariate polynomial consisting with w terms with integral coefficients such that the following holds

||f(x, y)||XY <
W√
w

.

Then we have
f(x, y) ≡ 0 (mod W) ⇔ f(x, y) = 0

within the range of |x| < X and |y| < Y .

Note that f(x, y) = 0 clearly implies f(x, y) ≡ 0 (mod W). What is important is its converse. This
lemma guarantees that we can find all solutions of the modular equation within the range from the
integral solutions of f(x, y) = 0 (if they exist).

Now we introduce some definitions and some lemmas about the lattice; we need to obtain a
polynomial with a small XY -norm to use Lemma 1, and this problem can be reduced to a problem
of finding a short vector in a lattice. Consider linearly independent vectors b1, . . . ,bn, then the
lattice with basis b1, . . . ,bn is defined by

L(b1, . . . ,bn) =

{
n∑

i=1

aibi

∣∣∣∣∣ ai ∈ Z for i = 1, . . . , n

}
. (4)

That is, the lattice is the set of integral linear combinations of its basis vectors.
The shortest vector problem, for given basis b1, . . . ,bn, is to find a vector v such that

• v ∈ L(b1, . . . ,bn) \ {0} and
• |v| ≤ |v′| for ∀v′ ∈ L(b1, . . . ,bn) \ {0}.

In other word, this problem is to find a non-zero vector having the minimum length in L(b1, . . . ,bn).
We know that a lattice basis reduction algorithm finds a good approximation of the problem by
computing a reduced basis. We use the LLL algorithm [9], the most widely used lattice reduction
algorithm, in our analysis. The two short vectors in the reduced basis described in the following
theorem are important.

3

Theorem 1. [2, Fact 3.3] Let b1, . . . ,bn be a given linearly independent basis. Then the LLL
algorithm can find linearly independent lattice vectors v1 and v2 such that

|v1| ≤ 2(n−1)/4|det(L)|1/n and
|v2| ≤ 2n/2|det(L)|1/(n−1).

(5)

Here, det(L) is the determinant of the lattice which is defined by the determinant of a matrix
representation of the lattice; this is actually defined by

det(L) = det

b1
...

bn

 .

When we obtain a lower triangle matrix representation of a lattice, we can easily compute | det(L)|
by the product of its diagonal elements. we convert the short vectors in the reduced basis to
polynomials satisfying the sufficient condition of the Howgrave-Graham lemma.

We introduce a mapping for converting polynomials to vectors; since a lattice reduction al-
gorithm is designed for vectors, while our targets are polynomials. We divide this mapping
into two steps, named a vectorisation and an instantiation respectively. We introduce a way to
map three-variable polynomials to vectors since we will consider three-variable polynomials in
our construction. Our mapping is natural and simple; for example the polynomial f(x, y, z) =
−3x3 + 4x2yz − 2xy2z2 + 7xy3z3 is mapped to the vector (−3x3, 4x2yz,−2xy2z2, 7xy3z2) by fol-
lowing a fixed linear order of monomials. We state formally this mapping as follows.

Definition 2. Polynomials ⇒ vectors
Let K be a finite sequence of distinct three-variable monomials. We assume a linear order

on this, and let it be fixed; for any t, let xityjtzkt be the t-th monomial in this order. Then for
any f(x, y, z) =

∑
1≤t≤|K| atx

ityjtzkt, we map it to the following vector b, which is called the
vectorisation of f(x, y, z) and is denoted as VK(f).

f(x, y, z) = a1x
i1yj1zk1 + a2x

i2yj2zk2 + · · · + a|K|xi|K|yj|K|zk|K|

↓ ↓ ↓
b = (a1x

i1yj1zk1 , a2x
i2yj2zk2 , . . . , a|K|xi|K|yj|K|zk|K|).

We introduce a conversion named an instantiation and its inverse; it converts a three-variable
monomials to integers by substitution. Our matrix will be defined by using the vectorizations and
hence each element of the matrix is monomial. On the other hand, a lattice reduction algorithm is
designed for integer lattices or integer matrices. Thus, for using a lattice reduction algorithm, we
need to instantiate our matrix by substituting some integers X, Y and Z to x, y and z, which we
call an instantiation with X, Y and Z. Conversely, converting an integer vector to a polynomial
is called a deinstantiation. Note that (since K and the order of monomials is fixed) we know a
monomial xityjtzkt corresponding to the t-th entry of a given vector; hence, deinstantiation at the
t-th entry can be achieved by simply dividing its integral value by XitY jtZkt .

These vectorization, instantiation, and deinstantiation procedures are essentially the same as
those used by Boneh and Durfee (except that we consider three-variable polynomials while bivariate
polynomials have been used by them).

4

3 A New Lattice Based Algorithm

In this section we give a new lattice based algorithm for RSA with a short secret key; that is, a new
lattice construction and its simpler analysis to derive the same Boneh-Durfee bound d < N0.292.
Our analysis requires only elementary lemmas and calculations. The detailed analysis is given in
the next section. What is different from the original algorithm is to use three-variable polynomials
to construct a lattice; the bivariate polynomials (2) are used directly in the original paper. We first
state some definitions and lemma to explain our lattice construction.

Canonical Replacement

We convert the bivariate polynomials gi,j(x, y) to three-variable polynomials artificially. We first
express gi,j(x, y) as a sum of monomials and then replace every xy by z + 1 in gi,j(x, y). For
example, the polynomial g2,3(x, y) = em−2(−1 + xy + Ax)2y = em−2y + A2em−2x2y− 2Aem−2xy−
2em−2xy2+2Aem−2x2y2+x2y3 is converted to the polynomial G3,2(x, y, z) = em−2y+A2em−2x(1+
z) − 2Aem−2(1 + z) − 2em−2y(1 + z) + 2Aem−2(1 + z)2 + em−2y(1 + z)2. Like this example, we
will denote the converted polynomial from gi,j(x, y) by Gi,j(x, y, z), and we call this conversion
a canonical replacement. It is clear that Gi,j(x, y,−1 + xy) = gi,j(x, y). Though artificial, this
canonical replacement allows us to define a lower triangle matrix representation of our lattice.

Here we extend the notion of XY -norm for converted three-variable polynomials and show some
useful bound. Though we consider such converted three-variable polynomials, they are essentially
bivariate polynomials; hence, we still discuss its XY -norm and show an inequality. Let F (x, y, z) =∑

i,j,k bi,j,kx
iyjzk be a three-variable polynomial. For this F , we define a three-variable version of

the XY -norm as follows:

||F (x, y, z)||XY
def=

√∑

i,j,k

b2
i,j,kX

2iY 2j(X2Y 2 + 1)k.

Again this definition is somewhat artificial; one motivation is to have the following bound.

Lemma 2. Let f(x, y) be any bivariate polynomial and let F (x, y, z) be is a polynomial obtained
by applying the canonical replacement to f(x, y). Let v be the maximum degree of z in F (x, y, z).
Then for any non-negative integers X and Y , the following holds.

||f(x, y)||XY ≤ (v + 1)||F (x, y, z)||XY .

Proof. We let f(x, y) =
∑

s,t as,tx
syt, and let F (x, y, z) =

∑
i,j,k bi,j,kx

iyjzk. Then since F
is obtained from f by the canonical replacement, it follows that f(x, y) = F (x, y,−1 + xy) =∑

i,j,k bi,j,kx
iyj(−1 + xy)k. We give the relationship between as,t’s and bi,j,k’s as follows.

∑

i,j,k

bi,j,kx
iyj(−1 + xy)k =

∑

i,j,k

bi,j,kx
iyj

k∑

c=0

(
k

c

)
(−1)k−cxcyc

=
∑

i,j,k,c

bi,j,k

(
k

c

)
(−1)k−cxi+cyj+c =

∑

s,t,k,c

bs−c,t−c,k

(
k

c

)
(−1)k−cxsyt.

Here, we let s = i + c and t = j + c. By comparing the coefficient of xsyt, we have

as,t =
∑

k,c

bs−c,t−c,k(−1)k−c

(
k

c

)
. (6)

5

Now k and c are integers between 0 and v since its range is from the degree of z in F (x, y, z).
Hence, the number of terms in the right-hand side of (6) is equal to or less than (v + 1)2. Thus we
have

|as,t|2 ≤ (v + 1)2
∑

k,c

∣∣∣∣bs−c,t−c,k

(
k

c

)∣∣∣∣
2

.

By this inequality, we derive our claim as follows:

||f(x, y)||2XY =
∑
s,t

|as,t|2X2sY 2t ≤
∑
s,t

(v + 1)2
∑

k,c

∣∣∣∣bs−c,t−c,k

(
k

c

)∣∣∣∣
2

X2sY 2t

= (v + 1)2
∑

s,t,k,c

∣∣∣∣bs−c,t−c,k

(
k

c

)∣∣∣∣
2

X2sY 2t

= (v + 1)2
∑

i,j,k,c

|bi,j,k|2
(

k

c

)2

X2(i+c)Y 2(j+c)

= (v + 1)2
∑

i,j,k

|bi,j,k|2 X2iY 2j
k∑

c=0

(
k

c

)2

X2cY 2c

= (v + 1)2
∑

i,j,k

|bi,j,k|2 X2iY 2j(1 + X2Y 2)k

= (v + 1)2||F (x, y, z)||2XY .

Thus we have ||f(x, y)||XY ≤ (v + 1)||F (x, y, z)||XY .

Remark. We will assume that Z =
√

X2Y 2 + 1 whenever we consider
instantiation/deinstantiation with some X and Y to keep its consistent with this extended XY -
norm notion. Thus, for any three-variable polynomial F (x, y, z) obtained as a sum of monomials
of the deinstantiation of some vector F w.r.t. X and Y , the following relation is immediate.

||F (x, y, z)||XY = |F|. (7)

Now we explain our version of the lattice based attack for RSA following its outline stated in
Figure 1. This is essentially the same as the one by Boneh and Durfee except for polynomials and
a lattice construction.

We first define symbols used in the algorithm. Let δ be the ratio of the bit-length of d to that
of N ; here we assume that δ < 0.5. Let m be an another parameter that is set as an integer greater
than one; the larger m would yield the better solvable key range but the more computation time is
necessary. The Boneh-Durfee bound δ < 0.292 is the approximated value when we take sufficiently
large m. Thus, considering available computational resource and δ, an appropriate number should
be chosen for m; for our experiment, we set m from 6 to 10.

Then we define the set I = {(i, j) ∈ Z2|0 ≤ i ≤ m, 0 ≤ j ≤ 2(1 − δ)i}. The sequence I is
defined by introducing some order to elements in I; however we postpone its explanation to the
next section. For (i, j) ∈ I, polynomials gi,j(x, y) are defined as follows:

gi,j(x, y) def=
{

xi−j(fBD(x, y))iem−i for i ≥ j
yj−i(fBD(x, y))jem−j for i < j.

(8)

6

Step 1: Choose attack parameters m and δ.
Step 2: Define an index sequence I and a monomial sequence K (as explained in Sec-

tion 4). For each (i, j) ∈ I, define a polynomial gi,j(x, y) as (2) and a polynomial
Gi,j(x, y, z) by the canonical replacement of gi,j(x, y). Construct a lattice L us-
ing vectors VK(Gi,j) as row vectors in the order of (i, j) following I.

Step 3: Instantiate L with X = bN δc, Y = bN0.5c (and Z =
√

X2Y 2 + 1). Then apply
a lattice reduction algorithm to it.

Step 4: For two short vectors v1 and v2 computed by a reduction algorithm, compute
their deinstantiations v′1 and v′2. Define polynomials H1(x, y, z) and H2(x, y, z)
by summing up the monomials in v′1 and v′2 respectively. Then define h1(x, y) =
H1(x, y,−1 + xy) and h2(x, y) = H2(x, y,−1 + xy).

Step 5: Enumerate all integral solutions of h1(x, y) = h2(x, y) = 0. For each of those
solutions, compute d by (1) and check whether it is an integer.

Figure 1: Our version of the lattice based attack

These are the same polynomials defined in [2]; more precisely, our gi,j(x, y) for i ≥ j and for i < j
correspond to their gi,j(x, y) and hi,j(x, y) respectively. We then further extend them to three-
variable polynomials Gi,j(x, y, z) by the canonical replacement. Consider the set of monomials of
type xiyjzk that appear in some Gi,j(x, y, z). Again its ordered version K will be defined in the
next section. Now we let bi,j = VK(Gi,j) and define our lattice L as follows:

L =

b0,0

b0,1
...

bm,m′

 (9)

where m′ is b2(1−δ)mc. One important point here is that we can choose some appropriate ordering
for K so that L becomes lower triangle; we prove this in the next section.

Next we carry out a lattice reduction algorithm on L′ that is obtained as the instantiation of L
with parameters X = bN δc and Y = b3N0.5c (and Z =

√
1 + X2Y 2); for our analysis, we consider

the LLL algorithm. The algorithm computes a reduced basis, which contains short vectors in the
lattice.

From two short vectors v1 and v2 in the reduced basis, we construct the corresponding poly-
nomials h1(x, y) and h2(x, y). First we convert the two vectors to their deinstantiations v′1 and
v′2. Then define H1(x, y, z) and H2(x, y, z) as the sums of all monomials in v′1 and v′2 respectively.
From the construction of L and the nature of the instantiation/deinstantiation, that is, we can
easily see each vc is a integral linear combination of bi’s; hence this yields that H1(x, y, z) and
H2(x, y, z) are integral linear combinations of Gi,j(x, y, z). We then obtain h1(x, y) and h2(x, y) by
hc(x, y) = Hc(x, y,−1 + xy) for c = 1, 2.

Finally, in step 5, we solve the simultaneous equation h1(x, y) = h2(x, y) = 0. For each (x1, y1)
of the integral solutions of the equation, compute d as follows

d =
−1 + x1(y1 + A)

e

and check it is indeed the correct secret key, i.e., check whether it is a non-negative integer. This
is the outline of our version of the lattice based attack.

7

Now we show relationships between the polynomials computed in the algorithm; our target is
to derive the Boneh-Durfee bound via considering a sufficient condition of the Howgrave-Graham
lemma. By construction we have

fBD(x, y) ≡ 0 (mod e) ⇒ [gi,j(x, y) = Gi,j(x, y,−1 + xy) ≡ 0 (mod em) for ∀(i, j) ∈ I].

On the other hand, [Gi,j(x, y,−1 + xy) ≡ 0 (mod em) for ∀(i, j) ∈ I] ⇒ [Hc(x, y,−1 + xy) =
hc(x, y) ≡ 0 (mod em) for c = 1, 2] since each Hc(x, y, z) is an integral linear combination of
Gi,j(x, y, z). Thus, if both h1(x, y) and h2(x, y) satisfy the condition of the Howgrave-Graham
lemma for X, Y and W = em, we have

hc(x, y) ≡ 0 (mod em) ⇔ hc(x, y) = 0 for c = 1, 2, |x| < X and |y| < Y

and this implies

fBD(x, y) ≡ 0 (mod e) ⇒ hc(x, y) = 0 for c = 1, 2, |x| < X and |y| < Y. (10)

Therefore a small solution of fBD(x, y) ≡ 0 (mod e) must be included in the set of small solutions
of h1(x, y) = h2(x, y) = 0 when h1 and h2 satisfy the Howgrave-Graham condition; more precisely,
if for each c = 1, 2, hc satisfies the following.

||hc(x, y)||XY <
em

√
w

(11)

Here w is the number of terms in hc(x, y), which is equal or less than (1− δ)m2.
Now we consider this condition for each hc(x, y) to derive the Boneh-Durfee bound. We have

by Lemma 2,

||hc(x, y)||XY ≤ (v + 1)||Hc(x, y, z)||XY ≤ (m + 1)||Hc(x, y, z)||XY

where v is the maximum degree of z in Hc(x, y, z), which is equal to or smaller than m. Moreover
by Theorem 1 and (7) we have

||Hc(x, y, z)||XY = |vc| ≤ 2n/2 det(L′)1/(n−1).

Rearranging these conditions, we have a sufficient condition for the Howgrave-Graham lemma as
follows.

(m + 1)2n/2 det(L′)1/(n−1) <
em

√
1− δm

.

Following the analysis of Boneh and Durfee, we disregard the numbers (m + 1)2n/2 and
√

1− δm
because these are sufficiently small comparing to the RSA parameters, and we use det(L′)1/n instead
of det(L′)1/(n−1). Hence we have our simplified sufficient condition.

det(L′)1/n < em. (12)

Here from the analysis of the next section, we have both

n = (1− δ)m2 + o(m2)

and

det(L′) = N(− 1
3
δ2− 1

3
δ+ 5

6)m3+o(m3).

8

Therefore, the condition (12) is equivalent to

N(− 1
3
δ2− 1

3
δ+ 5

6)m3+o(m3) = det(L′) < enm = N (1−δ)m3+o(m3).

Hence we have
−1

3
δ2 − 1

3
δ +

5
6

< 1− δ ⇔ 2δ2 − 4δ + 1 < 0.

for sufficiently large m. Then we have the condition for δ as follows

δ < 1− 1√
2
≈ 0.292. (13)

This is the same as the Boneh-Durfee bound [2].

4 Analysis in Detail

In this section we show that L defined in the above section is lower triangle; hence we can easily
derive the determinant of the L′ defined as the instantiation of L with parameters X and Y .

We need to give the detailed construction of L to prove our claim; before this, we define an index
sequence I and a monomial sequence K to set an order of terms in our matrix. For fixed m and δ <

0.5, we define the set I
def= {(i, j) ∈ Z2|0 ≤ i ≤ m, 0 ≤ j ≤ 2(1− δ)i}. We respectively define I1 and

I2 by the lexicographic order of (i, j) in {(i, j) ∈ I|i ≥ j} and that of (j, i) in {(i, j) ∈ I|i < j}; we
use these sequences to define the order of the vector Gi,j(x, y, z). We further set the index sequence
I as the concatenation of I1 and I2. For I1 = ((i1, j1), . . . , (iu, ju)) and I2 = ((i′1, j

′
1), . . . , (i

′
u′ , j

′
u′)),

we construct monomial sequences K1 and K2; we use these sequences to set the monomial order
in vectorization. We define the monomial sequences K1 and K2 by K1 = (xi1−j1zj1 , . . . , xiu−juzju)
and K2 = (yj′1−i′1zi′1 , . . . , yj′

u′−i′
u′zi′

u′) respectively. We also set K by the concatenation of K1

and K2. We use these sequences to define our L. Here we give a small example for m = 3 and
δ = 0.25; we have I1 = ((0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3)) and I2 =
((2, 3), (3, 4)). By them, we have the monomial sequence K1 = (1, x, z, x2, xz, z2, x3, x2z, xz2, z3)
and K2 = (yz2, yz3).

We state two facts for our analysis; we will use them in the proof of Lemma 3 and Lemma 4.
We denote a symbol ≺ the order in K1 and K2.

Fact 1. We have for the elements in K1, xizj ≺ xi′zj′ ⇔ i + j < i′ + j′ or [i + j = i′ + j′ and
j < j′]. For the elements in K2, yizj ≺ yi′zj′ ⇔ i + j < i′ + j′ or [i + j = i′ + j′ and j < j′].

Fact 2. For elements in K, we have xjzi ∈ K1 ⇔ 0 ≤ i + j ≤ m, and yjzi ∈ K2 ⇔ [0 ≤ i ≤ m
and 0 < j < (1− 2δ)i]

Now we define our lattice L by using the polynomials Gi,j(x, y, z) and the defined sequences;
here we actually give a matrix representation of L. Our matrix is defined by the row matrix of
vectors VK(Gi,j) for (i, j) ∈ I whose order is from I. We divide L as follows to show its lower
triangularity:

9

L =

VK(G0,0)
...

VK(Gm,m′)

 =

K1 K2︷ ︸︸ ︷ ︷ ︸︸ ︷

L00 L01

L10 L11

}
I1

}
I2

(14)

Here, m′ = b2(1− δ)mc. Therefore, we need to show that L00 and L11 are lower triangle matrices
and show that L01 is the zero matrix to proof the triangularity of L; of course, we need to prove
that the monomials in Gi,j(x, y, z) are contained in K. This will be showed via the proof of Lemma
3 and Lemma 4.

Lemma 3. L00 and L01 are a lower triangle matrix and the zero matrix respectively.

Proof. Let (ik, jk) be k-th element in I1. We first show the triangularity of L00; we need to show
that the polynomial Gi,j(x, y, z) can be expressed as an linear combination of the first k elements
in K1, and show that the coefficient of xik−jkzjk in Gik,jk

(x, y, z) is not zero.
The expression of Gi,j(x, y, z) is computed as follows by the definition (8) and the canonical

replacement:

Gik,jk
(x, y, z) = xik−jk(−1 + xy + Ax)jkem−jk

= xik−jk(z + Ax)jkem−jk =
jk∑

`=0

a`x
ik−`z`.

where a` are certain integers.
Thus, by the Fact 1, xik−jkzjk , this is the k-th element in K1, is the most right non-zero

element in VK(Gik,jk
) in the order ≺; this also corresponds to the k-th diagonal element in our

matrix. Hence the non-zero elements in bik,jk
are on the diagonal position or its left; This shows

that L00 is a lower triangle matrix. It is clear that L01 is the zero-matrix since the polynomial
Gik,jk

(x, y, z) for (ik, jk) ∈ I1 does not have a monomial of type zj′yi′ .

Lemma 4. L11 is a lower triangle matrix.

Proof. Let (ik, jk) be the k-th element in I2, We carry the proof by showing the monomials
Gik,jk

(x, y, z) include in K1 and the first k elements in K2.
We first give an expression of Gik,jk

(x, y, z) for (ik, jk) ∈ I2; we have by (8) and the canonical
replacement,

10

Gik,jk
(x, y, z)/em−ik = yjk−ik(−1 + xy + Ax)ik = yjk−ik(z + Ax)ik

=
ik∑

t=0

(
ik
t

)
(Ax)tyjk−ikzik−t

=
jk−ik−1∑

t=0

(
ik
t

)
(Ax)tyjk−ikzik−t +

ik∑

t=jk−ik

(
ik
t

)
(Ax)tyjk−ikzik−t

=
jk−ik−1∑

t=0

(
ik
t

)
At(xy)tyjk−ik−tzik−t +

ik∑

t=jk−ik

(
ik
t

)
At(xy)jk−ikxt−jk+ikzik−t

=
jk−ik−1∑

t=0

(
ik
t

)
At(1 + z)tyjk−ik−tzik−t +

ik∑

t=jk−ik

(
ik
t

)
At(1 + z)jk−ikxt−jk+ikzik−t

=
jk−ik−1∑

t=0

(
ik
t

)
At

t∑

`=0

(
t

`

)
yjk−ik−tzik−t+` +

ik∑

t=jk−ik

(
ik
t

)
At

jk−ik∑

`=0

(
t

`

)
xt−jk+ikzik−t+`.

Therefore, we obtain that the monomials included in the expression of Gik,jk
(x, y, z) are

xt−jk+ikzik−t+` for jk − ik ≤ t ≤ ik and 0 ≤ ` ≤ jk − ik, (15)

and
yjk−ik−tzik−t+` for 0 ≤ t ≤ jk − ik − 1 and 0 ≤ ` ≤ t. (16)

We show that the terms in (15) and (16) are included in K1 and K2 respectively. First we argue
the terms in (15). By Fact 2, we have xt−jk+ikzik−t+` ∈ K1 ⇔ 0 ≤ (t − jk + ik) + (ik − t + `) =
2ik − jk + ` ≤ m, thus we need to show

0 ≤ 2ik − jk + ` ≤ m for (ik, jk) ∈ I2 and 0 ≤ ` ≤ jk − ik.

We have that jk − ik ≤ t ≤ ik derives 0 ≤ t− jk + ik ≤ 2ik − jk. Then by 0 ≤ ` ≤ jk − ik, we have
0 ≤ 2ik − jk + ` ≤ ik ≤ m. Hence, the monomials (15) are in K1.

Next we show that the terms (16) are the elements of K2 by similar argument. By Fact 2, we
have

yjk−ik−tzik−t+` ∈ K2 ⇔ [0 ≤ ik − t + ` ≤ m and 0 < jk − ik − t < (1− 2δ)(ik − t + `)].

Hence we show that these two inequalities satisfy for (ik, jk) ∈ I2, 0 ≤ t ≤ jk− ik−1 and 0 ≤ ` ≤ t.
We have

ik − t + ` ≤ ik ≤ m from 0 ≤ ` ≤ t.

We also have
ik − t + ` ≥ 2ik − jk + 1 > 2ik − 2(1− δ)ik + 1 = 2δik + 1 ≥ 0

from t ≤ jk − ik − 1 and ` ≥ 0. Thus we have 0 ≤ ik − t + ` ≤ m. This is the first inequality. Next
we show the second inequality. We have that t ≤ jk − ik − 1 derives jk − ik − t ≥ 1 > 0. On the
other hand, jk − ik − t < (1− 2δ)ik − t ≤ (1− 2δ)ik − t + ` holds. Then we have for 0 ≤ δ < 0.5,
−t + ` ≤ (1− 2δ)(−t + `) since −t + ` ≤ 0. Hence we have

jk − ik − t < (1− 2δ)ik − t + ` ≤ (1− 2δ)ik + (1− 2δ)(−t + `) ≤ (1− 2δ)(ik − t + `).

Therefore, we have the monomials (16) are in K2.

11

We need to show each maximum element in (16) in the order ≺ corresponds to a diagonal
element in L11. We have by Fact 1, the maximum element in (16) is a monomial yjk−ik−tzik−t+`

such that:
(jk − ik − t) + (ik − t + `) = jk + `− 2t is maximum, and
jk − ik − t is also maximum under maximized jk + `− 2t
within the range of (16).

Hence this is the case of ` = t = 0; this corresponds the monomial yjk−ikzik , which is the k-th
element in K2, hence, this is also the k-th diagonal element in L11. Therefore L11 is a lower triangle
matrix.

Now we can easily compute the determinant of L′; since L and its instantiation L′ are lower
triangle matrices by combining Lemma 3 and Lemma 4. We have from the expressions, the diagonal
elements in L′ corresponding to Gi,j(x, y, z) are em−jXi−jZj for (i, j) ∈ I1, and em−iY j−iZi for
(i, j) ∈ I2 respectively. Hence by using the approximations e ≈ N,X ≈ N δ, Y ≈ N0.5 and
Z =

√
X2Y 2 + 1 ≈ N δ+0.5, we have

det(L00) = em(m+1)(m+2)/3Xm(m+1)(m+2)/6Y m(m+1)(m+2)/6

= N(5
12

+ 1
3
δ)m3+o(m3) and

det(L11) = e(1−2δ)m3/6+o(m3)Y (1−2δ)2m3/6+o(m3)Z(1−2δ)m3/3+o(m3)

= N(− 1
3
δ2− 2

3
δ+ 5

12)m3+o(m3),

(17)

and
det(L) = det(L00) · det(L11) = N(− 1

3
δ2− 1

3
δ+ 5

6)m3+o(m3).

On the other hand, the dimension of the matrix is n = |I| = (1− δ)m2 + o(m2). Then we have

enm = N (1−δ)m3+o(m3).

Therefore as explained in the previous section, we can derive the bound δ < 0.292 by using these
values.

5 Computer Experiments

We carry out our computer experiments to check that our lattice construction is valid for recovering
short secret key; for various parameters, we compare the solvable key ranges, the determinants and
the computational times of lattices between our lattice L and Boneh and Durfee’s LBD. The results
of our experiments are shown in Table 1 and Table 2. Then we confirm the qualities between
two lattice series are equivalent in practice. Moreover, we find the computational time of the L2

algorithm is reduced by about 30% from the original attack of Boneh and Durfee.
We conduct our computer experiments on the TSUBAME supercomputer 1. We implement our

experiment procedure by the C++ language using Shoup’s NTL [12] of version 5.4.2. We carry out
the lattice reduction part by the L2 algorithm [10, 11] with parameter δ = 0.99 and η = 0.51, 2 and
implement the resultant calculation algorithm by [6]. We compile our source code by gcc-4.1.2
(64 bit version) with -O6 option.

1TSUBAME is a grid type supercomputer at Tokyo Inst. of Tech. A node of the supercomputer which we used
contains eight Opteron Dual Core model 880 processors of 2.4GHz and 32GB RAM. Note, however, we have not been
able to make a parallel version of our algorithm; TSUBAME’s massive parallelism has been used only for reducing
the total experiment time.

2This δ is L2 algorithm’s parameter and different from δ used for defining RSA instance. See the original paper
[10, 11] about this δ.

12

The procedures of our experiments are shown in Figure 2. In step 2-2, The reason for using L2

algorithm, while we used the LLL algorithm in the analysis, is to speed up the experiment. In fact
the L2 algorithm with NTL is 10 to 50 times faster than our previous implementation of the LLL
algorithm (without NTL). Moreover we verify the L2 algorithm can find sufficiently short vectors for
our propose, see Table 2. In step 3-2, we use a parameter Z = b√X2Y 2 + 1c for instantiation, while
we used Z =

√
X2Y 2 + 1 in analysis; this is from our implementation of L2 algorithm is designed

the integer vectors. However we think that this do not affect the quality of the algorithm. In step
2-3 and 3-3, the vectors obtained by the L2 algorithm are sorted by their length; this is because
those vectors are approximate ones and we cannot guarantee that v1 and v2 are the shortest two in
the reduced basis b′1, . . . ,b

′
n. In step 2-4 and 3-4, we check the algebraic independence of h1(x, y)

and h2(x, y) by checking R(x) 6= 0 holds or not, where R(x) is the resultant of h1 and h2; more
precisely, we regard an experiment instance is succeeded if R(x) 6= 0 and R(x0) = 0 where x0 is
from the small solution of the target equation.

Input parameters of experiments are `, m and δ which define respectively the bit length of
N , the parameter for constructing the lattice, and the ratio of bit length of d to that of N . We
carry out the experiments for m = 6, 8 and 10, ` = 512 and 1024, and δ = 0.260 to 0.280 in 0.005
intervals.

Results are shown in Table 1 and Table 2. Table 1 shows the solvable key ranges of our lattices
and that of [2]; that is, the experiment is succeed or not, for each parameter. The computational
times on the table is the average of five experiments for each parameter. Table 2 shows some values
for comparing the qualities of L and LBD for some experiment instances; for example, log2 of the
determinants, log2 of the length of short vectors and other values.

Key recoverability

We check that the difference of the key recoverable ranges between LBD and L. We regard that a
lattice can recover the secret key if the polynomials h1(x, y) and h2(x, y) pass the check in step 2-4
or 3-4. We carry out our experiments five times for each parameter.

We show the result of the experiments in Table 1. The column “lattice” and “s.” mean the type
of lattice used in the procedure and number of experiments that pass the check respectively. We
also give the “L2 time”, which means the CPU time processing step 2-2 or 3-2, and give the “total
time”, which means the CPU time processing the subroutine ExpBD or ExpOurs in the table. We
conclude that the key recoverable ranges of both algorithms are equivalent in our experiments.

We give some remark on the computational times. We can see the L2 time is reduced by about
30% compared with the L2 time of the previous lattice; we think this is caused from the matrix
representation of L is simpler than that of LBD. We remark that total computational time is
approximately the sum of L2 time and the time for computing the resultant; thus, we can see the
time of the resultant computation is longer than that of L2 algorithm when m is large. We are
able to avoid this by improving the source code for computing the resultant polynomial of bivariate
polynomials; however our interest is in the lattices, hence we think that this is not essential for our
study.

We further remark on the recoverable range at ` = 1024. We can see the qualities of lattices
for m = 8 are better than those for m = 10 in the table, while we said that the recoverable range
expands with larger m. This is caused by an irregular instance; in fact, the fault sample instance
for m = 8 and δ = 0.275 has the public key e ≈ 21018. This is quite smaller than N ≈ 21024 while
we assumed that e ≈ N in our analysis. Since then, this error is caused by that the sample instance
is not suitable for our analysis. This shows there are some RSA instances that we may not recover
the secret key satisfying Boneh-Durfee bound.

13

The main procedure of our computer experiments with parameters are m, ` and δ.
Step 1: (Make sample RSA instance) Randomly choose `/2-bit primes p and q, and

let N = pq. (In our program, we choose p and q the Euler-Jacobi pseudoprime
to bases 2, 3, 5, 7 and 11.) Randomly choose bδ`c-bit odd integer as the
secret key d such that gcd(d, (p − 1)(q − 1)) = 1. Compute the public key
e ≡ d−1 (mod (p − 1)(q − 1)) and let A = N + 1, fBD(x, y) = −1 + x(A + y),
y0 = p + q and x0 = (1− ed)/(p− 1)(q − 1).

Step 2: Execute ExpBD(e,d,N ,x0,y0; δ,m)
Step 3: Execute ExpOurs(e,d,N ,x0,y0; δ,m)

The procedure of our computer experiments for LBD.
ExpBD(e,d,N ,x0,y0; δ,m)
Step 2-1: Let X = bN δc and Y = b3N0.5c. Compute polynomials gi,j(x, y) in (8)

for I = {(i, j) ∈ Z2|0 ≤ i ≤ m, 0 ≤ j ≤ 2(1 − δ)i}. Then construct the
lattice LBD by following [2].

Step 2-2: Apply the L2 algorithm for LBD.
Step 2-3: Sort the vectors in the reduced basis b′1, . . . ,b

′
n by these length to

v1, . . . ,vn. Compute hc(x, y) as the sum of the elements in the dein-
stantiation of vc for c = 1 and 2.

Step 2-4: Check h1(x0, y0) = 0 and h2(x0, y0) = 0. (If h1(x0, y0) 6= 0 or h2(x0, y0) 6=
0, the experiment is failure.) Compute R(x) = Res(h1, h2) and check
R(x) 6= 0 and R(x0) = 0 holds or not.

The procedure of our computer experiments for our L.
ExpOurs(e,d,N ,x0,y0; δ,m)
Step 3-1: Let X = bN δc, Y = b3N0.5c. Compute polynomials gi,j(x, y) in (8) and

convert them to Gi,j(x, y, z) for I = {(i, j) ∈ Z2|0 ≤ i ≤ m, 0 ≤ j ≤
2(1− δ)i}. Then construct the lattice L by the method in Section 3

Step 3-2: Apply the L2 algorithm for L′. Here, L′ is the instantiation of L with
parameter X, Y (and Z = b√X2Y 2 + 1c).

Step 3-3: Sort the vectors of reduced basis b′1, . . . ,b
′
n by these length to v1, . . . ,vn.

Compute Hc(x, y, z) as the sum of the elements in the deinstantiation of
vc, and hc(x, y) = Hc(x, y,−1 + xy) for c = 1, 2

Step 3-4: Check h1(x0, y0) = 0 and h2(x0, y0) = 0. (If h1(x0, y0) 6= 0 or h2(x0, y0) 6=
0, the experiment is failure.) Compute R(x) = Res(h1, h2) and check
R(x) 6= 0 and R(x0) = 0 holds or not.

Figure 2: Our computer experiment procedure for LBD and L

14

` = 512 ` = 1024

Experiment
parameters

Lattice Results

m δ s. L2time
total
time

6 0.265 LBD 5 31.9 sec 49.5 sec
L 5 22.6 sec 39.9 sec

0.270 LBD 4 31.0 sec 50.2 sec
L 4 21.8 sec 40.8 sec

8 0.265 LBD 5 360 sec 721 sec
L 5 251 sec 610 sec

0.270 LBD 4 318 sec 613 sec
L 4 218 sec 514 sec

10 0.270 LBD 5 39 min 159 min
L 5 28 min 147 min

0.275 LBD 4 33 min 132 min
L 4 23 min 121 min

Experiment
parameters

Lattice Results

m δ s. L2time
total
time

6 0.270 LBD 5 123 sec 195 sec
L 5 86 sec 157 sec

0.275 LBD 0 112 sec 120 sec
L 0 75 sec 82 sec

8 0.275 LBD 5 1322 sec 2553 sec
L 5 860 sec 2081 sec

0.280 LBD 0 1096 sec 1230 sec
L 0 695 sec 823 sec

10 0.270 LBD 5 150 min 572 min
L 5 110 min 575 min

0.275 LBD 4 127 min 493 min
L 4 91 min 489 min

0.280 LBD 0 108 min 267 min
L 0 78 min 250 min

Table 1: Key recoverability and Computational Time for `=512 and 1024

Determinant and obtained vectors

We compare the determinants, the length of obtained vectors and some amounts to check the
qualities of L and LBD; we pick up some instances in our experiments. These are shown in Table 2.

We explain the columns in Table 2. The column deg. shows the degree of the lattice, that is,
the number of vectors in the lattice basis. The column D means the value log2(|v1|/det1/deg). The
column B1, H1, B2 and H2 respectively mean the value log2 |v1|, log2 ||h1(x, y)||XY , log2 |v2| and
log2 ||h2(x, y)||XY .

We give some remarks on the results in the table. The values D in the table are sufficiently
smaller than (deg − 1)/4; this is the upper bound guaranteed by Theorem 1 when we use the
LLL algorithm. Hence, we verify the L2 algorithm finds sufficiently short vectors for our objective.
We can see values in “result” are equivalent for L and LBD; in fact, we confirmed that they are
equivalent at least 10 most significant digits in practice. On the other hand, we have for c = 1 and
2, |vc| = ||hc(x, y)||XY for the lattice LBD and |vc| = ||Hc(x, y, z)||XY ≥ ||hc(x, y)||XY /(m + 1) for
the lattice L. That is, the result shows that the inequality is unnecessary pessimistic. In summary,
we verified that the obtained polynomials by L are valuable as that by the algorithm of Boneh and
Durfee.

6 On the Case of Repetitive Secret Key

In this section we give an application of our simple analysis; we propose a new RSA assumption
which we named repetitive secret key.

We assume that the secret key is the repeat of r short bit string d0 with binary length `. We
let β = logN d0, that is, the rough ratio of the bit-length of N to that of d0. Hence this is close to
`/ log2 N .

In this situation we derive the target equation by following the argument in [2]; our equation is

frep(x, y) = −1 + x(y + A) (mod eR) (18)

where R = 1 + 2` + · · · + 2(r−1)`. We notice that the difference between (1) and (18) is only the

15

Experiment
parameters

RSA Parameters Lattice Results

m δ log2 N log2 e log2 d deg. type log2 det D B1 H1 B2 H1

6 0.265 512.0 511.8 135.0 34 LBD 103989 -2.15 3056.35 3056.35 3056.54 3056.54
L 103989 -2.15 3056.35 3056.35 3056.54 3056.54

8 0.265 512.0 510.9 135.0 57 LBD 231587 -1.17 4060.96 4060.96 4060.99 4060.99
L 231587 -1.17 4060.96 4060.96 4060.99 4060.99

10 0.270 512.0 508.2 138.0 86 LBD 436180 1.67 5073.53 5073.53 5073.58 5073.58
L 436180 1.67 5073.53 5073.53 5073.58 5073.58

6 0.265 1024.0 1022.47 271.0 34 LBD 207700 -5.08 6103.74 6103.74 6103.89 6103.89
L 207700 -5.08 6103.74 6103.74 6103.89 6103.89

8 0.265 1024.0 1022.65 271.0 57 LBD 463048 -6.74 8116.91 8116.91 8117.11 8117.11
L 463048 -6.74 8116.91 8116.91 8117.11 8117.11

10 0.270 1024.0 1023.67 276.0 86 LBD 875290 -4.46 10173.33 10173.33 10173.36 10173.36
L 875290 -4.46 10173.33 10173.33 10173.36 10173.36

Table 2: Determinant and Length of Vectors

modulo. To solve the equation (18), we consider the lattice based attack and we can construct a
lattice with lower triangle representation by the technique in this paper.

Hence the determinant of constructed matrix is easily compute by substituting the approxima-
tion

e ≈ N, R ≈ N (r−1)β, X ≈ N rβ, Y ≈ N0.5, and Z =
√

X2Y 2 + 1 ≈ N rβ+0.5,

for (17). We further consider the Howgrave-Graham condition det(L′)1/n < (eR)m, where n and
m are explained as the outline section.

Finally we obtain the condition for recovering the repetitive secret key as follows.

β <
r + 3−√r2 + 6r + 1

4
. (19)

For r = 1, this is equivalent to the result of Boneh and Durfee.

7 Conclusion

In this paper we study the lattice based attack for RSA with short secret key. We give the new
simple analysis to obtain their bound δ < 0.292. Through computer experiments, we verify that the
recoverable ranges of our lattice and that of Boneh and Durfee’s are equivalent, and furthermore, by
our approach, we can reduce the computational time of L2 algorithm by about 30% compared with
the one by Boneh and Durfee. One important advantage of our technique is that it does not require
any technical method or involved calculation that are necessary in the original technique. We hope
that our analysis technique will be applicable in other situations of the lattice based attack.

Acknowledgement

I am grateful to Osamu Watanabe for his advice, careful reading, and correct some expressions.
The author and this research was supported in part in part by JSPS Global COE program “Com-
putationism as a Foundation for the Sciences”.

16

References

[1] Y. Aono, A new lattice construction for partial key exposure attack for RSA, in Proceedings
of PKC 2009, Lecture Notes in Computer Science, vol. 5443, pp. 34-53, 2009.

[2] D. Boneh and G. Durfee, Cryptanalysis of RSA with private key d less than N0.292, IEEE
Transactions on Information Theory, vol. 46, No. 4, pp. 1339-1349, 2000.

[3] J. Blömer and A. May, Low Secret Exponent RSA Revisited in CaLC 2001, Lecture Notes
in Computer Science, vol. 2146, pp. 4-19, 2001.

[4] D. Coppersmith, Finding a small root of a univariate modular equation, in Proceedings of
EUROCRYPT 1996, Lecture Notes in Computer Science, vol. 1070, pp. 155-165, 1996.

[5] M. Ernst, E. Jochemsz, A. May, and B. Weger Partial key exposure attacks on RSA up to
full size exponents, in Proc. of EUROCRYPT’05, Lecture Notes in Computer Science, vol.
3494, pp. 371-386, 2005.

[6] A. D. Healy, Resultants, Resolvents and the Computation of Galois Groups, Available online
at http://www.alexhealy.net/papers/math250a.pdf.

[7] N. Howgrave-Graham, Finding small roots of univariate modular equations revisited, in Pro-
ceedings of Cryptography and Coding, Lecture Notes in Computer Science, vol. 1355, pp.
131-142, 1997.

[8] E. Jochemz and A. May, A Strategy for Finding Roots of Multivariate Polynomials with New
Applications in Attacking RSA Variants, in Advances in Cryptology (Asiacrypt 2006) Lecture
Notes in Computer Science, vol. 4284, pp. 267-282, 2006.

[9] A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász Factoring polynomials with rational coeffi-
cients, Mathematische Annalen, vol. 261, No. 4, pp. 515-534, 1982.

[10] P. Nguyen and D. Stehlé, Floating-Point LLL revisited, in Proceedings of EUROCRYPT 2005,
Lecture Notes in Computer Science, vol. 3494, pp. 215-233, 2006.

[11] P. Nguyen and D. Stehlé, Floating-Point LLL (Full version), available online at
ftp://ftp.di.ens.fr/pub/users/pnguyen/FullL2.pdf.

[12] V. Shoup, NTL: A Library for doing Number Theory, available online at
http://www.shoup.net/ntl/index.html.

17

