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Abstract

It has been known that the graph isomorphism problem is polynomial-time many-one re-
ducible to the ring isomorphism problem. In fact, two different reductions have already
been proposed. For those reductions, rings of certain types have been used to represent
a given graph. In this paper, we give yet another reduction, which is based on a simpler
and more natural construction of a ring from a graph. By the existing reductions, one of
the original graph isomorphisms can be found in each ring isomorphism obtained for the
reduced ring isomorphism problem instance. On the other hand, in our new reduction, it
is not clear how to get a graph isomorphism between two graphs from an obtained ring
isomorphism between rings constructed from the graphs. However, we show that we can
compute a graph isomorphism from an obtained ring isomorphism in polynomial time. In
fact, one ring isomorphism may correspond to many graph isomorphisms in our reduction.
Our proof essentially shows a way to obtain all graph isomorphisms corresponding to one
ring isomorphism.

1 Introduction

A ring is an algebraic structure consisting of a set together with addition (+) and multiplication ( · ),
and it plays an important role in mathematics, especially in algebra and number theory.

Rings are also important in computer science, since many problems in computer science can be
regarded as problems of rings. For example, the deterministic primality test proposed by Agrawal et al.
[1] can be seen as checking some automorphisms of a ring Zn[X]/⟨Xr −1⟩. Similarly, the integer factor-
ization problem is reducible to problems related to rings, such as counting isomorphisms or computing
an isomorphism between certain rings [2].

It has also been known that the graph isomorphism problem is polynomial-time many-one reducible
to the ring isomorphism problem. In fact, two different reductions have already been proposed [2, 3]. In
this paper, we give yet another reduction, which is simpler and more natural than previous reductions.
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The organization of this paper is as follows. We start with the definitions of ring isomorphism
problem and graph isomorphism problem in section 2. In Section 3, we overview the existing reductions
from the graph isomorphism problem to the ring isomorphism problem. In Section 4, we propose a new
and simple way of constructing a ring from a graph, and prove that our new way of construction can be
used for the reduction. In Section 5, we discuss how to compute an original graph isomorphism from a
ring isomorphism between rings constructed by our new reduction. The last section concludes the paper
and lists some open problems.

2 Preliminaries

In this section, we give the definitions of ring isomorphism problem and graph isomorphism problem.
A ring is a set R equipped with two binary operations, addition(+) and multiplication( · ), which

satisfy following conditions:

• R is an abelian group under addition with identity element 0;

• R is a monoid under multiplication with identity element 1;

• Multiplication distributes over addition.

For two rings R1 and R2, a bijection ϕ : R1 → R2 is called a ring isomorphism if and only if it satisfies
these two conditions below:

• for all a, b ∈ R1, ϕ(a) + ϕ(b) = ϕ(a + b);

• for all a, b ∈ R1, ϕ(a) · ϕ(b) = ϕ(a · b).

We say the two rings are isomorphic if and only if there exists a ring isomorphism between two rings.
The ring isomorphism problem is to decide whether two given rings are isomorphic. The corresponding
language can be defined as:

RING ISOMORPHISM = {(R1,R2) | Rings R1 and R2 are isomorphic}.

To represent rings, we use basis representation of rings described in [2].
A graph G of n vertices is a pair (V,E), where V = {1, . . . , n} is a set of vertices and E is a set of

edges, which are pairs of vertices. In this paper, we focus on simple graphs, that is, edges are undirected
and neither parallel edges nor loops are allowed. A clique C of a graph G = (V,E) is a subset of the
vertex set V , such that for every pair of vertices in C, there exists an edge connecting them. A clique
C is called a maximal clique if and only if C is not a proper subset of any larger clique.

For two graphs G1 = (V1, E1) and G2 = (V2, E2), a bijection π : V1 → V2 is called a graph isomor-
phism if and only if {(π(u), π(v)) | (u, v) ∈ E1} = E2. We say that the two graphs are isomorphic if
and only if there exists a graph isomorphism between two graphs. The graph isomorphism problem is
to decide whether two graphs are isomorphic. The corresponding language can be defined as:

GRAPH ISOMORPHISM = {(G1, G2) | Graphs G1 and G2 are isomorphic}.

3 Known Reductions

To reduce from the graph isomorphism problem to ring isomorphism problem, we use rings of certain
types to represent the structure of given graphs.

2



Kayal et al. [2] proposed the following construction of a ring from a graph.

Construction 1 ([2])� �
Given a simple graph G = (V, E) with n vertices, define the following ring RG:

RG := Zp3 [V1, . . . , Vn, A(1,2), . . . , A(n−1,n)]/I,

where p is an odd prime number and the ideal I has the following relations:

• for all 1 ≤ i ≤ n , V 2
i = 0;

• for all 1 ≤ i < j ≤ n , ViVj = VjVi = A(i,j);

• for all 1 ≤ i ≤ n and e, e′ ∈ {(k, l) | 1 ≤ k < l ≤ n}, AeVi = AiVe = 0, AeAe′ = 0;

• for all e ∈ E , the order of Ae is p;

• for all e /∈ E , the order of Ae is p2.� �
In this construction of a ring, the variables V1, . . . , Vn represent vertices and A(1,2), . . . , A(n−1,n)

represent pairs of vertices. The structure of edges is embedded in a ring by setting orders of variables
differently according to whether the corresponding pair has an edge or not.

Suppose we are given two graphs G1 and G2, and let RG1 and RG2 be the rings constructed from G1

and G2 using construction 1, respectively. Kayal et al. [2] proved that two graphs G1, G2 are isomorphic
if and only if RG1 and RG2 are isomorphic. This shows that the graph isomorphism problem can be
reduced to the ring isomorphism problem.

Their proof is based on a observation that one can compute a graph isomorphism from a ring
isomorphism between RG1 and RG2 . Suppose that RG1 and RG2 are isomorphic and we are given an
isomorphism ϕ : RG1 → RG2 . Let

ϕ(Vi) = αi +
∑

1≤j≤n

βi,jV
′
j n +

∑
1≤j<k≤n

γi,j,kA′
(j,k).

Here, we use variables V ′
1 , . . . , V ′

n, A′
(1,2), . . . , A′

(n−1,n) for RG2 instead of V1, . . . , Vn, A(1,2), . . . , A(n−1,n).
It can be proved that exactly one of βi,1, . . . , βi,n is a unit of Zp3 . Let π be the mapping satisfying the
following condition:

π(i) = j ⇔ βi,j is a unit.

Then, it can be proved that π is indeed an isomorphism from G1 to G2.
Agrawal et al. [3] proposed another construction of a ring as stated below. Here, ⟨S⟩ denotes the

ideal generated by S.
Construction 2 ([3])� �

Given a simple graph G = (V, E) with n vertices, define the following ring RG:

RG := Fq[X1, . . . , Xn]/⟨{pG(X1, . . . , Xn)} ∪
∪

1≤i≤n

{X2
i } ∪

∪
1≤i,j,k≤n

{XiXjXk})⟩,

where Fq is a finite field of odd characteristic and pG ∈ Fq[X1, . . . , Xn] is a polynomial defined as
follows:

pG(X1, . . . , Xn) :=
∑

(i,j)∈E

XiXj .

� �
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In this construction, the variables X1, . . . , Xn represent vertices, and the products of two variables
X1X2, . . . , Xn−1Xn represent pairs of vertices. To embed the structure of edges of a graph, a ring
satisfies the condition that the sum of all XiXj that correspond to the edges is zero in a ring.

Suppose we are given two graphs G1 and G2 of n vertices, and let RG1 and RG2 be the rings
constructed from G1 and G2 using construction 2. Then, Agrawal et al. [3] proved that two graphs G1,
G2 are isomorphic if and only if either RG1 and RG2 are isomorphic or G1

∼= G2
∼= Kn−k ∪Dk for some

k (here, Kn−k is the complete graph of n − k vertices and Dk is a collection of k isolated vertices).
They proved that by showing every ring isomorphism from RG1 to RG2 contains a graph iso-

morphism from G1 to G2. Suppose RG1 and RG2 are isomorphic and we are given an isomorphism
ϕ : RG1 → RG2 , and let

ϕ(Xi) = αi +
∑

1≤j≤n

βi,jYj +
∑

1≤j<k≤n

γi,j,kYjYk.

Here, we use Y1, . . . , Yn for RG2 instead of X1, . . . , Xn. Then, it can be shown that exactly one of
βi,1, . . . , βi,n is nonzero. Let π be the mapping satisfying the following condition:

π(i) = j ⇔ βi,j ̸= 0.

Then, it can be proved that π is an isomorphism from G1 to G2.

4 New Reduction

Construction 1 has a relatively complex structure. Construction 2 is simple but has some special case
(namely, when a graph can be written as a union of a complete graph and isolated vertices), and the
condition that “the sum of all edges is zero” is some what unnatural.

Hence, we propose the following “simpler” and “more natural” construction of a ring.
Construction 3� �

Given a simple graph G = (V, E) with n vertices, define the following ring RG:

RG := Fq[X1, . . . , Xn]/⟨
∪

(i,j)∈E

{XiXj} ∪
∪

1≤i≤n

{X2
i } ∪

∪
1≤i,j,k≤n

{XiXjXk})⟩,

where Fq is a finite field with odd characteristic.� �
This construction of a ring from a graph is very similar to construction 2, but the condition is

changed from “the sum of all edges is zero” to “every edge is zero.” In this way, the structure of a ring
is much simpler than construction 1, and the way of embedding the information of edges is more natural
than construction 2.

However, it is not clear whether this construction can be used for the reduction. To see this,
suppose we get an isomorphism ϕ : RG1 → RG2 , where RG1 and RG2 are the rings constructed from
G1 = (V1, E1) and G2 = (V2, E2) using construction 3, and let

ϕ(Xi) = ϕ(Xi) = αi +
∑

1≤j≤n

βi,jYj +
∑

(j,k)/∈E2

γi,j,kYjYk.

Then, there may be more than one of βi,1, . . . , βi,n which are nonzero, and every nonzero βi,j is a unit.
Therefore, we cannot get a graph isomorphism from a ring isomorphism using the same way as we did

4



in construction 1 or 2. Hence, there might be some cases in which rings are isomorphic even if graphs
are not isomorphic.

Nevertheless, we prove the following.

Theorem 4.1. Let G1 = (V1, E1), G2 = (V2, E2) be simple graphs and RG1 ,RG2 be the rings con-
structed from G1 and G2 using construction 3. Then, G1 and G2 are isomorphic if and only if RG1 and
RG2 are isomorphic.

Proof For simplicity of notation, we will use R1 and R2 instead of RG1 and RG2 , respectively.
If G1 and G2 are isomorphic, any graph isomorphism between graphs induces a natural isomorphism

between R1 and R2. So we only have to prove the other direction.
Suppose that there is an isomorphism ϕ from R1 to R2. We will prove that G1 and G2 are indeed

isomorphic.
First of all, we can assume that the number of vertices of G1 and that of G2 are equal, since the

rings cannot be isomorphic if two graphs have different numbers of vertices. Let n be the number of
vertices of G1 and G2. We will use X1, . . . , Xn for the variables of R1 and Y1, . . . , Yn for those of R2

instead, so that we can distinguish an element of R1 from an element of R2 easily.

Remark 4.2. Note that ϕ satisfies the following conditions from the definition of isomorphism.

• {ϕ(1), {ϕ(Xi)}1≤i≤n, {ϕ(XiXj)}(i,j)/∈E1} forms a basis of R2, and hence they are linearly inde-
pendent.

• ϕ(Xi)ϕ(Xj) = ϕ(XiXj) holds for all 1 ≤ i, j ≤ n

Claim 4.3. ϕ : R1 → R2 satisfies the following conditions:

ϕ(1) = 1,

ϕ(Xi) =
∑

1≤j≤n

βi,jYj +
∑

(j,k)/∈E2

γi,j,kYjYk for all 1 ≤ i ≤ n,

ϕ(XiXj) =
∑

(k,l)/∈E2

δi,j,k,lYkYl for all (i, j) /∈ E1.

Proof
Let

ϕ(Xi) = αi +
∑

1≤j≤n

βi,jYj +
∑

(j,k)/∈E2

γi,j,kYjYk.

Since X2
i = 0 in the ring R1,

0 = ϕ(X2
i ) = ϕ(Xi)2 = α2

i + (higher degree terms).

This gives αi = 0. Therefore, ϕ(Xi) can be written as

ϕ(Xi) =
∑

1≤j≤n

βi,jYj +
∑

(j,k)/∈E2

γi,j,kYjYk.

For all (i, j) /∈ E1, ϕ(XiXj) = ϕ(Xi)ϕ(Xj) holds and neither ϕ(Xi) nor ϕ(Xj) has a constant term.
Hence, ϕ(XiXj) has quadratic terms only and can be written as

ϕ(XiXj) =
∑

(k,l)/∈E2

δi,j,k,lYkYl.
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Corollary 4.4. ϕ−1 : R2 → R1 satisfies the following conditions:

ϕ−1(1) = 1,

ϕ−1(Yi) =
∑

1≤j≤n

β′
i,jXj +

∑
(j,k)/∈E1

γ′
i,j,kXjXk for all 1 ≤ i ≤ n,

ϕ−1(YiYj) =
∑

(k,l)/∈E1

δ′i,j,k,lXkXl for all (i, j) /∈ E2.

Claim 4.5. For all (i, j) /∈ E2, YiYj can be written as a linear combination of {ϕ(XkXl) | (k, l) /∈ E1}.

Proof From Corollary 4.4, ϕ−1(YiYj) can be written as

ϕ−1(YiYj) =
∑

(k,l)/∈E1

δ′i,j,k,lXkXl.

By mapping both sides by ϕ, we get

YiYj =
∑

(k,l)/∈E1

δ′i,j,k,lϕ(XkXl).

Now, we define a new mapping ϕ′ : R1 → R2 as follows:

ϕ′(1) = 1,

ϕ′(Xi) =
∑

1≤j≤n

βi,jYj for all 1 ≤ i ≤ n,

ϕ′(XiXj) =
∑

(k,l)/∈E2

δi,j,k,lYkYl for all (i, j) /∈ E1.

The mappings ϕ′ and ϕ are almost the same, but ϕ′(Xi)’s are a little bit different from ϕ(Xi)’s since
quadratic terms are removed from ϕ(Xi).

Claim 4.6. ϕ′ is also an isomorphism from R1 to R2.

Proof It suffices to show that ϕ′ satisfies the conditions described in Remark 4.2.
First, we will check if {ϕ′(1), {ϕ′(Xi)}1≤i≤n, {ϕ′(XiXj)}(i,j)/∈E1} are linearly independent. Notice

that ϕ′(1) and ϕ′(XiXj)’s are equal to ϕ(1) and ϕ(XiXj)’s, and ϕ′(Xi)’s are “changed” from ϕ(Xi)’s by
removing quadratic terms. From Claim 4.5, YkYl’s can be written as a linear combination of {ϕ(XiXj)},
so the difference between ϕ′(Xi) and ϕ(Xi) is a linear combination of {ϕ(XkXl)}. Therefore, they are
still linearly independent.

Second, ϕ′(Xi)ϕ′(Xj) = ϕ′(XiXj) holds since

ϕ′(XiXj) = ϕ(XiXj) = ϕ(Xi)ϕ(Xj) =
∑

1≤k≤n

∑
1≤l≤n

βi,kβj,lYkYl = ϕ′(Xi)ϕ′(Xj).

Therefore, ϕ′ is indeed an isomorphism.
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Remark 4.7. Note that ϕ′−1 : R2 → R1 satisfies the following conditions:

ϕ−1(1) = 1,

ϕ−1(Yi) =
∑

1≤j≤n

β′
i,jXj for all 1 ≤ i ≤ n,

ϕ−1(YiYj) =
∑

(k,l)/∈E1

δ′i,j,k,lXkXl for all (i, j) /∈ E2.

From here, we assume that ϕ(Xi)’s have no quadratic term, since, even if ϕ(Xi)’s have quadratic
terms, we can construct a new isomorphism (namely, ϕ′) by removing quadratic terms from ϕ(Xi).

We define a mapping fϕ : 2V1 → 2V2 as

fϕ(S) := {j | i ∈ S, βi,j ̸= 0}.

A mapping fϕ−1 : 2V2 → 2V1 is defined similarly:

fϕ−1(S′) := {j | i ∈ S′, β′
i,j ̸= 0}.

Claim 4.8. Let C ⊂ V1 be a clique in G1. Then, fϕ(C) is a clique in G2. Similarly, let C ′ ⊂ V2 be a
clique in G2. Then, fϕ−1(C ′) is a clique in G1.

Proof We will prove the former statement. The latter one can be proved similarly.
It suffices to show that (i, j) ∈ E2 (i.e. YiYj = 0) for any i, j ∈ ϕ(C) , i ̸= j. There are two cases to

consider.

1. There exists k ∈ C such that βk,i ̸= 0 and βk,j ̸= 0.

2. There exists no such k ∈ C.

In case 1, ϕ(X2
k) can be written as:

ϕ(X2
k) = 2βk,iβk,jYiYj + (other terms).

Since ϕ(X2
k) = 0 and 2βk,iβk,j is nonzero by the choice of k, YiYj must be zero.

In case 2, we can choose k, l ∈ C such that βk,i ̸= 0 and βl,j ̸= 0. Then, ϕ(XkXl) can be written as:

ϕ(XkXl) = βk,iβl,jYiYj + (other terms).

Since C is a clique, ϕ(XkXl) = 0. By the choice of k and l, βk,iβk,j is nonzero. This gives YiYj = 0.

Claim 4.9. For all S ⊂ V1 and S′ ⊂ V2,

|S| ≤ |fϕ(S)|,

|S′| ≤ |fϕ−1(S′)|.

Proof We will prove the former one. Each of {ϕ(Xi) | i ∈ S} is a linear combination of {Yj | j ∈ ϕ(S)},
and they are linearly independent. Therefore, |ϕ(S)| must be at least |S|.
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Claim 4.10. For all S ⊂ V1 and S′ ⊂ V2,

fϕ−1(fϕ(S))) ⊇ S,

fϕ(fϕ−1(S′))) ⊇ S′.

Proof We will prove the former one. For i ∈ S, let

ϕ(Xi) =
∑

k∈fϕ(S)

βi,kYk.

By mapping both sides by ϕ,
Xi =

∑
k∈fϕ(S)

βi,kϕ−1(Yk).

Hence, there exists k ∈ fϕ(S) such that β′
k,i is nonzero (that is, Xi appears in ϕ−1(Yk)). This shows

i ∈ fϕ−1(fϕ(S)).

Corollary 4.11. Let C be a maximal clique in G1, and C ′ be a maximal clique in G2. Then,

fϕ−1(fϕ(C))) = C,

fϕ(fϕ−1(C ′))) = C ′.

Proof Immediate from Claim 4.8 and Claim 4.9.

Claim 4.12. Let C be a maximal clique in G1. Then, fϕ(C) is a maximal clique in G2 and |C| = |fϕ(C)|
holds. Similarly, Let C ′ be a maximal clique in G2. Then, fϕ−1(C ′) is a maximal clique in G1 and
|C ′| = |fϕ−1(C)| holds.

Proof We will prove the former statement Let C∗ be a clique in G2 which contains fϕ(C). We are
going to show that |C| = |fϕ(C)| and |fϕ(C)| = |C∗|.

Since C is a maximal clique, fϕ−1(fϕ(C))) = C holds from Corollary 4.11. By the choice of C∗,
fϕ−1(C∗) ⊇ fϕ−1(fϕ(C)) = C holds. This means fϕ−1(C∗) is a clique which contains C. Since C is
maximal, fϕ−1(C∗) must be equal to C.

On the other hand, from Claim 4.9, we get

|C| ≤ |fϕ(C)| ≤ |C∗| ≤ |fϕ−1(C∗)|.

Since we already know that fϕ−1(C∗) = C, the equalities hold throughout the inequalities above. This
gives |C| = |fϕ(C)| and |fϕ(C)| = |C∗|.

Claim 4.13. Let M be the set of maximal cliques of G1, and M′ be the set of maximal cliques of G2.
The mapping

M → M′ : C 7→ fϕ(C)

yields one-to-one correspondence between M and M′.

Proof The mapping is injective since fϕ(C) is a maximal clique in G2 from Claim 4.12. It is also
surjective because, for any C ′ ∈ M′, fϕ−1(C ′) is a maximal clique in G1 and fϕ(fϕ−1(C ′)) = C ′ from
Corollary 4.11.

From the claim above, G1 and G2 have the same number of maximal cliques. Let l be the number of
maximal cliques in G1 and G2. Let C1, C2, C3, . . . , Cl be maximal cliques in G1, and C ′

1, C
′
2, C

′
3, . . . , C

′
l

be maximal cliques in G2. Here, we assume that fϕ(Ci) = C ′
i holds for all i.
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Claim 4.14. For all 1 ≤ m ≤ n and 1 ≤ j1 < · · · < jm ≤ n, the following equality holds:

|
m∪

i=1

Cji | = |
m∪

i=1

C ′
ji
|.

Proof From Claim 4.12, the statement holds when m = 1.
Let us consider the case when m = 2. Since ϕ(Xi) , i ∈ Cj1 ∪ Cj2 , are linearly independent,

|Cj1 ∪ Cj2 | ≤ |C ′
j1 ∪ C ′

j2 |.

Applying the above argument to the other direction, we also get

|Cj1 ∪ Cj2 | ≥ |C ′
j1 ∪ C ′

j2 |.

Combining these two inequalities, we get

|Cj1 ∪ Cj2 | = |C ′
j1 ∪ C ′

j2 |.

We can prove the statement similarly when m > 2.

The above claim shows that the structure of maximal cliques of G1 and that of G2 is exactly the
same. Therefore, G1 and G2 are isomorphic. Thus, we finish the whole proof of Theorem 4.1.

5 Computing a Graph Isomorphism from a Ring Isomorphism

In this section, we discuss how to compute a graph isomorphism from a ring isomorphism between rings
constructed from graphs using our new reduction.

As discussed above, in known reductions, one of the original graph isomorphisms can be found easily
in each ring isomorphism obtained for the reduced ring isomorphism problem instance. On the other
hand, it is not clear how to get a graph isomorphism from a ring isomorphism in our reduction.

However, we can show a way to obtain one as stated below.

Theorem 5.1. Let G1 = (V1, E1), G2 = (V2, E2) be simple graphs and RG1 ,RG2 be rings constructed
from G1 and G2 using construction 3. Given an isomorphism ϕ : RG1 → RG2 , we can compute a graph
isomorphism from G1 to G2 in polynomial time.

Proof Throughout the proof, we use the same notation as in the proof of Theorem 4.1.
We define PS and QS for S ⊆ {1, . . . , l} as follows.

PS = {
∩
i∈S

Ci} ∩ {
∩
i/∈S

Ci},

QS =
∩
i∈S

Ci.

We define P ′
S and Q′

S similarly. For example, when l = 4, P{1,4} = C1∩C2∩C3∩C4 and Q{1,4} = C1∩C4.
We can see that the following equality holds from the definition:

QS =
∪

T⊇S

PS .
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The similar equality between P ′
S and Q′

S also holds. Now, G1 and G2 are isomorphic since R1 and R2

are isomorphic. Thus, the following equalities hold for every S ⊆ {1, . . . , l}:

|PS | = |P ′
S |,

|QS | = |Q′
S |.

Claim 5.2. A bijection π : V1 → V2 is a graph isomorphism if it satisfies the condition below:

i ∈ PS ⇒ π(i) ∈ P ′
S .

Proof We will prove that for any i ∈ PS and j ∈ PT , (π(i), π(j)) ∈ E2 if and only if (i, j) ∈ E1.
Suppose that (i, j) ∈ E1. Then, S ∩T is not empty, since there is at least one maximal clique in G1

that contains both i and j. From the condition, π(i) ∈ P ′
S and π(j) ∈ P ′

T hold. Thus, there is at least
one maximal clique in G2 that contains both π(i) and π(j). Therefore, (π(i), π(j)) ∈ E2.

On the other hand, suppose that (i, j) /∈ E1. Then, S ∩ T must be empty. Hence, there is no
maximal clique in G2 that contains both π(i) ∈ P ′

S and π(j) ∈ P ′
T . This means (π(i), π(j)) /∈ E2.

Claim 5.3. For any S ⊆ {1, . . . , l} and i ∈ PS , fϕ({i}) ⊆ Q′
S .

Proof For all k ∈ S, fϕ({i}) ⊆ fϕ(Ck) = C ′
k holds since {i} ⊆ Ck. Therefore, we get

fϕ({i}) ⊆
∩
k∈S

C ′
k = Q′

S .

Claim 5.4. Given ϕ : R1 → R2, let π : V1 → V2 be a bijection such that π(i) ∈ fϕ({i}) holds for all
i ∈ V1. Then, π is a graph isomorphism between G1 and G2.

Proof From Claim 5.2, it suffices to show that π(i) ∈ P ′
S for all S ⊆ {1, . . . l} and i ∈ PS . We

will prove it by induction on S. Note that from the condition and Claim 5.3, π(i) ∈ Q′
S holds since

π(i) ∈ fϕ({i}) ⊂ Q′
S .

When S = {1, . . . , l}, the statement clearly holds since π(i) ∈ Q′
S = P ′

S .
Assume that the above statement holds for all T ) S. For all i ∈ PS ,

π(i) ∈ Q′
S =

∪
T⊇S

P ′
T .

This means that bijection π maps i to a vertex in P ′
T such that T ⊇ S. From the induction hypothesis,

for all T ) S, all vertices in PT are already mapped to vertices in P ′
T . Combining the condition that

|PT | = |P ′
T | and that π is a bijection, i cannot be mapped to vertices in P ′

T such that T ⊇ S. Thus, i

must be mapped to vertices in P ′
S , so π(i) ∈ P ′

S holds. This completes the induction.

The problem of finding a bijection π : V1 → V2 such that π(i) ∈ fϕ({i}) for all i ∈ V1 can be
regarded as a problem of finding a perfect matching of the bipartite graph G′ defined below:

G′ := (V ′, E′),

V ′ := V1 ∪ V2,

E′ := {(i, j) | j ∈ fϕ({i})}.
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Claim 5.4 shows that any perfect matching of G′ forms a graph isomorphism. It is well-known that
a maximum matching in a bipartite graph can be found in polynomial time [4]. From Claim 4.9,
|S| ≤ |fϕ(S)| holds for all S ⊂ V1. Combining Hall’s theorem [5], we can see that there is at least one
perfect matching in G′.

Therefore, we can compute a graph isomorphism π : V1 → V2 from a ring isomorphism ϕ : R1 → R2

in polynomial time.

Remark 5.5. In the existing reductions, one ring isomorphism corresponds to one graph isomorphism.
On the other hand, the proof of Theorem 5.1 essentially shows that one ring isomorphism in our reduction
may correspond to many graph isomorphisms, since there may be more than one solutions for perfect
matching of G′, and each matching corresponds to a different graph isomorphism.

6 Conclusion and Open Problems

In this paper, we proposed a new reduction from the graph isomorphism problems to the ring isomor-
phism problem, which is based on a simpler and more natural construction of a ring from a graph than
the existing reductions. We also show that one ring isomorphism in our reduction may correspond to
many graph isomorphisms, and we can compute one in polynomial time.

We pose a few open problems which we expect answers.

• Can we reduce the ring isomorphism problem to the graph isomorphism problem, or the hyper-
graph isomorphism problem?

• Is there a polynomial-time quantum algorithm for the ring isomorphism problem? Using specific
structure of rings, we might be able to solve it efficiently using quantum computers.
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